1
|
Bartolutti C, Kim AJ, Brar GA. UPR deficiency in budding yeast reveals a trade-off between ER folding capacity and maintenance of euploidy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624941. [PMID: 39605714 PMCID: PMC11601577 DOI: 10.1101/2024.11.22.624941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The Unfolded Protein Response (UPR) was discovered in budding yeast as a mechanism that allows cells to adapt to ER stress. While the Ire1 branch of this pathway is highly conserved, it is not thought to be important for cellular homeostasis in the absence of stress. Surprisingly, we found that removal of UPR activity led to pervasive aneuploidy in budding yeast cells, suggesting selective pressure resulting from UPR-deficiency. Aneuploid UPR-deficient cells grew better than euploid cells, but exhibited heightened general proteostatic stress, a hallmark of aneuploidy in wild-type cells. Modulation of key genes involved in ER proteostasis that were encoded on aneuploid chromosomes, could phenocopy the effects of aneuploidy, indicating that the reason cells require UPR activity to maintain euploidy is to counteract protein folding stress in the ER. In support of this model, aneuploidy in UPR-deficient cells can be prevented by expression of a UPR-independent general ER chaperone. Overall, our results indicate an unexpected role for the UPR in basal cell growth that is sufficiently important for cells to accept the costly trade-off of aneuploidy in the absence of UPR activity.
Collapse
|
2
|
Morse K, Bishop AL, Swerdlow S, Leslie JM, Ünal E. Swi/Snf chromatin remodeling regulates transcriptional interference and gene repression. Mol Cell 2024; 84:3080-3097.e9. [PMID: 39043178 PMCID: PMC11419397 DOI: 10.1016/j.molcel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Alternative transcription start sites can affect transcript isoform diversity and translation levels. In a recently described form of gene regulation, coordinated transcriptional and translational interference results in transcript isoform-dependent changes in protein expression. Specifically, a long undecoded transcript isoform (LUTI) is transcribed from a gene-distal promoter, interfering with expression of the gene-proximal promoter. Although transcriptional and chromatin features associated with LUTI expression have been described, the mechanism underlying LUTI-based transcriptional interference is not well understood. Using an unbiased genetic approach followed by functional genomics, we uncovered that the Swi/Snf chromatin remodeling complex is required for co-transcriptional nucleosome remodeling that leads to LUTI-based repression. We identified genes with tandem promoters that rely on Swi/Snf function for transcriptional interference during protein folding stress, including LUTI-regulated genes. This study provides clear evidence for Swi/Snf playing a direct role in gene repression via a cis transcriptional interference mechanism.
Collapse
Affiliation(s)
- Kaitlin Morse
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Alena L Bishop
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Sarah Swerdlow
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Jessica M Leslie
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Su AJ, Yendluri SC, Ünal E. Control of meiotic entry by dual inhibition of a key mitotic transcription factor. eLife 2024; 12:RP90425. [PMID: 38411169 PMCID: PMC10939502 DOI: 10.7554/elife.90425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The mitosis to meiosis transition requires dynamic changes in gene expression, but whether and how the mitotic transcriptional machinery is regulated during this transition is unknown. In budding yeast, SBF and MBF transcription factors initiate the mitotic gene expression program. Here, we report two mechanisms that work together to restrict SBF activity during meiotic entry: repression of the SBF-specific Swi4 subunit through LUTI-based regulation and inhibition of SBF by Whi5, a functional homolog of the Rb tumor suppressor. We find that untimely SBF activation causes downregulation of early meiotic genes and delays meiotic entry. These defects are largely driven by the SBF-target G1 cyclins, which block the interaction between the central meiotic regulator Ime1 and its cofactor Ume6. Our study provides insight into the role of SWI4LUTI in establishing the meiotic transcriptional program and demonstrates how the LUTI-based regulation is integrated into a larger regulatory network to ensure timely SBF activity.
Collapse
Affiliation(s)
- Amanda J Su
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Siri C Yendluri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
4
|
Yasukawa T, Iwama R, Yamasaki Y, Masuo N, Noda Y. Yeast Rim11 kinase responds to glutathione-induced stress by regulating the transcription of phospholipid biosynthetic genes. Mol Biol Cell 2024; 35:ar8. [PMID: 37938929 PMCID: PMC10881166 DOI: 10.1091/mbc.e23-03-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Glutathione (GSH), a tripeptide composed of glycine, cysteine, and glutamic acid, is an abundant thiol found in a wide variety of cells, ranging from bacterial to mammalian cells. Adequate levels of GSH are essential for maintaining iron homeostasis. The ratio of oxidized/reduced GSH is strictly regulated in each organelle to maintain the cellular redox potential. Cellular redox imbalances cause defects in physiological activities, which can lead to various diseases. Although there are many reports regarding the cellular response to GSH depletion, studies on stress response to high levels of GSH are limited. Here, we performed genome-scale screening in the yeast Saccharomyces cerevisiae and identified RIM11, BMH1, and WHI2 as multicopy suppressors of the growth defect caused by GSH stress. The deletion strains of each gene were sensitive to GSH. We found that Rim11, a kinase important in the regulation of meiosis, was activated via autophosphorylation upon GSH stress in a glucose-rich medium. Furthermore, RNA-seq revealed that transcription of phospholipid biosynthetic genes was downregulated under GSH stress, and introduction of multiple copies of RIM11 counteracted this effect. These results demonstrate that S. cerevisiae copes with GSH stress via multiple stress-responsive pathways, including a part of the adaptive pathway to glucose limitation.
Collapse
Affiliation(s)
- Taishi Yasukawa
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Ryo Iwama
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuriko Yamasaki
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Su AJ, Yendluri SC, Ünal E. Control of meiotic entry by dual inhibition of a key mitotic transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533246. [PMID: 36993411 PMCID: PMC10055192 DOI: 10.1101/2023.03.17.533246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The mitosis to meiosis transition requires dynamic changes in gene expression, but whether and how the mitotic transcriptional machinery is regulated during this transition is unknown. In budding yeast, SBF and MBF transcription factors initiate the mitotic gene expression program. Here, we report two mechanisms that work together to restrict SBF activity during meiotic entry: repression of the SBF-specific Swi4 subunit through LUTI-based regulation and inhibition of SBF by Whi5, a homolog of the Rb tumor suppressor. We find that untimely SBF activation causes downregulation of early meiotic genes and delays meiotic entry. These defects are largely driven by the SBF-target G1 cyclins, which block the interaction between the central meiotic regulator Ime1 and its cofactor Ume6. Our study provides insight into the role of SWI4LUTI in establishing the meiotic transcriptional program and demonstrates how the LUTI-based regulation is integrated into a larger regulatory network to ensure timely SBF activity.
Collapse
|
6
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
7
|
Hrach VL, King WR, Nelson LD, Conklin S, Pollock JA, Patton-Vogt J. The acyltransferase Gpc1 is both a target and an effector of the unfolded protein response in Saccharomyces cerevisiae. J Biol Chem 2023; 299:104884. [PMID: 37269946 PMCID: PMC10331479 DOI: 10.1016/j.jbc.2023.104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
The unfolded protein response (UPR) is sensitive to proteotoxic and membrane bilayer stress, both of which are sensed by the ER protein Ire1. When activated, Ire1 splices HAC1 mRNA, producing a transcription factor that targets genes involved in proteostasis and lipid metabolism, among others. The major membrane lipid phosphatidylcholine (PC) is subject to phospholipase-mediated deacylation, producing glycerophosphocholine (GPC), followed by reacylation of GPC through the PC deacylation/reacylation pathway (PC-DRP). The reacylation events occur via a two-step process catalyzed first by the GPC acyltransferase Gpc1, followed by acylation of the lyso-PC molecule by Ale1. However, whether Gpc1 is critical for ER bilayer homeostasis is unclear. Using an improved method for C14-choline-GPC radiolabeling, we first show that loss of Gpc1 results in abrogation of PC synthesis through PC-DRP and that Gpc1 colocalizes with the ER. We then probe the role of Gpc1 as both a target and an effector of the UPR. Exposure to the UPR-inducing compounds tunicamycin, DTT, and canavanine results in a Hac1-dependent increase in GPC1 message. Further, cells lacking Gpc1 exhibit increased sensitivity to those proteotoxic stressors. Inositol limitation, known to induce the UPR via bilayer stress, also induces GPC1 expression. Finally, we show that loss of GPC1 induces the UPR. A gpc1Δ mutant displays upregulation of the UPR in strains expressing a mutant form of Ire1 that is unresponsive to unfolded proteins, indicating that bilayer stress is responsible for the observed upregulation. Collectively, our data indicate an important role for Gpc1 in yeast ER bilayer homeostasis.
Collapse
Affiliation(s)
- Victoria Lee Hrach
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - William R King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Laura D Nelson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Shane Conklin
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - John A Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Morse K, Swerdlow S, Ünal E. Swi/Snf Chromatin Remodeling Regulates Transcriptional Interference and Gene Repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538572. [PMID: 37162931 PMCID: PMC10168381 DOI: 10.1101/2023.04.27.538572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Alternative transcription start sites can affect transcript isoform diversity and translation levels. In a recently described form of gene regulation, coordinated transcriptional and translational interference results in transcript isoform-dependent changes in protein expression. Specifically, a long undecoded transcript isoform (LUTI) is transcribed from a gene-distal promoter, interfering with expression of the gene-proximal promoter. While transcriptional and chromatin features associated with LUTI expression have been described, the mechanism underlying LUTI-based transcriptional interference is not well understood. Using an unbiased genetic approach followed by integrated genomic analysis, we uncovered that the Swi/Snf chromatin remodeling complex is required for co-transcriptional nucleosome remodeling that leads to LUTI-based repression. We identified genes with tandem promoters that rely on Swi/Snf function for transcriptional interference during protein folding stress, including LUTI-regulated genes. To our knowledge, this study is the first to observe Swi/Snf's direct involvement in gene repression via a cis transcriptional interference mechanism.
Collapse
Affiliation(s)
- Kaitlin Morse
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA, 94720
| | - Sarah Swerdlow
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA, 94720
| | - Elçin Ünal
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA, 94720
| |
Collapse
|
9
|
Vander Wende HM, Gopi M, Onyundo M, Medrano C, Adanlawo T, Brar GA. Meiotic resetting of the cellular Sod1 pool is driven by protein aggregation, degradation, and transient LUTI-mediated repression. J Biophys Biochem Cytol 2023; 222:213795. [PMID: 36622328 PMCID: PMC9836244 DOI: 10.1083/jcb.202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Gametogenesis requires packaging of the cellular components needed for the next generation. In budding yeast, this process includes degradation of many mitotically stable proteins, followed by their resynthesis. Here, we show that one such case-Superoxide dismutase 1 (Sod1), a protein that commonly aggregates in human ALS patients-is regulated by an integrated set of events, beginning with the formation of pre-meiotic Sod1 aggregates. This is followed by degradation of a subset of the prior Sod1 pool and clearance of Sod1 aggregates. As degradation progresses, Sod1 protein production is transiently blocked during mid-meiotic stages by transcription of an extended and poorly translated SOD1 mRNA isoform, SOD1LUTI. Expression of SOD1LUTI is induced by the Unfolded Protein Response, and it acts to repress canonical SOD1 mRNA expression. SOD1LUTI is no longer expressed following the meiotic divisions, enabling a resurgence of canonical mRNA and synthesis of new Sod1 protein such that gametes inherit a full complement of Sod1 protein. Failure to aggregate and degrade Sod1 results in reduced gamete fitness in the presence of oxidants, highlighting the importance of this regulation. Investigation of Sod1 during yeast gametogenesis, an unusual cellular context in which Sod1 levels are tightly regulated, could shed light on conserved aspects of its aggregation and degradation, with relevance to understanding Sod1's role in human disease.
Collapse
Affiliation(s)
- Helen M. Vander Wende
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Mounika Gopi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Megan Onyundo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Medrano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,Correspondence to Gloria A. Brar:
| |
Collapse
|
10
|
Carrillo R, Christopher DA. Development of a GFP biosensor reporter for the unfolded protein response-signaling pathway in plants: incorporation of the bZIP60 intron into the GFP gene. PLANT SIGNALING & BEHAVIOR 2022; 17:2098645. [PMID: 35856340 PMCID: PMC9302528 DOI: 10.1080/15592324.2022.2098645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The ability to measure the activation of the unfolded protein response (UPR) in plants is important when they are exposed to stressful environments. To this end, we developed a unique and versatile biosensor-reporter system to indicate the activation of UPR in living plant cells. The small cytoplasmically spliced intron from the bZIP60 locus was incorporated into the 5' end of the GFP gene, creating the 35S::bZIP60 intron:GFP construct. When this construct is transiently expressed in Arabidopsis protoplasts, the presence of the bZIP60 intron prevents GFP mRNA from being translated under non-UPR conditions. However, when UPR is activated, the IRE1 kinase/ribonuclease splices this intron from the GFP mRNA and its translation proceeds, generating GFP fluorescence. We demonstrated the utility of the system in Arabidopsis leaf protoplasts treated with DTT, which is a chemical inducer of UPR, followed by visualization and quantification using confocal microscopy. The 35S::bZIP60 intron:GFP construct was also expressed in protoplasts from an overexpressor line containing the coding sequence for the UPR-induced, protein folding chaperone, protein disulfide isomerase-9 (PDI9). PDI9 also influences the strength of the UPR signaling pathway. Protoplasts from WT and PDI9 overexpressor plants treated with DTT exhibited significantly higher GFP fluorescence relative to untreated protoplasts, indicating that the bZIP60 intron was spliced from the GFP mRNA in response to activation of UPR. RT-PCR further confirmed the higher induction of PDI9 and bZIP60 (total and spliced) mRNA levels in DTT-treated protoplasts relative to controls. This system can be adapted for monitoring crop stress and for basic studies dissecting the UPR signaling pathway.
Collapse
Affiliation(s)
- Rina Carrillo
- Department of Molecular Biosciences & Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - David A. Christopher
- Department of Molecular Biosciences & Bioengineering, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
11
|
Powers EN, Chan C, Doron-Mandel E, Llacsahuanga Allcca L, Kim Kim J, Jovanovic M, Brar GA. Bidirectional promoter activity from expression cassettes can drive off-target repression of neighboring gene translation. eLife 2022; 11:e81086. [PMID: 36503721 PMCID: PMC9754628 DOI: 10.7554/elife.81086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Targeted selection-based genome-editing approaches have enabled many fundamental discoveries and are used routinely with high precision. We found, however, that replacement of DBP1 with a common selection cassette in budding yeast led to reduced expression and function for the adjacent gene, MRP51, despite all MRP51 coding and regulatory sequences remaining intact. Cassette-induced repression of MRP51 drove all mutant phenotypes detected in cells deleted for DBP1. This behavior resembled the 'neighboring gene effect' (NGE), a phenomenon of unknown mechanism whereby cassette insertion at one locus reduces the expression of a neighboring gene. Here, we leveraged strong off-target mutant phenotypes resulting from cassette replacement of DBP1 to provide mechanistic insight into the NGE. We found that the inherent bidirectionality of promoters, including those in expression cassettes, drives a divergent transcript that represses MRP51 through combined transcriptional interference and translational repression mediated by production of a long undecoded transcript isoform (LUTI). Divergent transcript production driving this off-target effect is general to yeast expression cassettes and occurs ubiquitously with insertion. Despite this, off-target effects are often naturally prevented by local sequence features, such as those that terminate divergent transcripts between the site of cassette insertion and the neighboring gene. Thus, cassette-induced off-target effects can be eliminated by the insertion of transcription terminator sequences into the cassette, flanking the promoter. Because the driving features of this off-target effect are broadly conserved, our study suggests it should be considered in the design and interpretation of experiments using integrated expression cassettes in other eukaryotic systems, including human cells.
Collapse
Affiliation(s)
- Emily Nicole Powers
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Charlene Chan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | | | - Jenny Kim Kim
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkleyBerkleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
12
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
13
|
Fast-Growing Saccharomyces cerevisiae Cells with a Constitutive Unfolded Protein Response and Their Potential for Lipidic Molecule Production. Appl Environ Microbiol 2022; 88:e0108322. [PMID: 36255243 PMCID: PMC9642017 DOI: 10.1128/aem.01083-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae cells, dysfunction of the endoplasmic reticulum (ER), so-called ER stress, leads to conversion of HAC1 mRNA to the spliced form (HAC1i), which is translated into a transcription factor that drastically changes the gene expression profile. This cellular response ultimately enhances ER functions and is named the unfolded protein response (UPR). Artificial evocation of the UPR is therefore anticipated to increase productivity of beneficial materials on and in the ER. However, as demonstrated here, cells constitutively expressing HAC1i mRNA (HAC1i cells), which exhibited a strong UPR even under nonstress conditions, grew considerably slowly and frequently yielded fast-growing and low-UPR progeny. Intriguingly, growth of HAC1i cells was faster in the presence of weak ER stress that was induced by low concentrations of the ER stressor tunicamycin or by cellular expression of the ER-located version of green fluorescent protein (GFP). HAC1i cells producing ER-localized GFP stably exhibited a strong UPR activity, carried a highly expanded ER, and abundantly produced triglycerides and heterogenous carotenoids. We therefore propose that our findings provide a basis for metabolic engineering to generate cells producing valuable lipidic molecules. IMPORTANCE The UPR is thought to be a cellular response to cope with the accumulation of unfolded proteins in the ER. In S. cerevisiae cells, the UPR is severely repressed under nonstress conditions. The findings of this study shed light on the physiological significance of the tight regulation of the UPR. Constitutive UPR induction caused considerable growth retardation, which was partly rescued by the induction of weak ER stress. Therefore, we speculate that when the UPR is inappropriately induced in unstressed cells lacking aberrant ER client proteins, the UPR improperly impairs normal cellular functions. Another important point of this study was the generation of S. cerevisiae strains stably exhibiting a strong UPR activity and abundantly producing triglycerides and heterogenous carotenoids. We anticipate that our findings may be applied to produce valuable lipidic molecules using yeast cells as a potential next-generation technique.
Collapse
|
14
|
Escobar-Niño A, Morano Bermejo IM, Carrasco Reinado R, Fernandez-Acero FJ. Deciphering the Dynamics of Signaling Cascades and Virulence Factors of B. cinerea during Tomato Cell Wall Degradation. Microorganisms 2021; 9:microorganisms9091837. [PMID: 34576732 PMCID: PMC8466851 DOI: 10.3390/microorganisms9091837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
The ascomycete Botrytis cinerea is one of the most relevant plant pathogenic fungi, affecting fruits, flowers, and greenhouse-grown crops. The infection strategy used by the fungus comprises a magnificent set of tools to penetrate and overcome plant defenses. In this context, the plant-pathogen communication through membrane receptors and signal transduction cascades is essential to trigger specific routes and the final success of the infection. In previous reports, proteomics approaches to B. cinerea signal transduction cascades changes in response to different carbon source and plant-based elicitors have been performed. Analyzing the secretome, membranome, phosphoproteome, and the phosphomembranome. Moreover, phenotypic changes in fungal biology was analyzed, specifically toxin production. To obtain the whole picture of the process and reveal the network from a system biology approach, this proteomic information has been merged with the phenotypic characterization, to be analyzed using several bioinformatics algorithms (GO, STRING, MCODE) in order to unravel key points in the signal transduction regulation crucial to overcome plant defenses, as well as new virulence/pathogenicity factors that could be used as therapeutic targets in the control of the gray mold rot disease. A total of 1721 and 663 exclusive or overexpressed proteins were identified under glucose (GLU) and deproteinized tomato cell walls (TCW), summarizing all of the protein identifications under phenotypic characterized stages. Under GO analysis, there are more biological process and molecular functions described in GLU, highlighting the increase in signaling related categories. These results agree with the high number of total identified proteins in GLU, probably indicating a more varied and active metabolism of the fungus. When analyzing only GO annotations related with signal transduction, it was revealed that there were proteins related to TOR signaling, the phosphorelay signal transduction system, and inositol lipid-mediated signaling, only under GLU conditions. On the contrary, calcium-mediated signaling GO annotation is only present between the proteins identified under TCW conditions. To establish a potential relationship between expressed proteins, cluster analyses showed 41 and 14 clusters under GLU and TCW conditions, confirming an increase in biological activity in GLU, where we identified a larger number of clusters related to transcription, translation, and cell division, between others. From these analyses, clusters related to signal transduction and clusters related to mycotoxin production were found, which correlated with the phenotypic characterization. The identification of the proteins encompassed in each condition and signal transduction cascade would provide the research community with new information about the B. cinerea infection process and potential candidates of pathogenicity/virulence factors, overcoming plant defenses, and new therapeutic targets.
Collapse
|
15
|
Li W, Crotty K, Garrido Ruiz D, Voorhies M, Rivera C, Sil A, Mullins RD, Jacobson MP, Peschek J, Walter P. Protomer alignment modulates specificity of RNA substrate recognition by Ire1. eLife 2021; 10:e67425. [PMID: 33904404 PMCID: PMC8104961 DOI: 10.7554/elife.67425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
The unfolded protein response (UPR) maintains protein folding homeostasis in the endoplasmic reticulum (ER). In metazoan cells, the Ire1 branch of the UPR initiates two functional outputs-non-conventional mRNA splicing and selective mRNA decay (RIDD). By contrast, Ire1 orthologs from Saccharomyces cerevisiae and Schizosaccharomyces pombe are specialized for only splicing or RIDD, respectively. Previously, we showed that the functional specialization lies in Ire1's RNase activity, which is either stringently splice-site specific or promiscuous (Li et al., 2018). Here, we developed an assay that reports on Ire1's RNase promiscuity. We found that conversion of two amino acids within the RNase domain of S. cerevisiae Ire1 to their S. pombe counterparts rendered it promiscuous. Using biochemical assays and computational modeling, we show that the mutations rewired a pair of salt bridges at Ire1 RNase domain's dimer interface, changing its protomer alignment. Thus, Ire1 protomer alignment affects its substrates specificity.
Collapse
Affiliation(s)
- Weihan Li
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Kelly Crotty
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California at San FranciscoSan FranciscoUnited States
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California at San FranciscoSan FranciscoUnited States
| | - Carlos Rivera
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Anita Sil
- Department of Microbiology and Immunology, University of California at San FranciscoSan FranciscoUnited States
| | - R Dyche Mullins
- Howard Hughes Medical InstituteSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California at San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California at San FranciscoSan FranciscoUnited States
| | - Jirka Peschek
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| |
Collapse
|
16
|
Staudacher J, Rebnegger C, Gasser B. Treatment with surfactants enables quantification of translational activity by O-propargyl-puromycin labelling in yeast. BMC Microbiol 2021; 21:120. [PMID: 33879049 PMCID: PMC8056590 DOI: 10.1186/s12866-021-02185-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Translation is an important point of regulation in protein synthesis. However, there is a limited number of methods available to measure global translation activity in yeast. Recently, O-propargyl-puromycin (OPP) labelling has been established for mammalian cells, but unmodified yeasts are unsusceptible to puromycin. Results We could increase susceptibility by using a Komagataella phaffii strain with an impaired ergosterol pathway (erg6Δ), but translation measurements are restricted to this strain background, which displayed growth deficits. Using surfactants, specifically Imipramine, instead, proved to be more advantageous and circumvents previous restrictions. Imipramine-supplemented OPP-labelling with subsequent flow cytometry analysis, enabled us to distinguish actively translating cells from negative controls, and to clearly quantify differences in translation activities in different strains and growth conditions. Specifically, we investigated K. phaffii at different growth rates, verified that methanol feeding alters translation activity, and analysed global translation in strains with genetically modified stress response pathways. Conclusions We set up a simple protocol to measure global translation activity in yeast on a single cell basis. The use of surfactants poses a practical and non-invasive alternative to the commonly used ergosterol pathway impaired strains and thus impacts a wide range of applications where increased drug and dye uptake is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02185-3.
Collapse
Affiliation(s)
- Jennifer Staudacher
- Christian Doppler Laboratory for Growth-decoupled Protein Production in Yeast, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.,Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Corinna Rebnegger
- Christian Doppler Laboratory for Growth-decoupled Protein Production in Yeast, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.,Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Brigitte Gasser
- Christian Doppler Laboratory for Growth-decoupled Protein Production in Yeast, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria. .,Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
17
|
Integrated genomic analysis reveals key features of long undecoded transcript isoform-based gene repression. Mol Cell 2021; 81:2231-2245.e11. [PMID: 33826921 PMCID: PMC8153250 DOI: 10.1016/j.molcel.2021.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022]
Abstract
Long undecoded transcript isoforms (LUTIs) represent a class of non-canonical mRNAs that downregulate gene expression through the combined act of transcriptional and translational repression. While single gene studies revealed important aspects of LUTI-based repression, how these features affect gene regulation on a global scale is unknown. Using transcript leader and direct RNA sequencing, here, we identify 74 LUTI candidates that are specifically induced in meiotic prophase. Translational repression of these candidates appears to be ubiquitous and is dependent on upstream open reading frames. However, LUTI-based transcriptional repression is variable. In only 50% of the cases, LUTI transcription causes downregulation of the protein-coding transcript isoform. Higher LUTI expression, enrichment of histone 3 lysine 36 trimethylation, and changes in nucleosome position are the strongest predictors of LUTI-based transcriptional repression. We conclude that LUTIs downregulate gene expression in a manner that integrates translational repression, chromatin state changes, and the magnitude of LUTI expression.
Collapse
|
18
|
Does Saccharomyces cerevisiae Require Specific Post-Translational Silencing against Leaky Translation of Hac1up? Microorganisms 2021; 9:microorganisms9030620. [PMID: 33802931 PMCID: PMC8002603 DOI: 10.3390/microorganisms9030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
HAC1 encodes a key transcription factor that transmits the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus and regulates downstream UPR genes in Saccharomyces cerevisiae. In response to the accumulation of unfolded proteins in the ER, Ire1p oligomers splice HAC1 pre-mRNA (HAC1u) via a non-conventional process and allow the spliced HAC1 (HAC1i) to be translated efficiently. However, leaky splicing and translation of HAC1u may occur in non-UPR cells to induce undesirable UPR. To control accidental UPR activation, multiple fail-safe mechanisms have been proposed to prevent leaky HAC1 splicing and translation and to facilitate rapid degradation of translated Hac1up and Hac1ip. Among proposed regulatory mechanisms is a degron sequence encoded at the 5′ end of the HAC1 intron that silences Hac1up expression. To investigate the necessity of an intron-encoded degron sequence that specifically targets Hac1up for degradation, we employed publicly available transcriptomic data to quantify leaky HAC1 splicing and translation in UPR-induced and non-UPR cells. As expected, we found that HAC1u is only efficiently spliced into HAC1i and efficiently translated into Hac1ip in UPR-induced cells. However, our analysis of ribosome profiling data confirmed frequent occurrence of leaky translation of HAC1u regardless of UPR induction, demonstrating the inability of translation fail-safe to completely inhibit Hac1up production. Additionally, among 32 yeast HAC1 surveyed, the degron sequence is highly conserved by Saccharomyces yeast but is poorly conserved by all other yeast species. Nevertheless, the degron sequence is the most conserved HAC1 intron segment in yeasts. These results suggest that the degron sequence may indeed play an important role in mitigating the accumulation of Hac1up to prevent accidental UPR activation in the Saccharomyces yeast.
Collapse
|
19
|
Feldeverd E, Porter BW, Yuen CYL, Iwai K, Carrillo R, Smith T, Barela C, Wong K, Wang P, Kang BH, Matsumoto K, Christopher DA. The Arabidopsis Protein Disulfide Isomerase Subfamily M Isoform, PDI9, Localizes to the Endoplasmic Reticulum and Influences Pollen Viability and Proper Formation of the Pollen Exine During Heat Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:610052. [PMID: 33447253 PMCID: PMC7802077 DOI: 10.3389/fpls.2020.610052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 05/03/2023]
Abstract
Plants adapt to heat via thermotolerance pathways in which the activation of protein folding chaperones is essential. In eukaryotes, protein disulfide isomerases (PDIs) facilitate the folding of nascent and misfolded proteins in the secretory pathway by catalyzing the formation and isomerization of disulfide bonds and serving as molecular chaperones. In Arabidopsis, several members of the PDI family are upregulated in response to chemical inducers of the unfolded protein response (UPR), including both members of the non-classical PDI-M subfamily, PDI9 and PDI10. Unlike classical PDIs, which have two catalytic thioredoxin (TRX) domains separated by two non-catalytic TRX-fold domains, PDI-M isoforms are orthologs of mammalian P5/PDIA6 and possess two tandem catalytic domains. Here, PDI9 accumulation was found to be upregulated in pollen in response to heat stress. Histochemical staining of plants harboring the PDI9 and PDI10 promoters fused to the gusA gene indicated they were actively expressed in the anthers of flowers, specifically in the pollen and tapetum. Immunoelectron microscopy revealed that PDI9 localized to the endoplasmic reticulum in root and pollen cells. transfer DNA (T-DNA) insertional mutations in the PDI9 gene disrupted pollen viability and development in plants exposed to heat stress. In particular, the pollen grains of pdi9 mutants exhibited disruptions in the reticulated pattern of the exine and an increased adhesion of pollen grains. Pollen in the pdi10 single mutant did not display similar heat-associated defects, but pdi9 pdi10 double mutants (DMs) completely lost exine reticulation. Interestingly, overexpression of PDI9 partially led to heat-associated defects in the exine. We conclude that PDI9 plays an important role in pollen thermotolerance and exine biogenesis. Its role fits the mechanistic theory of proteostasis in which an ideal balance of PDI isoforms is required in the endoplasmic reticulum (ER) for normal exine formation in plants subjected to heat stress.
Collapse
Affiliation(s)
- Elizabeth Feldeverd
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Brad W. Porter
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Christen Y. L. Yuen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Kaela Iwai
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Rina Carrillo
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Tyler Smith
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Cheyenne Barela
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Katherine Wong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Pengfei Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, China
| | - Byung-Ho Kang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, China
| | - Kristie Matsumoto
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - David A. Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
20
|
Ribosomal protein S7 ubiquitination during ER stress in yeast is associated with selective mRNA translation and stress outcome. Sci Rep 2020; 10:19669. [PMID: 33184379 PMCID: PMC7661504 DOI: 10.1038/s41598-020-76239-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023] Open
Abstract
eIF2α phosphorylation-mediated translational regulation is crucial for global translation repression by various stresses, including the unfolded protein response (UPR). However, translational control during UPR has not been demonstrated in yeast. This study investigated ribosome ubiquitination-mediated translational controls during UPR. Tunicamycin-induced ER stress enhanced the levels of ubiquitination of the ribosomal proteins uS10, uS3 and eS7. Not4-mediated monoubiquitination of eS7A was required for resistance to tunicamycin, whereas E3 ligase Hel2-mediated ubiquitination of uS10 was not. Ribosome profiling showed that the monoubiquitination of eS7A was crucial for translational regulation, including the upregulation of the spliced form of HAC1 (HAC1i) mRNA and the downregulation of Histidine triad NucleoTide-binding 1 (HNT1) mRNA. Downregulation of the deubiquitinating enzyme complex Upb3-Bre5 increased the levels of ubiquitinated eS7A during UPR in an Ire1-independent manner. These findings suggest that the monoubiquitination of ribosomal protein eS7A plays a crucial role in translational controls during the ER stress response in yeast.
Collapse
|
21
|
Goodman JS, King GA, Ünal E. Cellular quality control during gametogenesis. Exp Cell Res 2020; 396:112247. [PMID: 32882217 PMCID: PMC7572901 DOI: 10.1016/j.yexcr.2020.112247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
A hallmark of aging is the progressive accumulation of cellular damage. Age-induced damage arises due to a decrease in organelle function along with a decline in protein quality control. Although somatic tissues deteriorate with age, the germline must maintain cellular homeostasis in order to ensure the production of healthy progeny. While germline quality control has been primarily studied in multicellular organisms, recent evidence suggests the existence of gametogenesis-specific quality control mechanisms in unicellular eukaryotes, highlighting the evolutionary conservation of meiotic events beyond chromosome morphogenesis. Notably, budding yeast eliminates age-induced damage during meiotic differentiation, employing novel organelle and protein quality control mechanisms to produce young and healthy gametes. Similarly, organelle and protein quality control is present in metazoan gametogenesis; however, whether and how these mechanisms contribute to cellular rejuvenation requires further investigation. Here, we summarize recent findings that describe organelle and protein quality control in budding yeast gametogenesis, examine similar quality control mechanisms in metazoan development, and identify research directions that will improve our understanding of meiotic cellular rejuvenation.
Collapse
Affiliation(s)
- Jay S Goodman
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA.
| |
Collapse
|
22
|
Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell 2020; 183:1151-1161. [PMID: 33068526 DOI: 10.1016/j.cell.2020.09.047] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
Transcriptome studies reveal pervasive transcription of complex genomes, such as those of mammals. Despite popular arguments for functionality of most, if not all, of these transcripts, genome-wide analysis of selective constraints indicates that most of the produced RNA are junk. However, junk is not garbage. On the contrary, junk transcripts provide the raw material for the evolution of diverse long non-coding (lnc) RNAs by non-adaptive mechanisms, such as constructive neutral evolution. The generation of many novel functional entities, such as lncRNAs, that fuels organismal complexity does not seem to be driven by strong positive selection. Rather, the weak selection regime that dominates the evolution of most multicellular eukaryotes provides ample material for functional innovation with relatively little adaptation involved.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
23
|
Xia X. Beyond Trees: Regulons and Regulatory Motif Characterization. Genes (Basel) 2020; 11:genes11090995. [PMID: 32854400 PMCID: PMC7564462 DOI: 10.3390/genes11090995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Trees and their seeds regulate their germination, growth, and reproduction in response to environmental stimuli. These stimuli, through signal transduction, trigger transcription factors that alter the expression of various genes leading to the unfolding of the genetic program. A regulon is conceptually defined as a set of target genes regulated by a transcription factor by physically binding to regulatory motifs to accomplish a specific biological function, such as the CO-FT regulon for flowering timing and fall growth cessation in trees. Only with a clear characterization of regulatory motifs, can candidate target genes be experimentally validated, but motif characterization represents the weakest feature of regulon research, especially in tree genetics. I review here relevant experimental and bioinformatics approaches in characterizing transcription factors and their binding sites, outline problems in tree regulon research, and demonstrate how transcription factor databases can be effectively used to aid the characterization of tree regulons.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
24
|
Santiago AM, Gonçalves DL, Morano KA. Mechanisms of sensing and response to proteotoxic stress. Exp Cell Res 2020; 395:112240. [PMID: 32827554 DOI: 10.1016/j.yexcr.2020.112240] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
Cells are continuously subject to various stresses, battling both exogenous insults as well as toxic by-products of normal cellular metabolism and nutrient deprivation. Throughout the millennia, cells developed a core set of general stress responses that promote survival and reproduction under adverse circumstances. Past and current research efforts have been devoted to understanding how cells sense stressors and how that input is deciphered and transduced, resulting in stimulation of stress management pathways. A prime element of cellular stress responses is the increased transcription and translation of proteins specialized in managing and mitigating distinct types of stress. In this review, we focus on recent developments in our understanding of cellular sensing of proteotoxic stressors that impact protein synthesis, folding, and maturation provided by the model eukaryote the budding yeast, Saccharomyces cerevisiae, with reference to similarities and differences with other model organisms and humans.
Collapse
Affiliation(s)
- Alec M Santiago
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, UTHealth, Houston, TX, 77030, USA
| | - Davi L Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Matsuki Y, Saito T, Nakano Y, Hashimoto S, Matsuo Y, Inada T. Crucial role of leaky initiation of uORF3 in the downregulation of HNT1 by ER stress. Biochem Biophys Res Commun 2020; 528:186-192. [PMID: 32475637 DOI: 10.1016/j.bbrc.2020.04.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 01/27/2023]
Abstract
eIF2α phosphorylation-mediated translational regulation is crucial for global repression of translation by various stresses, including the unfolded protein response (UPR) in eukaryotes. Although translational control during UPR has not been extensively investigated in S. cerevisiae, Hac1-mediated production of long transcripts containing uORFs was shown to repress the translation of histidine triad nucleotide-binding 1 (HNT1) mRNA. The present study showed that uORF3 is required for HNT1 expression, as well as down-regulating HNT1 translation. Translation initiation by uORF3 is inefficient, with uORF3 having a strong Kozak sequence efficiently repressing the translation of HNT1. We propose that leaky scanning of uORF3 is responsible for the downregulation of HNT1 during UPR.
Collapse
Affiliation(s)
- Yasuko Matsuki
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Taishi Saito
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Yu Nakano
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshitaka Matsuo
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
26
|
Tunable Transcriptional Interference at the Endogenous Alcohol Dehydrogenase Gene Locus in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:1575-1583. [PMID: 32213532 PMCID: PMC7202008 DOI: 10.1534/g3.119.400937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neighboring sequences of a gene can influence its expression. In the phenomenon known as transcriptional interference, transcription at one region in the genome can repress transcription at a nearby region in cis. Transcriptional interference occurs at a number of eukaryotic loci, including the alcohol dehydrogenase (Adh) gene in Drosophila melanogaster. Adh is regulated by two promoters, which are distinct in their developmental timing of activation. It has been shown using transgene insertion that when the promoter distal from the Adh start codon is deleted, transcription from the proximal promoter becomes de-regulated. As a result, the Adh proximal promoter, which is normally active only during the early larval stages, becomes abnormally activated in adults. Whether this type of regulation occurs in the endogenous Adh context, however, remains unclear. Here, we employed the CRISPR/Cas9 system to edit the endogenous Adh locus and found that removal of the distal promoter also resulted in the untimely expression of the proximal promoter-driven mRNA isoform in adults, albeit at lower levels than previously reported. Importantly, transcription from the distal promoter was sufficient to repress proximal transcription in larvae, and the degree of this repression was dependent on the degree of distal promoter activity. Finally, upregulation of the distal Adh transcript led to the enrichment of histone 3 lysine 36 trimethylation over the Adh proximal promoter. We conclude that the endogenous Adh locus is developmentally regulated by transcriptional interference in a tunable manner.
Collapse
|
27
|
Wallace EWJ, Maufrais C, Sales-Lee J, Tuck LR, de Oliveira L, Feuerbach F, Moyrand F, Natarajan P, Madhani HD, Janbon G. Quantitative global studies reveal differential translational control by start codon context across the fungal kingdom. Nucleic Acids Res 2020; 48:2312-2331. [PMID: 32020195 PMCID: PMC7049704 DOI: 10.1093/nar/gkaa060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.
Collapse
Affiliation(s)
- Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Corinne Maufrais
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015 Paris, France
| | - Jade Sales-Lee
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Laura R Tuck
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Luciana de Oliveira
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Frank Feuerbach
- Institut Pasteur, Unité Génétique des Interactions Macromoléculaire, Département Génome et Génétique, F-75015 Paris, France
| | - Frédérique Moyrand
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Prashanthi Natarajan
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| |
Collapse
|
28
|
Monteuuis G, Miścicka A, Świrski M, Zenad L, Niemitalo O, Wrobel L, Alam J, Chacinska A, Kastaniotis AJ, Kufel J. Non-canonical translation initiation in yeast generates a cryptic pool of mitochondrial proteins. Nucleic Acids Res 2019; 47:5777-5791. [PMID: 31216041 PMCID: PMC6582344 DOI: 10.1093/nar/gkz301] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Utilization of non-AUG alternative translation start sites is most common in bacteria and viruses, but it has been also reported in other organisms. This phenomenon increases proteome complexity by allowing expression of multiple protein isoforms from a single gene. In Saccharomyces cerevisiae, a few described cases concern proteins that are translated from upstream near-cognate start codons as N-terminally extended variants that localize to mitochondria. Using bioinformatics tools, we provide compelling evidence that in yeast the potential for producing alternative protein isoforms by non-AUG translation initiation is much more prevalent than previously anticipated and may apply to as many as a few thousand proteins. Several hundreds of candidates are predicted to gain a mitochondrial targeting signal (MTS), generating an unrecognized pool of mitochondrial proteins. We confirmed mitochondrial localization of a subset of proteins previously not identified as mitochondrial, whose standard forms do not carry an MTS. Our data highlight the potential of non-canonical translation initiation in expanding the capacity of the mitochondrial proteome and possibly also other cellular features.
Collapse
Affiliation(s)
- Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Anna Miścicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Lounis Zenad
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Olli Niemitalo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Lidia Wrobel
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jahangir Alam
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| |
Collapse
|
29
|
Vitrinel B, Koh HWL, Mujgan Kar F, Maity S, Rendleman J, Choi H, Vogel C. Exploiting Interdata Relationships in Next-generation Proteomics Analysis. Mol Cell Proteomics 2019; 18:S5-S14. [PMID: 31126983 PMCID: PMC6692783 DOI: 10.1074/mcp.mr118.001246] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Mass spectrometry based proteomics and other technologies have matured to enable routine quantitative, system-wide analysis of concentrations, modifications, and interactions of proteins, mRNAs, and other molecules. These studies have allowed us to move toward a new field concerned with mining information from the combination of these orthogonal data sets, perhaps called "integromics." We highlight examples of recent studies and tools that aim at relating proteomic information to mRNAs, genetic associations, and changes in small molecules and lipids. We argue that productive data integration differs from parallel acquisition and interpretation and should move toward quantitative modeling of the relationships between the data. These relationships might be expressed by temporal information retrieved from time series experiments, rate equations to model synthesis and degradation, or networks of causal, evolutionary, physical, and other interactions. We outline steps and considerations toward such integromic studies to exploit the synergy between data sets.
Collapse
Affiliation(s)
- Burcu Vitrinel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Hiromi W L Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | - Funda Mujgan Kar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Shuvadeep Maity
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Justin Rendleman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY.
| |
Collapse
|
30
|
Xia X. Translation Control of HAC1 by Regulation of Splicing in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20122860. [PMID: 31212749 PMCID: PMC6627864 DOI: 10.3390/ijms20122860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Hac1p is a key transcription factor regulating the unfolded protein response (UPR) induced by abnormal accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. The accumulation of unfolded/misfolded proteins is sensed by protein Ire1p, which then undergoes trans-autophosphorylation and oligomerization into discrete foci on the ER membrane. HAC1 pre-mRNA, which is exported to the cytoplasm but is blocked from translation by its intron sequence looping back to its 5’UTR to form base-pair interaction, is transported to the Ire1p foci to be spliced, guided by a cis-acting bipartite element at its 3’UTR (3’BE). Spliced HAC1 mRNA can be efficiently translated. The resulting Hac1p enters the nucleus and activates, together with coactivators, a large number of genes encoding proteins such as protein chaperones to restore and maintain ER homeostasis and secretary protein quality control. This review details the translation regulation of Hac1p production, mediated by the nonconventional splicing, in the broad context of translation control and summarizes the evolution and diversification of the UPR signaling pathway among fungal, metazoan and plant lineages.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada.
| |
Collapse
|
31
|
Hollerer I, Barker JC, Jorgensen V, Tresenrider A, Dugast-Darzacq C, Chan LY, Darzacq X, Tjian R, Ünal E, Brar GA. Evidence for an Integrated Gene Repression Mechanism Based on mRNA Isoform Toggling in Human Cells. G3 (BETHESDA, MD.) 2019; 9:1045-1053. [PMID: 30723103 PMCID: PMC6469420 DOI: 10.1534/g3.118.200802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Abstract
We recently described an unconventional mode of gene regulation in budding yeast by which transcriptional and translational interference collaborate to down-regulate protein expression. Developmentally timed transcriptional interference inhibited production of a well translated mRNA isoform and resulted in the production of an mRNA isoform containing inhibitory upstream open reading frames (uORFs) that prevented translation of the main ORF. Transcriptional interference and uORF-based translational repression are established mechanisms outside of yeast, but whether this type of integrated regulation was conserved was unknown. Here we find that, indeed, a similar type of regulation occurs at the locus for the human oncogene MDM2 We observe evidence of transcriptional interference between the two MDM2 promoters, which produce a poorly translated distal promoter-derived uORF-containing mRNA isoform and a well-translated proximal promoter-derived transcript. Down-regulation of distal promoter activity markedly up-regulates proximal promoter-driven expression and results in local reduction of histone H3K36 trimethylation. Moreover, we observe that this transcript toggling between the two MDM2 isoforms naturally occurs during human embryonic stem cell differentiation programs.
Collapse
Affiliation(s)
- Ina Hollerer
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Juliet C Barker
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Victoria Jorgensen
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Amy Tresenrider
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California, Berkeley, CA 94720
| | - Leon Y Chan
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California, Berkeley, CA 94720
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California, Berkeley, CA 94720
| | - Elçin Ünal
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Gloria A Brar
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| |
Collapse
|
32
|
(Un)folding mechanisms of adaptation to ER stress: lessons from aneuploidy. Curr Genet 2019; 65:467-471. [PMID: 30511161 PMCID: PMC6421085 DOI: 10.1007/s00294-018-0914-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022]
Abstract
During stress, accumulation of misfolded proteins in the endoplasmic reticulum (ER) triggers activation of the adaptive mechanisms that restore protein homeostasis. One mechanism that eukaryotic cells use to respond to ER stress is through activation of the unfolded protein response (UPR) signaling pathway, which initiates degradation of misfolded proteins and leads to inhibition of translation and increased expression of chaperones and oxidative folding components that enhance ER protein folding capacity. However, the mechanisms of adaptation to ER stress are not limited to the UPR. Using yeast Saccharomyces cerevisiae, we recently discovered that the protein folding burden in the ER can be alleviated in a UPR-independent manner through duplication of whole chromosomes containing ER stress-protective genes. Here we discuss our findings and their implication to our understanding of the mechanisms by which cells respond to protein misfolding in the ER.
Collapse
|
33
|
Ma L, Wei J, Wan J, Wang W, Wang L, Yuan Y, Yang Z, Liu X, Ming L. Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:77. [PMID: 30760281 PMCID: PMC6375187 DOI: 10.1186/s13046-019-1090-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Background Metformin, a first-line drug for type 2 diabetes, could induce apoptosis in cancer cells. However, the concentration of glucose affects the effect of metformin, especially low glucose in the culture medium can enhance the cytotoxicity of metformin on cancer cells. Since mitochondria and endoplasmic reticulum is vital for maintaining cell homeostasis, we speculate that low glucose and metformin-induced cell apoptosis may be associated with mitochondria and endoplasmic reticulum. ASK1, as apoptosis signaling regulating kinase 1, is associated with cell apoptosis and mitochondrial damage. This study was designed to investigate the functional significance of ASK1, mitochondria and endoplasmic reticulum and underlying mechanism in low glucose and metformin-induced cell apoptosis. Methods An MTT assay was used to evaluate cell viability in SKOV3, OVCAR3 and HO8910 human ovarian cancer cells. Cell apoptosis was analyzed by flow cytometry. The expression of ASK1 was inhibited using a specific pharmacological inhibitor or ASK1-siRNA. Immunofluorescence was used to detect mitochondrial damage and ER stress. Nude mouse xenograft models were given metformin or/and NQDI-1, and ASK1 expression was detected using immunoblotting. In addition, subcellular fractionation of mitochondria was performed to assay the internal connection between ASK1 and mitochondria. Results The present study found that low glucose in culture medium enhanced the anticancer effect of metformin in human ovarian cancer cells. Utilization of a specific pharmacological inhibitor or ASK1-siRNA identified a potential role for ASK1 as an apoptotic protein in the regulation of low glucose and metformin-induced cell apoptosis via ASK1-mediated mitochondrial damage through the ASK1/Noxa pathway and via ER stress through the ROS/ASK1/JNK pathway. Moreover, ASK1 inhibition weakened the antitumor activity of metformin in vivo. Thus, mitochondrial damage and ER stress play a crucial role in low glucose–enhanced metformin cytotoxicity in human ovarian cancer cells. Conclusions These data suggested that low glucose and metformin induce cell apoptosis via ASK1-mediated mitochondrial damage and ER stress. These findings indicated that the effect of metformin in anticancer treatment may be related to cell culture conditions.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yongjie Yuan
- Department of Interventional Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zijun Yang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.,Henan Medical College, Zhengzhou, 450000, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|