1
|
Chalifoux M, Avdeeva M, Posfai E. Geometric, cell cycle and maternal-to-zygotic transition-associated YAP dynamics during preimplantation embryo development. Dev Biol 2025:S0012-1606(25)00129-0. [PMID: 40349907 DOI: 10.1016/j.ydbio.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
During the first cell fate decision in mammalian embryos the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood. Here we address these questions by quantitative live imaging of endogenously tagged YAP while simultaneously monitoring geometric cellular features and cell cycle progression throughout cell fate segregation. We apply a probabilistic model to our dynamic data, providing a quantitative characterization of the mutual effects of YAP and cellular relative exposed area, which has previously been shown to correlate with subcellular YAP localization in fixed samples. Additionally, we study how nuclear YAP levels are influenced by other factors, such as the decreasing pool of maternally provided YAP that is partitioned to daughter cells through cleavage divisions, cell cycle-associated nuclear volume changes, and a delay after divisions in adjusting YAP levels to new cell positions. Interestingly, we find that establishing low nuclear YAP levels required for the inner cell mass fate is largely achieved by passive cell cycle-associated mechanisms. Moreover, contrary to expectations, we find that mechanical perturbations that result in cell and nuclear shape changes do not influence YAP localization in the embryo. Together our work identifies how various inputs are integrated over a dynamic developmental time course to shape the levels of a key molecular determinant of the first cell fate choice.
Collapse
Affiliation(s)
- Madeleine Chalifoux
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
2
|
Rozema D, Maître JL. Forces Shaping the Blastocyst. Cold Spring Harb Perspect Biol 2025; 17:a041519. [PMID: 38951024 PMCID: PMC12047664 DOI: 10.1101/cshperspect.a041519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The blastocyst forms during the first days of mammalian development. The structure of the blastocyst is conserved among placental mammals and is paramount to the establishment of the first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM). To shape the blastocyst, embryos transit through three stages driven by forces that have been characterized in the mouse embryo over the past decade. The morphogenetically quiescent cleavage stages mask dynamic cytoskeletal remodeling. Then, during the formation of the morula, cells pull themselves together and the strongest ones internalize. Finally, the blastocyst forms after the pressurized lumen breaks the radial symmetry of the embryo before expanding in cycles of collapses and regrowth. In this review, we delineate the force patterns sculpting the blastocyst, based on our knowledge on the mouse and, to some extent, human embryos.
Collapse
Affiliation(s)
- David Rozema
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| |
Collapse
|
3
|
Xue SL, Yang Q, Liberali P, Hannezo E. Mechanochemical bistability of intestinal organoids enables robust morphogenesis. NATURE PHYSICS 2025; 21:608-617. [PMID: 40248571 PMCID: PMC11999871 DOI: 10.1038/s41567-025-02792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/16/2025] [Indexed: 04/19/2025]
Abstract
Reproducible pattern and form generation during embryogenesis is poorly understood. Intestinal organoid morphogenesis involves a number of mechanochemical regulators such as cell-type-specific cytoskeletal forces and osmotically driven lumen volume changes. It is unclear how these forces are coordinated in time and space to ensure robust morphogenesis. Here we show how mechanosensitive feedback on cytoskeletal tension gives rise to morphological bistability in a minimal model of organoid morphogenesis. In the model, lumen volume changes can impact the epithelial shape via both direct mechanical and indirect mechanosensitive mechanisms. We find that both bulged and budded crypt states are possible and dependent on the history of volume changes. We test key modelling assumptions via biophysical and pharmacological experiments to demonstrate how bistability can explain experimental observations, such as the importance of the timing of lumen shrinkage and robustness of the final morphogenetic state to mechanical perturbations. This suggests that bistability arising from feedback between cellular tensions and fluid pressure could be a general mechanism that coordinates multicellular shape changes in developing systems.
Collapse
Affiliation(s)
- Shi-Lei Xue
- Department of Materials Science and Engineering, School of Engineering, Westlake University, Hangzhou, China
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
4
|
Chalifoux M, Avdeeva M, Posfai E. Geometric, cell cycle and maternal-to-zygotic transition-associated YAP dynamics during preimplantation embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640568. [PMID: 40060487 PMCID: PMC11888467 DOI: 10.1101/2025.02.27.640568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
During the first cell fate decision in mammalian embryos the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood. Here we address these questions by quantitative live imaging of endogenously tagged YAP while simultaneously monitoring geometric cellular features and cell cycle progression throughout cell fate segregation. We apply a probabilistic model to our dynamic data, providing a quantitative characterization of the mutual effects of YAP and cellular relative exposed area, which has previously been shown to correlate with subcellular YAP localization in fixed samples. Additionally, we study how nuclear YAP levels are influenced by other factors, such as the decreasing pool of maternally provided YAP that is partitioned to daughter cells through cleavage divisions, cell cycle-associated nuclear volume changes, and a delay after divisions in adjusting YAP levels to new cell positions. Interestingly, we find that establishing low nuclear YAP levels required for the inner cell mass fate is largely achieved by passive cell cycle-associated mechanisms. Moreover, contrary to expectations, we find that mechanical perturbations that result in cell shape changes do not influence YAP localization in the embryo. Together our work identifies how various inputs are integrated over a dynamic developmental time course to shape the levels of a key molecular determinant of the first cell fate choice.
Collapse
Affiliation(s)
- Madeleine Chalifoux
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Avdeeva M, Chalifoux M, Joyce B, Shvartsman SY, Posfai E. Generative model for the first cell fate bifurcation in mammalian development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639895. [PMID: 40060535 PMCID: PMC11888292 DOI: 10.1101/2025.02.24.639895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The first cell fate bifurcation in mammalian development directs cells toward either the trophectoderm (TE) or inner cell mass (ICM) compartments in preimplantation embryos. This decision is regulated by the subcellular localization of a transcriptional co-activator YAP and takes place over several progressively asynchronous cleavage divisions. As a result of this asynchrony and variable arrangement of blastomeres, reconstructing the dynamics of the TE/ICM cell specification from fixed embryos is extremely challenging. To address this, we developed a live imaging approach and applied it to measure pairwise dynamics of nuclear YAP and its direct target genes, CDX2 and SOX2, key transcription factors of TE and ICM, respectively. Using these datasets, we constructed a generative model of the first cell fate bifurcation, which reveals the time-dependent statistics of the TE and ICM cell allocation. In addition to making testable predictions for the joint dynamics of the full YAP/CDX2/SOX2 motif, the model revealed the stochastic nature of the induction timing of the key cell fate determinants and identified the features of YAP dynamics that are necessary or sufficient for this induction. Notably, temporal heterogeneity was particularly prominent for SOX2 expression among ICM cells. As heterogeneities within the ICM have been linked to the initiation of the second cell fate decision in the embryo, understanding the origins of this variability is of key significance. The presented approach reveals the dynamics of the first cell fate choice and lays the groundwork for dissecting the next cell fate bifurcations in mouse development.
Collapse
Affiliation(s)
- Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Madeleine Chalifoux
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Stanislav Y Shvartsman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton, New Jersey, USA
| |
Collapse
|
6
|
Bermudez A, Latham ZD, Ma AJ, Bi D, Hu JK, Lin NYC. Regulation of chromatin modifications through coordination of nucleus size and epithelial cell morphology heterogeneity. Commun Biol 2025; 8:269. [PMID: 39979587 PMCID: PMC11842846 DOI: 10.1038/s42003-025-07677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Cell morphology heterogeneity is pervasive in epithelial collectives, yet the underlying mechanisms driving such heterogeneity and its consequential biological ramifications remain elusive. Here, we observed a consistent correlation between the epithelial cell morphology and nucleus morphology during crowding, revealing a persistent log-normal probability distribution characterizing both cell and nucleus areas across diverse epithelial model systems. We showed that this morphological diversity arises from asymmetric partitioning during cell division. Next, we provide insights into the impact of nucleus morphology on chromatin modifications. We demonstrated that constraining nucleus leads to downregulation of the euchromatic mark H3K9ac and upregulation of the heterochromatic mark H3K27me3. Furthermore, we showed that nucleus size regulates H3K27me3 levels through histone demethylase UTX. These findings highlight the significance of cell morphology heterogeneity as a driver of chromatin state diversity, shaping functional variability within epithelial tissues.
Collapse
Affiliation(s)
- Alexandra Bermudez
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Zoe D Latham
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Alex J Ma
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Broad Stem Cell Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Neil Y C Lin
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA.
- Broad Stem Cell Center, University of California Los Angeles, Los Angeles, CA, USA.
- Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Bermudez A, Latham ZD, Ma AJ, Bi D, Hu JK, Lin NYC. Regulation of Chromatin Modifications through Coordination of Nucleus Size and Epithelial Cell Morphology Heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.590164. [PMID: 38712099 PMCID: PMC11071433 DOI: 10.1101/2024.04.18.590164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cell morphology heterogeneity is pervasive in epithelial collectives, yet the underlying mechanisms driving such heterogeneity and its consequential biological ramifications remain elusive. Here, we observed a consistent correlation between the epithelial cell morphology and nucleus morphology during crowding, revealing a persistent log-normal probability distribution characterizing both cell and nucleus areas across diverse epithelial model systems. We further showed that this morphological diversity arises from asymmetric partitioning during cell division. Moreover, we provide insights into the impact of nucleus morphology on chromatin modifications. We demonstrated that constraining nucleus leads to downregulation of the euchromatic mark H3K9ac and upregulation of the heterochromatic mark H3K27me3. Furthermore, we showed that nucleus size regulates H3K27me3 levels through histone demethylase UTX. These findings highlight the significance of cell morphology heterogeneity as a driver of chromatin state diversity, shaping functional variability within epithelial tissues.
Collapse
|
8
|
Xie J, Najafi J, Nommick A, Lederer L, Salle J, Dmitrieff S, Lacroix B, Dumont J, Minc N. Cell shape modulates mitotic spindle positioning forces via intracellular hydrodynamics. Curr Biol 2025; 35:413-421.e6. [PMID: 39755120 DOI: 10.1016/j.cub.2024.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/06/2025]
Abstract
The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues.1,2,3,4,5 In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis.6,7,8,9,10,11,12,13,14 To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry. Here, we used in vivo magnetic tweezers to directly measure the forces that maintain the mitotic spindle in the center of sea urchin cells that adopt different shapes during early embryo development. We found that spindles are held by viscoelastic forces that progressively increase in amplitude as cells become more elongated during early development. By coupling direct cell shape manipulations in microfabricated chambers with in vivo force measurements, we establish how spindle-associated forces increase in dose dependence with cell shape anisotropy. Cytoplasm flow analysis and hydrodynamic simulations suggest that this geometry-dependent mechanical enhancement results from a stronger hydrodynamic coupling between the spindle and cell boundaries, which dampens cytoplasm flows and spindle mobility as cells become more elongated. These findings establish how cell shape affects spindle-associated forces and suggest a novel mechanism for shape sensing and division positioning mediated by intracellular hydrodynamics with functional implications for early embryo morphogenesis.
Collapse
Affiliation(s)
- Jing Xie
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Javad Najafi
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Aude Nommick
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Luc Lederer
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Jeremy Salle
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Serge Dmitrieff
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Benjamin Lacroix
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France.
| |
Collapse
|
9
|
Hirono N, Hashimoto M, Shimojo H, Sasaki H. Fate specification triggers a positive feedback loop of TEAD-YAP and NANOG to promote epiblast formation in preimplantation embryos. Development 2025; 152:dev203091. [PMID: 39629521 DOI: 10.1242/dev.203091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
In preimplantation embryos, epiblast (EPI) fate specification from the inner cell mass is controlled by the segregation of NANOG and GATA6 expression. TEAD-YAP interaction is activated during EPI formation and is required for pluripotency factor expression. These events occur asynchronously with similar timing during EPI formation, and their relationship remains elusive. Here, we examined the relationship between NANOG-GATA6 and TEAD-YAP. The nuclear accumulation of YAP takes place only in EPI-specified cells, and a positive feedback loop operates between NANOG and TEAD-YAP. The effects of TEAD-YAP on SOX2 upregulation in EPI-specified cells are likely indirect. EPI fate specification also alters the response of Nanog, Sox2 and Cdx2 to TEAD-YAP. These results suggest that EPI-fate specification alters the transcriptional network from the morula-like to the EPI-specified state and activates TEAD-YAP to trigger a positive feedback loop with NANOG, which stabilizes the EPI fate. The coordinated occurrence of these processes in individual cells likely supports proper EPI formation under the condition of asynchronous EPI-fate specification.
Collapse
Affiliation(s)
- Naoki Hirono
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Shimojo
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Nunley H, Shao B, Denberg D, Grover P, Singh J, Avdeeva M, Joyce B, Kim-Yip R, Kohrman A, Biswas A, Watters A, Gal Z, Kickuth A, Chalifoux M, Shvartsman SY, Brown LM, Posfai E. Nuclear instance segmentation and tracking for preimplantation mouse embryos. Development 2024; 151:dev202817. [PMID: 39373366 PMCID: PMC11574361 DOI: 10.1242/dev.202817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.
Collapse
Affiliation(s)
- Hayden Nunley
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Binglun Shao
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - David Denberg
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Prateek Grover
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Jaspreet Singh
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Maria Avdeeva
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abraham Kohrman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Research Computing, Princeton University, Princeton, NJ 08544, USA
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Zsombor Gal
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alison Kickuth
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Madeleine Chalifoux
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lisa M Brown
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Ramirez Sierra MA, Sokolowski TR. AI-powered simulation-based inference of a genuinely spatial-stochastic gene regulation model of early mouse embryogenesis. PLoS Comput Biol 2024; 20:e1012473. [PMID: 39541410 PMCID: PMC11614244 DOI: 10.1371/journal.pcbi.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/03/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding how multicellular organisms reliably orchestrate cell-fate decisions is a central challenge in developmental biology, particularly in early mammalian development, where tissue-level differentiation arises from seemingly cell-autonomous mechanisms. In this study, we present a multi-scale, spatial-stochastic simulation framework for mouse embryogenesis, focusing on inner cell mass (ICM) differentiation into epiblast (EPI) and primitive endoderm (PRE) at the blastocyst stage. Our framework models key regulatory and tissue-scale interactions in a biophysically realistic fashion, capturing the inherent stochasticity of intracellular gene expression and intercellular signaling, while efficiently simulating these processes by advancing event-driven simulation techniques. Leveraging the power of Simulation-Based Inference (SBI) through the AI-driven Sequential Neural Posterior Estimation (SNPE) algorithm, we conduct a large-scale Bayesian inferential analysis to identify parameter sets that faithfully reproduce experimentally observed features of ICM specification. Our results reveal mechanistic insights into how the combined action of autocrine and paracrine FGF4 signaling coordinates stochastic gene expression at the cellular scale to achieve robust and reproducible ICM patterning at the tissue scale. We further demonstrate that the ICM exhibits a specific time window of sensitivity to exogenous FGF4, enabling lineage proportions to be adjusted based on timing and dosage, thereby extending current experimental findings and providing quantitative predictions for both mutant and wild-type ICM systems. Notably, FGF4 signaling not only ensures correct EPI-PRE lineage proportions but also enhances ICM resilience to perturbations, reducing fate-proportioning errors by 10-20% compared to a purely cell-autonomous system. Additionally, we uncover a surprising role for variability in intracellular initial conditions, showing that high gene-expression heterogeneity can improve both the accuracy and precision of cell-fate proportioning, which remains robust when fewer than 25% of the ICM population experiences perturbed initial conditions. Our work offers a comprehensive, spatial-stochastic description of the biochemical processes driving ICM differentiation and identifies the necessary conditions for its robust unfolding. It also provides a framework for future exploration of similar spatial-stochastic systems in developmental biology.
Collapse
Affiliation(s)
- Michael Alexander Ramirez Sierra
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
- Faculty of Computer Science and Mathematics, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | |
Collapse
|
12
|
Schliffka MF, Dumortier JG, Pelzer D, Mukherjee A, Maître JL. Inverse blebs operate as hydraulic pumps during mouse blastocyst formation. Nat Cell Biol 2024; 26:1669-1677. [PMID: 39261717 DOI: 10.1038/s41556-024-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
During preimplantation development, mouse embryos form a fluid-filled lumen. Pressurized fluid fractures cell-cell contacts and accumulates into pockets, which coarsen into a single lumen. How the embryo controls intercellular fluid movement during coarsening is unknown. Here we report inverse blebs growing into cells at adhesive contacts. Throughout the embryo we observed hundreds of inverse blebs, each filling with intercellular fluid and retracting within a minute. Inverse blebs grow due to pressure build-up resulting from fluid accumulation and cell-cell adhesion, which locally confines fluid. Inverse blebs retract due to actomyosin contraction, practically pushing fluid within the intercellular space. Importantly, inverse blebs occur infrequently at contacts formed by multiple cells, which effectively serve as fluid sinks. Manipulation of the embryo topology reveals that without sinks inverse blebs pump fluid into one another in futile cycles. We propose that inverse blebs operate as hydraulic pumps to promote luminal coarsening, thereby constituting an instrument used by cells to control fluid movement.
Collapse
Affiliation(s)
- Markus F Schliffka
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
- Carl Zeiss SAS, Marly-le-Roy, France
| | - Julien G Dumortier
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
| | - Diane Pelzer
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
| | - Arghyadip Mukherjee
- Laboratoire de physique de l'École Normale Supérieure, CNRS UMR 8023, PSL Research University, Sorbonne Université and Université Paris Cité, Paris, France.
| | - Jean-Léon Maître
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France.
| |
Collapse
|
13
|
Pfeffer PL. The first lineage determination in mammals. Dev Biol 2024; 513:12-30. [PMID: 38761966 DOI: 10.1016/j.ydbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
This review describes in detail the morphological, cytoskeletal and gene expression events leading to the gene regulatory network bifurcation point of trophoblast and inner cell mass cells in a variety of mammalian preimplantation embryos. The interrelated processes of compaction and polarity establishment are discussed in terms of how they affect YAP/WWTR activity and the location and fate of cells. Comparisons between mouse, human, cattle, pig and rabbit embryos suggest a conserved role for YAP/WWTR signalling in trophoblast induction in eutherian animals though the mechanisms for, and timing of, YAP/WWTR activation differs among species. Downstream targets show further differences, with the trophoblast marker GATA3 being a direct target in all examined mammals, while CDX2-positive and SOX2-negative regulation varies.
Collapse
Affiliation(s)
- Peter L Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
14
|
Middelkoop TC, Neipel J, Cornell CE, Naumann R, Pimpale LG, Jülicher F, Grill SW. A cytokinetic ring-driven cell rotation achieves Hertwig's rule in early development. Proc Natl Acad Sci U S A 2024; 121:e2318838121. [PMID: 38870057 PMCID: PMC11194556 DOI: 10.1073/pnas.2318838121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.
Collapse
Affiliation(s)
- Teije C. Middelkoop
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
- Laboratory of Developmental Mechanobiology, Division Biocev, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220Prague, Czech Republic
| | - Jonas Neipel
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
| | - Caitlin E. Cornell
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
| | - Lokesh G. Pimpale
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University Dresden, 01062Dresden, Germany
| | - Stephan W. Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University Dresden, 01062Dresden, Germany
| |
Collapse
|
15
|
Pasquier N, Jaulin F, Peglion F. Inverted apicobasal polarity in health and disease. J Cell Sci 2024; 137:jcs261659. [PMID: 38465512 PMCID: PMC10984280 DOI: 10.1242/jcs.261659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.
Collapse
Affiliation(s)
- Nicolas Pasquier
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
- Cell Adhesion and Cancer lab, University of Turku, FI-20520 Turku, Finland
| | - Fanny Jaulin
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| | - Florent Peglion
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| |
Collapse
|
16
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Stolpner NJ, Manzi NI, Su T, Dickinson DJ. Apical PAR protein caps orient the mitotic spindle in C. elegans early embryos. Curr Biol 2023; 33:4312-4329.e6. [PMID: 37729910 PMCID: PMC10615879 DOI: 10.1016/j.cub.2023.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
During embryonic development, oriented cell divisions are important for patterned tissue growth and cell fate specification. Cell division orientation is controlled in part by asymmetrically localized polarity proteins, which establish functional domains of the cell membrane and interact with microtubule regulators to position the mitotic spindle. For example, in the 8-cell mouse embryo, apical polarity proteins form caps on the outside, contact-free surface of the embryo that position the mitotic spindle to execute asymmetric cell division. A similar radial or "inside-outside" polarity is established at an early stage in many other animal embryos, but in most cases, it remains unclear how inside-outside polarity is established and how it influences downstream cell behaviors. Here, we explore inside-outside polarity in C. elegans somatic blastomeres using spatiotemporally controlled protein degradation and live embryo imaging. We show that PAR polarity proteins, which form apical caps at the center of the contact-free membrane, localize dynamically during the cell cycle and contribute to spindle orientation and proper cell positioning. Surprisingly, isolated single blastomeres lacking cell contacts are able to break symmetry and form PAR-3/atypical protein kinase C (aPKC) caps. Polarity caps form independently of actomyosin flows and microtubules and can regulate spindle orientation in cooperation with the key polarity kinase aPKC. Together, our results reveal a role for apical polarity caps in regulating spindle orientation in symmetrically dividing cells and provide novel insights into how these structures are formed.
Collapse
Affiliation(s)
- Naomi J Stolpner
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Nadia I Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Thomas Su
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Daniel J Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Saleh J, Fardin MA, Barai A, Soleilhac M, Frenoy O, Gaston C, Cui H, Dang T, Gaudin N, Vincent A, Minc N, Delacour D. Length limitation of astral microtubules orients cell divisions in murine intestinal crypts. Dev Cell 2023; 58:1519-1533.e6. [PMID: 37419117 DOI: 10.1016/j.devcel.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Planar spindle orientation is critical for epithelial tissue organization and is generally instructed by the long cell-shape axis or cortical polarity domains. We introduced mouse intestinal organoids in order to study spindle orientation in a monolayered mammalian epithelium. Although spindles were planar, mitotic cells remained elongated along the apico-basal (A-B) axis, and polarity complexes were segregated to basal poles, so that spindles oriented in an unconventional manner, orthogonal to both polarity and geometric cues. Using high-resolution 3D imaging, simulations, and cell-shape and cytoskeleton manipulations, we show that planar divisions resulted from a length limitation in astral microtubules (MTs) which precludes them from interacting with basal polarity, and orient spindles from the local geometry of apical domains. Accordingly, lengthening MTs affected spindle planarity, cell positioning, and crypt arrangement. We conclude that MT length regulation may serve as a key mechanism for spindles to sense local cell shapes and tissue forces to preserve mammalian epithelial architecture.
Collapse
Affiliation(s)
- Jad Saleh
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Amlan Barai
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Matis Soleilhac
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Olivia Frenoy
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Cécile Gaston
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Hongyue Cui
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Tien Dang
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Noémie Gaudin
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Audrey Vincent
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, 59000 Lille, France; ORGALille Core Facility, CANTHER, Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, 59000 Lille, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée La Ligue Contre le Cancer, France.
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| |
Collapse
|
19
|
Otsuka T, Shimojo H, Sasaki H. Daughter cells inherit YAP localization from mother cells in early preimplantation embryos. Dev Growth Differ 2023; 65:360-369. [PMID: 37309238 DOI: 10.1111/dgd.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The first stage of cell differentiation during mouse development is the differentiation into the trophectoderm and inner cell mass, which occurs during the 8-32-cell stages of preimplantation embryos. This differentiation is regulated by the Hippo signaling pathway. At the 32-cell stage, embryos establish a position-dependent distribution of the Hippo pathway coactivator, Yes-associated protein 1 (YAP, encoded by Yap1). The outer and inner cells showed nuclear and cytoplasmic localization of YAP, respectively. However, the process by which embryos establish position-dependent YAP localization remains elusive. Here, we established a YAP-reporter mouse line, Yap1mScarlet , and examined YAP-mScarlet protein dynamics during the 8-32-cell stages using live imaging. During mitosis, YAP-mScarlet diffused throughout the cells. YAP-mScarlet dynamics in daughter cells varied depending on the cell division patterns. YAP-mScarlet localization in daughter cells at the completion of cell division coincided with that in mother cells. Experimental manipulation of YAP-mScarlet localization in mother cells also altered its localization in daughter cells upon completion of cell division. In daughter cells, YAP-mScarlet localization gradually changed to the final pattern. In some divisions during the 8-16-cell stages, the cytoplasmic YAP-mScarlet localization preceded cell internalization. These results suggest that cell position is not a primary determinant of YAP localization and that the Hippo signaling status of the mother cell is inherited by the daughter cells, which likely contributes to the stabilization of the cell fate specification process beyond cell division.
Collapse
Affiliation(s)
- Tomoaki Otsuka
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiromi Shimojo
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Cuvelier M, Vangheel J, Thiels W, Ramon H, Jelier R, Smeets B. Stability of asymmetric cell division: A deformable cell model of cytokinesis applied to C. elegans. Biophys J 2023; 122:1858-1867. [PMID: 37085996 PMCID: PMC10209142 DOI: 10.1016/j.bpj.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Cell division during early embryogenesis is linked to key morphogenic events such as embryo symmetry breaking and tissue patterning. It is thought that the physical surrounding of cells together with cell intrinsic cues act as a mechanical "mold," guiding cell division to ensure these events are robust. To quantify how cell division is affected by the mechanical and geometrical environment, we present a novel computational mechanical model of cytokinesis, the final phase of cell division. Simulations with the model reproduced experimentally observed furrow dynamics and describe the volume ratio of daughter cells in asymmetric cell divisions, based on the position and orientation of the mitotic spindle. For dividing cells in geometrically confined environments, we show how the orientation of confinement relative to the division axis modulates the volume ratio in asymmetric cell division. Further, we quantified how cortex viscosity and surface tension determine the shape of a dividing cell and govern bubble-instabilities in asymmetric cell division. Finally, we simulated the formation of the three body axes via sequential (a)symmetric divisions up until the six-cell stage of early C. elegans development, which proceeds within the confines of an eggshell. We demonstrate how model input parameters spindle position and orientation provide sufficient information to reliably predict the volume ratio of daughter cells during the cleavage phase of development. However, for egg geometries perturbed by compression, the model predicts that a change in confinement alone is insufficient to explain experimentally observed differences in cell volume. This points to an effect of the compression on the spindle positioning mechanism. Additionally, the model predicts that confinement stabilizes asymmetric cell divisions against bubble-instabilities.
Collapse
Affiliation(s)
- Maxim Cuvelier
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| | - Jef Vangheel
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Wim Thiels
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Herman Ramon
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Rob Jelier
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Bart Smeets
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Stolpner NJ, Manzi NI, Su T, Dickinson DJ. Apical PAR-3 caps orient the mitotic spindle in C. elegans early embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534341. [PMID: 37034756 PMCID: PMC10081169 DOI: 10.1101/2023.03.27.534341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During embryonic development, oriented cell divisions are important for patterned tissue growth and cell fate specification. Cell division orientation is controlled in part by asymmetrically localized polarity proteins, which establish functional domains of the cell membrane and interact with microtubule regulators to position the mitotic spindle. For example, in the 8-cell mouse embryo, apical polarity proteins form caps on the outside, contact-free surface of the embryo that position the mitotic spindle to execute asymmetric cell division. A similar radial or "inside-outside" polarity is established at an early stage in many other animal embryos, but in most cases it remains unclear how inside-outside polarity is established and how it influences downstream cell behaviors. Here, we explore inside-outside polarity in C. elegans somatic blastomeres using spatiotemporally controlled protein degradation and live embryo imaging. We show that PAR polarity proteins, which form apical caps at the center of the contact free membrane, localize dynamically during the cell cycle and contribute to spindle orientation and proper cell positioning. Surprisingly, apical PAR-3 can form polarity caps independently of actomyosin flows and the small GTPase CDC-42, and can regulate spindle orientation in cooperation with the key polarity kinase aPKC. Together, our results reveal a role for apical polarity caps in regulating spindle orientation in symmetrically dividing cells and provide novel insights into how these structures are formed.
Collapse
Affiliation(s)
- Naomi J. Stolpner
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Nadia I. Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Thomas Su
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| |
Collapse
|
22
|
Nunley H, Shao B, Grover P, Singh J, Joyce B, Kim-Yip R, Kohrman A, Watters A, Gal Z, Kickuth A, Chalifoux M, Shvartsman S, Posfai E, Brown LM. A novel ground truth dataset enables robust 3D nuclear instance segmentation in early mouse embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532646. [PMID: 36993260 PMCID: PMC10055179 DOI: 10.1101/2023.03.14.532646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For investigations into fate specification and cell rearrangements in live images of preimplantation embryos, automated and accurate 3D instance segmentation of nuclei is invaluable; however, the performance of segmentation methods is limited by the images' low signal-to-noise ratio and high voxel anisotropy and the nuclei's dense packing and variable shapes. Supervised machine learning approaches have the potential to radically improve segmentation accuracy but are hampered by a lack of fully annotated 3D data. In this work, we first establish a novel mouse line expressing near-infrared nuclear reporter H2B-miRFP720. H2B-miRFP720 is the longest wavelength nuclear reporter in mice and can be imaged simultaneously with other reporters with minimal overlap. We then generate a dataset, which we call BlastoSPIM, of 3D microscopy images of H2B-miRFP720-expressing embryos with ground truth for nuclear instance segmentation. Using BlastoSPIM, we benchmark the performance of five convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method across preimplantation development. Stardist-3D, trained on BlastoSPIM, performs robustly up to the end of preimplantation development (> 100 nuclei) and enables studies of fate patterning in the late blastocyst. We, then, demonstrate BlastoSPIM's usefulness as pre-train data for related problems. BlastoSPIM and its corresponding Stardist-3D models are available at: blastospim.flatironinstitute.org.
Collapse
Affiliation(s)
- Hayden Nunley
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Binglun Shao
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Prateek Grover
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Jaspreet Singh
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Abraham Kohrman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Zsombor Gal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alison Kickuth
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Madeleine Chalifoux
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Stanislav Shvartsman
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lisa M. Brown
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| |
Collapse
|
23
|
Chann AS, Chen Y, Kinwel T, Humbert PO, Russell SM. Scribble and E-cadherin cooperate to control symmetric daughter cell positioning by multiple mechanisms. J Cell Sci 2023; 136:286705. [PMID: 36661138 DOI: 10.1242/jcs.260547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
The fate of the two daughter cells is intimately connected to their positioning, which is in turn regulated by cell junction remodelling and orientation of the mitotic spindle. How multiple cues are integrated to dictate the ultimate positioning of daughters is not clear. Here, we identify novel mechanisms of regulation of daughter positioning in single MCF10A cells. The polarity protein, Scribble cooperates with E-cadherin for sequential roles in daughter positioning. First Scribble stabilises E-cadherin at the mitotic cortex as well as the retraction fibres, to mediate spindle orientation. Second, Scribble re-locates to the junction between the two daughters to allow a new E-cadherin-based-interface to form between them, influencing the width of the nascent daughter-daughter junction and subsequent cell positioning. Thus, E-cadherin and Scribble dynamically relocate to different intracellular sites during cell division to orient the mitotic spindle and control placement of the daughter cells after cell division. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Ye Chen
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Tanja Kinwel
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
24
|
Lamba A, Zernicka-Goetz M. The role of polarization and early heterogeneities in the mammalian first cell fate decision. Curr Top Dev Biol 2023; 154:169-196. [PMID: 37100517 DOI: 10.1016/bs.ctdb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The first cell fate decision is the process by which cells of an embryo take on distinct lineage identities for the first time, representing the beginning of patterning during development. In mammals, this process separates an embryonic inner cell mass lineage (future new organism) from an extra-embryonic trophectoderm lineage (future placenta), and in the mouse, this is classically attributed to the consequences of apical-basal polarity. The mouse embryo acquires this polarity at the 8-cell stage, indicated by cap-like protein domains on the apical surface of each cell; those cells which retain polarity over subsequent divisions are specified as trophectoderm, and the rest as inner cell mass. Recent research has advanced our knowledge of this process - this review will discuss mechanisms behind the establishment of polarity and distribution of the apical domain, different factors affecting the first cell fate decision including heterogeneities between cells of the very early embryo, and the conservation of developmental mechanisms across species, including human.
Collapse
Affiliation(s)
- Adiyant Lamba
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
25
|
Erlich A, Étienne J, Fouchard J, Wyatt T. How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale. Interface Focus 2022; 12:20220038. [PMID: 36330322 PMCID: PMC9560792 DOI: 10.1098/rsfs.2022.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 10/16/2023] Open
Abstract
Cells and tissues change shape both to carry out their function and during pathology. In most cases, these deformations are driven from within the systems themselves. This is permitted by a range of molecular actors, such as active crosslinkers and ion pumps, whose activity is biologically controlled in space and time. The resulting stresses are propagated within complex and dynamical architectures like networks or cell aggregates. From a mechanical point of view, these effects can be seen as the generation of prestress or prestrain, resulting from either a contractile or growth activity. In this review, we present this concept of prestress and the theoretical tools available to conceptualize the statics and dynamics of living systems. We then describe a range of phenomena where prestress controls shape changes in biopolymer networks (especially the actomyosin cytoskeleton and fibrous tissues) and cellularized tissues. Despite the diversity of scale and organization, we demonstrate that these phenomena stem from a limited number of spatial distributions of prestress, which can be categorized as heterogeneous, anisotropic or differential. We suggest that in addition to growth and contraction, a third type of prestress-topological prestress-can result from active processes altering the microstructure of tissue.
Collapse
Affiliation(s)
| | - Jocelyn Étienne
- Université Grenoble Alpes, CNRS, LIPHY, 38000 Grenoble, France
| | - Jonathan Fouchard
- Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS (UMR 7622), INSERM (URL 1156), 7 quai Saint Bernard, 75005 Paris, France
| | - Tom Wyatt
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Tokuoka Y, Yamada TG, Mashiko D, Ikeda Z, Kobayashi TJ, Yamagata K, Funahashi A. An explainable deep learning-based algorithm with an attention mechanism for predicting the live birth potential of mouse embryos. Artif Intell Med 2022; 134:102432. [PMID: 36462898 DOI: 10.1016/j.artmed.2022.102432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/13/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
In assisted reproductive technology (ART), embryos produced by in vitro fertilization (IVF) are graded according to their live birth potential, and high-grade embryos are preferentially transplanted. However, rates of live birth following clinical ART remain low worldwide. Grading is based on the embryo shape at a limited number of stages and does not consider the shape of embryos and intracellular structures, e.g., nuclei, at various stages important for normal embryogenesis. Here, we developed a Normalized Multi-View Attention Network (NVAN) that directly predicts live birth potential from the nuclear structure in live-cell fluorescence images of mouse embryos from zygote to across a wide range of stages. The input is morphological features of cell nuclei, which were extracted as multivariate time-series data by using the segmentation algorithm for mouse embryos. The classification accuracy of our method (83.87%) greatly exceeded that of existing machine-learning methods and that of visual inspection by embryo culture specialists. Our method also has a new attention mechanism that allows us to determine which values of multivariate time-series data, used to describe nuclear morphology, were the basis for the prediction. By visualizing the features that contributed most to the prediction of live birth potential, we found that the size and shape of the nucleus at the morula stage and at the time of cell division were important for live birth prediction. We anticipate that our method will help ART and developmental engineering as a new basic technology for IVF embryo selection.
Collapse
Affiliation(s)
- Yuta Tokuoka
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan
| | - Takahiro G Yamada
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan; Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan
| | - Daisuke Mashiko
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Zenki Ikeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Akira Funahashi
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan; Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
27
|
Bao M, Cornwall-Scoones J, Sanchez-Vasquez E, Cox AL, Chen DY, De Jonghe J, Shadkhoo S, Hollfelder F, Thomson M, Glover DM, Zernicka-Goetz M. Stem cell-derived synthetic embryos self-assemble by exploiting cadherin codes and cortical tension. Nat Cell Biol 2022; 24:1341-1349. [PMID: 36100738 PMCID: PMC9481465 DOI: 10.1038/s41556-022-00984-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Mammalian embryos sequentially differentiate into trophectoderm and an inner cell mass, the latter of which differentiates into primitive endoderm and epiblast. Trophoblast stem (TS), extraembryonic endoderm (XEN) and embryonic stem (ES) cells derived from these three lineages can self-assemble into synthetic embryos, but the mechanisms remain unknown. Here, we show that a stem cell-specific cadherin code drives synthetic embryogenesis. The XEN cell cadherin code enables XEN cell sorting into a layer below ES cells, recapitulating the sorting of epiblast and primitive endoderm before implantation. The TS cell cadherin code enables TS cell sorting above ES cells, resembling extraembryonic ectoderm clustering above epiblast following implantation. Whereas differential cadherin expression drives initial cell sorting, cortical tension consolidates tissue organization. By optimizing cadherin code expression in different stem cell lines, we tripled the frequency of correctly formed synthetic embryos. Thus, by exploiting cadherin codes from different stages of development, lineage-specific stem cells bypass the preimplantation structure to directly assemble a postimplantation embryo.
Collapse
Affiliation(s)
- Min Bao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jake Cornwall-Scoones
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- The Francis Crick Institute, London, UK
| | - Estefania Sanchez-Vasquez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andy L Cox
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dong-Yuan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joachim De Jonghe
- The Francis Crick Institute, London, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Shahriar Shadkhoo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Magdalena Zernicka-Goetz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Mashiko D, Ikeda Z, Tokoro M, Hatano Y, Yao T, Kobayashi TJ, Fukunaga N, Asada Y, Yamagata K. Asynchronous division at 4-8-cell stage of preimplantation embryos affects live birth through ICM/TE differentiation. Sci Rep 2022; 12:9411. [PMID: 35672442 PMCID: PMC9174281 DOI: 10.1038/s41598-022-13646-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
To improve the performance of assisted reproductive technology, it is necessary to find an indicator that can identify and select embryos that will be born or be aborted. We searched for indicators of embryo selection by comparing born/abort mouse embryos. We found that asynchronous embryos during the 4-8-cell stage were predisposed to be aborted. In asynchronous mouse embryos, the nuclear translocation of YAP1 in some blastomeres and compaction were delayed, and the number of ICMs was reduced. Hence, it is possible that asynchronous embryos have abnormal differentiation. When the synchrony of human embryos was observed, it was confirmed that embryos that did not reach clinical pregnancy had asynchrony as in mice. This could make synchrony a universal indicator common to all animal species.
Collapse
Affiliation(s)
- Daisuke Mashiko
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
| | - Zenki Ikeda
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
| | - Mikiko Tokoro
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, 450-0002, Japan
| | - Yu Hatano
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
| | - Tatsuma Yao
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Joto, Osaka, 536-8523, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Noritaka Fukunaga
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, 450-0002, Japan
| | - Yoshimasa Asada
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, 450-0002, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan.
| |
Collapse
|
29
|
Cell size and polarization determine cytokinesis furrow ingression dynamics in mouse embryos. Proc Natl Acad Sci U S A 2022; 119:e2119381119. [PMID: 35294282 PMCID: PMC8944651 DOI: 10.1073/pnas.2119381119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The final step of cell division, termed cytokinesis, comprises the constriction of a furrow that divides the cytoplasm to form two daughter cells. Although cytokinesis is well studied in traditional cell systems, how cytokinesis is regulated in complex multicellular settings and during cell-fate decisions is less well understood. Here, using live imaging and physical and molecular interventions, we find that the emergence of cell polarity during mouse embryo morphogenesis dramatically impacts cytokinesis mechanisms. Specifically, the assembly of the apical domain in outer cells locally inhibits the cytokinetic machinery, leading to an unexpected laterally biased cytokinesis. Cytokinesis is the final step of cell division during which a contractile ring forms a furrow that partitions the cytoplasm in two. How furrow ingression is spatiotemporally regulated and how it is adapted to complex cellular environments and developmental transitions remain poorly understood. Here, we examine furrow ingression dynamics in the context of the early mouse embryo and find that cell size is a powerful determinant of furrow ingression speed during reductive cell divisions. In addition, the emergence of cell polarity and the assembly of the apical domain in outer cells locally inhibits the recruitment of cytokinesis components and thereby negatively regulates furrow ingression specifically on one side of the furrow. We show that this biasing of cytokinesis is not dependent upon cell–cell adhesion or shape but rather is cell intrinsic and is caused by a paucity of cytokinetic machinery in the apical domain. The results thus reveal that in the mouse embryo cell polarity directly regulates the recruitment of cytokinetic machinery in a cell-autonomous manner and that subcellular organization can instigate differential force generation and constriction speed in different zones of the cytokinetic furrow.
Collapse
|
30
|
Özgüç Ö, de Plater L, Kapoor V, Tortorelli AF, Clark AG, Maître JL. Cortical softening elicits zygotic contractility during mouse preimplantation development. PLoS Biol 2022; 20:e3001593. [PMID: 35324889 PMCID: PMC8982894 DOI: 10.1371/journal.pbio.3001593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis. During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Ludmilla de Plater
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Varun Kapoor
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Ichikawa T, Zhang HT, Panavaite L, Erzberger A, Fabrèges D, Snajder R, Wolny A, Korotkevich E, Tsuchida-Straeten N, Hufnagel L, Kreshuk A, Hiiragi T. An ex vivo system to study cellular dynamics underlying mouse peri-implantation development. Dev Cell 2022; 57:373-386.e9. [PMID: 35063082 PMCID: PMC8826647 DOI: 10.1016/j.devcel.2021.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/23/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to E6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of the cases, but its compatibility with light-sheet microscopy also enables the study of cellular dynamics through automatic cell segmentation. We find that, upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis, and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D ex vivo system thus offers unprecedented access to peri-implantation development for in toto monitoring, measurement, and spatiotemporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hui Ting Zhang
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Laura Panavaite
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Anna Erzberger
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Dimitri Fabrèges
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rene Snajder
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Adrian Wolny
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | | - Lars Hufnagel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anna Kreshuk
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, 606-8501 Kyoto, Japan.
| |
Collapse
|
32
|
Pomp O, Lim HYG, Skory RM, Moverley AA, Tetlak P, Bissiere S, Plachta N. A monoastral mitotic spindle determines lineage fate and position in the mouse embryo. Nat Cell Biol 2022; 24:155-167. [PMID: 35102267 DOI: 10.1038/s41556-021-00826-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
During mammalian development, the first asymmetric cell divisions segregate cells into inner and outer positions of the embryo to establish the pluripotent and trophectoderm lineages. Typically, polarity components differentially regulate the mitotic spindle via astral microtubule arrays to trigger asymmetric division patterns. However, early mouse embryos lack centrosomes, the microtubule-organizing centres (MTOCs) that usually generate microtubule asters. Thus, it remains unknown whether spindle organization regulates lineage segregation. Here we find that heterogeneities in cell polarity in the early 8-cell-stage mouse embryo trigger the assembly of a highly asymmetric spindle organization. This spindle arises in an unusual modular manner, forming a single microtubule aster from an apically localized, non-centrosomal MTOC, before joining it to the rest of the spindle apparatus. When fully assembled, this 'monoastral' spindle triggers spatially asymmetric division patterns to segregate cells into inner and outer positions. Moreover, the asymmetric inheritance of spindle components causes differential cell polarization to determine pluripotent versus trophectoderm lineage fate.
Collapse
Affiliation(s)
- Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Robin M Skory
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam A Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Piotr Tetlak
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Dokmegang J. Modeling Epiblast Shape in Implanting Mammalian Embryos. Methods Mol Biol 2022; 2490:281-296. [PMID: 35486253 DOI: 10.1007/978-1-0716-2281-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An indispensable prerequisite of mammalian development is successful morphogenesis in the epiblast, the embryonic tissue that gives rise to all differentiated cells of the adult mammal. The right control of both epiblast morphogenesis and the events that regulate its shape in particular during implantation is henceforth of tremendous importance. However, monitoring the process of development in implanting human embryos is ethically and technically challenging, making it difficult to troubleshoot when things go wrong, as it is unfortunately the case with over 30% of pregnancy failures. Although modern in vitro techniques have proven very insightful lately, more tools are needed in the quest to elucidate mammalian and human development. Mathematical and computational modeling position themselves as helpful complementary tools in the biologist's toolbox, enabling the exploration of the living in silico, beyond the boundaries set by ethical concerns and the potential limitations of wet lab techniques. Here, we show how mathematical modeling and computer simulations can be used to emulate and investigate mechanisms driving epiblast shape changes in mouse and human embryos during implantation.
Collapse
Affiliation(s)
- Joel Dokmegang
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
34
|
Kim EJY, Sorokin L, Hiiragi T. ECM-integrin signalling instructs cellular position-sensing to pattern the early mouse embryo. Development 2021; 149:273721. [PMID: 34908109 PMCID: PMC8881741 DOI: 10.1242/dev.200140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo give rise to the inner cell mass (ICM), which eventually forms the embryo itself. Yet, the molecular basis of how these cells recognise their ‘inside’ position to instruct their fate is unknown. Here, we show that provision of extracellular matrix (ECM) to isolated embryonic cells induces ICM specification and alters the subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β1 activity and involves apical-to-basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for ‘inside’ positional signalling and is required for correct EPI/PrE patterning. Thus, our findings highlight the significance of ECM-integrin adhesion in enabling position sensing by cells to achieve tissue patterning. Summary: The importance of patterned cell-extracellular matrix (ECM) interactions in early mouse development: ECM signals can modulate both cell fate and the relative spatial arrangement between cells.
Collapse
Affiliation(s)
- Esther Jeong Yoon Kim
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Universität Heidelberg, Heidelberg, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Muenster, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Godard BG, Dumollard R, Heisenberg CP, McDougall A. Combined effect of cell geometry and polarity domains determines the orientation of unequal division. eLife 2021; 10:75639. [PMID: 34889186 PMCID: PMC8691831 DOI: 10.7554/elife.75639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).
Collapse
Affiliation(s)
- Benoit G Godard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche sur Mer, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Remi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche sur Mer, France
| | | | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche sur Mer, France
| |
Collapse
|
36
|
Blastocoel morphogenesis: A biophysics perspective. Semin Cell Dev Biol 2021; 130:12-23. [PMID: 34756494 DOI: 10.1016/j.semcdb.2021.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
The blastocoel is a fluid-filled cavity characteristic of animal embryos at the blastula stage. Its emergence is commonly described as the result of cleavage patterning, but this historical view conceals a large diversity of mechanisms and overlooks many unsolved questions from a biophysics perspective. In this review, we describe generic mechanisms for blastocoel morphogenesis, rooted in biological literature and simple physical principles. We propose novel directions of study and emphasize the importance to study blastocoel morphogenesis as an evolutionary and physical continuum.
Collapse
|
37
|
Cell division geometries as central organizers of early embryo development. Semin Cell Dev Biol 2021; 130:3-11. [PMID: 34419349 DOI: 10.1016/j.semcdb.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/08/2021] [Indexed: 11/24/2022]
Abstract
Early cellular patterning is a critical step of embryonic development that determines the proper progression of morphogenesis in all metazoans. It relies on a series of rapid reductive divisions occurring simultaneously with the specification of the fate of different subsets of cells. Multiple species developmental strategies emerged in the form of a unique cleavage pattern with stereotyped division geometries. Cleavage geometries have long been associated to the emergence of canonical developmental features such as cell cycle asynchrony, zygotic genome activation and fate specification. Yet, the direct causal role of division positioning on blastomere cell behavior remain partially understood. Oriented and/or asymmetric divisions define blastomere cell sizes, contacts and positions, with potential immediate impact on cellular decisions, lineage specification and morphogenesis. Division positions also instruct daughter cells polarity, mechanics and geometries, thereby influencing subsequent division events, in an emergent interplay that may pattern early embryos independently of firm deterministic genetic programs. We here review the recent literature which helped to delineate mechanisms and functions of division positioning in early embryos.
Collapse
|
38
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
39
|
Chaigne A, Smith MB, Lopez Cavestany R, Hannezo E, Chalut KJ, Paluch EK. Three-dimensional geometry controls division symmetry in stem cell colonies. J Cell Sci 2021; 134:jcs255018. [PMID: 34323278 PMCID: PMC8349555 DOI: 10.1242/jcs.255018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Proper control of division orientation and symmetry, largely determined by spindle positioning, is essential to development and homeostasis. Spindle positioning has been extensively studied in cells dividing in two-dimensional (2D) environments and in epithelial tissues, where proteins such as NuMA (also known as NUMA1) orient division along the interphase long axis of the cell. However, little is known about how cells control spindle positioning in three-dimensional (3D) environments, such as early mammalian embryos and a variety of adult tissues. Here, we use mouse embryonic stem cells (ESCs), which grow in 3D colonies, as a model to investigate division in 3D. We observe that, at the periphery of 3D colonies, ESCs display high spindle mobility and divide asymmetrically. Our data suggest that enhanced spindle movements are due to unequal distribution of the cell-cell junction protein E-cadherin between future daughter cells. Interestingly, when cells progress towards differentiation, division becomes more symmetric, with more elongated shapes in metaphase and enhanced cortical NuMA recruitment in anaphase. Altogether, this study suggests that in 3D contexts, the geometry of the cell and its contacts with neighbors control division orientation and symmetry. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Matthew B. Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Rocio Lopez Cavestany
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Kevin J. Chalut
- Wellcome/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ewa K. Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Wellcome/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
40
|
Forsyth JE, Al-Anbaki AH, de la Fuente R, Modare N, Perez-Cortes D, Rivera I, Seaton Kelly R, Cotter S, Plusa B. IVEN: A quantitative tool to describe 3D cell position and neighbourhood reveals architectural changes in FGF4-treated preimplantation embryos. PLoS Biol 2021; 19:e3001345. [PMID: 34310594 PMCID: PMC8341705 DOI: 10.1371/journal.pbio.3001345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/05/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Architectural changes at the cellular and organism level are integral and necessary to successful development and growth. During mammalian preimplantation development, cells reduce in size and the architecture of the embryo changes significantly. Such changes must be coordinated correctly to ensure continued development of the embryo and, ultimately, a successful pregnancy. However, the nature of such transformations is poorly defined during mammalian preimplantation development. In order to quantitatively describe changes in cell environment and organism architecture, we designed Internal Versus External Neighbourhood (IVEN). IVEN is a user-interactive, open-source pipeline that classifies cells into different populations based on their position and quantifies the number of neighbours of every cell within a dataset in a 3D environment. Through IVEN-driven analyses, we show how transformations in cell environment, defined here as changes in cell neighbourhood, are related to changes in embryo geometry and major developmental events during preimplantation mammalian development. Moreover, we demonstrate that modulation of the FGF pathway alters spatial relations of inner cells and neighbourhood distributions, leading to overall changes in embryo architecture. In conjunction with IVEN-driven analyses, we uncover differences in the dynamic of cell size changes over the preimplantation period and determine that cells within the mammalian embryo initiate growth phase only at the time of implantation.
Collapse
Affiliation(s)
- Jessica E. Forsyth
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- School of Mathematics, Alan Turing Building, University of Manchester, Manchester, United Kingdom
| | - Ali H. Al-Anbaki
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Roberto de la Fuente
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Nikkinder Modare
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Diego Perez-Cortes
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Isabel Rivera
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Rowena Seaton Kelly
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Simon Cotter
- School of Mathematics, Alan Turing Building, University of Manchester, Manchester, United Kingdom
| | - Berenika Plusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
41
|
Gupta VK, Nam S, Yim D, Camuglia J, Martin JL, Sanders EN, O'Brien LE, Martin AC, Kim T, Chaudhuri O. The nature of cell division forces in epithelial monolayers. J Cell Biol 2021; 220:212389. [PMID: 34132746 PMCID: PMC8240854 DOI: 10.1083/jcb.202011106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells undergo striking morphological changes during division to ensure proper segregation of genetic and cytoplasmic materials. These morphological changes occur despite dividing cells being mechanically restricted by neighboring cells, indicating the need for extracellular force generation. Beyond driving cell division itself, forces associated with division have been implicated in tissue-scale processes, including development, tissue growth, migration, and epidermal stratification. While forces generated by mitotic rounding are well understood, forces generated after rounding remain unknown. Here, we identify two distinct stages of division force generation that follow rounding: (1) Protrusive forces along the division axis that drive division elongation, and (2) outward forces that facilitate postdivision spreading. Cytokinetic ring contraction of the dividing cell, but not activity of neighboring cells, generates extracellular forces that propel division elongation and contribute to chromosome segregation. Forces from division elongation are observed in epithelia across many model organisms. Thus, division elongation forces represent a universal mechanism that powers cell division in confining epithelia.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA
| | - Donghyun Yim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Jaclyn Camuglia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
42
|
Zhu M, Zernicka-Goetz M. Principles of Self-Organization of the Mammalian Embryo. Cell 2021; 183:1467-1478. [PMID: 33306953 DOI: 10.1016/j.cell.2020.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Early embryogenesis is a conserved and self-organized process. In the mammalian embryo, the potential for self-organization is manifested in its extraordinary developmental plasticity, allowing a correctly patterned embryo to arise despite experimental perturbation. The underlying mechanisms enabling such regulative development have long been a topic of study. In this Review, we summarize our current understanding of the self-organizing principles behind the regulative nature of the early mammalian embryo. We argue that geometrical constraints, feedback between mechanical and biochemical factors, and cellular heterogeneity are all required to ensure the developmental plasticity of mammalian embryo development.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Present address: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
43
|
Schliffka MF, Tortorelli AF, Özgüç Ö, de Plater L, Polzer O, Pelzer D, Maître JL. Multiscale analysis of single and double maternal-zygotic Myh9 and Myh10 mutants during mouse preimplantation development. eLife 2021; 10:e68536. [PMID: 33871354 PMCID: PMC8096435 DOI: 10.7554/elife.68536] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavage divisions, morphogenetic movements, and lineage specification. Recent studies have identified the essential role of actomyosin contractility in driving cytokinesis, morphogenesis, and fate specification, leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin II heavy chains (NMHCs) to characterize them with multiscale imaging. We found that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction, and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most of the attempts of cytokinesis. We found that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.
Collapse
Affiliation(s)
- Markus Frederik Schliffka
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
- Carl Zeiss SASMarly-le-RoyFrance
| | | | - Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | | | - Oliver Polzer
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | - Diane Pelzer
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| |
Collapse
|
44
|
Toyooka Y. Pluripotent stem cells in the research for extraembryonic cell differentiation. Dev Growth Differ 2021; 63:127-139. [PMID: 33583019 DOI: 10.1111/dgd.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent stem cell populations derived from the preimplantation embryo and are used to study the differentiation of many types of somatic and germ cells in developing embryos. They are also used to study cell lineages of extraembryonic tissues, such as the trophectoderm (TE) and the primitive endoderm (PrE). mESC cultures are suitable systems for reproducing cellular and molecular events occurring during the differentiation of these cell types, such as changes in gene expression patterns, signaling events, and genome rearrangements although the consistency between the results obtained using mESCs and those of in vivo studies on embryos should be carefully taken into account. Since TE and PrE cells can be induced from mESCs in vitro, mESC cultures are useful systems to study differentiation of these cell lineages during development, if used appropriately. In addition, human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), are capable of generating extraembryonic lineages in vitro and are promising tools to study the differentiation of these lineages in the human embryo.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Hawkins J, Miao X, Cui W, Sun Y. Biophysical optimization of preimplantation embryo culture: what mechanics can offer ART. Mol Hum Reprod 2021; 27:gaaa087. [PMID: 33543291 PMCID: PMC8453600 DOI: 10.1093/molehr/gaaa087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
Owing to the rise of ART and mounting reports of epigenetic modification associated with them, an understanding of optimal embryo culture conditions and reliable indicators of embryo quality are highly sought after. There is a growing body of evidence that mechanical biomarkers can rival embryo morphology as an early indicator of developmental potential and that biomimetic mechanical cues can promote healthy development in preimplantation embryos. This review will summarize studies that investigate the role of mechanics as both indicators and promoters of mammalian preimplantation embryo development and evaluate their potential for improving future embryo culture systems.
Collapse
Affiliation(s)
- Jamar Hawkins
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
46
|
Fiorentino J, Torres-Padilla ME, Scialdone A. Measuring and Modeling Single-Cell Heterogeneity and Fate Decision in Mouse Embryos. Annu Rev Genet 2020; 54:167-187. [PMID: 32867543 DOI: 10.1146/annurev-genet-021920-110200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.
Collapse
Affiliation(s)
- Jonathan Fiorentino
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Institute of Functional Epigenetics (IFE) and Institute of Computational Biology (ICB), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Faculty of Biology, Ludwig-Maximilians Universität, D-82152 Planegg-Martinsried, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Institute of Functional Epigenetics (IFE) and Institute of Computational Biology (ICB), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
47
|
Chen H, Qian W, Good MC. Integrating cellular dimensions with cell differentiation during early development. Curr Opin Cell Biol 2020; 67:109-117. [PMID: 33152556 DOI: 10.1016/j.ceb.2020.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
Early embryo development is characterized by alteration of cellular dimensions and fating of blastomeres. An emerging concept is that cell size and shape drive cellular differentiation during early embryogenesis in a variety of model organisms. In this review, we summarize recent advances that elucidate the contribution of the physical dimensions of a cell to major embryonic transitions and cell fate specification in vivo. We also highlight techniques and newly evolving methods for manipulating the sizes and shapes of cells and whole embryos in situ and ex vivo. Finally, we provide an outlook for addressing fundamental questions in the field and more broadly uncovering how changes to cell size control decision making in a variety of biological contexts.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenchao Qian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Fagotto F. Tissue segregation in the early vertebrate embryo. Semin Cell Dev Biol 2020; 107:130-146. [DOI: 10.1016/j.semcdb.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
|
49
|
Tokuoka Y, Yamada TG, Mashiko D, Ikeda Z, Hiroi NF, Kobayashi TJ, Yamagata K, Funahashi A. 3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis. NPJ Syst Biol Appl 2020; 6:32. [PMID: 33082352 PMCID: PMC7575569 DOI: 10.1038/s41540-020-00152-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
During embryogenesis, cells repeatedly divide and dynamically change their positions in three-dimensional (3D) space. A robust and accurate algorithm to acquire the 3D positions of the cells would help to reveal the mechanisms of embryogenesis. To acquire quantitative criteria of embryogenesis from time-series 3D microscopic images, image processing algorithms such as segmentation have been applied. Because the cells in embryos are considerably crowded, an algorithm to segment individual cells in detail and accurately is needed. To quantify the nuclear region of every cell from a time-series 3D fluorescence microscopic image of living cells, we developed QCANet, a convolutional neural network-based segmentation algorithm for 3D fluorescence bioimages. We demonstrated that QCANet outperformed 3D Mask R-CNN, which is currently considered as the best algorithm of instance segmentation. We showed that QCANet can be applied not only to developing mouse embryos but also to developing embryos of two other model species. Using QCANet, we were able to extract several quantitative criteria of embryogenesis from 11 early mouse embryos. We showed that the extracted criteria could be used to evaluate the differences between individual embryos. This study contributes to the development of fundamental approaches for assessing embryogenesis on the basis of extracted quantitative criteria.
Collapse
Affiliation(s)
- Yuta Tokuoka
- Department of Biosciences and Informatics, Keio University, Kanagawa, 223-8522, Japan
| | - Takahiro G Yamada
- Department of Biosciences and Informatics, Keio University, Kanagawa, 223-8522, Japan
| | - Daisuke Mashiko
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan
| | - Zenki Ikeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan
| | - Noriko F Hiroi
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, 756-0884, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Kanagawa, 223-8522, Japan.
| |
Collapse
|
50
|
Mechanical regulation of cell size, fate, and behavior during asymmetric cell division. Curr Opin Cell Biol 2020; 67:9-16. [PMID: 32768924 DOI: 10.1016/j.ceb.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023]
Abstract
Asymmetric cell division (ACD) is an evolutionary conserved mechanism used by prokaryotes and eukaryotes alike to generate cell diversity. ACD can be manifested in biased segregation of macromolecules or differential partitioning of cell organelles. Cells are also constantly subject to extrinsic or intrinsic mechanical forces, influencing cell behavior and fate. During ACD, cell intrinsic forces generated through the spatiotemporal regulation of the actomyosin cytoskeleton can influence sibling cell size. External mechanical stresses are further translated by transcriptional coactivators or mechanically gated ion channels. Here, we will discuss recent literature, exploring how mechanical cues influence various aspects of ACD and stem cell behavior, and how these mechanical cues contribute to cell fate decisions.
Collapse
|