1
|
Francois-Campion V, Berger F, Oikawa M, Goumeidane M, Mouniée N, Chenouard V, Petrova K, Abreu JG, Fourgeux C, Poschmann J, Peshkin L, Gibeaux R, Jullien J. Sperm derived H2AK119ub1 is required for embryonic development in Xenopus laevis. Nat Commun 2025; 16:3268. [PMID: 40188103 PMCID: PMC11972363 DOI: 10.1038/s41467-025-58615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Ubiquitylation of H2A (H2AK119ub1) by the polycomb repressive complexe-1 plays a key role in the initiation of facultative heterochromatin formation in somatic cells. Here we evaluate the contribution of sperm derived H2AK119ub1 to embryo development. In Xenopus laevis we found that H2AK119ub1 is present during spermiogenesis and into early embryonic development, highlighting its credential for a role in the transmission of epigenetic information from the sperm to the embryo. In vitro treatment of sperm with USP21, a H2AK119ub1 deubiquitylase, just prior to injection to egg, results in developmental defects associated with gene upregulation. Sperm H2AK119ub1 editing disrupts egg factor mediated paternal chromatin remodelling processes. It leads to post-replication accumulation of H2AK119ub1 on repeat element of the genome instead of CpG islands. This shift in post-replication H2AK119ub1 distribution triggered by sperm epigenome editing entails a loss of H2AK119ub1 from genes misregulated in embryos derived from USP21 treated sperm. We conclude that sperm derived H2AK119ub1 instructs egg factor mediated epigenetic remodelling of paternal chromatin and is required for embryonic development.
Collapse
Affiliation(s)
- Valentin Francois-Campion
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Florian Berger
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Maissa Goumeidane
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Nolwenn Mouniée
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Vanessa Chenouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | - Jose G Abreu
- Systems Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Leonid Peshkin
- Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Jérôme Jullien
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
2
|
Hoffmann J, Schütze TM, Kolodziejczyk A, Küster K, Kränkel A, Reinhardt S, Derihaci RP, Birdir C, Wimberger P, Koseki H, Albert M. Canonical and non-canonical PRC1 differentially contribute to regulation of neural stem cell fate. Life Sci Alliance 2025; 8:e202403006. [PMID: 39933923 PMCID: PMC11814486 DOI: 10.26508/lsa.202403006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Neocortex development is characterized by sequential phases of neural progenitor cell (NPC) expansion, neurogenesis, and gliogenesis. Polycomb-mediated epigenetic mechanisms are known to play important roles in regulating the lineage potential of NPCs during development. The composition of Polycomb repressive complex 1 (PRC1) is highly diverse in mammals and was hypothesized to contribute to context-specific regulation of cell fate. Here, we have performed a side-by-side comparison of the role of canonical PRC1.2/1.4 and non-canonical PRC1.3/1.5, all of which are expressed in the developing neocortex, in NSC proliferation and differentiation. We found that the deletion of Pcgf2/4 in NSCs led to a strong reduction in proliferation and to altered lineage fate, both during the neurogenic and gliogenic phase, whereas Pcgf3/5 played a minor role. Mechanistically, genes encoding stem cell and neurogenic factors were bound by PRC1 and differentially expressed upon Pcgf2/4 deletion. Thus, rather than different PRC1 subcomplexes contributing to different phases of neural development, we found that canonical PRC1 played a more significant role in NSC regulation during proliferative, neurogenic, and gliogenic phases compared with non-canonical PRC1.
Collapse
Affiliation(s)
- Janine Hoffmann
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Theresa M Schütze
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Annika Kolodziejczyk
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Karolin Küster
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Annekathrin Kränkel
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technology Platform of the TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technology Platform of the TUD Dresden University of Technology, Dresden, Germany
| | - Razvan P Derihaci
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Cahit Birdir
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
- Center for Feto/Neonatal Health, Technische Universität Dresden, Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
3
|
Liu Y, Xiao S, Yang M, Guo G, Zhou Y. The Impact of Polycomb Group Proteins on 3D Chromatin Structure and Environmental Stresses in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1038. [PMID: 40219106 PMCID: PMC11990978 DOI: 10.3390/plants14071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
The two multi-subunit complexes, Polycomb Repressive Complex 1 and 2 (PRC1/2), act synergistically during development to maintain the gene silencing state among different species. In contrast with mammals and Drosophila melanogaster, the enzyme activities and components of the PRC1 complex in plants are not fully conserved. In addition, the mutual recruitment of PRC1 and PRC2 in plants differs from that observed in mammals and Drosophila. Polycomb Group (PcG) proteins and their catalytic activity play an indispensable role in transcriptional regulation, developmental processes, and the maintenance of cellular identity. In plants, PRC1 and PRC2 deposit H2Aub and H3K27me3, respectively, and also play an important role in influencing three-dimensional (3D) chromatin structure. With the development of high-throughput sequencing techniques and computational biology, remarkable progress has been made in the field of plant 3D chromatin structure, and PcG has been found to be involved in the epigenetic regulation of gene expression by mediating the formation of 3D chromatin structures. At the same time, some genetic evidence indicates that PcG enables plants to better adapt to and resist a wide range of stresses by dynamically regulating gene expression. In the following review, we focus on the recruitment relationship between PRC1 and PRC2, the crucial role of PcG enzyme activity, the effect of PcG on 3D chromatin structure, and the vital role of PcG in environmental stress in plants.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Suxin Xiao
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; (S.X.); (M.Y.)
| | - Minqi Yang
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; (S.X.); (M.Y.)
| | - Guangqin Guo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yue Zhou
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; (S.X.); (M.Y.)
| |
Collapse
|
4
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
5
|
Ryan CW, Regan SL, Mills EF, McGrath BT, Gong E, Lai YT, Sheingold JB, Patel K, Horowitz T, Moccia A, Tsan YC, Srivastava A, Bielas SL. RING1 missense variants reveal sensitivity of DNA damage repair to H2A monoubiquitination dosage during neurogenesis. Nat Commun 2024; 15:7931. [PMID: 39256363 PMCID: PMC11387726 DOI: 10.1038/s41467-024-52292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Polycomb repressive complex 1 (PRC1) modifies chromatin through catalysis of histone H2A lysine 119 monoubiquitination (H2AK119ub1). RING1 and RNF2 interchangeably serve as the catalytic subunit within PRC1. Pathogenic missense variants in PRC1 core components reveal functions of these proteins that are obscured in knockout models. While Ring1a knockout models remain healthy, the microcephaly and neuropsychiatric phenotypes associated with a pathogenic RING1 missense variant implicate unappreciated functions. Using an in vitro model of neurodevelopment, we observe that RING1 contributes to the broad placement of H2AK119ub1, and that its targets overlap with those of RNF2. PRC1 complexes harboring hypomorphic RING1 bind target loci but do not catalyze H2AK119ub1, reducing H2AK119ub1 by preventing catalytically active complexes from accessing the locus. This results in delayed DNA damage repair and cell cycle progression in neural progenitor cells (NPCs). Conversely, reduced H2AK119ub1 due to hypomorphic RING1 does not generate differential expression that impacts NPC differentiation. In contrast, hypomorphic RNF2 generates a greater reduction in H2AK119ub1 that results in both delayed DNA repair and widespread transcriptional changes. These findings suggest that the DNA damage response is more sensitive to H2AK119ub1 dosage change than is regulation of gene expression.
Collapse
Affiliation(s)
- C W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
- Medical Science Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - S L Regan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E F Mills
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - B T McGrath
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E Gong
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y T Lai
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J B Sheingold
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Patel
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T Horowitz
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - A Moccia
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y C Tsan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - A Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow, India
| | - S L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Baile F, Calonje M. Dynamics of polycomb group marks in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102553. [PMID: 38776572 DOI: 10.1016/j.pbi.2024.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Polycomb Group (PcG) histone-modifying system is key in maintaining gene repression, providing a mitotically heritable cellular memory. Nevertheless, to allow plants to transition through distinct transcriptional programs during development or to respond to external cues, PcG-mediated repression requires reversibility. Several data suggest that the dynamics of PcG marks may vary considerably in different cell contexts; however, how PcG marks are established, maintained, or removed in each case is far from clear. In this review, we survey the knowns and unknowns of the molecular mechanisms underlying the maintenance or turnover of PcG marks in different cell stages.
Collapse
Affiliation(s)
- Fernando Baile
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain.
| |
Collapse
|
7
|
Arends T, Tsuchida H, Adeyemi RO, Tapscott SJ. DUX4-induced HSATII transcription causes KDM2A/B-PRC1 nuclear foci and impairs DNA damage response. J Cell Biol 2024; 223:e202303141. [PMID: 38451221 PMCID: PMC10919155 DOI: 10.1083/jcb.202303141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Guan S, Tang J, Ma X, Miao R, Cheng B. CBX7C⋅PHC2 interaction facilitates PRC1 assembly and modulates its phase separation properties. iScience 2024; 27:109548. [PMID: 38600974 PMCID: PMC11004992 DOI: 10.1016/j.isci.2024.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
CBX7 is a key component of PRC1 complex. Cbx7C is an uncharacterized Cbx7 splicing isoform specifically expressed in mouse embryonic stem cells (mESCs). We demonstrate that CBX7C functions as an epigenetic repressor at the classic PRC1 targets in mESCs, and its preferential interaction to PHC2 facilitates PRC1 assembly. Both Cbx7C and Phc2 are significantly upregulated during cell differentiation, and knockdown of Cbx7C abolishes the differentiation of mESCs to embryoid bodies. Interestingly, CBX7C⋅PHC2 interaction at low levels efficiently undergoes the formation of functional Polycomb bodies with high mobility, whereas the coordination of the two factors at high doses results in the formation of large, low-mobility, chromatin-free aggregates. Overall, these findings uncover the unique roles and molecular basis of the CBX7C⋅PHC2 interaction in PRC1 assembly on chromatin and Pc body formation and open a new avenue of controlling PRC1 activities via modulation of its phase separation properties.
Collapse
Affiliation(s)
- Shanli Guan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Jiajia Tang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Xiaojun Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Ruidong Miao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| |
Collapse
|
9
|
Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet 2024; 143:511-527. [PMID: 37086328 DOI: 10.1007/s00439-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.
Collapse
Affiliation(s)
- Charles W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Medical Science Training Program, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA
| | - Stephanie L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA.
| |
Collapse
|
10
|
Shen X, Chen C, Wang Y, Zheng W, Zheng J, Jones AE, Zhu B, Zhang H, Lyons C, Rijal A, Moley JA, Cao G, Liu K, Winn R, Dickinson A, Zhang K, Wang H. Role of histone variants H2BC1 and H2AZ.2 in H2AK119ub nucleosome organization and Polycomb gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575234. [PMID: 38293106 PMCID: PMC10827191 DOI: 10.1101/2024.01.16.575234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ubiquitination of histone H2A at lysine 119 residue (H2AK119ub) plays critical roles in a wide range of physiological processes, including Polycomb gene silencing 1,2 , replication 3-5 , DNA damage repair 6-10 , X inactivation 11,12 , and heterochromatin organization 13,14 . However, the underlying mechanism and structural basis of H2AK119ub remains largely elusive. In this study, we report that H2AK119ub nucleosomes have a unique composition, containing histone variants H2BC1 and H2AZ.2, and importantly, this composition is required for H2AK119ub and Polycomb gene silencing. Using the UAB domain of RSF1, we purified H2AK119ub nucleosomes to a sufficient amount and purity. Mass spectrometry analyses revealed that H2AK119ub nucleosomes contain the histone variants H2BC1 and H2AZ.2. A cryo-EM study resolved the structure of native H2AK119ub nucleosomes to a 2.6A resolution, confirming H2BC1 in one subgroup of H2AK119ub nucleosomes. Tandem GST-UAB pulldown, Flag-H2AZ.2, and HA-H2BC1 immunoprecipitation revealed that H2AK119ub nucleosomes could be separated into distinct subgroups, suggesting their composition heterogeneity and potential dynamic organization. Knockout or knockdown of H2BC1 or H2AZ.2 reduced cellular H2AK119ub levels, establishing H2BC1 and H2AZ.2 as critical determinants of H2AK119ub. Furthermore, genomic binding profiles of H2BC1 and H2AZ.2 overlapped significantly with H2AK119ub binding, with the most significant overlapping in the gene body and intergenic regions. Finally, assays in developing embryos reveal an interaction of H2AZ.2, H2BC1, and RING1A in vivo . Thus, this study revealed, for the first time, that the H2AK119ub nucleosome has a unique composition, and this composition is required for H2AK119ub and Polycomb gene silencing.
Collapse
|
11
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
13
|
de Potter B, Raas MWD, Seidl MF, Verrijzer CP, Snel B. Uncoupled evolution of the Polycomb system and deep origin of non-canonical PRC1. Commun Biol 2023; 6:1144. [PMID: 37949928 PMCID: PMC10638273 DOI: 10.1038/s42003-023-05501-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Polycomb group proteins, as part of the Polycomb repressive complexes, are essential in gene repression through chromatin compaction by canonical PRC1, mono-ubiquitylation of histone H2A by non-canonical PRC1 and tri-methylation of histone H3K27 by PRC2. Despite prevalent models emphasizing tight functional coupling between PRC1 and PRC2, it remains unclear whether this paradigm indeed reflects the evolution and functioning of these complexes. Here, we conduct a comprehensive analysis of the presence or absence of cPRC1, nPRC1 and PRC2 across the entire eukaryotic tree of life, and find that both complexes were present in the Last Eukaryotic Common Ancestor (LECA). Strikingly, ~42% of organisms contain only PRC1 or PRC2, showing that their evolution since LECA is largely uncoupled. The identification of ncPRC1-defining subunits in unicellular relatives of animals and fungi suggests ncPRC1 originated before cPRC1, and we propose a scenario for the evolution of cPRC1 from ncPRC1. Together, our results suggest that crosstalk between these complexes is a secondary development in evolution.
Collapse
Affiliation(s)
- Bastiaan de Potter
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
- Hubrecht institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
| | - Maximilian W D Raas
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
- Hubrecht institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
14
|
Zhang Y, Ma M, Liu M, Sun A, Zheng X, Liu K, Yin C, Li C, Jiang C, Tu X, Fang Y. Histone H2A monoubiquitination marks are targeted to specific sites by cohesin subunits in Arabidopsis. Nat Commun 2023; 14:1209. [PMID: 36869051 PMCID: PMC9984397 DOI: 10.1038/s41467-023-36788-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Histone H2A monoubiquitination (H2Aub1) functions as a conserved posttranslational modification in eukaryotes to maintain gene expression and guarantee cellular identity. Arabidopsis H2Aub1 is catalyzed by the core components AtRING1s and AtBMI1s of polycomb repressive complex 1 (PRC1). Because PRC1 components lack known DNA binding domains, it is unclear how H2Aub1 is established at specific genomic locations. Here, we show that the Arabidopsis cohesin subunits AtSYN4 and AtSCC3 interact with each other, and AtSCC3 binds to AtBMI1s. H2Aub1 levels are reduced in atsyn4 mutant or AtSCC3 artificial microRNA knockdown plants. ChIP-seq assays indicate that most binding events of AtSYN4 and AtSCC3 are associated with H2Aub1 along the genome where transcription is activated independently of H3K27me3. Finally, we show that AtSYN4 binds directly to the G-box motif and directs H2Aub1 to these sites. Our study thus reveals a mechanism for cohesin-mediated recruitment of AtBMI1s to specific genomic loci to mediate H2Aub1.
Collapse
Affiliation(s)
- Yu Zhang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Meng Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200065, Shanghai, China
| | - Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoyun Zheng
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chuanshun Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200065, Shanghai, China.
| | - Xiaoyu Tu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
15
|
Selcen I, Prentice E, Casaccia P. The epigenetic landscape of oligodendrocyte lineage cells. Ann N Y Acad Sci 2023; 1522:24-41. [PMID: 36740586 PMCID: PMC10085863 DOI: 10.1111/nyas.14959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate into myelin-forming cells and respond to the local environment. First, modifications of DNA, RNA, nucleosomal histones, key principles of chromatin organization, topologically associating domains, and local remodeling will be reviewed. Then, the relationship between epigenetic modulators and RNA processing will be explored. Finally, the reciprocal relationship between the epigenome as a determinant of the mechanical properties of cell nuclei and the target of mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in this lineage.
Collapse
Affiliation(s)
- Ipek Selcen
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| |
Collapse
|
16
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
17
|
Semprich CI, Davidson L, Amorim Torres A, Patel H, Briscoe J, Metzis V, Storey KG. ERK1/2 signalling dynamics promote neural differentiation by regulating chromatin accessibility and the polycomb repressive complex. PLoS Biol 2022; 20:e3000221. [PMID: 36455041 PMCID: PMC9746999 DOI: 10.1371/journal.pbio.3000221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/13/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
Fibroblast growth factor (FGF) is a neural inducer in many vertebrate embryos, but how it regulates chromatin organization to coordinate the activation of neural genes is unclear. Moreover, for differentiation to progress, FGF signalling must decline. Why these signalling dynamics are required has not been determined. Here, we show that dephosphorylation of the FGF effector kinase ERK1/2 rapidly increases chromatin accessibility at neural genes in mouse embryos, and, using ATAC-seq in human embryonic stem cell derived spinal cord precursors, we demonstrate that this occurs genome-wide across neural genes. Importantly, ERK1/2 inhibition induces precocious neural gene transcription, and this involves dissociation of the polycomb repressive complex from key gene loci. This takes place independently of subsequent loss of the repressive histone mark H3K27me3 and transcriptional onset. Transient ERK1/2 inhibition is sufficient for the dissociation of the repressive complex, and this is not reversed on resumption of ERK1/2 signalling. Moreover, genomic footprinting of sites identified by ATAC-seq together with ChIP-seq for polycomb protein Ring1B revealed that ERK1/2 inhibition promotes the occupancy of neural transcription factors (TFs) at non-polycomb as well as polycomb associated sites. Together, these findings indicate that ERK1/2 signalling decline promotes global changes in chromatin accessibility and TF binding at neural genes by directing polycomb and other regulators and appears to serve as a gating mechanism that provides directionality to the process of differentiation.
Collapse
Affiliation(s)
- Claudia I. Semprich
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Lindsay Davidson
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Adriana Amorim Torres
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | | | | | - Vicki Metzis
- The Francis Crick Institute, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (VM); (KGS)
| | - Kate G. Storey
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
- * E-mail: (VM); (KGS)
| |
Collapse
|
18
|
Koizumi M, Eto H, Saeki M, Seki M, Fukushima T, Mukai S, Ide H, Sera Y, Iwasaki M, Suzuki Y, Tohei A, Kishi Y, Honda H. UTX deficiency in neural stem/progenitor cells results in impaired neural development, fetal ventriculomegaly, and postnatal death. FASEB J 2022; 36:e22662. [PMID: 36412518 DOI: 10.1096/fj.202201002rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Recent studies have demonstrated that epigenetic modifications are deeply involved in neurogenesis; however, the precise mechanisms remain largely unknown. To determine the role of UTX (also known as KDM6A), a demethylase of histone H3K27, in neural development, we generated Utx-deficient mice in neural stem/progenitor cells (NSPCs). Since Utx is an X chromosome-specific gene, the genotypes are sex-dependent; female mice lose both Utx alleles (UtxΔ/Δ ), and male mice lose one Utx allele yet retain one Uty allele, the counterpart of Utx on the Y chromosome (UtxΔ/Uty ). We found that UtxΔ/Δ mice exhibited fetal ventriculomegaly and died soon after birth. Immunofluorescence staining and EdU labeling revealed a significant increase in NSPCs and a significant decrease in intermediate-progenitor and differentiated neural cells. Molecular analyses revealed the downregulation of pathways related to DNA replication and increased H3K27me3 levels around the transcription start sites in UtxΔ/Δ NSPCs. These results indicate that UTX globally regulates the expression of genes required for proper neural development in NSPCs, and UTX deficiency leads to impaired cell cycle exit, reduced differentiation, and neonatal death. Interestingly, although UtxΔ/Uty mice survived the postnatal period, most died of hydrocephalus, a clinical feature of Kabuki syndrome, a congenital anomaly involving UTX mutations. Our findings provide novel insights into the role of histone modifiers in neural development and suggest that UtxΔ/Uty mice are a potential disease model for Kabuki syndrome.
Collapse
Affiliation(s)
- Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Hikaru Eto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Saeki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hisamitsu Ide
- Department of Urology, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan
| | - Yasuyuki Sera
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Iwasaki
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Atsushi Tohei
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
19
|
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Abstract
The Polycomb system modulates chromatin structure to maintain gene repression during cell differentiation. Polycomb repression involves methylation of histone H3K27 (H3K27me3) by Polycomb repressive complex 2 (PRC2), monoubiquitylation of H2A (H2Aub1) by noncanonical PRC1 (ncPRC1), and chromatin compaction by canonical PRC1 (cPRC1), which is independent of its enzymatic activity. Puzzlingly, Polycomb repression also requires deubiquitylation of H2Aub1 by Polycomb repressive deubiquitinase (PR-DUB). In this issue of Genes & Development, Bonnet and colleagues (pp. 1046-1061) resolve this paradox by showing that high levels of H2Aub1 in Drosophila lacking PR-DUB activity promotes open chromatin and gene expression in spite of normal H3K27me3 levels and PRC binding. Pertinently, gene repression is restored by concomitant loss of PRC1 E3 ubiquitin ligase activity but depends on its chromatin compaction activity. These findings suggest that PR-DUB ensures just-right levels of H2Aub1 to allow chromatin compaction by cPRC1.
Collapse
|
21
|
Bonnet J, Boichenko I, Kalb R, Le Jeune M, Maltseva S, Pieropan M, Finkl K, Fierz B, Müller J. PR-DUB preserves Polycomb repression by preventing excessive accumulation of H2Aub1, an antagonist of chromatin compaction. Genes Dev 2022; 36:1046-1061. [PMID: 36357125 PMCID: PMC9744231 DOI: 10.1101/gad.350014.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022]
Abstract
The Polycomb repressive complexes PRC1, PRC2, and PR-DUB repress target genes by modifying their chromatin. In Drosophila, PRC1 compacts chromatin and monoubiquitinates histone H2A at lysine 118 (H2Aub1), whereas PR-DUB is a major H2Aub1 deubiquitinase, but how H2Aub1 levels must be balanced for Polycomb repression remains unclear. We show that in early embryos, H2Aub1 is enriched at Polycomb target genes, where it facilitates H3K27me3 deposition by PRC2 to mark genes for repression. During subsequent stages of development, H2Aub1 becomes depleted from these genes and is no longer enriched when Polycomb maintains them repressed. Accordingly, Polycomb targets remain repressed in H2Aub1-deficient animals. In PR-DUB catalytic mutants, high levels of H2Aub1 accumulate at Polycomb target genes, and Polycomb repression breaks down. These high H2Aub1 levels do not diminish Polycomb protein complex binding or H3K27 trimethylation but increase DNA accessibility. We show that H2Aub1 interferes with nucleosome stacking and chromatin fiber folding in vitro. Consistent with this, Polycomb repression defects in PR-DUB mutants are exacerbated by reducing PRC1 chromatin compaction activity, but Polycomb repression is restored if PRC1 E3 ligase activity is removed. PR-DUB therefore acts as a rheostat that removes excessive H2Aub1 that, although deposited by PRC1, antagonizes PRC1-mediated chromatin compaction.
Collapse
Affiliation(s)
- Jacques Bonnet
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Iulia Boichenko
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Reinhard Kalb
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mathilde Le Jeune
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Svetlana Maltseva
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mattia Pieropan
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Katja Finkl
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jürg Müller
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
22
|
Melo GA, Calôba C, Brum G, Passos TO, Martinez GJ, Pereira RM. Epigenetic regulation of T cells by Polycomb group proteins. J Leukoc Biol 2022; 111:1253-1267. [DOI: 10.1002/jlb.2ri0122-039r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guilherme A. Melo
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Carolina Calôba
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gabrielle Brum
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Thaís O. Passos
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gustavo J. Martinez
- Center for Cancer Cell Biology, Immunology and Infection, Discipline of Microbiology and Immunology Rosalind Franklin University of Medicine and Science Chicago Illinois USA
| | - Renata M. Pereira
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
23
|
Liaw GJ. Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194786. [PMID: 35032681 DOI: 10.1016/j.bbagrm.2022.194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo. Previous studies have shown that maternal Tramtrack69 facilitates maternal GAGA-binding factor and Heat shock factor binding to the torso response element (tor-RE) to initiate tailless repression in the stage-4 embryo. Chromatin-immunoprecipitation and genetic-interaction studies exhibit that maternally-deposited Polycomb repressive complex 1 (PRC1) recruited by the tor-RE-associated Tramtrack69 represses tailless expression in the stage-4 embryo. A noncanonical Polycomb-group response element (PRE) is mapped to the tailless proximal region. High levels of Bric-a-brac, Tramtrack, and Broad (BTB)-domain proteins are fundamental for maintaining tailless repression in the stage-8 to -10 embryos. Trmtrack69 sporadically distributes in the linear BTB-domain oligomer, which recruits and retains a high level of PRC1 near the GCCAT cluster for repressing tll expression in the stage-14 embryos. Disrupting the retention of PRC1 decreases the levels of PRC1 and Pleiohomeotic protein substantially on the PRE and causes tailless derepression in the stage-14 embryo. Furthermore, the retained PRC1 potentially serves as a second foundation for assembling the well-characterized polymer of the Sterile alpha motif domain in Polyhomeotic protein, which compacts chromatin to maintain the repressed state of tailless in the embryos after stage 14.
Collapse
Affiliation(s)
- Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genomic Sciences, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan.
| |
Collapse
|
24
|
Sawai A, Pfennig S, Bulajić M, Miller A, Khodadadi-Jamayran A, Mazzoni EO, Dasen JS. PRC1 sustains the integrity of neural fate in the absence of PRC2 function. eLife 2022; 11:e72769. [PMID: 34994686 PMCID: PMC8765755 DOI: 10.7554/elife.72769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
Collapse
Affiliation(s)
- Ayana Sawai
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Sarah Pfennig
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Milica Bulajić
- Department of Biology, New York UniversityNew YorkUnited States
| | - Alexander Miller
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, NYU School of MedcineNew YorkUnited States
| | | | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
25
|
Histone modifications in neurodifferentiation of embryonic stem cells. Heliyon 2022; 8:e08664. [PMID: 35028451 PMCID: PMC8741459 DOI: 10.1016/j.heliyon.2021.e08664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications of histone proteins regulate a long cascade of downstream cellular activities, including transcription and replication. Cellular lineage differentiation involves large-scale intracellular signaling and extracellular context. In particular, histone modifications play instructive and programmatic roles in central nervous system development. Deciphering functions of histone could offer feasible molecular strategies for neural diseases caused by histone modifications. Here, we review recent advances of in vitro and in vivo studies on histone modifications in neural differentiation.
Collapse
|
26
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System. Results Probl Cell Differ 2022; 70:419-442. [PMID: 36348117 DOI: 10.1007/978-3-031-06573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurons and glial cells in the nervous system exhibit different gene expression programs for neural development and function. These programs are controlled by the epigenetic regulatory layers in the nucleus. The nucleus is a well-organized subcellular organelle that includes chromatin, the nuclear lamina, and nuclear bodies. These subnuclear components operate together as epigenetic regulators of neural development and function and are collectively called the nuclear architecture. In the nervous system, dynamic rearrangement of the nuclear architecture has been observed in each cell type, especially in neurons, allowing for their specialized functions, including learning and memory formation. Although the importance of nuclear architecture has been debated for decades, the paradigm has been changing rapidly, owing to the development of new technologies. Here, we reviewed the latest studies on nuclear geometry, nuclear bodies, and heterochromatin compartments, as well as summarized recent novel insights regarding radial positioning, chromatin condensation, and chromatin interaction between genes and cis-regulatory elements.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania, USA
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
27
|
Li Q, Chen J, Liang F, Zhang J, Qu W, Huang X, Cheng X, Zhao X, Yang Z, Xu S, Li X. RYBP modulates embryonic neurogenesis involving the Notch signaling pathway in a PRC1-independent pattern. Stem Cell Reports 2021; 16:2988-3004. [PMID: 34798064 PMCID: PMC8693662 DOI: 10.1016/j.stemcr.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
RYBP (Ring1 and YY1 binding protein), an essential component of the Polycomb repressive complex 1 (PRC1), plays pivotal roles in development and diseases. However, the roles of Rybp in neuronal development remains completely unknown. In the present study, we have shown that the depletion of Rybp inhibits proliferation and promotes neuronal differentiation of embryonic neural progenitor cells (eNPCs). In addition, Rybp deficiency impairs the morphological development of neurons. Mechanistically, Rybp deficiency does not affect the global level of ubiquitination of H2A, but it inhibits Notch signaling pathway in eNPCs. The direct interaction between RYBP and CIR1 facilitates the binding of RBPJ to Notch intracellular domain (NICD) and consequently activated Notch signaling. Rybp loss promotes CIR1 competing with RBPJ to bind with NICD, and inhibits Notch signaling. Furthermore, ectopic Hes5, Notch signaling downstream target, rescues Rybp-deficiency-induced deficits. Collectively, our findings show that RYBP regulates embryonic neurogenesis and neuronal development through modulating Notch signaling in a PRC1-independent manner.
Collapse
Affiliation(s)
- Qian Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Junchen Chen
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Feng Liang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Jinyu Zhang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Wenzheng Qu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiaoli Huang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xuejun Cheng
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xingsen Zhao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhanjun Yang
- Department of Human Anatomy, Baotou Medical College, Baotou, 014040, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Clinical Research Center for Child Health, Hangzhou 310052, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
28
|
Blackledge NP, Klose RJ. The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol 2021; 22:815-833. [PMID: 34400841 PMCID: PMC7612013 DOI: 10.1038/s41580-021-00398-y] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb repressive system comprises two central protein complexes, Polycomb repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation and development. Our early understanding of Polycomb function relied on studies in simple model organisms, but more recently it has become apparent that this system has expanded and diverged in mammals. Detailed studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to identify their target sites in the genome, communicate through feedback mechanisms to create Polycomb chromatin domains and control transcription to regulate gene expression. In this Review, we discuss and contextualize the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals.
Collapse
Affiliation(s)
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Katada S, Takouda J, Nakagawa T, Honda M, Igarashi K, Imamura T, Ohkawa Y, Sato S, Kurumizaka H, Nakashima K. Neural stem/precursor cells dynamically change their epigenetic landscape to differentially respond to BMP signaling for fate switching during brain development. Genes Dev 2021; 35:1431-1444. [PMID: 34675062 PMCID: PMC8559679 DOI: 10.1101/gad.348797.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
In this study, Katada et al. investigated NPC fate regulation and, using multiple genome-wide analyses, they demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. Their results show the regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development. During neocortical development, tight regulation of neurogenesis-to-astrogenesis switching of neural precursor cells (NPCs) is critical to generate a balanced number of each neural cell type for proper brain functions. Accumulating evidence indicates that a complex array of epigenetic modifications and the availability of extracellular factors control the timing of neuronal and astrocytic differentiation. However, our understanding of NPC fate regulation is still far from complete. Bone morphogenetic proteins (BMPs) are renowned as cytokines that induce astrogenesis of gliogenic late-gestational NPCs. They also promote neurogenesis of mid-gestational NPCs, although the underlying mechanisms remain elusive. By performing multiple genome-wide analyses, we demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. We found that histone H3K27 trimethylation and DNA methylation around Smad-binding sites change rapidly as gestation proceeds, strongly associated with the alteration of accessibility of Smads to their target binding sites. Furthermore, we identified two lineage-specific Smad-interacting partners—Sox11 for neurogenic and Sox8 for astrocytic differentiation—that further ensure Smad-regulated fate-specific gene induction. Our findings illuminate an exquisite regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development.
Collapse
Affiliation(s)
- Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Takouda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takumi Nakagawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mizuki Honda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhide Igarashi
- Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takuya Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
31
|
Dobrinić P, Szczurek AT, Klose RJ. PRC1 drives Polycomb-mediated gene repression by controlling transcription initiation and burst frequency. Nat Struct Mol Biol 2021; 28:811-824. [PMID: 34608337 PMCID: PMC7612713 DOI: 10.1038/s41594-021-00661-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The Polycomb repressive system plays a fundamental role in controlling gene expression during mammalian development. To achieve this, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) bind target genes and use histone modification-dependent feedback mechanisms to form Polycomb chromatin domains and repress transcription. The inter-relatedness of PRC1 and PRC2 activity at these sites has made it difficult to discover the specific components of Polycomb chromatin domains that drive gene repression and to understand mechanistically how this is achieved. Here, by exploiting rapid degron-based approaches and time-resolved genomics, we kinetically dissect Polycomb-mediated repression and discover that PRC1 functions independently of PRC2 to counteract RNA polymerase II binding and transcription initiation. Using single-cell gene expression analysis, we reveal that PRC1 acts uniformly within the cell population and that repression is achieved by controlling transcriptional burst frequency. These important new discoveries provide a mechanistic and conceptual framework for Polycomb-dependent transcriptional control.
Collapse
Affiliation(s)
- Paula Dobrinić
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Eto H, Kishi Y. Brain regionalization by Polycomb-group proteins and chromatin accessibility. Bioessays 2021; 43:e2100155. [PMID: 34536032 DOI: 10.1002/bies.202100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022]
Abstract
During brain development, neural precursor cells (NPCs) in different brain regions produce different types of neurons, and each of these regions plays a different role in the adult brain. Therefore, precise regionalization is essential in the early stages of brain development, and irregular regionalization has been proposed as the cause of neurodevelopmental disorders. The mechanisms underlying brain regionalization have been well studied in terms of morphogen-induced expression of critical transcription factors for regionalization. NPC potential in different brain regions is defined by chromatin structures that regulate the plasticity of gene expression. Herein, we present recent findings on the importance of chromatin structure in brain regionalization, particularly with respect to its regulation by Polycomb-group proteins and chromatin accessibility.
Collapse
Affiliation(s)
- Hikaru Eto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Tsuboi M, Gotoh Y. Analysis of histone modifications in mouse neocortical neural progenitor-stem cells at various developmental stages. STAR Protoc 2021; 2:100763. [PMID: 34467231 PMCID: PMC8385115 DOI: 10.1016/j.xpro.2021.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Dynamic changes in histone modifications mediated by Polycomb group proteins can be indicative of the transition of gene repression mode during development. Here, we present methods for the isolation of mouse neocortical neural progenitor-stem cells (NPCs) and their culture, followed by chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) techniques to examine changes in histone H2A ubiquitination patterns at various developmental stages. This protocol can be applied for both in vitro NPCs and NPCs directly isolated from mouse neocortices. For complete details on the use and execution of this protocol, please refer to (Tsuboi et al., 2018).
Collapse
Affiliation(s)
- Masafumi Tsuboi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
34
|
Liu S, Trejo-Arellano MS, Qiu Y, Eklund DM, Köhler C, Hennig L. H2A ubiquitination is essential for Polycomb Repressive Complex 1-mediated gene regulation in Marchantia polymorpha. Genome Biol 2021; 22:253. [PMID: 34465381 PMCID: PMC8408974 DOI: 10.1186/s13059-021-02476-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Polycomb repressive complex 1 (PRC1) and PRC2 are chromatin regulators maintaining transcriptional repression. The deposition of H3 lysine 27 tri-methylation (H3K27me3) by PRC2 is known to be required for transcriptional repression, whereas the contribution of H2A ubiquitination (H2Aub) in the Polycomb repressive system remains unclear in plants. RESULTS We directly test the requirement of H2Aub for gene regulation in Marchantia polymorpha by generating point mutations in H2A that prevent ubiquitination by PRC1. These mutants show reduced H3K27me3 levels on the same target sites as mutants defective in PRC1 subunits MpBMI1 and the homolog MpBMI1L, revealing that PRC1-catalyzed H2Aub is essential for Polycomb system function. Furthermore, by comparing transcriptome data between mutants in MpH2A and MpBMI1/1L, we demonstrate that H2Aub contributes to the PRC1-mediated transcriptional level of genes and transposable elements. CONCLUSION Together, our data demonstrates that H2Aub plays a direct role in H3K27me3 deposition and is required for PRC1-mediated transcriptional changes in both genes and transposable elements in Marchantia.
Collapse
Affiliation(s)
- Shujing Liu
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden.
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden
- Present address: Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Yichun Qiu
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Potsdam-Golm, Germany
| | - D Magnus Eklund
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden.
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Potsdam-Golm, Germany.
| | - Lars Hennig
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007, Uppsala, Sweden
| |
Collapse
|
35
|
De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses 2021; 13:v13081470. [PMID: 34452335 PMCID: PMC8402699 DOI: 10.3390/v13081470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Herpesviruses persist in the form of a latent infection in specialized cell types. During latency, the herpesvirus genomes associate with cellular histone proteins and the viral lytic genes assemble into transcriptionally repressive heterochromatin. Although there is divergence in the nature of heterochromatin on latent herpesvirus genomes, in general, the genomes assemble into forms of heterochromatin that can convert to euchromatin to permit gene expression and therefore reactivation. This reversible form of heterochromatin is known as facultative heterochromatin and is most commonly characterized by polycomb silencing. Polycomb silencing is prevalent on the cellular genome and plays a role in developmentally regulated and imprinted genes, as well as X chromosome inactivation. As herpesviruses initially enter the cell in an un-chromatinized state, they provide an optimal system to study how de novo facultative heterochromatin is targeted to regions of DNA and how it contributes to silencing. Here, we describe how polycomb-mediated silencing potentially assembles onto herpesvirus genomes, synergizing what is known about herpesvirus latency with facultative heterochromatin targeting to the cellular genome. A greater understanding of polycomb silencing of herpesviruses will inform on the mechanism of persistence and reactivation of these pathogenic human viruses and provide clues regarding how de novo facultative heterochromatin forms on the cellular genome.
Collapse
|
36
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
37
|
Isolation of genetically manipulated neural progenitors and immature neurons from embryonic mouse neocortex by FACS. STAR Protoc 2021; 2:100540. [PMID: 34041504 PMCID: PMC8141469 DOI: 10.1016/j.xpro.2021.100540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The embryonic mammalian neocortex includes neural progenitors and neurons at various stages of differentiation. The regulatory mechanisms underlying multiple aspects of neocortical development—including cell division, neuronal fate commitment, neuronal migration, and neuronal differentiation—have been explored using in utero electroporation and virus infection. Here, we describe a protocol for investigation of the effects of genetic manipulation on neural development through direct isolation of neural progenitors and neurons from the mouse embryonic neocortex by fluorescence-activated cell sorting. For complete details on the use and execution of this protocol, please refer to Tsuboi et al. (2018) and Sakai et al. (2019). Direct isolation of neural progenitors and neurons from the mouse embryonic neocortex Purification of neural cells at various stages of differentiation using wild-type mice Protocol enables biochemical analyses of neural cells genetically manipulated in vivo Applicable for transcriptomic and epigenomic analyses
Collapse
|
38
|
Fursova NA, Turberfield AH, Blackledge NP, Findlater EL, Lastuvkova A, Huseyin MK, Dobrinić P, Klose RJ. BAP1 constrains pervasive H2AK119ub1 to control the transcriptional potential of the genome. Genes Dev 2021; 35:749-770. [PMID: 33888563 PMCID: PMC8091973 DOI: 10.1101/gad.347005.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Histone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene promoters but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we found that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive genome-wide accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 preferentially counteracts Ser5 phosphorylation on the C-terminal domain of RNA polymerase II at gene regulatory elements and causes reductions in transcription and transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes, which leads to their derepression, providing a potential molecular rationale for why the BAP1 ortholog in Drosophila has been characterized as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anne H Turberfield
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Emma L Findlater
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Miles K Huseyin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Paula Dobrinić
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
39
|
Larrigan S, Shah S, Fernandes A, Mattar P. Chromatin Remodeling in the Brain-a NuRDevelopmental Odyssey. Int J Mol Sci 2021; 22:ijms22094768. [PMID: 33946340 PMCID: PMC8125410 DOI: 10.3390/ijms22094768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
During brain development, the genome must be repeatedly reconfigured in order to facilitate neuronal and glial differentiation. A host of chromatin remodeling complexes facilitates this process. At the genetic level, the non-redundancy of these complexes suggests that neurodevelopment may require a lexicon of remodelers with different specificities and activities. Here, we focus on the nucleosome remodeling and deacetylase (NuRD) complex. We review NuRD biochemistry, genetics, and functions in neural progenitors and neurons.
Collapse
Affiliation(s)
- Sarah Larrigan
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Alex Fernandes
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Pierre Mattar
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Correspondence:
| |
Collapse
|
40
|
Mattar P, Jolicoeur C, Dang T, Shah S, Clark BS, Cayouette M. A Casz1-NuRD complex regulates temporal identity transitions in neural progenitors. Sci Rep 2021; 11:3858. [PMID: 33594190 PMCID: PMC7886867 DOI: 10.1038/s41598-021-83395-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Neural progenitor cells undergo identity transitions during development to ensure the generation different types of neurons and glia in the correct sequence and proportions. A number of temporal identity factors that control these transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal development. We show that Casz1 is required to control the transition between neurogenesis and gliogenesis. Using BioID proteomics, we reveal that Casz1 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in retinal cells. Finally, we show that both the NuRD and the polycomb repressor complexes are required for Casz1 to promote the rod fate and suppress gliogenesis. As additional temporal identity factors have been found to interact with the NuRD complex in other contexts, we propose that these factors might act through this common biochemical process to regulate neurogenesis.
Collapse
Affiliation(s)
- Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Thanh Dang
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Anatomy and Cell Biology, and Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
41
|
Huseyin MK, Klose RJ. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat Commun 2021; 12:887. [PMID: 33563969 PMCID: PMC7873255 DOI: 10.1038/s41467-021-21130-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) is an essential chromatin-based repressor of gene transcription. How PRC1 engages with chromatin to identify its target genes and achieve gene repression remains poorly defined, representing a major hurdle to our understanding of Polycomb system function. Here, we use genome engineering and single particle tracking to dissect how PRC1 binds to chromatin in live mouse embryonic stem cells. We observe that PRC1 is highly dynamic, with only a small fraction stably interacting with chromatin. By integrating subunit-specific dynamics, chromatin binding, and abundance measurements, we discover that PRC1 exhibits low occupancy at target sites. Furthermore, we employ perturbation approaches to uncover how specific components of PRC1 define its kinetics and chromatin binding. Together, these discoveries provide a quantitative understanding of chromatin binding by PRC1 in live cells, suggesting that chromatin modification, as opposed to PRC1 complex occupancy, is central to gene repression.
Collapse
Affiliation(s)
- Miles K Huseyin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
42
|
Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 2020; 52:1271-1281. [PMID: 33257899 DOI: 10.1038/s41588-020-00736-4] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Histone-modifying enzymes are implicated in the control of diverse DNA-templated processes including gene expression. Here, we outline historical and current thinking regarding the functions of histone modifications and their associated enzymes. One current viewpoint, based largely on correlative evidence, posits that histone modifications are instructive for transcriptional regulation and represent an epigenetic 'code'. Recent studies have challenged this model and suggest that histone marks previously associated with active genes do not directly cause transcriptional activation. Additionally, many histone-modifying proteins possess non-catalytic functions that overshadow their enzymatic activities. Given that much remains unknown regarding the functions of these proteins, the field should be cautious in interpreting loss-of-function phenotypes and must consider both cellular and developmental context. In this Perspective, we focus on recent progress relating to the catalytic and non-catalytic functions of the Trithorax-COMPASS complexes, Polycomb repressive complexes and Clr4/Suv39 histone-modifying machineries.
Collapse
|
43
|
Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020; 11:5947. [PMID: 33230107 PMCID: PMC7683540 DOI: 10.1038/s41467-020-19722-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed. Histone H2A monoubiquitination on lysine 119 in vertebrate and lysine 118 in Drosophila (H2Aub) is an epigenomic mark usually associated with gene repression by Polycomb group factors. Here the authors review the current knowledge on the deposition and removal of H2Aub, its function in transcription and other DNA-associated processes as well as its relevance to human disease.
Collapse
|
44
|
Eto H, Kishi Y, Yakushiji-Kaminatsui N, Sugishita H, Utsunomiya S, Koseki H, Gotoh Y. The Polycomb group protein Ring1 regulates dorsoventral patterning of the mouse telencephalon. Nat Commun 2020; 11:5709. [PMID: 33177537 PMCID: PMC7658352 DOI: 10.1038/s41467-020-19556-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
Dorsal-ventral patterning of the mammalian telencephalon is fundamental to the formation of distinct functional regions including the neocortex and ganglionic eminence. While Bone morphogenetic protein (BMP), Wnt, and Sonic hedgehog (Shh) signaling are known to determine regional identity along the dorsoventral axis, how the region-specific expression of these morphogens is established remains unclear. Here we show that the Polycomb group (PcG) protein Ring1 contributes to the ventralization of the mouse telencephalon. Deletion of Ring1b or both Ring1a and Ring1b in neuroepithelial cells induces ectopic expression of dorsal genes, including those for BMP and Wnt ligands, as well as attenuated expression of the gene for Shh, a key morphogen for ventralization, in the ventral telencephalon. We observe PcG protein–mediated trimethylation of histone 3 at lysine-27 and binding of Ring1B at BMP and Wnt ligand genes specifically in the ventral region. Furthermore, forced activation of BMP or Wnt signaling represses Shh expression. Our results thus indicate that PcG proteins suppress BMP and Wnt signaling in a region-specific manner and thereby allow proper Shh expression and development of the ventral telencephalon. NCOMMS-19-38235B Dorsal-ventral patterning of the mammalian telencephalon is fundamental to the formation of distinct functional regions. Here, the authors find that PcG proteins suppress BMP and Wnt signaling in a region-specific manner, allowing for proper Shh expression and development of the ventral telencephalon.
Collapse
Affiliation(s)
- Hikaru Eto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Nayuta Yakushiji-Kaminatsui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hiroki Sugishita
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shun Utsunomiya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-0033, Japan.,Neuroscience 2, Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd.; Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
45
|
Seif E, Kang JJ, Sasseville C, Senkovich O, Kaltashov A, Boulier EL, Kapur I, Kim CA, Francis NJ. Phase separation by the polyhomeotic sterile alpha motif compartmentalizes Polycomb Group proteins and enhances their activity. Nat Commun 2020; 11:5609. [PMID: 33154383 PMCID: PMC7644731 DOI: 10.1038/s41467-020-19435-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Polycomb Group (PcG) proteins organize chromatin at multiple scales to regulate gene expression. A conserved Sterile Alpha Motif (SAM) in the Polycomb Repressive Complex 1 (PRC1) subunit Polyhomeotic (Ph) has been shown to play an important role in chromatin compaction and large-scale chromatin organization. Ph SAM forms helical head to tail polymers, and SAM-SAM interactions between chromatin-bound Ph/PRC1 are believed to compact chromatin and mediate long-range interactions. To understand the underlying mechanism, here we analyze the effects of Ph SAM on chromatin in vitro. We find that incubation of chromatin or DNA with a truncated Ph protein containing the SAM results in formation of concentrated, phase-separated condensates. Ph SAM-dependent condensates can recruit PRC1 from extracts and enhance PRC1 ubiquitin ligase activity towards histone H2A. We show that overexpression of Ph with an intact SAM increases ubiquitylated H2A in cells. Thus, SAM-induced phase separation, in the context of Ph, can mediate large-scale compaction of chromatin into biochemical compartments that facilitate histone modification.
Collapse
Affiliation(s)
- Elias Seif
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Jin Joo Kang
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Charles Sasseville
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, 19555N. 59th St., Glendale, AZ, 85308, USA
| | - Alexander Kaltashov
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Elodie L Boulier
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Ibani Kapur
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Chongwoo A Kim
- Department of Biochemistry and Molecular Genetics, Midwestern University, 19555N. 59th St., Glendale, AZ, 85308, USA
| | - Nicole J Francis
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Département de biochimie et médecine moléculaire Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
46
|
Desai D, Khanna A, Pethe P. PRC1 catalytic unit RING1B regulates early neural differentiation of human pluripotent stem cells. Exp Cell Res 2020; 396:112294. [PMID: 32971117 DOI: 10.1016/j.yexcr.2020.112294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Polycomb group (PcG) proteins are histone modifiers which control gene expression by assembling into large repressive complexes termed - Polycomb repressive complex (PRC); RING1B, core catalytic subunit of PRC1 that performs H2AK119 monoubiquitination leading to gene repression. The role of PRC1 complex during early neural specification in humans is unclear; we have tried to uncover the role of PRC1 in neuronal differentiation using human pluripotent stem cells as an in vitro model. RESULTS We differentiated both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) towards neural progenitor stage evident from the expression of NESTIN, TUJ1, NCAD, and PAX6. When we checked the total expression of RING1B and BMI1, we saw that they were significantly upregulated in differentiated neural progenitors compared to undifferentiated cells. Further, we used Chromatin Immunoprecipitation coupled with qPCR to determine the localization of RING1B, and the repressive histone modification H2AK119ub1 at the promoters of neuronal specific genes. We observed that RING1B localized to and catalyzed H2AK119ub1 modification at promoters of TUJ1, NCAM, and NESTIN during early differentiation and later RING1B was lost from its promoter leading their expression; while functional RING1B persisted significantly on mature neuronal genes such as IRX3, GSX2, SOX1, NEUROD1 and FOXG1 in neural progenitors. CONCLUSION The results of our study show that PRC1 catalytic component RING1B occupies neuronal gene promoters in human pluripotent stem cells and may prevent their precocious expression. However, when neuronal inductive signals are given, RING1B is not only removed from neuronal gene promoters, but the inhibitory H2AK119ub1 modification is also lost.
Collapse
Affiliation(s)
- Divya Desai
- Department of Biological Sciences, NMIMS Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be University), Mumbai, 56, India
| | - Aparna Khanna
- Department of Biological Sciences, NMIMS Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be University), Mumbai, 56, India; Centre for Computational Biology & Translational Research, Amity Institute of Biotechnology (AIB), Amity University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Lavale, Pune, 15, India.
| |
Collapse
|
47
|
Zhang M, Zhao J, Lv Y, Wang W, Feng C, Zou W, Su L, Jiao J. Histone Variants and Histone Modifications in Neurogenesis. Trends Cell Biol 2020; 30:869-880. [PMID: 33011018 DOI: 10.1016/j.tcb.2020.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
During embryonic brain development, neurogenesis requires the orchestration of gene expression to regulate neural stem cell (NSC) fate specification. Epigenetic regulation with specific emphasis on the modes of histone variants and histone post-translational modifications are involved in interactive gene regulation of central nervous system (CNS) development. Here, we provide a broad overview of the regulatory system of histone variants and histone modifications that have been linked to neurogenesis and diseases. We also review the crosstalk between different histone modifications and discuss how the 3D genome affects cell fate dynamics during brain development. Understanding the mechanisms of epigenetic regulation in neurogenesis has shifted the paradigm from single gene regulation to synergistic interactions to ensure healthy embryonic neurogenesis.
Collapse
Affiliation(s)
- Mengtian Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Lv
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei 230000, China
| | - Chao Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzheng Zou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Ding X, Jo J, Wang CY, Cristobal CD, Zuo Z, Ye Q, Wirianto M, Lindeke-Myers A, Choi JM, Mohila CA, Kawabe H, Jung SY, Bellen HJ, Yoo SH, Lee HK. The Daam2-VHL-Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes Dev 2020; 34:1177-1189. [PMID: 32792353 PMCID: PMC7462057 DOI: 10.1101/gad.338046.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
Abstract
Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.
Collapse
Affiliation(s)
- Xiaoyun Ding
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carlo D Cristobal
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Aaron Lindeke-Myers
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jong Min Choi
- Center for Molecular Discovery, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany
| | - Sung Yun Jung
- Center for Molecular Discovery, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
49
|
Basu A, Mestres I, Sahu SK, Tiwari N, Khongwir B, Baumgart J, Singh A, Calegari F, Tiwari VK. Phf21b imprints the spatiotemporal epigenetic switch essential for neural stem cell differentiation. Genes Dev 2020; 34:1190-1209. [PMID: 32820037 PMCID: PMC7462064 DOI: 10.1101/gad.333906.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Cerebral cortical development in mammals involves a highly complex and organized set of events including the transition of neural stem and progenitor cells (NSCs) from proliferative to differentiative divisions to generate neurons. Despite progress, the spatiotemporal regulation of this proliferation-differentiation switch during neurogenesis and the upstream epigenetic triggers remain poorly known. Here we report a cortex-specific PHD finger protein, Phf21b, which is highly expressed in the neurogenic phase of cortical development and gets induced as NSCs begin to differentiate. Depletion of Phf21b in vivo inhibited neuronal differentiation as cortical progenitors lacking Phf21b were retained in the proliferative zones and underwent faster cell cycles. Mechanistically, Phf21b targets the regulatory regions of cell cycle promoting genes by virtue of its high affinity for monomethylated H3K4. Subsequently, Phf21b recruits the lysine-specific demethylase Lsd1 and histone deacetylase Hdac2, resulting in the simultaneous removal of monomethylation from H3K4 and acetylation from H3K27, respectively. Intriguingly, mutations in the Phf21b locus associate with depression and mental retardation in humans. Taken together, these findings establish how a precisely timed spatiotemporal expression of Phf21b creates an epigenetic program that triggers neural stem cell differentiation during cortical development.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Iván Mestres
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Neha Tiwari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | | | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Centre, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
50
|
Giner-Laguarda N, Vidal M. Functions of Polycomb Proteins on Active Targets. EPIGENOMES 2020; 4:17. [PMID: 34968290 PMCID: PMC8594714 DOI: 10.3390/epigenomes4030017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin regulators of the Polycomb group of genes are well-known by their activities as transcriptional repressors. Characteristically, their presence at genomic sites occurs with specific histone modifications and sometimes high-order chromatin structures correlated with silencing of genes involved in cell differentiation. However, evidence gathered in recent years, on flies and mammals, shows that in addition to these sites, Polycomb products bind to a large number of active regulatory regions. Occupied sites include promoters and also intergenic regions, containing enhancers and super-enhancers. Contrasting with occupancies at repressed targets, characteristic histone modifications are low or undetectable. Functions on active targets are dual, restraining gene expression at some targets while promoting activity at others. Our aim here is to summarize the evidence available and discuss the convenience of broadening the scope of research to include Polycomb functions on active targets.
Collapse
Affiliation(s)
| | - Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| |
Collapse
|