1
|
De Matteis MA, Fico M, Venditti R. Regulation and function of PI4P at the Golgi complex. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159626. [PMID: 40350028 DOI: 10.1016/j.bbalip.2025.159626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Fifty years after Bob Michell's visionary prediction, phosphatidylinositol 4-phosphate (PI4P) has emerged as a central regulator of Golgi function, influencing membrane trafficking, lipid metabolism, and signaling. PI4P homeostasis is tightly controlled by phosphatidylinositol 4-kinases (PI4Ks), phosphatidylinositol transfer proteins (PITPs), and the phosphatase SAC1, ensuring precise regulation across Golgi subdomains. Beyond its classical role in vesicular transport, PI4P orchestrates lipid exchange at membrane contact sites, enabling dynamic Golgi maturation and functional specialization. The interplay between PI4P, lipid transfer proteins, and Golgi adaptors underlies cargo sorting, glycosylation, and organelle architecture. Emerging evidence also highlights PI4P's role in oncogenesis and cellular signaling, positioning the Golgi as a critical hub beyond secretion. Yet, key questions remain regarding PI4P compartmentalization and its broader physiological impact. This review revisits PI4P's essential functions, integrating historical insights with recent discoveries to illuminate its pivotal role in Golgi biology and beyond.
Collapse
Affiliation(s)
- Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Marianna Fico
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025:10.1038/s41568-025-00810-1. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Qian W, Tang H, Yao H. Lipidomics and temporal-spatial distribution of organelle lipid. J Biol Methods 2025; 12:e99010049. [PMID: 40200947 PMCID: PMC11973048 DOI: 10.14440/jbm.2025.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/17/2024] [Accepted: 12/16/2024] [Indexed: 04/10/2025] Open
Abstract
Background Lipids are crucial signaling molecules or cellular membrane components orchestrating biological processes. To gain insights into lipid functions and the communication between organelles, it is essential to understand the subcellular localization of individual lipids. Advancements in lipid quantification techniques, improvements in chemical and spatial resolution for detecting various lipid species, and enhancements in organelle isolation speed have allowed for profiling of the organelle lipidome, capturing its temporal-spatial distribution. Objective This review examined approaches used to develop organelle lipidome and aimed to gain insights into cellular lipid homeostasis from an organelle perspective. In addition, this review discussed the advancements in lipid-mediated inter-organelle communication within complex physiological and pathological processes. Conclusion With the advancement of lipidomic technologies, more detailed explorations of organelle structures and the specific lipid-mediating functions they perform are feasible.
Collapse
Affiliation(s)
- Wenjuan Qian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongyan Yao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Dutta M, Su Y, Plescia CB, Voth GA, Stahelin RV. The SARS-CoV-2 nucleoprotein associates with anionic lipid membranes. J Biol Chem 2024; 300:107456. [PMID: 38866325 PMCID: PMC11298601 DOI: 10.1016/j.jbc.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N), and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we used several lipid binding assays and found the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, we show lipid binding occurs in the N protein C-terminal domain, which is supported by extensive in silico analysis. We demonstrate anionic lipid binding occurs for both the free and the N oligomeric forms, suggesting N can associate with membranes in the nucleocapsid form. Based on these results, we present a lipid-dependent model based on in vitro, cellular, and in silico data for the recruitment of N to assembly sites in the lifecycle of SARS-CoV-2.
Collapse
Affiliation(s)
- Mandira Dutta
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
| | - Yuan Su
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Caroline B Plescia
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA; Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, The University of Chicago, Chicago, Illinois, USA.
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
5
|
Simsek Papur O, Glatz JFC, Luiken JJFP. Protein kinase-D1 and downstream signaling mechanisms involved in GLUT4 translocation in cardiac muscle. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119748. [PMID: 38723678 DOI: 10.1016/j.bbamcr.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Molecular Medicine, Institute of Health Science, Dokuz Eylül University, Izmir, Turkey
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands.
| |
Collapse
|
6
|
Kang B, Wang H, Jing H, Dou Y, Krizkova S, Heger Z, Adam V, Li N. "Golgi-customized Trojan horse" nanodiamonds impair GLUT1 plasma membrane localization and inhibit tumor glycolysis. J Control Release 2024; 371:338-350. [PMID: 38789089 DOI: 10.1016/j.jconrel.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Nutrient or energy deprivation, especially glucose restriction, is a promising anticancer therapeutic approach. However, establishing a precise and potent deprivation strategy remains a formidable task. The Golgi morphology is crucial in maintaining the function of transport proteins (such as GLUT1) driving glycolysis. Thus, in this study, we present a "Golgi-customized Trojan horse" based on tellurium loaded with apigenin (4',5,7-trihydroxyflavone) and human serum albumin, which was able to induce GLUT1 plasma membrane localization disturbance via Golgi dispersal leading to the inhibition of tumor glycolysis. Diamond-shaped delivery system can efficiently penetrate into cells as a gift like Trojan horse, which decomposes into tellurite induced by intrinsically high H2O2 and GSH levels. Consequently, tellurite acts as released warriors causing up to 3.8-fold increase in Golgi apparatus area due to the down-regulation of GOLPH3. Further, this affects GLUT1 membrane localization and glucose transport disturbance. Simultaneously, apigenin hinders ongoing glycolysis and causes significant decrease in ATP level. Collectively, our "Golgi-customized Trojan horse" demonstrates a potent antitumor activity because of its capability to deprive energy resources of cancer cells. This study not only expands the applications of tellurium-based nanomaterials in the biomedicine but also provides insights into glycolysis restriction for anticancer therapy.
Collapse
Affiliation(s)
- Bei Kang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haobo Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
DeKryger W, Chroneos ZC. Emerging concepts of myosin 18A isoform mechanobiology in organismal and immune system physiology, development, and function. FASEB J 2024; 38:e23649. [PMID: 38776246 DOI: 10.1096/fj.202400350r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Alternative and combinatorial splicing of myosin 18A (MYO18A) gene transcripts results in expression of MYO18A protein isoforms and isoform variants with different membrane and subcellular localizations, and functional properties. MYO18A proteins are members of the myosin superfamily consisting of a myosin-like motor domain, an IQ motif, and a coiled-coil domain. MYO18A isoforms, however, lack the ability to hydrolyze ATP and do not perform ATP-dependent motor activity. MYO18A isoforms are distinguished by different amino- and carboxy-terminal extensions and domains. The domain organization and functions of MYO18Aα, MYO18Aβ, and MYO18Aγ have been studied experimentally. MYO18Aα and MYO18Aβ have a common carboxy-terminal extension but differ by the presence or absence of an amino-terminal KE repeat and PDZ domain, respectively. The amino- and carboxy-terminal extensions of MYO18Aγ contain unique proline and serine-rich domains. Computationally predicted MYO18Aε and MYO18Aδ isoforms contain the carboxy-terminal serine-rich extension but differ by the presence or absence of the amino-terminal KE/PDZ extension. Additional isoform variants within each category arise by alternative utilization or inclusion/exclusion of small exons. MYO18Aα variants are expressed in somatic cells and mature immune cells, whereas MYO18Aβ variants occur mainly in myeloid and natural killer cells. MYO18Aγ expression is selective to cardiac and skeletal muscle. In the present review perspective, we discuss current and emerging concepts of the functional specialization of MYO18A proteins in membrane and cytoskeletal dynamics, cellular communication and signaling, endocytic and exocytic organelle movement, viral infection, and as the SP-R210 receptor for surfactant protein A.
Collapse
Affiliation(s)
- William DeKryger
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
8
|
Tan X, Wang S, Xiao GY, Wu C, Liu X, Zhou B, Jiang Y, Duose DY, Xi Y, Wang J, Gupta K, Pataer A, Roth JA, Kim MP, Chen F, Creighton CJ, Russell WK, Kurie JM. Chromosomal 3q amplicon encodes essential regulators of secretory vesicles that drive secretory addiction in cancer. J Clin Invest 2024; 134:e176355. [PMID: 38662435 PMCID: PMC11178546 DOI: 10.1172/jci176355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Cancer cells exhibit heightened secretory states that drive tumor progression. Here, we identified a chromosome 3q amplicon that serves as a platform for secretory regulation in cancer. The 3q amplicon encodes multiple Golgi-resident proteins, including the scaffold Golgi integral membrane protein 4 (GOLIM4) and the ion channel ATPase secretory pathway Ca2+ transporting 1 (ATP2C1). We show that GOLIM4 recruited ATP2C1 and Golgi phosphoprotein 3 (GOLPH3) to coordinate Ca2+-dependent cargo loading, Golgi membrane bending, and vesicle scission. GOLIM4 depletion disrupted the protein complex, resulting in a secretory blockade that inhibited the progression of 3q-amplified malignancies. In addition to its role as a scaffold, GOLIM4 maintained intracellular manganese (Mn) homeostasis by binding excess Mn in the Golgi lumen, which initiated the routing of Mn-bound GOLIM4 to lysosomes for degradation. We show that Mn treatment inhibited the progression of multiple types of 3q-amplified malignancies by degrading GOLIM4, resulting in a secretory blockade that interrupted prosurvival autocrine loops and attenuated prometastatic processes in the tumor microenvironment. As it potentially underlies the selective activity of Mn against 3q-amplified malignancies, ATP2C1 coamplification increased Mn influx into the Golgi lumen, resulting in a more rapid degradation of GOLIM4. These findings show that functional cooperativity between coamplified genes underlies heightened secretion and a targetable secretory addiction in 3q-amplified malignancies.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology
| | - Chao Wu
- Department of Thoracic/Head and Neck Medical Oncology
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology
| | - Biyao Zhou
- Department of Thoracic/Head and Neck Medical Oncology
| | - Yu Jiang
- Department of Thoracic/Head and Neck Medical Oncology
| | | | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery and
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery and
| | - Michael P. Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fengju Chen
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Chad J. Creighton
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | | |
Collapse
|
9
|
Stalder D, Yakunin I, Pereira C, Eden J, Gershlick DC. Recruitment of PI4KIIIβ to the Golgi by ACBD3 is dependent on an upstream pathway of a SNARE complex and golgins. Mol Biol Cell 2024; 35:ar20. [PMID: 38134218 PMCID: PMC7615549 DOI: 10.1091/mbc.e23-09-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
ACBD3 is a protein localised to the Golgi apparatus and recruits other proteins, such as PI4KIIIβ, to the Golgi. However, the mechanism through which ACBD3 itself is recruited to the Golgi is poorly understood. This study demonstrates there are two mechanisms for ACBD3 recruitment to the Golgi. First, we identified that an MWT374-376 motif in the unique region upstream of the GOLD domain in ACBD3 is essential for Golgi localization. Second, we use unbiased proteomics to demonstrate that ACBD3 interacts with SCFD1, a Sec1/Munc-18 (SM) protein, and a SNARE protein, SEC22B. CRISPR-KO of SCFD1 causes ACBD3 to become cytosolic. We also found that ACBD3 is redundantly recruited to the Golgi apparatus by two golgins: golgin-45 and giantin, which bind to ACBD3 through interaction with the MWT374-376 motif. Taken together, our results suggest that ACBD3 is recruited to the Golgi in a two-step sequential process, with the SCFD1-mediated interaction occurring upstream of the interaction with the golgins.
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Igor Yakunin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
10
|
Pincet L, Pincet F. Membrane Tubulation with a Biomembrane Force Probe. MEMBRANES 2023; 13:910. [PMID: 38132914 PMCID: PMC10744658 DOI: 10.3390/membranes13120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Tubulation is a common cellular process involving the formation of membrane tubes ranging from 50 nm to 1 µm in diameter. These tubes facilitate intercompartmental connections, material transport within cells and content exchange between cells. The high curvature of these tubes makes them specific targets for proteins that sense local geometry. In vitro, similar tubes have been created by pulling on the membranes of giant unilamellar vesicles. Optical tweezers and micromanipulation are typically used in these experiments, involving the manipulation of a GUV with a micropipette and a streptavidin-coated bead trapped in optical tweezers. The interaction forms streptavidin/biotin bonds, leading to tube formation. Here, we propose a cost-effective alternative using only micromanipulation techniques, replacing optical tweezers with a Biomembrane Force Probe (BFP). The BFP, employing a biotinylated erythrocyte as a nanospring, allows for the controlled measurement of forces ranging from 1 pN to 1 nN. The BFP has been widely used to study molecular interactions in cellular processes, extending beyond its original purpose. We outline the experimental setup, tube formation and characterization of tube dimensions and energetics, and discuss the advantages and limitations of this approach in studying membrane tubulation.
Collapse
Affiliation(s)
- Lancelot Pincet
- Institut des Sciences Moléculaires d’Orsay, Université Paris-Saclay, CNRS, F-91405 Orsay, France;
| | - Frédéric Pincet
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
11
|
Liu H, Shao W, Liu W, Shang W, Liu JP, Wang L, Tong C. PtdIns4P exchange at endoplasmic reticulum-autolysosome contacts is essential for autophagy and neuronal homeostasis. Autophagy 2023; 19:2682-2701. [PMID: 37289040 PMCID: PMC10472871 DOI: 10.1080/15548627.2023.2222556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
Inter-organelle contacts enable crosstalk among organelles, facilitating the exchange of materials and coordination of cellular events. In this study, we demonstrated that, upon starvation, autolysosomes recruit Pi4KIIα (Phosphatidylinositol 4-kinase II α) to generate phosphatidylinositol-4-phosphate (PtdIns4P) on their surface and establish endoplasmic reticulum (ER)-autolysosome contacts through PtdIns4P binding proteins Osbp (Oxysterol binding protein) and cert (ceramide transfer protein). We found that the Sac1 (Sac1 phosphatase), Osbp, and cert proteins are required for the reduction of PtdIns4P on autolysosomes. Loss of any of these proteins leads to defective macroautophagy/autophagy and neurodegeneration. Osbp, cert, and Sac1 are required for ER-Golgi contacts in fed cells. Our data establishes a new mode of organelle contact formation - the ER-Golgi contact machinery can be reused by ER-autolysosome contacts by re-locating PtdIns4P from the Golgi apparatus to autolysosomes when faced with starvation.Abbreviations: Atg1: Autophagy-related 1; Atg8: Autophagy-related 8; Atg9: Autophagy-related 9; Atg12: Autophagy-related 12; cert: ceramide transfer protein; Cp1/CathL: cysteine proteinase-1; CTL: control; ER: endoplasmic reticulum; ERMCS: ER-mitochondria contact site; fwd: four wheel drive; GM130: Golgi matrix protein 130 kD; Osbp: Oxysterol binding protein; PG: phagophore; PtdIns4K: phosphatidylinositol 4-kinase; Pi4KIIα: Phosphatidylinositol 4-kinase II α; Pi4KIIIα: Phosphatidylinositol 4-kinase III α; PtdIns4P: phosphatidylinositol-4-phosphate; PR: photoreceptor cell; RT: room temperature; Sac1: Sac1 phosphatase; Stv: starvation; Syx17: Syntaxin 17; TEM: transmission electron microscopy; VAP: VAMP-associated protein.
Collapse
Affiliation(s)
- Hao Liu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenxia Shao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Liu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liquan Wang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Bura A, Čabrijan S, Bertović I, Jurak Begonja A. The intracellular and plasma membrane pools of phosphatidylinositol-4-monophosphate control megakaryocyte maturation and proplatelet formation. Res Pract Thromb Haemost 2023; 7:100169. [PMID: 37304829 PMCID: PMC10251075 DOI: 10.1016/j.rpth.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023] Open
Abstract
Background Megakaryocytes (MKs) develop from hematopoietic stem cells after stimulation by the cytokine thrombopoietin. During megakaryopoiesis, MKs enlarge, undergo the process of endomitosis, and develop intracellular membranes (demarcation membrane system, DMS). During DMS formation, there is active transport of proteins, lipids, and membranes from the Golgi apparatus to the DMS. The most important phosphoinositide that controls anterograde transport from the Golgi apparatus to the plasma membrane (PM) is phosphatidylinositol-4-monophosphate (PI4P), whose levels are controlled by suppressor of actin mutations 1-like protein (Sac1) phosphatase at the Golgi and endoplasmic reticulum. Objectives Here we investigated the role of Sac1 and PI4P in megakaryopoiesis. Methods We analyzed Sac1 and PI4P localization in primary MKs derived from fetal liver or bone marrow and in the DAMI cell line by immunofluorescence. The intracellular and PM pools of PI4P in primary MKs were modulated by expression of Sac1 constructs from retroviral vector and inhibition of PI4 kinase IIIα, respectively. Results We showed that in primary mouse MKs, PI4P is mostly found in the Golgi apparatus and the PM in immature MKs, while in mature MKs, it is found in the cell periphery and at the PM. The exogenous expression of wild-type but not C389S mutant (catalytically dead) Sac1 results in the perinuclear retention of the Golgi apparatus resembling immature MKs, with decreased ability to form proplatelets. The pharmacologic inhibition of PI4P production specifically at the PM also resulted in a significant decrease in MKs that form proplatelets. Conclusion These results indicate that both intracellular and PM pools of PI4P mediate MK maturation and proplatelet formation.
Collapse
Affiliation(s)
| | | | | | - Antonija Jurak Begonja
- Correspondence Antonija Jurak Begonja, University of Rijeka, Department of Biotechnology, Laboratory of hematopoiesis, R. Matejcic 2, 51 000 Rijeka, Croatia. @JurakBegonja
| |
Collapse
|
13
|
Zheng J, Deng Y, Wei Z, Zou H, Wen X, Cai J, Zhang S, Jia B, Lu M, Lu K, Lin Y. Lipid phosphatase SAC1 suppresses hepatitis B virus replication through promoting autophagic degradation of virions. Antiviral Res 2023; 213:105601. [PMID: 37068596 DOI: 10.1016/j.antiviral.2023.105601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/19/2023]
Abstract
Phosphatidylinositol lipids play vital roles in lipid signal transduction, membrane recognition, vesicle transport, and viral replication. Previous studies have revealed that SAC1-like phosphatidylinositol phosphatase (SACM1L/SAC1), which uses phosphatidylinositol-4-phosphate (PI4P) as its substrate, greatly affects the replication of certain bacteria and viruses in vitro. However, it remains unclear whether and how SAC1 modulates hepatitis B virus (HBV) replication in vitro and in vivo. In the present study, we observed that SAC1 silencing significantly increased HBV DNA replication, subviral particle (SVP) expression, and secretion of HBV virions, whereas SAC1 overexpression exerted the opposite effects. Moreover, SAC1 overexpression inhibited HBV DNA replication and SVP expression in a hydrodynamic injection-based HBV-persistent replicating mouse model. Mechanistically, SAC1 silencing increased the number of HBV-containing autophagosomes as well as PI4P levels on the autophagosome membrane. Moreover, SAC1 silencing blocked autophagosome-lysosome fusion by inhibiting the interaction between synaptosomal-associated protein 29 and vesicle-associated membrane protein 8. Collectively, our data indicate that SAC1 significantly inhibits HBV replication by promoting the autophagic degradation of HBV virions. Our findings support that SAC1-mediated phospholipid metabolism greatly modulates certain steps of the HBV life-cycle and provide a new theoretical basis for antiviral therapy.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Wen
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jia Cai
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shujun Zhang
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
14
|
Tan X, Xiao GY, Wang S, Shi L, Zhao Y, Liu X, Yu J, Russell WK, Creighton CJ, Kurie JM. EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. J Clin Invest 2023; 133:e165863. [PMID: 36757799 PMCID: PMC10065074 DOI: 10.1172/jci165863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Hypersecretory malignant cells underlie therapeutic resistance, metastasis, and poor clinical outcomes. However, the molecular basis for malignant hypersecretion remains obscure. Here, we showed that epithelial-mesenchymal transition (EMT) initiates exocytic and endocytic vesicular trafficking programs in lung cancer. The EMT-activating transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) executed a PI4KIIIβ-to-PI4KIIα (PI4K2A) dependency switch that drove PI4P synthesis in the Golgi and endosomes. EMT enhanced the vulnerability of lung cancer cells to PI4K2A small-molecule antagonists. PI4K2A formed a MYOIIA-containing protein complex that facilitated secretory vesicle biogenesis in the Golgi, thereby establishing a hypersecretory state involving osteopontin (SPP1) and other prometastatic ligands. In the endosomal compartment, PI4K2A accelerated recycling of SPP1 receptors to complete an SPP1-dependent autocrine loop and interacted with HSP90 to prevent lysosomal degradation of AXL receptor tyrosine kinase, a driver of cell migration. These results show that EMT coordinates exocytic and endocytic vesicular trafficking to establish a therapeutically actionable hypersecretory state that drives lung cancer progression.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanbin Zhao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad J. Creighton
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioinformatics and Computational Biology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Ali Y, Radwan SM, Saeed A, El-Mesallamy H. Golgi Signaling Proteins GOLPH3, MYO18A, PITPNC1 and RAB1B: Implications in Prognosis and Survival Outcomes of AML Patients. Biomarkers 2023:1-15. [PMID: 36919644 DOI: 10.1080/1354750x.2023.2191166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The role of different Golgi signaling proteins remains unexplored in the progression and spread of Acute myeloid leukemia (AML), whom all interact together in a way that facilitates proliferation and differentiation of myeloid lineage cells.Material & methods: This study comprised 70 newly diagnosed AML patients and 20 healthy controls to investigate the serum levels of signaling proteins; Golgi Phosphoprotein 3 (GOLPH3), Myosin 18A (MYO18A), Cytoplasmic Phosphatidylinositol Transfer Protein 1 (PITPNC1), and Ras-Associated Binding Protein 1B (RAB1B). RESULTS AML patients showed higher serum levels of GOLPH3, MYO18A, PITPNC1, and RAB1B when compared to control (p < 0.001). A significant negative correlation was found between the patients' overall survival and GOLPH3 (p = 0.001), MYO18A (p = 0.011), PITPNC1 (p = 0.001), and RAB1B (p = 0.042). Results were confirmed by Kaplen-Meier survival analysis showing lower survival estimates in patients with higher GOLPH3 (p = 0.014), MYO18A (p = 0.047), PITPNC1 (p = 0.008) and RAB1B (p = 0.033) serum levels. DISCUSSION Golgi apparatus acts as master brain in membrane trafficking and signaling events that affect cell polarity necessary for migration, division, or differentiation. This study aims to explore the association between signaling proteins and the diagnosis, prognosis, and survival of AML patients. CONCLUSION GOLPH3, MYO18A, PITPNC1, and RAB1B maybe promising diagnostic and prognostic biomarkers in AML patients.
Collapse
Affiliation(s)
- Yomna Ali
- Business Development, Profect for Investments, Cairo, Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Alia Saeed
- Department of Internal Medicine, Clinical Hematology and Oncology Division, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Dean Faculty of Pharmacy, Sinai University, Kantra, Sinai, Egypt
| |
Collapse
|
16
|
Fang R, Jiang Q, Jia X, Jiang Z. ARMH3-mediated recruitment of PI4KB directs Golgi-to-endosome trafficking and activation of the antiviral effector STING. Immunity 2023; 56:500-515.e6. [PMID: 36921576 DOI: 10.1016/j.immuni.2023.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 01/26/2023] [Indexed: 03/15/2023]
Abstract
The cGAS-STING pathway mediates cytoplasmic DNA-triggered innate immunity. STING activation is initiated by cyclic-GMP-AMP (cGAMP)-induced translocation from the endoplasmic reticulum and sulfated glycosaminoglycans-induced polymerization at the Golgi. Here, we examine the mechanisms underlying STING transport and activation beyond the Golgi. A genome-wide CRISPR-Cas9 screen identified Armadillo-like helical domain-containing protein 3 (ARMH3) as critical for STING activation. Upon cGAMP-triggered translocation, ARMH3 interacted with STING at the Golgi and recruited phosphatidylinositol 4-kinase beta (PI4KB) to synthesize PI4P, which directed STING Golgi-to-endosome trafficking via PI4P-binding proteins AP-1 and GGA2. Disrupting PI4P-dependent lipid transport through RNAi of other PI4P-binding proteins impaired STING activation. Consistently, disturbed lipid composition inhibited STING activation, whereas aberrantly elevated cellular PI4P led to cGAS-independent STING activation. Armh3fl/fllLyzCre/Cre mice were susceptible to DNA virus challenge in vivo. Thus, ARMH3 bridges STING and PIK4B to generate PI4P for STING transportation and activation, an interaction conserved in all eukaryotes.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinying Jia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Khakurel A, Kudlyk T, Pokrovskaya I, D’Souza Z, Lupashin VV. GARP dysfunction results in COPI displacement, depletion of Golgi v-SNAREs and calcium homeostasis proteins. Front Cell Dev Biol 2022; 10:1066504. [PMID: 36578782 PMCID: PMC9791199 DOI: 10.3389/fcell.2022.1066504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Golgi-associated retrograde protein (GARP) is an evolutionary conserved heterotetrameric protein complex that tethers endosome-derived vesicles and is vital for Golgi glycosylation. Microscopy and proteomic approaches were employed to investigate defects in Golgi physiology in RPE1 cells depleted for the GARP complex. Both cis and trans-Golgi compartments were significantly enlarged in GARP-knock-out (KO) cells. Proteomic analysis of Golgi-enriched membranes revealed significant depletion of a subset of Golgi residents, including Ca2+ binding proteins, enzymes, and SNAREs. Validation of proteomics studies revealed that SDF4 and ATP2C1, related to Golgi calcium homeostasis, as well as intra-Golgi v-SNAREs GOSR1 and BET1L, were significantly depleted in GARP-KO cells. Finding that GARP-KO is more deleterious to Golgi physiology than deletion of GARP-sensitive v-SNAREs, prompted a detailed investigation of COPI trafficking machinery. We discovered that in GARP-KO cells COPI is significantly displaced from the Golgi and partially relocalized to the ER-Golgi intermediate compartment (ERGIC). Moreover, COPI accessory proteins GOLPH3, ARFGAP1, GBF1, and BIG1 are also relocated to off-Golgi compartments. We propose that the dysregulation of COPI machinery, along with the depletion of Golgi v-SNAREs and alteration of Golgi Ca2+ homeostasis, are the major driving factors for the depletion of Golgi resident proteins, structural alterations, and glycosylation defects in GARP deficient cells.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
19
|
Li Y, Zhang H, Long W, Gao M, Guo W, Yu L. Inhibition of NLRP3 and Golph3 ameliorates diabetes-induced neuroinflammation in vitro and in vivo. Aging (Albany NY) 2022; 14:8745-8762. [DOI: 10.18632/aging.204363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Yuan Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, Jilin University, Changchun 130000, China
- Innovation Pharmaceutical Research Institute of Shijiazhuang No. 4 Pharmaceutical Co., Ltd., Hebei Guangxiang Pharmaceutical Co., Ltd., Shijiazhuang 050000, China
| | - Haifeng Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Weihong Long
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Menghan Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Weiying Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Lu Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, Jilin University, Changchun 130000, China
| |
Collapse
|
20
|
Jani RA, Di Cicco A, Keren-Kaplan T, Vale-Costa S, Hamaoui D, Hurbain I, Tsai FC, Di Marco M, Macé AS, Zhu Y, Amorim MJ, Bassereau P, Bonifacino JS, Subtil A, Marks MS, Lévy D, Raposo G, Delevoye C. PI4P and BLOC-1 remodel endosomal membranes into tubules. J Biophys Biochem Cytol 2022; 221:213508. [PMID: 36169638 PMCID: PMC9524204 DOI: 10.1083/jcb.202110132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells and in vitro membrane systems, we show that phosphatidylinositol-4-phosphate (PI4P) and biogenesis of lysosome-related organelles complex 1 (BLOC-1) govern the formation, stability, and functions of recycling endosomal tubules. In vitro, BLOC-1 binds and tubulates negatively charged membranes, including those containing PI4P. In cells, endosomal PI4P production by type II PI4-kinases is needed to form and stabilize BLOC-1-dependent recycling endosomal tubules. Decreased PI4KIIs expression impairs the recycling of endosomal cargoes and the life cycles of intracellular pathogens such as Chlamydia bacteria and influenza virus that exploit the membrane dynamics of recycling endosomes. This study demonstrates how a phospholipid and a protein complex coordinate the remodeling of cellular membranes into functional tubules.
Collapse
Affiliation(s)
- Riddhi Atul Jani
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Silvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Daniel Hamaoui
- Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Cellular biology of microbial infection, Paris, France
| | - Ilse Hurbain
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Mathilde Di Marco
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Anne-Sophie Macé
- Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Palma de Cima, Lisboa, Portugal
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Agathe Subtil
- Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Cellular biology of microbial infection, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Graça Raposo
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Cédric Delevoye
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| |
Collapse
|
21
|
Zhu Y, Li S, Jaume A, Jani RA, Delevoye C, Raposo G, Marks MS. Type II phosphatidylinositol 4-kinases function sequentially in cargo delivery from early endosomes to melanosomes. J Biophys Biochem Cytol 2022; 221:213509. [PMID: 36169639 PMCID: PMC9524207 DOI: 10.1083/jcb.202110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Melanosomes are pigment cell-specific lysosome-related organelles in which melanin pigments are synthesized and stored. Melanosome maturation requires delivery of melanogenic cargoes via tubular transport carriers that emanate from early endosomes and that require BLOC-1 for their formation. Here we show that phosphatidylinositol-4-phosphate (PtdIns4P) and the type II PtdIns-4-kinases (PI4KIIα and PI4KIIβ) support BLOC-1-dependent tubule formation to regulate melanosome biogenesis. Depletion of either PI4KIIα or PI4KIIβ with shRNAs in melanocytes reduced melanin content and misrouted BLOC-1-dependent cargoes to late endosomes/lysosomes. Genetic epistasis, cell fractionation, and quantitative live-cell imaging analyses show that PI4KIIα and PI4KIIβ function sequentially and non-redundantly downstream of BLOC-1 during tubule elongation toward melanosomes by generating local pools of PtdIns4P. The data show that both type II PtdIns-4-kinases are necessary for efficient BLOC-1-dependent tubule elongation and subsequent melanosome contact and content delivery during melanosome biogenesis. The independent functions of PtdIns-4-kinases in tubule extension are downstream of likely redundant functions in BLOC-1-dependent tubule initiation.
Collapse
Affiliation(s)
- Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA
| | - Shuixing Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexa Jaume
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Riddhi Atul Jani
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Giansanti MG, Piergentili R. Linking GOLPH3 and Extracellular Vesicles Content-a Potential New Route in Cancer Physiopathology and a Promising Therapeutic Target is in Sight? Technol Cancer Res Treat 2022; 21:15330338221135724. [PMID: 36320176 PMCID: PMC9630892 DOI: 10.1177/15330338221135724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3), a highly conserved phosphatidylinositol 4-phosphate effector, is required for maintenance of Golgi architecture, vesicle trafficking, and Golgi glycosylation. GOLPH3 overexpression has been reported in several human solid cancers, including glioblastoma, breast cancer, colorectal cancer, nonsmall cell lung cancer, epithelial ovarian cancer, prostate cancer, gastric cancer, and hepatocellular carcinoma. Although the molecular mechanisms that link GOLPH3 to tumorigenesis require further investigation, it is likely that GOLPH3 may act by controlling the intracellular movement of key oncogenic molecules, between the Golgi compartments and/or between the Golgi and the endoplasmic reticulum. Indeed, numerous evidence indicates that deregulation of intracellular vesicle trafficking contributes to several aspects of cancer phenotypes. However, a direct and clear link between extracellular vesicle movements and GOLPH3 is still missing. In the past years several lines of evidence have implicated GOLPH3 in the regulation of extracellular vesicle content. Specifically, a new role for GOLPH3 has emerged in controlling the internalization of exosomes containing either oncogenic proteins or noncoding RNAs, especially micro-RNA. Although far from being elucidated, growing evidence indicates that GOLPH3 does not increase quantitatively the excretion of exosomes, but rather regulates the exosome content. In particular, recent data support a role for GOLPH3 for loading specific oncogenic molecules into the exosomes, driving both tumor malignancy and metastasis formation. Additionally, the older literature indirectly implicates GOLPH3 in cancerogenesis through its function in controlling hepatitis C virus secretion, which in turn is linked to hepatocellular carcinoma formation. Thus, GOLPH3 might promote tumorigenesis in unexpected ways, involving both direct and indirect routes. If these data are further confirmed, the spectrum of action of GOLPH3 in tumor formation will significantly expand, indicating this protein as a strong candidate for targeted cancer therapy.
Collapse
Affiliation(s)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR
(CNR-IBPM), Roma, Italy,Roberto Piergentili, Istituto di Biologia e
Patologia Molecolari del CNR (CNR-IBPM), Piazzale Aldo Moro 5, 00185, Roma,
Italy.
| |
Collapse
|
23
|
Ruggiero FM, Martínez-Koteski N, Fidelio GD, Vilcaes AA, Daniotti JL. Golgi Phosphoprotein 3 Regulates the Physical Association of Glycolipid Glycosyltransferases. Int J Mol Sci 2022; 23:10354. [PMID: 36142273 PMCID: PMC9499508 DOI: 10.3390/ijms231810354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glycolipid glycosylation is an intricate process that mainly takes place in the Golgi by the complex interplay between glycosyltransferases. Several features such as the organization, stoichiometry and composition of these complexes may modify their sorting properties, sub-Golgi localization, enzymatic activity and in consequence, the pattern of glycosylation at the plasma membrane. In spite of the advance in our comprehension about physiological and pathological cellular states of glycosylation, the molecular basis underlying the metabolism of glycolipids and the players involved in this process remain not fully understood. In the present work, using biochemical and fluorescence microscopy approaches, we demonstrate the existence of a physical association between two ganglioside glycosyltransferases, namely, ST3Gal-II (GD1a synthase) and β3GalT-IV (GM1 synthase) with Golgi phosphoprotein 3 (GOLPH3) in mammalian cultured cells. After GOLPH3 knockdown, the localization of both enzymes was not affected, but the fomation of ST3Gal-II/β3GalT-IV complex was compromised and glycolipid expression pattern changed. Our results suggest a novel control mechanism of glycolipid expression through the regulation of the physical association between glycolipid glycosyltransferases mediated by GOLPH3.
Collapse
Affiliation(s)
- Fernando M. Ruggiero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Natalia Martínez-Koteski
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gerardo D. Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Aldo A. Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Jose L. Daniotti
- CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
24
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
25
|
Sahu P, Balakrishnan A, Di Martino R, Luini A, Russo D. Role of the Mosaic Cisternal Maturation Machinery in Glycan Synthesis and Oncogenesis. Front Cell Dev Biol 2022; 10:842448. [PMID: 35465326 PMCID: PMC9019784 DOI: 10.3389/fcell.2022.842448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2022] [Indexed: 12/20/2022] Open
Abstract
Tumorigenesis is associated with the deregulation of multiple processes, among which the glycosylation of lipids and proteins is one of the most extensively affected. However, in most cases, it remains unclear whether aberrant glycosylation is a cause, a link in the pathogenetic chain, or a mere consequence of tumorigenesis. In other cases, instead, studies have shown that aberrant glycans can promote oncogenesis. To comprehend how aberrant glycans are generated it is necessary to clarify the underlying mechanisms of glycan synthesis at the Golgi apparatus, which are still poorly understood. Important factors that determine the glycosylation potential of the Golgi apparatus are the levels and intra-Golgi localization of the glycosylation enzymes. These factors are regulated by the process of cisternal maturation which transports the cargoes through the Golgi apparatus while retaining the glycosylation enzymes in the organelle. This mechanism has till now been considered a single, house-keeping and constitutive function. Instead, we here propose that it is a mosaic of pathways, each controlling specific set of functionally related glycosylation enzymes. This changes the conception of cisternal maturation from a constitutive to a highly regulated function. In this new light, we discuss potential new groups oncogenes among the cisternal maturation machinery that can contribute to aberrant glycosylation observed in cancer cells. Further, we also discuss the prospects of novel anticancer treatments targeting the intra-Golgi trafficking process, particularly the cisternal maturation mechanism, to control/inhibit the production of pro-tumorigenic glycans.
Collapse
Affiliation(s)
| | | | | | - A. Luini
- *Correspondence: A. Luini, ; D. Russo,
| | - D. Russo
- *Correspondence: A. Luini, ; D. Russo,
| |
Collapse
|
26
|
Campisi D, Desrues L, Dembélé KP, Mutel A, Parment R, Gandolfo P, Castel H, Morin F. The core autophagy protein ATG9A controls dynamics of cell protrusions and directed migration. J Cell Biol 2022; 221:e202106014. [PMID: 35180289 PMCID: PMC8932524 DOI: 10.1083/jcb.202106014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemotactic migration is a fundamental cellular behavior relying on the coordinated flux of lipids and cargo proteins toward the leading edge. We found here that the core autophagy protein ATG9A plays a critical role in the chemotactic migration of several human cell lines, including highly invasive glioma cells. Depletion of ATG9A protein altered the formation of large and persistent filamentous actin (F-actin)-rich lamellipodia that normally drive directional migration. Using live-cell TIRF microscopy, we demonstrated that ATG9A-positive vesicles are targeted toward the migration front of polarized cells, where their exocytosis correlates with protrusive activity. Finally, we found that ATG9A was critical for efficient delivery of β1 integrin to the leading edge and normal adhesion dynamics. Collectively, our data uncover a new function for ATG9A protein and indicate that ATG9A-positive vesicles are mobilized during chemotactic stimulation to facilitate expansion of the lamellipodium and its anchorage to the extracellular matrix.
Collapse
Affiliation(s)
- Daniele Campisi
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Laurence Desrues
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Kléouforo-Paul Dembélé
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Alexandre Mutel
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Renaud Parment
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hélène Castel
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
27
|
Maintaining Golgi Homeostasis: A Balancing Act of Two Proteolytic Pathways. Cells 2022; 11:cells11050780. [PMID: 35269404 PMCID: PMC8909885 DOI: 10.3390/cells11050780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The Golgi apparatus is a central hub for cellular protein trafficking and signaling. Golgi structure and function is tightly coupled and undergoes dynamic changes in health and disease. A crucial requirement for maintaining Golgi homeostasis is the ability of the Golgi to target aberrant, misfolded, or otherwise unwanted proteins to degradation. Recent studies have revealed that the Golgi apparatus may degrade such proteins through autophagy, retrograde trafficking to the ER for ER-associated degradation (ERAD), and locally, through Golgi apparatus-related degradation (GARD). Here, we review recent discoveries in these mechanisms, highlighting the role of the Golgi in maintaining cellular homeostasis.
Collapse
|
28
|
Abstract
Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.
Collapse
|
29
|
Ford C, Parchure A, von Blume J, Burd CG. Cargo sorting at the trans-Golgi network at a glance. J Cell Sci 2021; 134:jcs259110. [PMID: 34870705 PMCID: PMC8714066 DOI: 10.1242/jcs.259110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.
Collapse
Affiliation(s)
| | | | - Julia von Blume
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Christopher G. Burd
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
30
|
Song JW, Zhu J, Wu XX, Tu T, Huang JQ, Chen GZ, Liang LY, Zhou CH, Xu X, Gong LY. GOLPH3/CKAP4 promotes metastasis and tumorigenicity by enhancing the secretion of exosomal WNT3A in non-small-cell lung cancer. Cell Death Dis 2021; 12:976. [PMID: 34671013 PMCID: PMC8528870 DOI: 10.1038/s41419-021-04265-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is the main cause of mortality associated with non-small-cell lung cancer (NSCLC), accounting for up to 70% of deaths among patients. The mechanisms underlying distal metastasis remain largely unknown. Golgi phosphoprotein 3 (GOLPH3) correlates negatively with overall survival in multiple tumors. In this study, we evaluated the function of GOLPH3 in NSCLC distal metastasis. GOLPH3 was expressed at high levels in samples from patients with NSCLC and was positively associated with clinicopathologic characteristics including clinical stage (P < 0.001), T (P = 0.001), N (P = 0.007), and M (P = 0.001) classification. Functionally, Transwell and wound-healing assays suggested that GOLPH3 overexpression enhances NSCLC cell migration and invasion abilities. Tumor-sphere formation and flow cytometry assays demonstrated that GOLPH3 overexpression enhances a stem cell-like phenotype of NSCLC cells. Metastasis models established by tail vein and intracardiac injection confirmed the pro-metastatic function of GOLPH3 in vivo. A subcutaneous tumor formation model confirmed that GOLPH3 overexpression increased the tumorigenicity of NSCLC cells. Mechanistically, gene set enrichment analysis revealed a positive association of GOLPH3 mRNA expression with WNT-activated gene signatures. Luciferase-reporter and nuclear extract assays showed that GOLPH3 overexpression enhances metastasis and tumorigenicity through activation of the WNT/β-catenin pathway. Immunoprecipitation-mass spectrometry and gene ontology analysis demonstrated that GOLPH3 interacts with cytoskeleton-associated protein 4 (CKAP4) in exosome-mediated distal metastasis. We found that GOLPH3 decreased the amount of plasma membrane-localized CKAP4 and increased the amount of exosome-localized CKAP4 to promote the formation of CKAP4-containing exosomes. Furthermore, we demonstrated that CKAP4 binds exosomal WNT3A to enhance its secretion. Therefore, the GOLPH3/CKAP4 axis plays a crucial role in promoting exosomal-WNT3A secretion to enhance and maintain the stem-like phenotype and metastasis in NSCLC, thus indicating the therapeutic potential of GOLPH3 in patients with NSCLC metastasis.
Collapse
Affiliation(s)
- Jun-Wei Song
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Jing Zhu
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Xing-Xuan Wu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, 518055, Shenzhen, Guangdong, China
| | - Ting Tu
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Jing-Qiang Huang
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Guan-Zi Chen
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Li-Yin Liang
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Chun-Hui Zhou
- Guangzhou Health Science College, 510520, Guangzhou, Guangdong, P. R. China
| | - XingZhi Xu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, 518055, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Health Science Center, Shenzhen University, 518055, Shenzhen, Guangdong, China
- Carson International Cancer Center, Health Science Center, Shenzhen University, 518055, Shenzhen, Guangdong, China
| | - Li-Yun Gong
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China.
| |
Collapse
|
31
|
Welch LG, Peak-Chew SY, Begum F, Stevens TJ, Munro S. GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles. J Cell Biol 2021; 220:e202106115. [PMID: 34473204 PMCID: PMC8421267 DOI: 10.1083/jcb.202106115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
The fidelity of Golgi glycosylation is, in part, ensured by compartmentalization of enzymes within the stack. The COPI adaptor GOLPH3 has been shown to interact with the cytoplasmic tails of a subset of Golgi enzymes and direct their retention. However, other mechanisms of retention, and other roles for GOLPH3, have been proposed, and a comprehensive characterization of the clientele of GOLPH3 and its paralogue GOLPH3L is lacking. GOLPH3's role is of particular interest as it is frequently amplified in several solid tumor types. Here, we apply two orthogonal proteomic methods to identify GOLPH3+3L clients and find that they act in diverse glycosylation pathways or have other roles in the Golgi. Binding studies, bioinformatics, and a Golgi retention assay show that GOLPH3+3L bind the cytoplasmic tails of their clients through membrane-proximal positively charged residues. Furthermore, deletion of GOLPH3+3L causes multiple defects in glycosylation. Thus, GOLPH3+3L are major COPI adaptors that impinge on most, if not all, of the glycosylation pathways of the Golgi.
Collapse
Affiliation(s)
| | | | | | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
32
|
Yue X, Qian Y, Zhu L, Gim B, Bao M, Jia J, Jing S, Wang Y, Tan C, Bottanelli F, Ziltener P, Choi S, Hao P, Lee I. ACBD3 modulates KDEL receptor interaction with PKA for its trafficking via tubulovesicular carrier. BMC Biol 2021; 19:194. [PMID: 34493279 PMCID: PMC8424950 DOI: 10.1186/s12915-021-01137-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background KDEL receptor helps establish cellular equilibrium in the early secretory pathway by recycling leaked ER-chaperones to the ER during secretion of newly synthesized proteins. Studies have also shown that KDEL receptor may function as a signaling protein that orchestrates membrane flux through the secretory pathway. We have recently shown that KDEL receptor is also a cell surface receptor, which undergoes highly complex itinerary between trans-Golgi network and the plasma membranes via clathrin-mediated transport carriers. Ironically, however, it is still largely unknown how KDEL receptor is distributed to the Golgi at steady state, since its initial discovery in late 1980s. Results We used a proximity-based in vivo tagging strategy to further dissect mechanisms of KDEL receptor trafficking. Our new results reveal that ACBD3 may be a key protein that regulates KDEL receptor trafficking via modulation of Arf1-dependent tubule formation. We demonstrate that ACBD3 directly interact with KDEL receptor and form a functionally distinct protein complex in ArfGAPs-independent manner. Depletion of ACBD3 results in re-localization of KDEL receptor to the ER by inducing accelerated retrograde trafficking of KDEL receptor. Importantly, this is caused by specifically altering KDEL receptor interaction with Protein Kinase A and Arf1/ArfGAP1, eventually leading to increased Arf1-GTP-dependent tubular carrier formation at the Golgi. Conclusions These results suggest that ACBD3 may function as a negative regulator of PKA activity on KDEL receptor, thereby restricting its retrograde trafficking in the absence of KDEL ligand binding. Since ACBD3 was originally identified as PAP7, a PBR/PKA-interacting protein at the Golgi/mitochondria, we propose that Golgi-localization of KDEL receptor is likely to be controlled by its interaction with ACBD3/PKA complex at steady state, providing a novel insight for establishment of cellular homeostasis in the early secretory pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01137-7.
Collapse
Affiliation(s)
- Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Bopil Gim
- School of Physical Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Mengjing Bao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Jie Jia
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yijing Wang
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Francesca Bottanelli
- Institut für Biochemie, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Pascal Ziltener
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China. .,Shanghai Institute for Advanced Immunochemical Studies, Shanghai, China.
| |
Collapse
|
33
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
34
|
Bunz M, Ritter M, Schindler M. HCV egress - unconventional secretion of assembled viral particles. Trends Microbiol 2021; 30:364-378. [PMID: 34483048 DOI: 10.1016/j.tim.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
It is believed that hepatitis C virus (HCV) particles are released through the canonical secretory route: from the endoplasmic reticulum (ER), via the Golgi, to the plasma membrane. While the Golgi is important for HCV release per se, its direct involvement in the trafficking of assembled virions has not yet been established. In fact, data from studies analyzing HCV egress are compatible with several potential pathways of HCV secretion. Here, we summarize and discuss the current knowledge related to the HCV export pathway. Apart from the prototypical anterograde transport, possible routes of HCV release include ER-to-endosomal transport, secretory autophagy, and poorly described mechanisms of unconventional protein secretion. Studying HCV egress promises to shed light on unconventional cellular trafficking and secretory routes.
Collapse
Affiliation(s)
- Maximilian Bunz
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
35
|
Ashlin TG, Blunsom NJ, Cockcroft S. Courier service for phosphatidylinositol: PITPs deliver on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158985. [PMID: 34111527 PMCID: PMC8266687 DOI: 10.1016/j.bbalip.2021.158985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
Phosphatidylinositol is the parent lipid for the synthesis of seven phosphorylated inositol lipids and each of them play specific roles in numerous processes including receptor-mediated signalling, actin cytoskeleton dynamics and membrane trafficking. PI synthesis is localised to the endoplasmic reticulum (ER) whilst its phosphorylated derivatives are found in other organelles where the lipid kinases also reside. Phosphorylation of PI to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) at the plasma membrane and to phosphatidylinositol 4-phosphate (PI4P) at the Golgi are key events in lipid signalling and Golgi function respectively. Here we review a family of proteins, phosphatidylinositol transfer proteins (PITPs), that can mobilise PI from the ER to provide the substrate to the resident kinases for phosphorylation. Recent studies identify specific and overlapping functions for the three soluble PITPs (PITPα, PITPβ and PITPNC1) in phospholipase C signalling, neuronal function, membrane trafficking, viral replication and in cancer metastases.
Collapse
Affiliation(s)
- Tim G Ashlin
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
36
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
37
|
Independent duplications of the Golgi phosphoprotein 3 oncogene in birds. Sci Rep 2021; 11:12483. [PMID: 34127736 PMCID: PMC8203631 DOI: 10.1038/s41598-021-91909-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) was the first reported oncoprotein of the Golgi apparatus. It was identified as an evolutionarily conserved protein upon its discovery about 20 years ago, but its function remains puzzling in normal and cancer cells. The GOLPH3 gene is part of a group of genes that also includes the GOLPH3L gene. Because cancer has deep roots in multicellular evolution, studying the evolution of the GOLPH3 gene family in non-model species represents an opportunity to identify new model systems that could help better understand the biology behind this group of genes. The main goal of this study is to explore the evolution of the GOLPH3 gene family in birds as a starting point to understand the evolutionary history of this oncoprotein. We identified a repertoire of three GOLPH3 genes in birds. We found duplicated copies of the GOLPH3 gene in all main groups of birds other than paleognaths, and a single copy of the GOLPH3L gene. We suggest there were at least three independent origins for GOLPH3 duplicates. Amino acid divergence estimates show that most of the variation is located in the N-terminal region of the protein. Our transcript abundance estimations show that one paralog is highly and ubiquitously expressed, and the others were variable. Our results are an example of the significance of understanding the evolution of the GOLPH3 gene family, especially for unraveling its structural and functional attributes.
Collapse
|
38
|
Galenkamp KMO, Commisso C. The Golgi as a "Proton Sink" in Cancer. Front Cell Dev Biol 2021; 9:664295. [PMID: 34055797 PMCID: PMC8155353 DOI: 10.3389/fcell.2021.664295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a "proton sink" in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.
Collapse
Affiliation(s)
- Koen M. O. Galenkamp
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Cosimo Commisso
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
39
|
Chakrabarti R, Lee M, Higgs HN. Multiple roles for actin in secretory and endocytic pathways. Curr Biol 2021; 31:R603-R618. [PMID: 34033793 DOI: 10.1016/j.cub.2021.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
40
|
Rizzo R, Russo D, Kurokawa K, Sahu P, Lombardi B, Supino D, Zhukovsky MA, Vocat A, Pothukuchi P, Kunnathully V, Capolupo L, Boncompain G, Vitagliano C, Zito Marino F, Aquino G, Montariello D, Henklein P, Mandrich L, Botti G, Clausen H, Mandel U, Yamaji T, Hanada K, Budillon A, Perez F, Parashuraman S, Hannun YA, Nakano A, Corda D, D'Angelo G, Luini A. Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J 2021; 40:e107238. [PMID: 33749896 DOI: 10.15252/embj.2020107238] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/24/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Pranoy Sahu
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Bernadette Lombardi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Domenico Supino
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Anthony Vocat
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Prathyush Pothukuchi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Vidya Kunnathully
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Laura Capolupo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Carlo Vitagliano
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | | | - Gabriella Aquino
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Daniela Montariello
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Petra Henklein
- Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Berlin, Germany
| | - Luigi Mandrich
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Henrik Clausen
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine Nørre Alle 20, University of Copenhagen, Copenhagen N, Denmark
| | - Ulla Mandel
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine Nørre Alle 20, University of Copenhagen, Copenhagen N, Denmark
| | - Toshiyuki Yamaji
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alfredo Budillon
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Franck Perez
- Institute Curie - CNRS UMR1 44, Research Center, Paris, France
| | | | - Yusuf A Hannun
- Stony Brook University Medical Center, New York, NY, USA
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Giovanni D'Angelo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
41
|
Lujan P, Angulo-Capel J, Chabanon M, Campelo F. Interorganelle communication and membrane shaping in the early secretory pathway. Curr Opin Cell Biol 2021; 71:95-102. [PMID: 33711785 DOI: 10.1016/j.ceb.2021.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 01/02/2023]
Abstract
Biomolecules in the secretory pathway use membrane trafficking for reaching their final intracellular destination or for secretion outside the cell. This highly dynamic and multipartite process involves different organelles that communicate to one another while maintaining their identity, shape, and function. Recent studies unraveled new mechanisms of interorganelle communication that help organize the early secretory pathway. We highlight how the spatial proximity between endoplasmic reticulum (ER) exit sites and early Golgi elements provides novel means of ER-Golgi communication for ER export. We also review recent findings on how membrane contact sites between the ER and the trans-Golgi membranes can sustain anterograde traffic out of the Golgi complex.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Jessica Angulo-Capel
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Morgan Chabanon
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; Universitat Politècnica de Catalunya-BarcelonaTech, E-08034, Barcelona, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| |
Collapse
|
42
|
Ouyang Z, Zhao S, Yao S, Wang J, Cui Y, Wei K, Jiu Y. Multifaceted Function of Myosin-18, an Unconventional Class of the Myosin Superfamily. Front Cell Dev Biol 2021; 9:632445. [PMID: 33634131 PMCID: PMC7900500 DOI: 10.3389/fcell.2021.632445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Myosin is a diverse superfamily of motor proteins responsible for actin-based motility and contractility in eukaryotic cells. Myosin-18 family, including myosin-18A and myosin-18B, belongs to an unconventional class of myosin, which lacks ATPase motor activity, and the investigations on their functions and molecular mechanisms in vertebrate development and diseases have just been initiated in recent years. Myosin-18A is ubiquitously expressed in mammalian cells, whereas myosin-18B shows strong enrichment in striated muscles. Myosin-18 family is important for cell motility, sarcomere formation, and mechanosensing, mostly by interacting with other cytoskeletal proteins and cellular apparatus. Myosin-18A participates in several intracellular transport processes, such as Golgi trafficking, and has multiple roles in focal adhesions, stress fibers, and lamellipodia formation. Myosin-18B, on the other hand, participates in actomyosin alignment and sarcomere assembly, thus relating to cell migration and muscle contractility. Mutations of either Myo18a or Myo18b cause cardiac developmental defects in mouse, emphasizing their crucial role in muscle development and cardiac diseases. In this review, we revisit the discovery history of myosin-18s and summarize the evolving understanding of the molecular functions of myosin-18A and myosin-18B, with an emphasis on their separate yet closely related functions in cell motility and contraction. Moreover, we discuss the diseases tightly associated with myosin-18s, especially cardiovascular defects and cancer, as well as highlight the unanswered questions and potential future research perspectives on myosin-18s.
Collapse
Affiliation(s)
- Zhaohui Ouyang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuangshuang Zhao
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Su Yao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Wang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Tábara LC, Morris JL, Prudent J. The Complex Dance of Organelles during Mitochondrial Division. Trends Cell Biol 2021; 31:241-253. [PMID: 33446409 DOI: 10.1016/j.tcb.2020.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are dynamic organelles that undergo cycles of fission and fusion events depending on cellular requirements. During mitochondrial division, the GTPase dynamin-related protein-1 is recruited to endoplasmic reticulum (ER)-induced mitochondrial constriction sites where it drives fission. However, the events required to complete scission of mitochondrial membranes are not well understood. Here, we emphasize the recently described roles for Golgi-derived phosphatidylinositol 4-phosphate (PI4P)-containing vesicles in the last steps of mitochondrial division. We then propose how trans-Golgi network vesicles at mitochondria-ER contact sites and PI4P generation could mechanistically execute mitochondrial division, by recruiting PI4P effectors and/or the actin nucleation machinery. Finally, we speculate on mechanisms to explain why such a complex dance of different organelles is required to facilitate the remodelling of mitochondrial membranes.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
44
|
Pays E. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 2021; 288:360-381. [PMID: 32530132 PMCID: PMC7891394 DOI: 10.1111/febs.15444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular ParasitologyIBMMUniversité Libre de BruxellesGosseliesBelgium
| |
Collapse
|
45
|
Arriagada C, Cavieres VA, Luchsinger C, González AE, Muñoz VC, Cancino J, Burgos PV, Mardones GA. GOLPH3 Regulates EGFR in T98G Glioblastoma Cells by Modulating Its Glycosylation and Ubiquitylation. Int J Mol Sci 2020; 21:E8880. [PMID: 33238647 PMCID: PMC7700535 DOI: 10.3390/ijms21228880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Protein trafficking is altered when normal cells acquire a tumor phenotype. A key subcellular compartment in regulating protein trafficking is the Golgi apparatus, but its role in carcinogenesis is still not well defined. Golgi phosphoprotein 3 (GOLPH3), a peripheral membrane protein mostly localized at the trans-Golgi network, is overexpressed in several tumor types including glioblastoma multiforme (GBM), the most lethal primary brain tumor. Moreover, GOLPH3 is currently considered an oncoprotein, however its precise function in GBM is not fully understood. Here, we analyzed in T98G cells of GBM, which express high levels of epidermal growth factor receptor (EGFR), the effect of stable RNAi-mediated knockdown of GOLPH3. We found that silencing GOLPH3 caused a significant reduction in the proliferation of T98G cells and an unexpected increase in total EGFR levels, even at the cell surface, which was however less prone to ligand-induced autophosphorylation. Furthermore, silencing GOLPH3 decreased EGFR sialylation and fucosylation, which correlated with delayed ligand-induced EGFR downregulation and its accumulation at endo-lysosomal compartments. Finally, we found that EGF failed at promoting EGFR ubiquitylation when the levels of GOLPH3 were reduced. Altogether, our results show that GOLPH3 in T98G cells regulates the endocytic trafficking and activation of EGFR likely by affecting its extent of glycosylation and ubiquitylation.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Viviana A. Cavieres
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Alexis E. González
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Vanessa C. Muñoz
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Jorge Cancino
- Center for Cell Biology and Biomedicine, School of Science and Medicine, Universidad San Sebastián, Santiago 7510235, Chile; (J.C.); (P.V.B.)
| | - Patricia V. Burgos
- Center for Cell Biology and Biomedicine, School of Science and Medicine, Universidad San Sebastián, Santiago 7510235, Chile; (J.C.); (P.V.B.)
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| |
Collapse
|
46
|
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS One 2020; 15:e0237514. [PMID: 32790781 PMCID: PMC7425898 DOI: 10.1371/journal.pone.0237514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a peripheral membrane protein localized at the trans-Golgi network that is also distributed in a large cytosolic pool. GOLPH3 has been involved in several post-Golgi protein trafficking events, but its precise function at the molecular level is not well understood. GOLPH3 is also considered the first oncoprotein of the Golgi apparatus, with important roles in several types of cancer. Yet, it is unknown how GOLPH3 is regulated to achieve its contribution in the mechanisms that lead to tumorigenesis. Binding of GOLPH3 to Golgi membranes depends on its interaction to phosphatidylinositol-4-phosphate. However, an early finding showed that GTP promotes the binding of GOLPH3 to Golgi membranes and vesicles. Nevertheless, it remains largely unknown whether this response is consequence of the function of GTP-dependent regulatory factors, such as proteins of the RAB family of small GTPases. Interestingly, in Drosophila melanogaster the ortholog of GOLPH3 interacts with- and behaves as effector of the ortholog of RAB1. However, there is no experimental evidence implicating GOLPH3 as a possible RAB1 effector in mammalian cells. Here, we show that human GOLPH3 interacted directly with either RAB1A or RAB1B, the two isoforms of RAB1 in humans. The interaction was nucleotide dependent and it was favored with GTP-locked active state variants of these GTPases, indicating that human GOLPH3 is a bona fide effector of RAB1A and RAB1B. Moreover, the expression in cultured cells of the GTP-locked variants resulted in less distribution of GOLPH3 in the Golgi apparatus, suggesting an intriguing model of GOLPH3 regulation.
Collapse
|
47
|
The roles of the diversity of amphipathic lipids in shaping membranes by membrane-shaping proteins. Biochem Soc Trans 2020; 48:837-851. [PMID: 32597479 DOI: 10.1042/bst20190376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Lipid compositions of cells differ according to cell types and intracellular organelles. Phospholipids are major cell membrane lipids and have hydrophilic head groups and hydrophobic fatty acid tails. The cellular lipid membrane without any protein adapts to spherical shapes, and protein binding to the membrane is thought to be required for shaping the membrane for various cellular events. Until recently, modulation of cellular lipid membranes was initially shown to be mediated by proteins recognizing lipid head groups, including the negatively charged ones of phosphatidylserine and phosphoinositides. Recent studies have shown that the abilities of membrane-deforming proteins are also regulated by the composition of fatty acid tails, which cause different degrees of packing defects. The binding of proteins to cellular lipid membranes is affected by the packing defects, presumably through modulation of their interactions with hydrophobic amino acid residues. Therefore, lipid composition can be characterized by both packing defects and charge density. The lipid composition regarding fatty acid tails affects membrane bending via the proteins with amphipathic helices, including those with the ArfGAP1 lipid packing sensor (ALPS) motif and via membrane-deforming proteins with structural folding, including those with the Bin-Amphiphysin-Rvs167 (BAR) domains. This review focuses on how the fatty acid tails, in combination with the head groups of phospholipids, affect protein-mediated membrane deformation.
Collapse
|
48
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
49
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
50
|
Hammond GRV, Burke JE. Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol 2020; 63:57-67. [PMID: 31972475 PMCID: PMC7247936 DOI: 10.1016/j.ceb.2019.12.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022]
Abstract
Phosphoinositides (PPIns) are lipid signaling molecules that act as master regulators of cellular signaling. Recent studies have revealed novel roles of PPIns in myriad cellular processes and multiple human diseases mediated by misregulation of PPIn signaling. This review will present a timely summary of recent discoveries in PPIn biology, specifically their role in regulating unexpected signaling pathways, modification of signaling outcomes downstream of integral membrane proteins, and novel roles in lipid transport. This has revealed new roles of PPIns in regulating membrane trafficking, immunity, cell polarity, and response to extracellular signals. A specific focus will be on novel opportunities to target PPIn metabolism for treatment of human diseases, including cancer, pathogen infection, developmental disorders, and immune disorders.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
| |
Collapse
|