1
|
Navarro-Traxler AJ, Ghisolfi L, Lien EC, Toker A. The glycosyltransferase ALG3 is an AKT substrate that regulates protein N-glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646556. [PMID: 40236010 PMCID: PMC11996567 DOI: 10.1101/2025.04.01.646556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The PI3K/AKT signaling pathway is frequently dysregulated in cancer and controls key cellular processes such as survival, proliferation, metabolism and growth. Protein glycosylation is essential for proper protein folding and is also often deregulated in cancer. Cancer cells depend on increased protein folding to sustain oncogene-driven proliferation rates. The N-glycosyltransferase asparagine-linked glycosylation 3 homolog (ALG3), a rate-limiting enzyme during glycan biosynthesis, catalyzes the addition of the first mannose to glycans in an alpha-1,3 linkage. Here we show that ALG3 is phosphorylated downstream of the PI3K/AKT pathway in both growth factor-stimulated cells and PI3K/AKT hyperactive cancer cells. AKT directly phosphorylates ALG3 in the amino terminal region at Ser11/Ser13. CRISPR/Cas9-mediated depletion of ALG3 leads to improper glycan formation and induction of endoplasmic reticulum stress, the unfolded protein response, and impaired cell proliferation. Phosphorylation of ALG3 at Ser11/Ser13 is required for glycosylation of cell surface receptors EGFR, HER3 and E-cadherin. These findings provide a direct link between PI3K/AKT signaling and protein glycosylation in cancer cells.
Collapse
|
2
|
Zhang J, Xiong X, Li J, Luo C, Su Q, Hao X, Wu Q, Huang W. Valtrate Suppresses TNFSF14-Mediated Arrhythmia After Myocardial Ischemia-Reperfusion by Inducing N-linked Glycosylation of LTβR to Regulate MGA/MAX/c-Myc/Cx43. J Cardiovasc Pharmacol 2024; 84:418-433. [PMID: 39028940 DOI: 10.1097/fjc.0000000000001613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024]
Abstract
Myocardial ischemia-reperfusion (MIR)-induced arrhythmia remains a major cause of death in patients with cardiovascular diseases. The reduction of Cx43 has been known as a major inducer of arrhythmias after MIR, but the reason for the reduction of Cx43 remains largely unknown. The aim of this study was to find the key mechanism underlying the reduction of Cx43 after MIR and to screen out an herbal extract to attenuate arrhythmia after MIR. The differentially expressed genes in the peripheral blood mononuclear cell (PBMCs) after MIR were analyzed using the data from several gene expression omnibus data sets, followed by the identification in PBMCs and the serum of patients with myocardial infarction. Tumor necrosis factor superfamily protein 14 (TNFSF14) was increased in PBMCs and the serum of patients, which might be associated with the injury after MIR. The toxic effects of TNFSF14 on cardiomyocytes were investigated in vitro . Valtrate was screened out from several herbal extracts. Its protection against TNFSF14-induced injury was evaluated in cardiomyocytes and animal models with MIR. Recombinant TNFSF14 protein not only suppressed the viability of cardiomyocytes but also decreased Cx43 by stimulating the receptor LTβR. LTβR induces the competitive binding of MAX to MGA rather than the transcriptional factor c-Myc, thereby suppressing c-Myc-mediated transcription of Cx43. Valtrate promoted the N-linked glycosylation modification of LTβR, which reversed TNFSF14-induced reduction of Cx43 and attenuated arrhythmia after MIR. In all, valtrate suppresses TNFSF14-induced reduction of Cx43, thereby attenuating arrhythmia after MIR.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/physiopathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Humans
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/genetics
- Connexin 43/metabolism
- Connexin 43/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Male
- Disease Models, Animal
- Glycosylation
- Signal Transduction
- Anti-Arrhythmia Agents/pharmacology
- Mice, Inbred C57BL
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/drug effects
- Heart Rate/drug effects
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Xiaoqi Xiong
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Jun Li
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Changjun Luo
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Qiang Su
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Hao
- Health Mangement Institute, the Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China ; and
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, China
| | - Wanzhong Huang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
3
|
Zhang P, Pronovost SM, Marchetti M, Zhang C, Kang X, Kandelouei T, Li C, Edgar BA. Inter-cell type interactions that control JNK signaling in the Drosophila intestine. Nat Commun 2024; 15:5493. [PMID: 38944657 PMCID: PMC11214625 DOI: 10.1038/s41467-024-49786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
JNK signaling is a critical regulator of inflammation and regeneration, but how it is controlled in specific tissue contexts remains unclear. Here we show that, in the Drosophila intestine, the TNF-type ligand, Eiger (Egr), is expressed exclusively by intestinal stem cells (ISCs) and enteroblasts (EBs), where it is induced by stress and during aging. Egr preferentially activates JNK signaling in a paracrine fashion in differentiated enterocytes (ECs) via its receptor, Grindelwald (Grnd). N-glycosylation genes (Alg3, Alg9) restrain this activation, and stress-induced downregulation of Alg3 and Alg9 correlates with JNK activation, suggesting a regulatory switch. JNK activity in ECs induces expression of the intermembrane protease Rhomboid (Rho), driving secretion of EGFR ligands Keren (Krn) and Spitz (Spi), which in turn activate EGFR signaling in progenitor cells (ISCs and EBs) to stimulate their growth and division, as well as to produce more Egr. This study uncovers an N-glycosylation-controlled, paracrine JNK-EGFR-JNK feedforward loop that sustains ISC proliferation during stress-induced gut regeneration.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Stephen M Pronovost
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Marco Marchetti
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chenge Zhang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Xiaoyu Kang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Tahmineh Kandelouei
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Christopher Li
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Harvard University, Cambridge, MA, 02138, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Samantsidis GR, Kwon H, Wendland M, Fonder C, Smith RC. TNF signaling mediates cellular immune function and promotes malaria parasite killing in the mosquito Anopheles gambiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592209. [PMID: 38746363 PMCID: PMC11092648 DOI: 10.1101/2024.05.02.592209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Tumor Necrosis Factor-α (TNF-α) is a proinflammatory cytokine and a master regulator of immune cell function in vertebrates. While previous studies have implicated TNF signaling in invertebrate immunity, the roles of TNF in mosquito innate immunity and vector competence have yet to be explored. Herein, we confirm the identification of a conserved TNF-α pathway in Anopheles gambiae consisting of the TNF-α ligand, Eiger, and its cognate receptors Wengen and Grindelwald. Through gene expression analysis, RNAi, and in vivo injection of recombinant TNF-α, we provide direct evidence for the requirement of TNF signaling in regulating mosquito immune cell function by promoting granulocyte midgut attachment, increased granulocyte abundance, and oenocytoid rupture. Moreover, our data demonstrate that TNF signaling is an integral component of anti-Plasmodium immunity that limits malaria parasite survival. Together, our data support the existence of a highly conserved TNF signaling pathway in mosquitoes that mediates cellular immunity and influences Plasmodium infection outcomes, offering potential new approaches to interfere with malaria transmission by targeting the mosquito host.
Collapse
Affiliation(s)
| | - Hyeogsun Kwon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Megan Wendland
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Catherine Fonder
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Onigbinde S, Peng W, Solomon J, Adeniyi M, Nwaiwu J, Fowowe M, Daramola O, Purba W, Mechref Y. O-Glycome Profiling of Breast Cancer Cell Lines to Understand Breast Cancer Brain Metastasis. J Proteome Res 2024; 23:1458-1470. [PMID: 38483275 PMCID: PMC11299836 DOI: 10.1021/acs.jproteome.3c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Breast cancer is the second leading cause of cancer-related death among women and a major source of brain metastases. Despite the increasing incidence of brain metastasis from breast cancer, the underlying mechanisms remain poorly understood. Altered glycosylation is known to play a role in various diseases including cancer metastasis. However, profiling studies of O-glycans and their isomers in breast cancer brain metastasis (BCBM) are scarce. This study analyzed the expression of O-glycans and their isomers in human breast cancer cell lines (MDA-MB-231, MDA-MB-361, HTB131, and HTB22), a brain cancer cell line (CRL-1620), and a brain metastatic breast cancer cell line (MDA-MB-231BR) using nanoLC-MS/MS, identifying 27 O-glycan compositions. We observed significant upregulation in the expression of HexNAc1Hex1NeuAc2 and HexNAc2Hex3, whereas the expression of HexNAc1Hex1NeuAc1 was downregulated in MDA-MB-231BR compared to other cell lines. In our isomeric analysis, we observed notable alterations in the isomeric forms of the O-glycan structure HexNAc1Hex1NeuAc1 in a comparison of different cell lines. Our analysis of O-glycans and their isomers in cancer cells demonstrated that changes in their distribution can be related to the metastatic process. We believe that our investigation will contribute to an enhanced comprehension of the significance of O-glycans and their isomers in BCBM.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
6
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
7
|
Goli M, Jiang P, Fowowe M, Hakim MA, Mechref Y. Hydrophilic Interaction Liquid Chromatography (HILIC) Enrichment of Glycopeptides Using PolyHYDROXYETHYL A. Methods Mol Biol 2024; 2762:267-280. [PMID: 38315371 PMCID: PMC11773423 DOI: 10.1007/978-1-0716-3666-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Glycosylation of proteins is an important post-translational modification that plays a role in a wide range of biological processes, including immune response, intercellular signaling, inflammation, and host-pathogen interaction. Abnormal protein glycosylation has been correlated with various diseases. However, the study of protein glycosylation remains challenging due to its low abundance, microheterogeneity of glycosylation sites, and low ionization efficiency. During the past decade, several methods for enrichment and for isolation of glycopeptides from biological samples have been developed and successfully employed in glycoproteomics research. In this chapter, we discuss the sample preparation protocol and the strategies for effectively isolating and enriching glycopeptides from biological samples, using PolyHYDROXYETHYL A as a hydrophilic interaction liquid chromatography (HILIC) enrichment technique.
Collapse
Affiliation(s)
- Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
8
|
Bennett AI, Daramola O, Bhuiyan MMAA, Sandilya V, Mechref Y. Analysis of Native and Permethylated N-Glycan Isomers Using MGC-LC-MS Techniques. Methods Mol Biol 2024; 2762:219-230. [PMID: 38315368 PMCID: PMC11773420 DOI: 10.1007/978-1-0716-3666-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Glycosylation is an important post-translational modification that affects many critical cellular functions such as adhesion, signaling, protein stability, and function, among others. Abnormal glycosylation has been linked to many diseases. As such, the investigation of glycans and their roles in disease pathway and progression is important. Glycan analysis can be challenging, however, due to such factors as the heterogeneity of glycans and isomers as well as the poor ionization efficiency provided by mass spectrometry analyses. This chapter presents efficient methods that overcome these and other challenges for the analysis of native and permethylated N-glycan isomers in biological samples. Instructions regarding the packing of the MGC column, the N-glycan sample prep, and the LC-MS conditions are also provided.
Collapse
Affiliation(s)
- Andrew I Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
9
|
Colombani J, Andersen DS. Drosophila TNF/TNFRs: At the crossroad between metabolism, immunity, and tissue homeostasis. FEBS Lett 2023; 597:2416-2432. [PMID: 37567762 DOI: 10.1002/1873-3468.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Tumor necrosis factor (TNF)-α is a highly conserved proinflammatory cytokine with important functions in immunity, tissue repair, and cellular homeostasis. Due to the simplicity of the Drosophila TNF-TNF receptor (TNFR) system and a broad genetic toolbox, the fly has played a pivotal role in deciphering the mechanisms underlying TNF-mediated physiological and pathological functions. In this review, we summarize the recent advances in our understanding of how local and systemic sources of Egr/TNF contribute to its antitumor and tumor-promoting properties, and its emerging functions in adaptive growth responses, sleep regulation, and adult tissue homeostasis. The recent annotation of TNF as an adipokine and its indisputable contribution to obesity- and cancer-associated metabolic diseases have provoked a new area of research focusing on its dual function in regulating immunity and energy homeostasis. Here, we discuss the role of TNFR signaling in coupling immune and metabolic processes and how this might be relevant in the adaption of host to environmental stresses, or, in the case of obesity, promote metabolic derangements and disease.
Collapse
Affiliation(s)
- Julien Colombani
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ditte S Andersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Daramola O, Gutierrez-Reyes CD, Wang J, Nwaiwu J, Onigbinde S, Fowowe M, Dominguez M, Mechref Y. Isomeric separation of native N-glycans using nano zwitterionic- hydrophilic interaction liquid chromatography column. J Chromatogr A 2023; 1705:464198. [PMID: 37442073 DOI: 10.1016/j.chroma.2023.464198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Changes in the expression of glycan isomers have been implicated in the development and progression of several diseases. However, the analysis of structurally diverse isomeric N-glycans by LC-MS/MS is still a major analytical challenge, particularly due to their large number of possible isomeric conformations. Common approaches derivatized the N-glycans to increase their hydrophobicity and to gain better detection in the MS system. Unfortunately, glycan derivatization is time-consuming and, in many cases, adds complexity because of the multiple reaction and cleaning steps, incomplete chemical labeling, possible degradation, and unwanted side reactions. Thus, analysis of native glycans, especially for samples with low abundance by LC-MS/MS, is desirable. Normal phase chromatography, which employs HILIC stationary phase, has been commonly employed for the identification and separation of labeled glycans. In this study, we focused on achieving efficient isomeric separation of native N-glycans using a nano ZIC-HILIC column commonly employed to separate labeled glycans and glycopeptides. Underivatized sialylated and oligomannose N-glycans derived from bovine fetuin and Ribonuclease B were initially utilized to optimize chromatographic conditions, including column temperature, pH of mobile phases, and gradient elution time. The optimized condition was then applied for the isomeric separation of native N-glycans derived from alpha-1 acid glycoprotein, as well as from biological samples. Finally, we confirmed the stability and reproducibility of the ZIC-HILIC column by performing run-to-run comparisons of the full width at half height (FWHM) and retention time on different N-glycans. The variability in FWHM was less than 0.5 min, while that of retention time was less than 1.0 min with %RSD less than 1.0%.
Collapse
Affiliation(s)
- Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Michael Dominguez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
11
|
Radoua A, Pernon B, Pernet N, Jean C, Elmallah M, Guerrache A, Constantinescu AA, Hadj Hamou S, Devy J, Micheau O. ptARgenOM-A Flexible Vector For CRISPR/CAS9 Nonviral Delivery. SMALL METHODS 2023:e2300069. [PMID: 37156748 DOI: 10.1002/smtd.202300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Viral-mediated delivery of the CRISPR-Cas9 system is one the most commonly used techniques to modify the genome of a cell, with the aim of analyzing the function of the targeted gene product. While these approaches are rather straightforward for membrane-bound proteins, they can be laborious for intracellular proteins, given that selection of full knockout (KO) cells often requires the amplification of single-cell clones. Moreover, viral-mediated delivery systems, besides the Cas9 and gRNA, lead to the integration of unwanted genetic material, such as antibiotic resistance genes, introducing experimental biases. Here, an alternative non-viral delivery approach is presented for CRISPR/Cas9, allowing efficient and flexible selection of KO polyclonal cells. This all-in-one mammalian CRISPR-Cas9 expression vector, ptARgenOM, encodes the gRNA and the Cas9 linked to a ribosomal skipping peptide sequence followed by the enhanced green fluorescent protein and the puromycin N-acetyltransferase, allowing for transient, expression-dependent selection and enrichment of isogenic KO cells. After evaluation using more than 12 distinct targets in 6 cell lines, ptARgenOM is found to be efficient in producing KO cells, reducing the time required to obtain a polyclonal isogenic cell line by 4-6 folds. Altogether ptARgenOM provides a simple, fast, and cost-effective delivery tool for genome editing.
Collapse
Affiliation(s)
- Abdelmnim Radoua
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- INSERM, Université de Bourgogne Franche-Comté (UBFC), UMR1231, LNC, Dijon, 21000, France
| | - Baptiste Pernon
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
| | - Nicolas Pernet
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- INSERM, Université de Bourgogne Franche-Comté (UBFC), UMR1231, LNC, Dijon, 21000, France
| | - Chloé Jean
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne (URCA), Reims, Cedex, 51687, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, 51687, France
| | - Mohammed Elmallah
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Abderrahmane Guerrache
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- INSERM, Université de Bourgogne Franche-Comté (UBFC), UMR1231, LNC, Dijon, 21000, France
| | | | - Sofiane Hadj Hamou
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
| | - Jérôme Devy
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne (URCA), Reims, Cedex, 51687, France
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, 51687, France
| | - Olivier Micheau
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, 21000, France
- INSERM, Université de Bourgogne Franche-Comté (UBFC), UMR1231, LNC, Dijon, 21000, France
| |
Collapse
|
12
|
An Efficient and Economical N-Glycome Sample Preparation Using Acetone Precipitation. Metabolites 2022; 12:metabo12121285. [PMID: 36557323 PMCID: PMC9786591 DOI: 10.3390/metabo12121285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the critical role of the glycome in organisms and its close connections with various diseases, much time and effort have been dedicated to glycomics-related studies in the past decade. To achieve accurate and reliable identification and quantification of glycans extracted from biological samples, several analysis methods have been well-developed. One commonly used methodology for the sample preparation of N-glycomics usually involves enzymatic cleavage by PNGase F, followed by sample purification using C18 cartridges to remove proteins. PNGase F and C18 cartridges are very efficient both for cleaving N-glycans and for protein removal. However, this method is most suitable for a limited quantity of samples. In this study, we developed a sample preparation method focusing on N-glycome extraction and purification from large-scale biological samples using acetone precipitation. The N-glycan yield was first tested on standard glycoprotein samples, bovine fetuin and complex biological samples, and human serum. Compared to C18 cartridges, most of the sialylated N-glycans from human serum were detected with higher abundance after acetone precipitation. However, C18 showed a slightly higher efficiency for protein removal. Using the unfiltered human serum as the baseline, around 97.7% of the proteins were removed by acetone precipitation, while more than 99.9% of the proteins were removed by C18 cartridges. Lastly, the acetone precipitation was applied to N-glycome extraction from egg yolks to demonstrate large-scale glycomics sample preparation.
Collapse
|
13
|
Gerlach SU, de Vreede G, Bilder D. PTP10D-mediated cell competition is not obligately required for elimination of polarity-deficient clones. Biol Open 2022; 11:281302. [PMID: 36355597 PMCID: PMC9672856 DOI: 10.1242/bio.059525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
Animal organs maintain tissue integrity and ensure removal of aberrant cells through several types of surveillance mechanisms. One prominent example is the elimination of polarity-deficient mutant cells within developing Drosophila imaginal discs. This has been proposed to require heterotypic cell competition dependent on the receptor tyrosine phosphatase PTP10D within the mutant cells. We report here experiments to test this requirement in various contexts and find that PTP10D is not obligately required for the removal of scribble (scrib) mutant and similar polarity-deficient cells. Our experiments used identical stocks with which another group can detect the PTP10D requirement, and our results do not vary under several husbandry conditions including high and low protein food diets. Although we are unable to identify the source of the discrepant results, we suggest that the role of PTP10D in polarity-deficient cell elimination may not be absolute.
Collapse
Affiliation(s)
- Stephan U. Gerlach
- University of California-Berkeley Department of Molecular and Cell Biology , , Berkeley, CA 94720 , USA
| | - Geert de Vreede
- University of California-Berkeley Department of Molecular and Cell Biology , , Berkeley, CA 94720 , USA
| | - David Bilder
- University of California-Berkeley Department of Molecular and Cell Biology , , Berkeley, CA 94720 , USA
| |
Collapse
|
14
|
Khoury MJ, Bilder D. Minimal functional domains of the core polarity regulator Dlg. Biol Open 2022; 11:276053. [PMID: 35722710 PMCID: PMC9346270 DOI: 10.1242/bio.059408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
The compartmentalized domains of polarized epithelial cells arise from mutually antagonistic actions between the apical Par complex and the basolateral Scrib module. In Drosophila, the Scrib module proteins Scribble (Scrib) and Discs-large (Dlg) are required to limit Lgl phosphorylation at the basolateral cortex, but how Scrib and Dlg could carry out such a ‘protection’ activity is not clear. We tested Protein Phosphatase 1α (PP1) as a potential mediator of this activity, but demonstrate that a significant component of Scrib and Dlg regulation of Lgl is PP1 independent, and found no evidence for a Scrib-Dlg-PP1 protein complex. However, the Dlg SH3 domain plays a role in Lgl protection and, in combination with the N-terminal region of the Dlg HOOK domain, in recruitment of Scrib to the membrane. We identify a ‘minimal Dlg’ comprised of the SH3 and HOOK domains that is both necessary and sufficient for Scrib localization and epithelial polarity function in vivo. This article has an associated First Person interview with the first author of the paper. Summary: A minimal SH3-HOOK fragment of Dlg is sufficient to support epithelial polarity through mechanisms independent of the PP1 phosphatase.
Collapse
Affiliation(s)
- Mark J Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
15
|
Wong HTK, Chen X, Wu R, Wong YLE, Hung YLW, Chan TWD. Dissociation of Mannose-Rich Glycans Using Collision-Based and Electron-Based Ion Activation Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:803-812. [PMID: 35380839 DOI: 10.1021/jasms.1c00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three dissociation methods, including collision-induced dissociation (CID), electron capture dissociation (ECD), and electronic excitation dissociation (EED), were evaluated for the dissociation of doubly charged glycans using sodium or magnesium ions as charge carriers. CID produced mainly glycosidic cleavages, although more cross-ring fragment ions could be obtained at higher intensities when magnesium ions were used as charge carriers [M + Mg]2+. The 0,2A3, 0,3A3, and 0,4A3 ions provided structural information on the 3 → 1 and 6 → 1 linkages of the mannoses. Some internal fragment ions, such as 2,4A5_Y3β, were also produced in high abundance, thus providing additional information on the glycan structure. ECD produced limited fragments compared to other dissociation methods when either of the metal ions were used as charge carriers. Cross-ring fragments were obtained in relatively high abundance, with the charge mainly retained on the nonreducing end. EED produced extensive glycosidic and cross-ring cleavages when either metal charge carrier was used. A higher fragmentation efficiency was achieved and more structural-specific fragments were produced when Na+ was used as the charge carrier. Of the 31 possible cross-ring cleavages, including 0,2-, 0,4-, 1,5-, 2,4-, and 3,5-cleavages, 25 were found, thus providing extensive linkage information. A wide range of fragment ions could be obtained in all dissociation methods when Mg2+ was used as the charge carrier. Two specific analytical approaches were found to produce extensively structural-specific information on the glycans studied, namely CID of magnesiated glycans and EED of sodiated glycans. These two methods were selected to further analyze the larger mannose-rich glycans Man6GlcNAc2 and Man8GlcNAc2 and generated extensive structural information.
Collapse
Affiliation(s)
- H-T Kitty Wong
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
- Shandong Analysis and Test Centre, School of Pharmaceutical Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Y-L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Y-L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
16
|
de Vreede G, Gerlach SU, Bilder D. Epithelial monitoring through ligand-receptor segregation ensures malignant cell elimination. Science 2022; 376:297-301. [PMID: 35420935 DOI: 10.1126/science.abl4213] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Animals have evolved mechanisms, such as cell competition, to remove dangerous or nonfunctional cells from a tissue. Tumor necrosis factor signaling can eliminate clonal malignancies from Drosophila imaginal epithelia, but why this pathway is activated in tumor cells but not normal tissue is unknown. We show that the ligand that drives elimination is present in basolateral circulation but remains latent because it is spatially segregated from its apically localized receptor. Polarity defects associated with malignant transformation cause receptor mislocalization, allowing ligand binding and subsequent apoptotic signaling. This process occurs irrespective of the neighboring cells' genotype and is thus distinct from cell competition. Related phenomena at epithelial wound sites are required for efficient repair. This mechanism of polarized compartmentalization of ligand and receptor can generally monitor epithelial integrity to promote tissue homeostasis.
Collapse
Affiliation(s)
- Geert de Vreede
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephan U Gerlach
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
18
|
Lin S, Zhou L, Dong Y, Yang Q, Yang Q, Jin H, Yuan T, Zhou S. Alpha-(1,6)-fucosyltransferase (FUT8) affects the survival strategy of osteosarcoma by remodeling TNF/NF-κB2 signaling. Cell Death Dis 2021; 12:1124. [PMID: 34857735 PMCID: PMC8640016 DOI: 10.1038/s41419-021-04416-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022]
Abstract
Glycosylation is an important modification of membrane proteins that results in functional changes in many cellular activities, from cell-cell recognition to regulatory signaling. Fucosyltransferase 8 (FUT8) is the sole enzyme responsible for core fucosylation, and aberrant fucosylation by dysregulated expression of fucosyltransferases is responsible for the growth of various types of carcinomas. However, the function of FUT8 in the progress of osteosarcoma (OS) has not been reported. In this study, we found that FUT8 is expressed at lower levels in patients with OS and in human OS cell lines such as MNNG/HOS, U2OS, and 143B, suggesting that attenuated expression of FUT8 is involved in the growth and progression of OS. Mechanistically, FUT8 affects the survival strategy of OS by modifying core-fucosylation levels of TNF receptors (TNFRs). Lower fucosylation of TNFRs activates the non-canonical NF-κB signaling pathway, and in turn, decreases mitochondria-dependent apoptosis in OS cells. Together, our results point to FUT8 being a negative regulator of OS that enhances OS-cell apoptosis and suggests a novel therapeutic strategy for treating OS.
Collapse
Affiliation(s)
- Shanyi Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lenian Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Dong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingcheng Yang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hanqiang Jin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Yuan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
19
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
20
|
Moriwaki K, Chan FKM, Miyoshi E. Sweet modification and regulation of death receptor signalling pathway. J Biochem 2021; 169:643-652. [PMID: 33752241 DOI: 10.1093/jb/mvab034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Death receptors, members of the tumour necrosis factor receptor (TNFR) superfamily, are characterized by the presence of a death domain in the cytosolic region. TNFR1, Fas and TNF-related apoptosis-inducing ligand receptors, which are prototypical death receptors, exert pleiotropic functions in cell death, inflammation and immune surveillance. Hence, they are involved in several human diseases. The activation of death receptors and downstream intracellular signalling is regulated by various posttranslational modifications, such as phosphorylation, ubiquitination and glycosylation. Glycosylation is one of the most abundant and versatile modifications to proteins and lipids, and it plays a critical role in the development and physiology of organisms, as well as the pathology of many human diseases. Glycans control a number of cellular events, such as receptor activation, signal transduction, endocytosis, cell recognition and cell adhesion. It has been demonstrated that oligo- and monosaccharides modify death receptors and intracellular signalling proteins and regulate their functions. Here, we review the current understanding of glycan modifications of death receptor signalling and their impact on signalling activity.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Francis K M Chan
- Department of Immunology, Duke University School of Medicine, 207 Research Drive, Durham, NC27710-3010, USA
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Glycosylation of Immune Receptors in Cancer. Cells 2021; 10:cells10051100. [PMID: 34064396 PMCID: PMC8147841 DOI: 10.3390/cells10051100] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function. The answers to this fundamental question will stimulate the rational development of future cancer diagnostics and therapeutic strategies.
Collapse
|
22
|
Sun X, He Z, Guo L, Wang C, Lin C, Ye L, Wang X, Li Y, Yang M, Liu S, Hua X, Wen W, Lin C, Long Z, Zhang W, Li H, Jian Y, Zhu Z, Wu X, Lin H. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res 2021; 40:149. [PMID: 33931075 PMCID: PMC8086123 DOI: 10.1186/s13046-021-01932-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Radiotherapy is a conventional and effective local treatment for breast cancer. However, residual or recurrent tumors appears frequently because of radioresistance. Novel predictive marker and the potential therapeutic targets of breast cancer radioresistance needs to be investigated. METHODS In this study, we screened all 10 asparagine-linked glycosylation (ALG) members in breast cancer patients' samples by RT-PCR. Cell viability after irradiation (IR) was determined by CCK-8 assay and flow cytometry. The radiosensitivity of cell lines with different ALG3 expression was determined with the colony formation assay by fitting the multi-target single hit model to the surviving fractions. Cancer stem-like traits were assessed by RT-PCR, Western blot, and flow cytometry. The mechanisms of ALG3 influencing radiosensitivity was detected by Western blot and immunoprecipitation. And the effect of ALG3 on tumor growth after IR was verified in an orthotopic xenograft tumor models. The association of ALG3 with prognosis of breast cancer patients was confirmed by immunohistochemistry. RESULTS ALG3 was the most significantly overexpressing gene among ALG family in radioresistant breast cancer tissue. Overexpression of ALG3 predicted poor clinicopathological characteristics and overall survival (OS), and early local recurrence-free survival (LRFS) in breast cancer patients. Upregulating ALG3 enhanced radioresistance and cancer stemness in vitro and in vivo. Conversely, silencing ALG3 increased the radiosensitivity and repressed cancer stemness in vitro, and more importantly inhibition of ALG3 effectively increased the radiosensitivity of breast cancer cells in vivo. Mechanistically, our results further revealed ALG3 promoted radioresistance and cancer stemness by inducing glycosylation of TGF-β receptor II (TGFBR2). Importantly, both attenuation of glycosylation using tunicamycin and inhibition of TGFBR2 using LY2109761 differentially abrogated the stimulatory effect of ALG3 overexpression on cancer stemness and radioresistance. Finally, our findings showed that radiation played an important role in preventing early recurrence in breast cancer patients with low ALG3 levels, but it had limited efficacy in ALG3-overexpressing breast cancer patients. CONCLUSION Our results suggest that ALG3 may serve as a potential radiosensitive marker, and an effective target to decrease radioresistance by regulating glycosylation of TGFBR2 in breast cancer. For patients with low ALG3 levels, radiation remains an effective mainstay therapy to prevent early recurrence in breast cancer.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Zhenyu He
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Caiqin Wang
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, People's Republic of China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Liping Ye
- Department of Experimental Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Xiaoqing Wang
- Department of Radiotherapy, Nanfang Hospital, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Meisongzhu Yang
- Department of Physiology, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Sailan Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xin Hua
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wen Wen
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Chao Lin
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Zhiqing Long
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wenwen Zhang
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Han Li
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yunting Jian
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Ziyuan Zhu
- Department of General surgery, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, 510150, Guangdong, People's Republic of China
| | - Xianqiu Wu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China.
| | - Huanxin Lin
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Drosophila TNFRs Grindelwald and Wengen bind Eiger with different affinities and promote distinct cellular functions. Nat Commun 2021; 12:2070. [PMID: 33824334 PMCID: PMC8024323 DOI: 10.1038/s41467-021-22080-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
The Drosophila tumour necrosis factor (TNF) ligand-receptor system consists of a unique ligand, Eiger (Egr), and two receptors, Grindelwald (Grnd) and Wengen (Wgn), and therefore provides a simple system for exploring the interplay between ligand and receptors, and the requirement for Grnd and Wgn in TNF/Egr-mediated processes. Here, we report the crystallographic structure of the extracellular domain (ECD) of Grnd in complex with Egr, a high-affinity hetero-hexameric assembly reminiscent of human TNF:TNFR complexes. We show that ectopic expression of Egr results in internalisation of Egr:Grnd complexes in vesicles, a step preceding and strictly required for Egr-induced apoptosis. We further demonstrate that Wgn binds Egr with much reduced affinity and is localised in intracellular vesicles that are distinct from those containing Egr:Grnd complexes. Altogether, our data provide insight into ligand-mediated activation of Grnd and suggest that distinct affinities of TNF ligands for their receptors promote different and non-redundant cellular functions. The Drosophila tumour necrosis factor (TNF) system comprises a single ligand Eiger (Egr) and two receptors. The structure of Egr in complex with the extracellular domain of the receptor Grindelwald and accompanying data suggest that distinct affinities of TNF ligand for its receptors mediate non-redundant functions.
Collapse
|
24
|
Spatial N-glycomics of the human aortic valve in development and pediatric endstage congenital aortic valve stenosis. J Mol Cell Cardiol 2021; 154:6-20. [PMID: 33516683 DOI: 10.1016/j.yjmcc.2021.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Congenital aortic valve stenosis (AS) progresses as an obstructive narrowing of the aortic orifice due to deregulated extracellular matrix (ECM) production by aortic valve (AV) leaflets and leads to heart failure with no effective therapies. Changes in glycoprotein and proteoglycan distribution are a hallmark of AS, yet valvular carbohydrate content remains virtually uncharacterized at the molecular level. While almost all glycoproteins clinically linked to stenotic valvular modeling contain multiple sites for N-glycosylation, there are very few reports aimed at understanding how N-glycosylation contributes to the valve structure in disease. Here, we tested for spatial localization of N-glycan structures within pediatric congenital aortic valve stenosis. The study was done on valvular tissues 0-17 years of age with de-identified clinical data reporting pre-operative valve function spanning normal development, aortic valve insufficiency (AVI), and pediatric endstage AS. High mass accuracy imaging mass spectrometry (IMS) was used to localize N-glycan profiles in the AV structure. RNA-Seq was used to identify regulation of N-glycan related enzymes. The N-glycome was found to be spatially localized in the normal aortic valve, aligning with fibrosa, spongiosa or ventricularis. In AVI diagnosed tissue, N-glycans localized to hypertrophic commissures with increases in pauci-mannose structures. In all valve types, sialic acid (N-acetylneuraminic acid) N-glycans were the most abundant N-glycan group. Three sialylated N-glycans showed common elevation in AS independent of age. On-tissue chemical methods optimized for valvular tissue determined that aortic valve tissue sialylation shows both α2,6 and α2,3 linkages. Specialized enzymatic strategies demonstrated that core fucosylation is the primary fucose configuration and localizes to the normal fibrosa with disparate patterning in AS. This study identifies that the human aortic valve structure is spatially defined by N-glycomic signaling and may generate new research directions for the treatment of human aortic valve disease.
Collapse
|
25
|
Shao P, Wei C, Wang Y. ALG3 contributes to the malignant properties of OSCC cells by regulating CDK-Cyclin pathway. Oral Dis 2020; 27:1426-1434. [PMID: 33084111 DOI: 10.1111/odi.13687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
In this study, we planned to investigate the function and potential mechanisms of Alpha-1,3-mannosyltransferase (ALG3) in oral squamous cell carcinoma (OSCC). Data from TCGA were used to analyze ALG3 expression and its effect on the prognosis of patients with OSCC. KEGG enrichment analysis was applied to explore the pathways related to ALG3. ALG3 expression was measured by qPCR and Western blot. Cell counting kit-8, colony formation, and transwell assays were implemented to detect the effects of ALG3 on malignant biological properties of OSCC cells. The expression of key proteins related to CDK-Cyclin pathway was detected by Western blot. The expression of ALG3 in OSCC samples was higher than that of the control samples, and the increase of ALG3 expression was related to unfavorable prognosis of OSCC patients. Additionally, the elevated expression of ALG3 was associated with pathological stage, lymph node metastasis, and primary lesion in OSCC patients. ALG3 depletion blocked the growth and movement of OSCC cells, while over-expression ALG3 reversed these phenomena. Moreover, exhaustion of ALG3 resulted in decreased expression of MCM7/CCNB2/CDK1/PCNA, while these phenomena were inversed after ALG3 up-regulation. The enhancement of ALG3 expression promoted the aggressive biological behaviors of OSCC cells probably by promoting CDK-Cyclin pathway.
Collapse
Affiliation(s)
- Peihong Shao
- Stomatology Wards of Tengzhou Central People's Hospital in Shandong Province, Tengzhou, China
| | - Chengshi Wei
- Stomatology Department, Liaocheng People's Hospital, Liaocheng, China
| | - Yun Wang
- Stomatology Department, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
26
|
Cho BG, Peng W, Mechref Y. Separation of Permethylated O-Glycans, Free Oligosaccharides, and Glycosphingolipid-Glycans Using Porous Graphitized Carbon (PGC) Column. Metabolites 2020; 10:metabo10110433. [PMID: 33121051 PMCID: PMC7692250 DOI: 10.3390/metabo10110433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
Glycosylation is one of the most common and complex post-translational modifications of proteins. However, there are other carbohydrates such as free oligosaccharides and glycosphingolipids-glycans that are associated with important biological and clinical roles. To analyze these molecules using liquid chromatography coupled with mass spectrometry (LC-MS), the permethylation approach was utilized. Although permethylation is a commonly utilized glycan derivatization technique, separation of permethylated glycans released from glycosphingolipid (GSL) by LC-MS has never been previously demonstrated. Here, a nanoflow porous graphitized carbon (PGC) column coupled with a high-resolution mass spectrometer was used to achieve isomeric separation of these permethylated glycans. We demonstrate the separation of free reducing end and reduced end O-glycans, free oligosaccharides derived from human milk, and GSL glycans derived from the MDA-MB-231BR cancer cell line using PGC-LC-MS.
Collapse
|
27
|
Gautam S, Peng W, Cho BG, Huang Y, Banazadeh A, Yu A, Dong X, Mechref Y. Glucose unit index (GUI) of permethylated glycans for effective identification of glycans and glycan isomers. Analyst 2020; 145:6656-6667. [PMID: 32804173 PMCID: PMC7554265 DOI: 10.1039/d0an00314j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retention time is the most common and widely used criterion to report the separation of glycans using Liquid Chromatography (LC), but it varies widely across different columns, instruments and laboratories. This variation is problematic when inter-laboratory data is compared. Furthermore, it influences reproducibility and hampers efficient data interpretation. In our endeavor to overcome this variance, we propose the use of the Glucose Unit Index (GUI) on C18 and PGC column-based separation of reduced and permethylated glycans. GUI has previously been utilized for retention time normalization of native and labeled glycans. We evaluated this method with reduced and permethylated glycans derived from model glycoproteins fetuin and ribonuclease B (RNase B), and then implemented it to human blood serum to generate C18 and PGC column-based isomeric glycan libraries. GUI values for glycan compositions were calculated with respect to the glucose units derived from dextrin, which was employed as an elution standard. The GUI values were validated on three different LC systems (UltiMate 3000 Nano UHPLC systems) in two laboratories to ensure the reliability and reproducibility of the method. Applicability on real samples was demonstrated using human breast cancer cell lines. A total of 116 permethylated N-glycans separated on a C18 column and 134 glycans separated on a PGC column were compiled in a library. Overall, the established GUI method and the demonstration of reproducible inter- and intra-laboratory GUI values would aid the future development of automated glycan and isomeric glycan identification methods.
Collapse
Affiliation(s)
- Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
La Marca JE, Richardson HE. Two-Faced: Roles of JNK Signalling During Tumourigenesis in the Drosophila Model. Front Cell Dev Biol 2020; 8:42. [PMID: 32117973 PMCID: PMC7012784 DOI: 10.3389/fcell.2020.00042] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
The highly conserved c-Jun N-terminal Kinase (JNK) signalling pathway has many functions, regulating a diversity of processes: from cell movement during embryogenesis to the stress response of cells after environmental insults. Studies modelling cancer using the vinegar fly, Drosophila melanogaster, have identified both pro- and anti-tumourigenic roles for JNK signalling, depending on context. As a tumour suppressor, JNK signalling commonly is activated by conserved Tumour Necrosis Factor (TNF) signalling, which promotes the caspase-mediated death of tumourigenic cells. JNK pathway activation can also occur via actin cytoskeleton alterations, and after cellular damage inflicted by reactive oxygen species (ROS). Additionally, JNK signalling frequently acts in concert with Salvador-Warts-Hippo (SWH) signalling – either upstream of or parallel to this potent growth-suppressing pathway. As a tumour promoter, JNK signalling is co-opted by cells expressing activated Ras-MAPK signalling (among other pathways), and used to drive cell morphological changes, induce invasive behaviours, block differentiation, and enable persistent cell proliferation. Furthermore, JNK is capable of non-autonomous influences within tumour microenvironments by effecting the transcription of various cell growth- and proliferation-promoting molecules. In this review, we discuss these aspects of JNK signalling in Drosophila tumourigenesis models, and highlight recent publications that have expanded our knowledge of this important and versatile pathway.
Collapse
Affiliation(s)
- John E La Marca
- Richardson Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Helena E Richardson
- Richardson Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Functional analysis of glycosylation using Drosophila melanogaster. Glycoconj J 2019; 37:1-14. [DOI: 10.1007/s10719-019-09892-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
|
30
|
Peng W, Goli M, Mirzaei P, Mechref Y. Revealing the Biological Attributes of N-Glycan Isomers in Breast Cancer Brain Metastasis Using Porous Graphitic Carbon (PGC) Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). J Proteome Res 2019; 18:3731-3740. [PMID: 31430160 DOI: 10.1021/acs.jproteome.9b00429] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a leading cancer in women and is considered to be the second-most common metastatic cancer following lung cancer. An estimated 10-16% of breast cancer patients are suffering from brain metastasis, and the diagnostic cases of breast cancer brain metastasis are increasing. Nevertheless, the mechanisms behind this process are still unclear. Aberrant glycosylation has been proved to be related to many diseases and cancer metastasis. However, studies of N-glycan isomer function in breast cancer brain metastasis are limited. In this study, the expressions of N-glycan isomers derived from five breast cancer cell lines and one brain cancer cell line were investigated and compared to a brain-seeking cell line, 231BR, to acquire a better understanding of the role glycan isomers play in breast cancer brain metastasis. The high temperature nanoPGC-LC-MS/MS achieved an efficient isomeric separation and permitted the identification and quantitation of 144 isomers from 50 N-glycan compositions. There were significant expression alterations of these glycan isomers among the different breast cancer cell lines. The increase of total glycan abundance and sialylation level were observed to be associated with breast cancer invasion. With regard to individual isomers, the greatest number of sialylated isomers was observed along with significant expression alterations in 231BR, suggesting a relationship between glycan sialylation and breast cancer brain metastasis. Furthermore, the increase of the α2,6-sialylation level in 231BR likely contributes to the passage of breast cancer cells through the blood-brain barrier, thus facilitating breast cancer brain metastasis. Meanwhile, the upregulation of highly sialylated glycan isomers with α2,6-linked sialic acids were found to be associated with breast cancer metastasis. This investigation of glycan isomer expressions, especially the unique isomeric expression in brain-seeking cell line 231BR, provides new information toward understanding the potential roles glycan isomers play during breast cancer metastasis and more clues for a deeper insight of this bioprocess.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Mona Goli
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| |
Collapse
|
31
|
Ji T, Zhang L, Deng M, Huang S, Wang Y, Pham TT, Smith AA, Sridhar V, Cabernard C, Wang J, Yan Y. Dynamic MAPK signaling activity underlies a transition from growth arrest to proliferation in Drosophila scribble mutant tumors. Dis Model Mech 2019; 12:dmm.040147. [PMID: 31371383 PMCID: PMC6737955 DOI: 10.1242/dmm.040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Human tumors exhibit plasticity and evolving capacity over time. It is difficult to study the mechanisms of how tumors change over time in human patients, in particular during the early stages when a few oncogenic cells are barely detectable. Here, we used a Drosophila tumor model caused by loss of scribble (scrib), a highly conserved apicobasal cell polarity gene, to investigate the spatial-temporal dynamics of early tumorigenesis events. The fly scrib mutant tumors have been successfully used to model many aspects of tumorigenesis processes. However, it is still unknown whether Drosophila scrib mutant tumors exhibit plasticity and evolvability along the temporal axis. We found that scrib mutant tumors displayed different growth rates and cell cycle profiles over time, indicative of a growth arrest-to-proliferation transition as the scrib mutant tumors progress. Longitudinal bulk and single-cell transcriptomic analysis of scrib mutant tumors revealed that the MAPK pathway, including JNK and ERK signaling activities, showed quantitative changes over time. We found that high JNK signaling activity caused G2/M cell cycle arrest in early scrib mutant tumors. In addition, JNK signaling activity displayed a radial polarity with the JNKhigh cells located at the periphery of scrib mutant tumors, providing an inherent mechanism that leads to an overall decrease in JNK signaling activity over time. We also found that ERK signaling activity, in contrast to JNK activity, increased over time and promoted growth in late-stage scrib mutant tumors. Furthermore, high JNK signaling activity repressed ERK signaling activity in early scrib mutant tumors. Together, these data demonstrate that dynamic MAPK signaling activity, fueled by intratumor heterogeneity derived from tissue topological differences, drives a growth arrest-to-proliferation transition in scrib mutant tumors. This article has an associated First Person interview with the joint first authors of the paper. Summary: The authors provide evidence to show that a well-established Drosophila tumor model, caused by loss of apicobasal cell polarity, harbors a surprising degree of plasticity and evolvability along the temporal axis.
Collapse
Affiliation(s)
- Tiantian Ji
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lina Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingxi Deng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengshuo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tri Thanh Pham
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Andrew Alan Smith
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Varun Sridhar
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Jiguang Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yan Yan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China .,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
32
|
Bertinelli M, Paesen GC, Grimes JM, Renner M. High-resolution crystal structure of arthropod Eiger TNF suggests a mode of receptor engagement and altered surface charge within endosomes. Commun Biol 2019; 2:293. [PMID: 31396573 PMCID: PMC6684607 DOI: 10.1038/s42003-019-0541-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
The tumour necrosis factor alpha (TNFα) superfamily of proteins are critical in numerous biological processes, such as in development and immunity. Eiger is the sole TNFα member described in arthropods such as in the important model organism Drosophila. To date there are no structural data on any Eiger protein. Here we present the structure of the TNF domain of Eiger from the fall armyworm Spodoptera frugiperda (SfEiger) to 1.7 Å from a serendipitously obtained crystal without prior knowledge of the protein sequence. Our structure confirms that canonical trimerization is conserved from ancestral TNFs and points towards a mode of receptor engagement. Furthermore, we observe numerous surface histidines on SfEiger, potentially acting as pH switches following internalization into endosomes. Our data contributes to the genome annotation of S. frugiperda, a voracious agricultural pest, and can serve as a basis for future structure-function investigations of the TNF system in related arthropods such as Drosophila.
Collapse
Affiliation(s)
- Mattia Bertinelli
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 10 Roosevelt Drive, Oxford, OX3 7BN UK
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 10 Roosevelt Drive, Oxford, OX3 7BN UK
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 10 Roosevelt Drive, Oxford, OX3 7BN UK
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Max Renner
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 10 Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
33
|
Fahey-Lozano N, La Marca JE, Portela M, Richardson HE. Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:37-64. [PMID: 31520348 DOI: 10.1007/978-3-030-23629-8_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.
Collapse
Affiliation(s)
- Natasha Fahey-Lozano
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Dong X, Huang Y, Cho BG, Zhong J, Gautam S, Peng W, Williamson SD, Banazadeh A, Torres-Ulloa KY, Mechref Y. Advances in mass spectrometry-based glycomics. Electrophoresis 2018; 39:3063-3081. [PMID: 30199110 DOI: 10.1002/elps.201800273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
The diversification of the chemical properties and biological functions of proteins is attained through posttranslational modifications, such as glycosylation. Glycans, which are covalently attached to proteins, play a vital role in cell activities. The microheterogeneity and complexity of glycan structures associated with proteins make comprehensive glycomic analysis challenging. However, recent advancements in mass spectrometry (MS), separation techniques, and sample preparation methods have primarily facilitated structural elucidation and quantitation of glycans. This review focuses on describing recent advances in MS-based techniques used for glycomic analysis (2012-2018), including ionization, tandem MS, and separation techniques coupled with MS. Progress in glycomics workflow involving glycan release, purification, derivatization, and separation will also be highlighted here. Additionally, the recent development of quantitative glycomics through comparative and multiplex approaches will also be described.
Collapse
Affiliation(s)
- Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Seth D Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Katya Y Torres-Ulloa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|