1
|
Jung B, Yagi H, Kuo A, Dorweiler TF, Aikawa M, Kasai T, Singh SA, Dannenberg AJ, Fu Z, Niaudet C, Smith LEH, Hla T. ApoM-bound S1P acts via endothelial S1PR1 to suppress choroidal neovascularization and vascular leakage. Angiogenesis 2025; 28:24. [PMID: 40266369 PMCID: PMC12018641 DOI: 10.1007/s10456-025-09975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Neovascular age-related macular degeneration (nAMD) is a major cause of vision loss worldwide. Current standard of care is repetitive intraocular injections of vascular endothelial growth factor (VEGF) inhibitors, although responses may be partial and non-durable. We report that circulating sphingosine 1-phosphate (S1P) carried by apolipoprotein M (ApoM) acts through the endothelial S1P receptor 1 (S1PR1) to suppress choroidal neovascularization (CNV) in mouse laser-induced CNV, modeling nAMD. In humans, low plasma ApoM levels were associated with increased choroidal and retinal pathology. Additionally, endothelial S1pr1 knockout and overexpressing transgenic mice showed increased and reduced CNV lesion size, respectively. Systemic administration of ApoM-Fc, an engineered S1P chaperone protein, not only attenuated CNV to an equivalent degree as anti-VEGF antibody treatment but also suppressed pathological vascular leakage. We suggest that modulating circulating ApoM-bound S1P action on endothelial S1PR1 provides a novel therapeutic strategy to treat nAMD.
Collapse
Affiliation(s)
- Bongnam Jung
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Tim F Dorweiler
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Colin Niaudet
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
- CRCI2NA, INSERM, CNRS, Nantes University, 44000, Nantes, France.
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Yadav R, Obinata H, Venkataraman K. Delineating the intricacies of polymorphisms, structures, functions and therapeutic applications of biological high-density lipoprotein-apolipoprotein M: A review. Int J Biol Macromol 2025; 310:143187. [PMID: 40246118 DOI: 10.1016/j.ijbiomac.2025.143187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Apolipoprotein-M (ApoM), primarily associated with high-density lipoproteins (HDL), plays a crucial role in lipid metabolism and cardiovascular health. It facilitates the transport of lipids such as cholesterol and sphingosine-1-phosphate (S1P), contributing to reverse cholesterol transport (RCT), which removes excess cholesterol from peripheral tissues to the liver for excretion. Through its association with HDL and S1P, ApoM exerts anti-inflammatory, anti-thrombotic, and anti-apoptotic effects. The ApoM-S1P complex regulates various cellular, immunological, and physiological processes via S1P receptors, and its dysregulation is linked to metabolic and inflammatory disorders. Reduced plasma ApoM levels are associated with atherosclerosis, diabetes, and chronic systemic inflammation. ApoM levels and paraoxonase-1 activity in early pregnancy correlate with gestational hypertension risk, potentially affecting fetal vascular health. ApoM also functions as a S1P chaperone, and recent research highlights the roles of ApoM/S1P axis and the ApoA1-ApoM (A1M) complex in glucose and lipid metabolism, emphasizing its therapeutic relevance in cardiovascular diseases (CVD), cancer, and diabetes. The ApoM-Fc fusion protein exhibits promising therapeutic potential by reducing fibrosis, enhancing endothelial function, and promoting tissue regeneration. HDL-ApoM macromolecules bind bacterial endotoxins and aids in its clearance. This review explores ApoM gene organization, isoforms, point mutations, protein structure, functions and their relevance for developing novel therapeutics.
Collapse
Affiliation(s)
- Rahul Yadav
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, INDIA
| | - Hideru Obinata
- Education and Research Support Center, Graduate School of Medicine, Gunma University, Gunma, JAPAN
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, INDIA.
| |
Collapse
|
3
|
Borri M, Jacobs ME, Carmeliet P, Rabelink TJ, Dumas SJ. Endothelial dysfunction in the aging kidney. Am J Physiol Renal Physiol 2025; 328:F542-F562. [PMID: 39933752 DOI: 10.1152/ajprenal.00287.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Global population aging is an escalating challenge in modern society, especially as it impairs the function of multiple organs and increases the burden of age-related diseases. The kidneys, in particular, experience function decline, reduced regenerative capacity, and increased susceptibility to injury as they age. As a result, the prevalence of chronic kidney disease (CKD) rises with aging, further contributing to the growing health burden in older populations. One of the key factors in this process is the dysfunction of specialized renal endothelial cells (RECs), which are essential for maintaining kidney health by regulating blood flow and supporting filtration, solute and water reabsorption, and vascular integrity. As the kidneys age, REC dysfunction drives vascular and microenvironmental changes, contributing to the overall decline in kidney function. In this review, we outline the structural and functional effects of aging on the kidney's macrovascular and microvascular compartments and provide a phenotypic description of the aged endothelium. We particularly focus on the molecular and metabolic rewiring driving and sustaining growth-arrested EC senescence phenotype. We finally give an overview of senotherapies acting on ECs, especially of those modulating metabolism. Given that the pathophysiological processes underlying kidney aging largely overlap with those observed in CKD, REC rejuvenation could also benefit patients with CKD. Moreover, such interventions may hold promise in improving the outcomes of aged kidney transplants. Hence, advancing our understanding of REC and kidney aging will create opportunities for innovations that could improve outcomes for both elderly individuals and patients with CKD.
Collapse
Affiliation(s)
- Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien J Dumas
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Schonfeld M, Nataraj K, Weinman S, Tikhanovich I. C/EBPβ transcription factor promotes alcohol-induced liver fibrosis in males via HDL remodeling. Hepatol Commun 2025; 9:e0645. [PMID: 39969482 PMCID: PMC11841851 DOI: 10.1097/hc9.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is the main cause of alcohol-associated mortality. However, the mechanism of ALD development is poorly understood. Epigenetic changes are thought to play an important role in ALD. We aimed to define the epigenetic changes induced by alcohol and predict drivers of these changes. METHODS Mice were fed high-fat diet with or without 20% of alcohol in the drinking water for 20 weeks (WDA model). scATAC-seq data set was analyzed using Signac R package. To test the role of C/EBPβ, Cebpb-floxed mice were treated with AAV8-TBG-Cre or AAV8-control. RESULTS We analyzed differentially accessible regions in livers from control and alcohol-fed mice and found that activity of C/EBPβ transcription factor was associated with alcohol-induced epigenetic changes in hepatocytes. C/EBPβ protein levels were significantly upregulated in multiple models of ALD and human ALD samples. Using hepatocyte-specific Cebpb knockout mice we found that Cebpb loss protected male mice from alcohol-induced fibrosis development. We found no protection in female mice, suggesting that this mechanism is specific to male ALD. In vitro studies suggested that the protective effect of Cebpb loss was mediated by altered hepatocyte-macrophage cross talk. Cebpb knockout in hepatocytes reduced a profibrotic and promoted a pro-resolving phenotype in macrophages, thus modulating ALD development. We further identified the mediators of the cross talk. Cebpb knockout altered the expression of several HDL protein components, increasing APOA1 and apolipoprotein M and reducing apolipoprotein E and SAA levels in male mice. HDL secreted by Cebpb knockout hepatocytes was sufficient to confer anti-inflammatory and antifibrotic changes to macrophages. CONCLUSIONS Taken together, alcohol-induced C/EBPβ activation is a key driver of ALD fibrosis in males via C/EBPβ-dependent HDL remodeling.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kruti Nataraj
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Follert P, Große‐Segerath L, Lammert E. Blood flow-induced angiocrine signals promote organ growth and regeneration. Bioessays 2025; 47:e2400207. [PMID: 39529434 PMCID: PMC11755702 DOI: 10.1002/bies.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Recently, we identified myeloid-derived growth factor (MYDGF) as a blood flow-induced angiocrine signal that promotes human and mouse hepatocyte proliferation and survival. Here, we review literature reporting changes in blood flow after partial organ resection in the liver, lung, and kidney, and we describe the angiocrine signals released by endothelial cells (ECs) upon blood flow alterations in these organs. While hepatocyte growth factor (HGF) and MYDGF are important angiocrine signals for liver regeneration, by now, angiocrine signals have also been reported to stimulate hyperplasia and/or hypertrophy during the regeneration of lungs and kidneys. In addition, angiocrine signals play a critical role in tumor growth. Understanding the mechano-elastic properties and flow-mediated alterations in the organ-specific microvasculature is crucial for therapeutic approaches to maintain organ health and initiate organ renewal.
Collapse
Affiliation(s)
- Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
| | - Linda Große‐Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| |
Collapse
|
6
|
Schwalm S, Manaila R, Oftring A, Schaefer L, von Gunten S, Pfeilschifter J. The contribution of the sphingosine 1-phosphate signaling pathway to chronic kidney diseases: recent findings and new perspectives. Pflugers Arch 2024; 476:1845-1861. [PMID: 39384640 PMCID: PMC11582123 DOI: 10.1007/s00424-024-03029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial condition with diverse etiologies, such as diabetes mellitus, hypertension, and genetic disorders, often culminating in end-stage renal disease (ESRD). A hallmark of CKD progression is kidney fibrosis, characterized by the excessive accumulation of extracellular matrix components, for which there is currently no effective anti-fibrotic therapy. Recent literature highlights the critical role of sphingosine 1-phosphate (S1P) signaling in CKD pathogenesis and renal fibrosis. This review provides an in-depth analysis of the latest findings on S1P metabolism and signaling in renal fibrosis and in specific CKDs, including diabetic nephropathy (DN), lupus nephritis (LN), focal segmental glomerulosclerosis (FSGS), Fabry disease (FD), and IgA nephropathy (IgAN). Emerging studies underscore the therapeutic potential of modulating S1P signaling with receptor modulators and inhibitors, such as fingolimod (FTY720) and more selective agents like ozanimod and cenerimod. Additionally, the current knowledge about the effects of established kidney protective therapies such as glucocorticoids and SGLT2 and ACE inhibitors on S1P signaling will be summarized. Furthermore, the review highlights the potential role of S1P as a biomarker for disease progression in CKD models, particularly in Fabry disease and diabetic nephropathy. Advanced technologies, including spatial transcriptomics, are further refining our understanding of S1P's role within specific kidney compartments. Collectively, these insights emphasize the need for continued research into S1P signaling pathways as promising targets for CKD treatment strategies.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Roxana Manaila
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Anke Oftring
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Liliana Schaefer
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stephan von Gunten
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
7
|
Seidita I, Ziegler A, Qalaj A, Winkler MS, Nierhaus A, Kluge S, Levkau B, Gräler MH. Rapid determination of sphingosine 1-phosphate association with carrier molecules by flow-induced dispersion analysis to predict sepsis outcome. iScience 2024; 27:111168. [PMID: 39524325 PMCID: PMC11544382 DOI: 10.1016/j.isci.2024.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Flow-induced dispersion analysis (FIDA) was used to investigate the association of fluorescein isothiocyanate-labeled signaling lipid sphingosine 1-phosphate (S1P) with its carrier molecules human serum albumin (HSA) and high-density lipoprotein (HDL). Associations were measured in plasma samples of patients after surgery, with sepsis or septic shock. All patients demonstrated a significant shift between the carrier binding: decrease of S1P bound to HSA with a concomitant increase of S1P bound to HDL. The molecular sizes of binding complexes correlated well with the relative amounts of S1P bound to HSA and HDL detected by liquid chromatography-tandem mass spectrometry. Very low complex formation of S1P with HDL was observed in several septic shock patients and correlated with the need for mechanical ventilation and intensive care unit (ICU) mortality. Determination of S1P binding to HSA and HDL by FIDA could therefore be useful in the clinical setting to predict disease progression, severity, and outcome.
Collapse
Affiliation(s)
- Isabelle Seidita
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Anke Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Auron Qalaj
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Martin Sebastian Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Axel Nierhaus
- Department of Intensive Care, Universitätsklinikum Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care, Universitätsklinikum Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany
| |
Collapse
|
8
|
Mo C, Li H, Yan M, Xu S, Wu J, Li J, Yang X, Li Y, Yang J, Su X, Liu J, Wu C, Wang Y, Dong H, Chen L, Dai L, Zhang M, Pu Q, Yang L, Ye T, Cao Z, Ding BS. Dopaminylation of endothelial TPI1 suppresses ferroptotic angiocrine signals to promote lung regeneration over fibrosis. Cell Metab 2024; 36:1839-1857.e12. [PMID: 39111287 DOI: 10.1016/j.cmet.2024.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 03/17/2025]
Abstract
Lungs can undergo facultative regeneration, but handicapped regeneration often leads to fibrosis. How microenvironmental cues coordinate lung regeneration via modulating cell death remains unknown. Here, we reveal that the neurotransmitter dopamine modifies the endothelial niche to suppress ferroptosis, promoting lung regeneration over fibrosis. A chemoproteomic approach shows that dopamine blocks ferroptosis in endothelial cells (ECs) via dopaminylating triosephosphate isomerase 1 (TPI1). Suppressing TPI1 dopaminylation in ECs triggers ferroptotic angiocrine signaling to aberrantly activate fibroblasts, leading to a transition from lung regeneration to fibrosis. Mechanistically, dopaminylation of glutamine (Q) 65 residue in TPI1 directionally enhances TPI1's activity to convert dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (GAP), directing ether phospholipid synthesis to glucose metabolism in regenerating lung ECs. This metabolic shift attenuates lipid peroxidation and blocks ferroptosis. Restoring TPI1 Q65 dopaminylation in an injured endothelial niche overturns ferroptosis to normalize pro-regenerative angiocrine function and alleviate lung fibrosis. Overall, dopaminylation of TPI1 balances lipid/glucose metabolism and suppresses pro-fibrotic ferroptosis in regenerating lungs.
Collapse
Affiliation(s)
- Chunheng Mo
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengli Yan
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiyu Xu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinyan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiachen Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinchun Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuanyuan Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingping Su
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuan Wang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haohao Dong
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiang Pu
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Tinghong Ye
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China; Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhongwei Cao
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Bi-Sen Ding
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Structure, Functions, and Implications of Selected Lipocalins in Human Disease. Int J Mol Sci 2024; 25:4290. [PMID: 38673873 PMCID: PMC11050150 DOI: 10.3390/ijms25084290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).
Collapse
Affiliation(s)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
10
|
Bisgaard LS, Christensen PM, Oh J, Torta F, Füchtbauer EM, Nielsen LB, Christoffersen C. Kidney derived apolipoprotein M and its role in acute kidney injury. Front Pharmacol 2024; 15:1328259. [PMID: 38313311 PMCID: PMC10834784 DOI: 10.3389/fphar.2024.1328259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Aim: Apolipoprotein M (apoM) is mainly expressed in liver and in proximal tubular epithelial cells in the kidney. In plasma, apoM associates with HDL particles via a retained signal peptide and carries sphingosine-1-phosphate (S1P), a small bioactive lipid. ApoM is undetectable in urine from healthy individuals but lack of megalin receptors in proximal tubuli cells induces loss of apoM into the urine. Besides this, very little is known about kidney-derived apoM. The aim of this study was to address the role of apoM in kidney biology and in acute kidney injury. Methods: A novel kidney-specific human apoM transgenic mouse model (RPTEC-hapoMTG) was generated and subjected to either cisplatin or ischemia/reperfusion injury. Further, a stable transfection of HK-2 cells overexpressing human apoM (HK-2-hapoMTG) was developed to study the pattern of apoM secretion in proximal tubuli cells. Results: Human apoM was present in plasma from RPTEC-hapoMTG mice (mean 0.18 μM), with a significant increase in plasma S1P levels. In vitro apoM was secreted to both the apical (urine) and basolateral (blood) compartment from proximal tubular epithelial cells. However, no differences in kidney injury score was seen between RPTEC-hapoMTG and wild type (WT) mice upon kidney injury. Further, gene expression of inflammatory markers (i.e., IL6, MCP-1) was similar upon ischemia/reperfusion injury. Conclusion: Our study suggests that kidney-derived apoM is secreted to plasma, supporting a role for apoM in sequestering molecules from excretion in urine. However, overexpression of human apoM in the kidney did not protect against acute kidney injury.
Collapse
Affiliation(s)
- Line S. Bisgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille M. Christensen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeongah Oh
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Lars Bo Nielsen
- The Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Shen L, Liu J, Luo A, Wang S. The stromal microenvironment and ovarian aging: mechanisms and therapeutic opportunities. J Ovarian Res 2023; 16:237. [PMID: 38093329 PMCID: PMC10717903 DOI: 10.1186/s13048-023-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
For decades, most studies of ovarian aging have focused on its functional units, known as follicles, which include oocytes and granulosa cells. However, in the ovarian stroma, there are a variety of somatic components that bridge the gap between general aging and ovarian senescence. Physiologically, general cell types, microvascular structures, extracellular matrix, and intercellular molecules affect folliculogenesis and corpus luteum physiology alongside the ovarian cycle. As a result of damage caused by age-related metabolite accumulation and external insults, the microenvironment of stromal cells is progressively remodeled, thus inevitably perturbing ovarian physiology. With the established platforms for follicle cryopreservation and in vitro maturation and the development of organoid research, it is desirable to develop strategies to improve the microenvironment of the follicle by targeting the perifollicular environment. In this review, we summarize the role of stromal components in ovarian aging, describing their age-related alterations and associated effects. Moreover, we list some potential techniques that may mitigate ovarian aging based on their effect on the stromal microenvironment.
Collapse
Affiliation(s)
- Lu Shen
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junfeng Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Kurano M, Uranbileg B, Yatomi Y. Apolipoprotein M bound sphingosine 1-phosphate suppresses NETosis through activating S1P1 and S1P4. Biomed Pharmacother 2023; 166:115400. [PMID: 37657263 DOI: 10.1016/j.biopha.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The pleiotropic effects of high-density lipoprotein (HDL), including its protective properties against sepsis, are attributed to the sphingosine 1-phosphate and apolipoprotein M (ApoM) that are carried on the lipoproteins. In this study, we attempted to elucidate the possible mechanisms underlying the sepsis coagulopathic state by considering the modulation of NETosis. Our results revealed that in a lipopolysaccharide-induced sepsis mouse model, the levels of NETosis markers, such as plasma DNA and histone, were elevated in ApoM-knockout (KO) mice and attenuated in ApoM-overexpressing mice. In ApoM-KO mice, the survival rate decreased and the occurrence rates of coagulopathy and organ injury increased following the administration of histone. Treatment with a conditioned medium of ApoM-overexpressing cells attenuated the observed NETosis in HL-60S cells that differentiated into neutrophils and were inhibited through the suppression of S1P1 or S1P4. The attenuation of PKCδ and PKCα/β by S1P1 and S1P4 activation may also be involved. In ApoM-overexpressing mice, coagulopathy and organ injuries were attenuated following an injection of histone; these effects were partially inhibited by S1P1, 3, S1P4, or S1P1 antagonists. Furthermore, the exogenous administration of ApoM protected ApoM-KO mice that were challenged with histone from developing NETosis. In conclusion, the ApoM/S1P axis protects against NETosis through the attenuation of PKC activation by S1P1 and S1P4. The development of drugs targeting the ApoM/S1P axis may be beneficial for the treatment of pathological conditions involving uncontrolled NETosis, such as sepsis.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Kurano M, Tsukamoto K, Shimizu T, Hara M, Yatomi Y. Apolipoprotein M/sphingosine 1-phosphate protects against diabetic nephropathy. Transl Res 2023:S1931-5244(23)00024-5. [PMID: 36805561 DOI: 10.1016/j.trsl.2023.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Diabetic nephropathy remains a common cause of end-stage renal failure and its associated mortality around the world. Sphingosine 1-phosphate (S1P) is a multifunctional lipid mediator and binds to HDL via apolipoprotein M (ApoM). Since HDL has been reported to be epidemiologically associated with kidney disease, we attempted to investigate the involvement of the ApoM/S1P axis in the pathogenesis/progression of diabetic nephropathy. In type 2 diabetic patients, the serum ApoM levels were inversely correlated with the clinical stage of diabetic nephropathy. The decline in the eGFR over a 5-year observation period proceeded more rapidly in subjects with lower serum ApoM levels. In a mouse model of streptozotocin-induced diabetes, deletion of ApoM deteriorated the phenotypes of diabetic nephropathy: the urinary albumin and plasma creatinine levels increased, the kidneys enlarged, and renal fibrosis and thickening of the basement membrane progressed. On the other hand, overexpression of ApoM ameliorated these phenotypes. These protective effects of ApoM were partially inhibited by treatment with VPC23019, an antagonist of S1P1 and S1P3, but not by treatment with JTE013, an antagonist of S1P2. ApoM/S1P axis attenuated activation of the Smad3 pathway, while augmented eNOS phosphorylation through the S1P1 pathway. Moreover, ApoM/S1P increased the SIRT1 protein levels and enhanced mitochondrial functions by increasing the S1P content of the cell membrane, which might cause selective activation of S1P1. ApoM might be a useful biomarker for predicting the progression of diabetic nephropathy, and the ApoM/S1P-S1P1 axis might serve as a novel therapeutic target for preventing the development/progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine and 5Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomo Shimizu
- Tsukuba Research Institute, Research & Development Division, Sekisui Medical Co., Ltd., Ibaraki, Japan
| | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine, Kanagawa, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine and 5Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
S1PR1 serves as a viable drug target against pulmonary fibrosis by increasing the integrity of the endothelial barrier of the lung. Acta Pharm Sin B 2022; 13:1110-1127. [PMID: 36970190 PMCID: PMC10031262 DOI: 10.1016/j.apsb.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with unclear etiology and limited treatment options. The median survival time for IPF patients is approximately 2-3 years and there is no effective intervention to treat IPF other than lung transplantation. As important components of lung tissue, endothelial cells (ECs) are associated with pulmonary diseases. However, the role of endothelial dysfunction in pulmonary fibrosis (PF) is incompletely understood. Sphingosine-1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor highly expressed in lung ECs. Its expression is markedly reduced in patients with IPF. Herein, we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin (BLM) challenge. Selective activation of S1PR1 with an S1PR1 agonist, IMMH002, exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier. These results suggest that S1PR1 might be a promising drug target for IPF therapy.
Collapse
|
16
|
Chen Y, Ding BS. Comprehensive Review of the Vascular Niche in Regulating Organ Regeneration and Fibrosis. Stem Cells Transl Med 2022; 11:1135-1142. [PMID: 36169406 DOI: 10.1093/stcltm/szac070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/28/2022] [Indexed: 11/14/2022] Open
Abstract
The vasculature occupies a large area of the body, and none of the physiological activities can be carried out without blood vessels. Blood vessels are not just passive conduits and barriers for delivering blood and nutrients. Meanwhile, endothelial cells covering the vascular lumen establish vascular niches by deploying some growth factors, known as angiocrine factors, and actively participate in the regulation of a variety of physiological processes, such as organ regeneration and fibrosis and the occurrence and development of cancer. After organ injury, vascular endothelial cells regulate the repair process by secreting various angiocrine factors, triggering the proliferation and differentiation process of stem cells. Therefore, analyzing the vascular niche and exploring the factors that maintain vascular homeostasis can provide strong theoretical support for clinical treatment targeting blood vessels. Here we mainly discuss the regulatory mechanisms of the vascular niche in organ regeneration and fibrosis.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
17
|
Spampinato SF, Sortino MA, Salomone S. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:95-139. [PMID: 35659378 DOI: 10.1016/bs.apha.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that binds and activates five distinct receptor subtypes, S1P1, S1P2, S1P3, S1P4, S1P5, widely expressed in different cells, tissues and organs. In the cardiovascular system these receptors have been extensively studied, but no drug acting on them has been approved so far for treating cardiovascular diseases. In contrast, a number of S1P receptor agonists are approved as immunomodulators, mainly for multiple sclerosis, because of their action on lymphocyte trafficking. This chapter summarizes the available information on S1P receptors in the cardiovascular system and discusses their potential for treating cardiovascular conditions and/or their role on the clinical pharmacology of drugs so far approved for non-cardiovascular conditions. Basic research has recently produced data useful to understand the molecular pharmacology of S1P and S1P receptors, regarding biased agonism, S1P storage, release and vehiculation and chaperoning by lipoproteins, paracrine actions, intracellular non-receptorial S1P actions. On the other hand, the approval of fingolimod and newer generation S1P receptor ligands as immunomodulators, provides information on a number of clinical observations on the impact of these drugs on cardiovascular system which need to be integrated with preclinical data. S1P receptors are potential targets for prevention and treatment of major cardiovascular conditions, including hypertension, myocardial infarction, heart failure and stroke.
Collapse
Affiliation(s)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.
| |
Collapse
|
18
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
19
|
Ganfornina MD, Åkerström B, Sanchez D. Editorial: Functional Profile of the Lipocalin Protein Family. Front Physiol 2022; 13:904702. [PMID: 35574442 PMCID: PMC9096435 DOI: 10.3389/fphys.2022.904702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Maria Dolores Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
- *Correspondence: Maria Dolores Ganfornina,
| | - Bo Åkerström
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
20
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
21
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
22
|
Chondronasiou D, Gill D, Mosteiro L, Urdinguio RG, Berenguer‐Llergo A, Aguilera M, Durand S, Aprahamian F, Nirmalathasan N, Abad M, Martin‐Herranz DE, Stephan‐Otto Attolini C, Prats N, Kroemer G, Fraga MF, Reik W, Serrano M. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 2022; 21:e13578. [PMID: 35235716 PMCID: PMC8920440 DOI: 10.1111/acel.13578] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum.
Collapse
Affiliation(s)
- Dafni Chondronasiou
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Diljeet Gill
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
| | | | - Rocio G. Urdinguio
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN CSIC)OviedoSpain
- Health Research Institute of Asturias (ISPA)OviedoSpain
- Institute of Oncology of Asturias (IUOPA)University of OviedoOviedoSpain
- Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- CIBER of Rare Diseases (CIBERER)OviedoSpain
| | - Antonio Berenguer‐Llergo
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Sylvere Durand
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Fanny Aprahamian
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Nitharsshini Nirmalathasan
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
| | - Maria Abad
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Camille Stephan‐Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Guido Kroemer
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéParisFrance
- Inserm U1138Institut Universitaire de FranceParisFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Department of Women's and Children's HealthKarolinska InstituteKarolinska University HospitalStockholmSweden
| | - Mario F. Fraga
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN CSIC)OviedoSpain
- Health Research Institute of Asturias (ISPA)OviedoSpain
- Institute of Oncology of Asturias (IUOPA)University of OviedoOviedoSpain
- Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- CIBER of Rare Diseases (CIBERER)OviedoSpain
| | - Wolf Reik
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Wellcome Trust Sanger InstituteCambridgeUK
- Altos Labs Cambridge InstituteCambridgeUK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
23
|
Zhou Y, Yao S, Yu M, Wei J, Fang Q, Xu N, Luo G. The effects and possible mechanism of action of apolipoprotein M on the growth of breast cancer cells. Mol Biol Rep 2022; 49:1171-1179. [PMID: 34775573 DOI: 10.1007/s11033-021-06945-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND To investigate the effects and mechanism of action of apolipoprotein M (ApoM) on the growth of breast cancer (BC) cells. METHODS AND RESULTS Bioinformatics, cell experiments and animal experiments were used to verify the effect of ApoM on breast cancer cell lines and breast tumor growth in vivo. ApoM expression was significantly reduced in BC tissues, and patients with lower ApoM mRNA expression had a poorer prognosis (P < 0.0001). Besides, ApoM can partially inhibit the proliferative, migratory and invasive processes of BC cells. In vivo, the difference between ApoM-OE and NC groups was no significant. The level of vitamin D receptor (VDR) protein in MDA-MB-231 cells was increased by overexpression of ApoM (P < 0.05), while in MCF-7 cells, VDR levels decreased (P < 0.05). CONCLUSIONS ApoM can partially inhibit the growth of BC cells. VDR may play a role, but is not the main pathway.
Collapse
Affiliation(s)
- Ying Zhou
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Shuang Yao
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Miaomei Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Jiang Wei
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Qi Fang
- Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, 22185, Lund, Sweden
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China.
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
24
|
Knipe RS, Spinney JJ, Abe EA, Probst CK, Franklin A, Logue A, Giacona F, Drummond M, Griffith J, Brazee PL, Hariri LP, Montesi SB, Black KE, Hla T, Kuo A, Cartier A, Engelbrecht E, Christoffersen C, Shea BS, Tager AM, Medoff BD. Endothelial-Specific Loss of Sphingosine-1-Phosphate Receptor 1 Increases Vascular Permeability and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:38-52. [PMID: 34343038 PMCID: PMC8803357 DOI: 10.1165/rcmb.2020-0408oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease which leads to significant morbidity and mortality from respiratory failure. The two drugs currently approved for clinical use slow the rate of decline in lung function but have not been shown to halt disease progression or reverse established fibrosis. Thus, new therapeutic targets are needed. Endothelial injury and the resultant vascular permeability are critical components in the response to tissue injury and are present in patients with IPF. However, it remains unclear how vascular permeability affects lung repair and fibrosis following injury. Lipid mediators such as sphingosine-1-phosphate (S1P) are known to regulate multiple homeostatic processes in the lung including vascular permeability. We demonstrate that endothelial cell-(EC) specific deletion of the S1P receptor 1 (S1PR1) in mice (EC-S1pr1-/-) results in increased lung vascular permeability at baseline. Following a low-dose intratracheal bleomycin challenge, EC-S1pr1-/- mice had increased and persistent vascular permeability compared with wild-type mice, which was strongly correlated with the amount and localization of resulting pulmonary fibrosis. EC-S1pr1-/- mice also had increased immune cell infiltration and activation of the coagulation cascade within the lung. However, increased circulating S1P ligand in ApoM-overexpressing mice was insufficient to protect against bleomycin-induced pulmonary fibrosis. Overall, these data demonstrate that endothelial cell S1PR1 controls vascular permeability in the lung, is associated with changes in immune cell infiltration and extravascular coagulation, and modulates the fibrotic response to lung injury.
Collapse
Affiliation(s)
- Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Jillian J. Spinney
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Elizabeth A. Abe
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Clemens K. Probst
- Boston University School of Medicine, Boston University, Boston, Massachusetts
| | | | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Matt Drummond
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Jason Griffith
- Division of Pulmonary and Critical Care Medicine
- Center for Immunology and Inflammatory Diseases
| | - Patricia L. Brazee
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Lida P. Hariri
- Andrew M. Tager Fibrosis Research Center
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
| | - Katherine E. Black
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andreane Cartier
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric Engelbrecht
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Barry S. Shea
- Division of Pulmonary, Critical Care, and Sleep Medicine, Rhode Island Hospital and Alpert Medical School, Providence, Rhode Island
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| |
Collapse
|
25
|
Bisgaard LS, Christoffersen C. The apoM/S1P Complex-A Mediator in Kidney Biology and Disease? Front Med (Lausanne) 2021; 8:754490. [PMID: 34722589 PMCID: PMC8553247 DOI: 10.3389/fmed.2021.754490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Kidney disease affects more than 10% of the population, can be both acute and chronic, and is linked to other diseases such as cardiovascular disease, diabetes, and sepsis. Despite the detrimental consequences for patients, no good treatment options directly targeting the kidney are available. Thus, a better understanding of the pathology and new treatment modalities are required. Accumulating evidence suggests that the apolipoprotein M/sphingosine-1-phosphate (apoM/S1P) axis is a likely drug target, but significant gaps in our knowledge remain. In this review, we present what has so far been elucidated about the role of apoM in normal kidney biology and describe how changes in the apoM/S1P axis are thought to affect the development of kidney disease. ApoM is primarily produced in the liver and kidneys. From the liver, apoM is secreted into circulation, where it is attached to lipoproteins (primarily HDL). Importantly, apoM is a carrier of the bioactive lipid S1P. S1P acts by binding to five different receptors. Together, apoM/S1P plays a role in several biological mechanisms, such as inflammation, endothelial cell permeability, and lipid turnover. In the kidney, apoM is primarily expressed in the proximal tubular cells. S1P can be produced locally in the kidney, and several of the five S1P receptors are present in the kidney. The functional role of kidney-derived apoM as well as plasma-derived apoM is far from elucidated and will be discussed based on both experimental and clinical studies. In summary, the current studies provide evidence that support a role for the apoM/S1P axis in kidney disease; however, additional pre-clinical and clinical studies are needed to reveal the mechanisms and target potential in the treatment of patients.
Collapse
Affiliation(s)
- Line S Bisgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Kon V, Yang HC, Smith LE, Vickers KC, Linton MF. High-Density Lipoproteins in Kidney Disease. Int J Mol Sci 2021; 22:ijms22158201. [PMID: 34360965 PMCID: PMC8348850 DOI: 10.3390/ijms22158201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of epidemiological studies have established the strong inverse relationship between high-density lipoprotein (HDL)-cholesterol concentration and cardiovascular disease. Recent evidence suggests that HDL particle functions, including anti-inflammatory and antioxidant functions, and cholesterol efflux capacity may be more strongly associated with cardiovascular disease protection than HDL cholesterol concentration. These HDL functions are also relevant in non-cardiovascular diseases, including acute and chronic kidney disease. This review examines our current understanding of the kidneys’ role in HDL metabolism and homeostasis, and the effect of kidney disease on HDL composition and functionality. Additionally, the roles of HDL particles, proteins, and small RNA cargo on kidney cell function and on the development and progression of both acute and chronic kidney disease are examined. The effect of HDL protein modification by reactive dicarbonyls, including malondialdehyde and isolevuglandin, which form adducts with apolipoprotein A-I and impair proper HDL function in kidney disease, is also explored. Finally, the potential to develop targeted therapies that increase HDL concentration or functionality to improve acute or chronic kidney disease outcomes is discussed.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (V.K.); (H.-C.Y.)
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (V.K.); (H.-C.Y.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Loren E. Smith
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kasey C. Vickers
- Atherosclerosis Research Unit, Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - MacRae F. Linton
- Atherosclerosis Research Unit, Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
27
|
Cheng G, Zheng L. Regulation of the apolipoprotein M signaling pathway: a review. J Recept Signal Transduct Res 2021; 42:285-292. [PMID: 34006168 DOI: 10.1080/10799893.2021.1924203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of in vivo and in vitro factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.
Collapse
Affiliation(s)
- Gangli Cheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
28
|
Wang Y, Tang N. The diversity of adult lung epithelial stem cells and their niche in homeostasis and regeneration. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2045-2059. [PMID: 33948870 DOI: 10.1007/s11427-020-1902-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023]
Abstract
The adult lung, a workhorse for gas exchange, is continually subjected to a barrage of assaults from the inhaled particles and pathogens. Hence, homeostatic maintenance is of paramount importance. Epithelial stem cells interact with their particular niche in the adult lung to orchestrate both natural tissue rejuvenation and robust post-injury regeneration. Advances in single-cell sequencing, lineage tracing, and living tissue imaging have deepened our understanding about stem cell heterogeneities, transition states, and specific cell lineage markers. In this review, we provided an overview of the known stem/progenitor cells and their subpopulations in different regions of the adult lung, and explored the regulatory networks in stem cells and their respective niche which collectively coordinated stem cell quiescence and regeneration states. We finally discussed relationships between dysregulated stem cell function and lung disease.
Collapse
Affiliation(s)
- Yanxiao Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
29
|
Suvarna K, Biswas D, Pai MGJ, Acharjee A, Bankar R, Palanivel V, Salkar A, Verma A, Mukherjee A, Choudhury M, Ghantasala S, Ghosh S, Singh A, Banerjee A, Badaya A, Bihani S, Loya G, Mantri K, Burli A, Roy J, Srivastava A, Agrawal S, Shrivastav O, Shastri J, Srivastava S. Proteomics and Machine Learning Approaches Reveal a Set of Prognostic Markers for COVID-19 Severity With Drug Repurposing Potential. Front Physiol 2021; 12:652799. [PMID: 33995121 PMCID: PMC8120435 DOI: 10.3389/fphys.2021.652799] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
The pestilential pathogen SARS-CoV-2 has led to a seemingly ceaseless pandemic of COVID-19. The healthcare sector is under a tremendous burden, thus necessitating the prognosis of COVID-19 severity. This in-depth study of plasma proteome alteration provides insights into the host physiological response towards the infection and also reveals the potential prognostic markers of the disease. Using label-free quantitative proteomics, we performed deep plasma proteome analysis in a cohort of 71 patients (20 COVID-19 negative, 18 COVID-19 non-severe, and 33 severe) to understand the disease dynamics. Of the 1200 proteins detected in the patient plasma, 38 proteins were identified to be differentially expressed between non-severe and severe groups. The altered plasma proteome revealed significant dysregulation in the pathways related to peptidase activity, regulated exocytosis, blood coagulation, complement activation, leukocyte activation involved in immune response, and response to glucocorticoid biological processes in severe cases of SARS-CoV-2 infection. Furthermore, we employed supervised machine learning (ML) approaches using a linear support vector machine model to identify the classifiers of patients with non-severe and severe COVID-19. The model used a selected panel of 20 proteins and classified the samples based on the severity with a classification accuracy of 0.84. Putative biomarkers such as angiotensinogen and SERPING1 and ML-derived classifiers including the apolipoprotein B, SERPINA3, and fibrinogen gamma chain were validated by targeted mass spectrometry-based multiple reaction monitoring (MRM) assays. We also employed an in silico screening approach against the identified target proteins for the therapeutic management of COVID-19. We shortlisted two FDA-approved drugs, namely, selinexor and ponatinib, which showed the potential of being repurposed for COVID-19 therapeutics. Overall, this is the first most comprehensive plasma proteome investigation of COVID-19 patients from the Indian population, and provides a set of potential biomarkers for the disease severity progression and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Kruthi Suvarna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Medha Gayathri J. Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Arup Acharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Renuka Bankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Viswanthram Palanivel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akanksha Salkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ayushi Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amrita Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Manisha Choudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Susmita Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Avinash Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Apoorva Badaya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Surbhi Bihani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Gaurish Loya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Krishi Mantri
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ananya Burli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jyotirmoy Roy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Alisha Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Genetics, University of Delhi, New Delhi, India
| | - Sachee Agrawal
- Kasturba Hospital for Infectious Diseases, Mumbai, India
| | - Om Shrivastav
- Kasturba Hospital for Infectious Diseases, Mumbai, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
30
|
Engelbrecht E, MacRae CA, Hla T. Lysolipids in Vascular Development, Biology, and Disease. Arterioscler Thromb Vasc Biol 2020; 41:564-584. [PMID: 33327749 DOI: 10.1161/atvbaha.120.305565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Membrane phospholipid metabolism forms lysophospholipids, which possess unique biochemical and biophysical properties that influence membrane structure and dynamics. However, lysophospholipids also function as ligands for G-protein-coupled receptors that influence embryonic development, postnatal physiology, and disease. The 2 most well-studied species-lysophosphatidic acid and S1P (sphingosine 1-phosphate)-are particularly relevant to vascular development, physiology, and cardiovascular diseases. This review summarizes the role of lysophosphatidic acid and S1P in vascular developmental processes, endothelial cell biology, and their roles in cardiovascular disease processes. In addition, we also point out the apparent connections between lysophospholipid biology and the Wnt (int/wingless family) pathway, an evolutionarily conserved fundamental developmental signaling system. The discovery that components of the lysophospholipid signaling system are key genetic determinants of cardiovascular disease has warranted current and future research in this field. As pharmacological approaches to modulate lysophospholipid signaling have entered the clinical sphere, new findings in this field promise to influence novel therapeutic strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| | - Calum A MacRae
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Department of Medicine (C.A.M.), Harvard Medical School, Boston, MA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Thannickal VJ. Elixir of Youth: Lipid Signaling Chaperones Synthesized in the Liver. Dev Cell 2020; 53:625-626. [PMID: 32574591 DOI: 10.1016/j.devcel.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Organ fibrosis represents a default tissue program activated when regenerative capacity is limited. In this issue of Developmental Cell, Ding et al. identify a lipid signaling pathway involving the liver synthesized chaperone ApoM as a circulating pro-regenerative mediator that is deficient in aging and mitigates fibrosis in distant organs.
Collapse
Affiliation(s)
- Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|