1
|
Chen J, Yang X, Jia S, Zhang S, Wang Y. Identification and characterization of tubulin as Ga(III)-binding protein in T24 cells. J Pharm Biomed Anal 2025; 261:116842. [PMID: 40164057 DOI: 10.1016/j.jpba.2025.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Gallium-based metallic drugs and agents have been widely applied for the diagnosis and treatment of diseases such as non-Hodgkin's lymphoma (NHL), but there are few reports on the potential Ga(III)-binding proteins and the related cytotoxic mechanisms for Ga(III). Herein, by using human urinary bladder cancer T24 cells as a model, we identify and report that tubulin is a Ga(III)-binding protein target in T24 cells. Our analyses, including the employment of a series of methods based on immobilized metal affinity chromatography (IMAC), cellular thermal shift assay (CETSA), and immunofluorescence experiments, collectively explained this finding. Our results suggest that the binding of Ga(III) to tubulin led to significant changes in the morphology and distribution of microtubules in cells. The blocked microtubule formation or microtubule depolymerization as a result of the binding of Ga(III) to tubulin may be an important molecular mechanism by which Ga(III) exerts its cytotoxic effects in T24 cells to inhibit tumor cell growth.
Collapse
Affiliation(s)
- Junxin Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xue Yang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shuaile Jia
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| |
Collapse
|
2
|
Skorentseva KV, Bolshakov FV, Saidova AA, Lavrov AI. Microtubule organization and tubulin post-translational modifications in intact tissues and during regeneration in calcareous sponges. Cell Tissue Res 2025; 400:365-381. [PMID: 40042682 DOI: 10.1007/s00441-025-03960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Microtubules are the principal cytoskeletal component in cells, integral to various morphogenetic processes in Metazoa, including cell migration, adhesion, and polarity. Their dynamics and functions are modulated by tubulin post-translational modifications (PTMs). While studies on model species have provided insights into microtubule functions, understanding their evolutionary aspects necessitates exploring non-model organisms. Sponges (phylum Porifera) are an early-branching metazoan group with outstanding regenerative capacities. This research presents the first comprehensive analysis of microtubule organization and tubulin PTMs in calcareous sponges. The intact sponge cells show various but typical types of microtubule organization, while detected tubulin PTMs are associated with certain cell types, indicating specific functions in particular cellular contexts. During regeneration, relying on the coordinated movement of epithelial-like cell sheets, microtubule networks in exopinacocytes and choanocytes undergo significant reorganization. These rearranged microtubules potentially stabilize cellular migration direction and facilitate cargo transport, essential for cell contact and polarity establishment. This study enhances our understanding of microtubule functionality and regulation in early-diverging metazoans, contributing to the broader evolutionary context of cytoskeletal dynamics.
Collapse
Affiliation(s)
- Kseniia V Skorentseva
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Fyodor V Bolshakov
- Biological Faculty, Pertsov White Sea Biological Station, Lomonosov Moscow State University, Moscow, Russia
| | - Aleena A Saidova
- Biology Department, Shenzhen MSU-BIT University, Shenzhen, China.
| | - Andrey I Lavrov
- Biological Faculty, Pertsov White Sea Biological Station, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Liao Y, Shinde VD, Hu D, Xu Z, Söderström B, Michie KA, Duggin IG. Cell division protein CdpA organises and anchors the midcell ring in haloarchaea. Nat Commun 2025; 16:5076. [PMID: 40450033 DOI: 10.1038/s41467-025-60079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 05/12/2025] [Indexed: 06/03/2025] Open
Abstract
Many archaea appear to divide through the coordinated activities of two FtsZ homologues (FtsZ1 and FtsZ2) and another bacterial cell division homologue (SepF), which are part of the midcell division ring. Here, we identify an additional protein (HVO_0739, renamed CdpA) that is involved in cell division in Haloferax volcanii, with homologues in other Haloarchaea. CdpA localises at the midcell division ring, and this requires the presence of the ring-assembly protein FtsZ1. The division constriction protein FtsZ2 also influences the proper midcell assembly and structure of CdpA. In the absence of CdpA, cells frequently fail to divide properly, and FtsZ1 formed poorly condensed pseudo-helical structures spanning across a broad region of the cell, whereas FtsZ2 showed mispositioned foci, nano-rings, and filaments. The rate of directional movement of FtsZ1 and FtsZ2 structures around the division ring appears minimally affected by loss of CdpA, which resulted in continual repositioning of the aberrant FtsZ structures in the cells. In contrast to the FtsZ proteins, CdpA formed relatively immobile foci around the ring. Protein domain function studies, pull-down assays, and multimer structure predictions suggest that CdpA is part of a membrane complex that tethers FtsZ2 and other division proteins to the midcell membrane. Our discovery of an archaeal FtsZ organisation and midcell anchor protein offers new insights into cell division mechanisms that are similar across the tree of life.
Collapse
Affiliation(s)
- Yan Liao
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia.
| | - Vinaya D Shinde
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Dalong Hu
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
- Saw SweeHock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Zhuang Xu
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Katharine A Michie
- Structural Biology Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, Australia
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Inaba H, Kageyama D, Watari S, Tateishi M, Kakugo A, Matsuura K. Peptide-mediated display of Tau-derived peptide for construction of microtubule superstructures. RSC Chem Biol 2025; 6:737-745. [PMID: 40162136 PMCID: PMC11951922 DOI: 10.1039/d4cb00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Microtubules are major cytoskeletons involved in various cellular functions, such as regulating cell shape and division and cargo transport via motor proteins. In addition to widely studied singlet microtubules, complex microtubule superstructures, including doublets and bundles, provide unique mechanical and functional properties in vivo. However, a method to construct such superstructures in vitro remains unresolved. This study presents a peptide-based approach for constructing microtubule superstructures by displaying Tau-derived peptides (TP) on the outer surface of microtubules using KA7 peptides as binding units. The KA7-connected TP (KA7-TP) bound to the C-terminal tail on the outer surface of microtubules and induced doublets and bundles by recruiting tubulin. Notably, the outer layers of the doublet microtubules generated by KA7-TP dissociated, highlighting the utility of this approach for studying the formation/dissociation mechanisms of microtubule superstructures. The simple peptide-based approach facilitates our understanding of microtubule superstructures and offers new opportunities for applying microtubule superstructures to nanotechnology.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry, Tottori University Tottori 680-8552 Japan
| | - Daichi Kageyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University Tottori 680-8552 Japan
| | - Soei Watari
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University Tottori 680-8552 Japan
| | - Mahoko Tateishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University Tottori 680-8552 Japan
| | - Akira Kakugo
- Department of Physics, Graduate School of Science, Kyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry, Tottori University Tottori 680-8552 Japan
| |
Collapse
|
5
|
Chen C, Wang J, Zhu X, Zhang S, Yuan X, Hu J, Liu C, Liu L, Zhang Z, Li J. Lactylation as a metabolic epigenetic modification: Mechanistic insights and regulatory pathways from cells to organs and diseases. Metabolism 2025; 169:156289. [PMID: 40324589 DOI: 10.1016/j.metabol.2025.156289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/20/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
In recent years, lactylation, a novel post-translational modification, has demonstrated a unique role in bridging cellular metabolism and epigenetic regulation. This modification exerts a dual-edged effect in both cancer and non-cancer diseases by dynamically integrating the supply of metabolic substrates and the activity of modifying enzymes: on one hand, it promotes tissue homeostasis and repair through the activation of repair genes; on the other, it exacerbates pathological progression by driving malignant phenotypes. In the field of oncology, lactylation regulates key processes such as metabolic reprogramming, immune evasion, and therapeutic resistance, thereby shaping the heterogeneity of the tumor microenvironment. In non-cancerous diseases, including neurodegeneration and cardiovascular disorders, its aberrant activation can lead to mitochondrial dysfunction, fibrosis, and chronic inflammation. Existing studies have revealed a dynamic regulatory network formed by the cooperation of modifying and demodifying enzymes, and have identified mechanisms such as subcellular localization and RNA metabolism intervention that influence disease progression. Nevertheless, several challenges remain in the field. This article comprehensively summarizes the disease-specific regulatory mechanisms of lactylation, with the aim of providing a theoretical foundation for its targeted therapeutic application.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100096, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhenpeng Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
6
|
Gomes Paim LM, Bechstedt S. Regulation of microtubule growth rates and their impact on chromosomal instability. Cell Cycle 2025:1-20. [PMID: 40260826 DOI: 10.1080/15384101.2025.2485842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 04/24/2025] Open
Abstract
Microtubules are polymers of α/β tubulin dimers that build the mitotic spindle, which segregates duplicated chromosomes during cell division. Microtubule function is governed by dynamic instability, whereby cycles of growth and shrinkage contribute to the forces necessary for chromosome movement. Regulation of microtubule growth velocity requires cell cycle-dependent changes in expression, localization and activity of microtubule-associated proteins (MAPs) as well as tubulin post-translational modifications that modulate microtubule dynamics. It has become clear that optimal microtubule growth velocities are required for proper chromosome segregation and ploidy maintenance. Suboptimal microtubule growth rates can result from altered activity of MAPs and could lead to aneuploidy, possibly by disrupting the establishment of microtubule bundles at kinetochores and altering the mechanical forces required for sister chromatid segregation. Future work using high-resolution, low-phototoxicity microscopy and novel fluorescent markers will be invaluable in obtaining deeper mechanistic insights into how microtubule processes contribute to chromosome segregation.
Collapse
Affiliation(s)
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, Canada
| |
Collapse
|
7
|
MacTaggart B, Wang J, Tang HY, Kashina A. Arginylation of ⍺-tubulin at E77 regulates microtubule dynamics via MAP1S. J Cell Biol 2025; 224:e202406099. [PMID: 39852692 PMCID: PMC11775831 DOI: 10.1083/jcb.202406099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/26/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Arginylation is the posttranslational addition of arginine to a protein by arginyltransferase-1 (ATE1). Previous studies have found that ATE1 targets multiple cytoskeletal proteins, and Ate1 deletion causes cytoskeletal defects, including reduced cell motility and adhesion. Some of these defects have been linked to actin arginylation, but the role of other arginylated cytoskeletal proteins has not been studied. Here, we characterize tubulin arginylation and its role in the microtubule cytoskeleton. We identify ATE1-dependent arginylation of ⍺-tubulin at E77. Ate1-/- cells and cells overexpressing non-arginylatable ⍺-tubulinE77A both show a reduced microtubule growth rate and increased microtubule stability. Additionally, they show an increase in the fraction of the stabilizing protein MAP1S associated with microtubules, suggesting that E77 arginylation directly regulates MAP1S binding. Knockdown of Map1s is sufficient to rescue microtubule growth rate and stability to wild-type levels. Together, these results demonstrate a new type of tubulin regulation by posttranslational arginylation, which modulates microtubule growth rate and stability through the microtubule-associated protein, MAP1S.
Collapse
Affiliation(s)
- Brittany MacTaggart
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Junling Wang
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, Wistar Institute, Philadelphia, PA, USA
| | - Anna Kashina
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Shen Y, Maxson R, McKenney RJ, Ori-McKenney KM. Microtubule acetylation is a biomarker of cytoplasmic health during cellular senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646469. [PMID: 40236247 PMCID: PMC11996481 DOI: 10.1101/2025.03.31.646469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cellular senescence is marked by cytoskeletal dysfunction, yet the role of microtubule post-translational modifications (PTMs) remains unclear. We demonstrate that microtubule acetylation increases during drug-induced senescence in human cells and during natural aging in Drosophila . Elevating acetylation via HDAC6 inhibition or α TAT1 overexpression in BEAS-2B cells disrupts anterograde Rab6A vesicle transport, but spares retrograde transport of Rab5 endosomes. Hyperacetylation results in slowed microtubule polymerization and decreased cytoplasmic fluidity, impeding diffusion of micron-sized condensates. These effects are distinct from enhanced detyrosination, and correlate with altered viscoelasticity and resistance to osmotic stress. Modulating cytoplasmic viscosity reciprocally perturbs microtubule dynamics, revealing bidirectional mechanical regulation. Senescent cells phenocopy hyperacetylated cells, exhibiting analogous effects on transport and microtubule polymerization. Our findings establish acetylation as a biomarker for cytoplasmic health and a potential driver of age-related cytoplasmic densification and organelle transport decline, linking microtubule PTMs to biomechanical feedback loops that exacerbate senescence. This work highlights the role of acetylation in bridging cytoskeletal changes to broader aging hallmarks.
Collapse
|
9
|
Basu J, Soni A, Athale CA. Physical effects of crowdant size and concentration on collective microtubule polymerization. Biophys J 2025; 124:789-806. [PMID: 39885688 PMCID: PMC11897549 DOI: 10.1016/j.bpj.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
The polymerization of cytoskeletal filaments is regulated by both biochemical pathways, as well as physical factors such as crowding. The effect of crowding in vivo emerges from the density of intracellular components. Due to the complexity of the intracellular environment, most studies are based on either in vitro reconstitution or theory. Crowding agent (crowdants) size has been shown to influence polymerization of both actin and microtubules (MTs). Previously, the elongation rates of MT dynamics observed at single filament scale were reported to decrease with increasing concentrations of small but not large crowdants, and this correlated with in vivo viscosity increases. However, the exact nature of the connection between viscosity, crowdant size, nucleation, and MT elongation has remained unclear. Here, we use in vitro reconstitution of bulk MT polymerization kinetics and microscopy to examine the collective effect of crowdant molecular weight, volume occupancy, and viscosity on elongation and spontaneous polymerization. We find MT elongation rates obtained from bulk polymerization decrease in the presence of multiple low-molecular weight (LMW) crowdants, while increasing with high-molecular weight (HMW) crowdants. Lattice Monte Carlo simulations of an effective model of collective polymerization demonstrate reduced polymerization rates arise due to decrease in monomer diffusion due to small-sized crowdants. However, MT polymerization in the absence of nucleators, de novo, shows a crowdant size independence of polymerization rate and critical concentration, depending solely on concentration of the crowdant. In microscopy, we find LMW crowdants result in short but many filaments, while HMW crowdants increase filament density, but have little effect on lengths. The effect of crowdant volume fraction ϕC and size in de novo polymerization match simulations, demonstrating crowdants affect elongation independent of nucleation. Thus, the effect of viscosity on collective MT dynamics, i.e., filament numbers and lengths, shows crowdant size dependence for elongation, but independence for de novo polymerization.
Collapse
Affiliation(s)
- Jashaswi Basu
- Division of Biology, IISER Pune, Pashan, Pune, India
| | - Aman Soni
- Division of Biology, IISER Pune, Pashan, Pune, India
| | | |
Collapse
|
10
|
Thomas EC, Moore JK. Selective regulation of kinesin-5 function by β-tubulin carboxy-terminal tails. J Cell Biol 2025; 224:e202405115. [PMID: 39688542 DOI: 10.1083/jcb.202405115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The tubulin code hypothesis predicts that tubulin tails create programs for selective regulation of microtubule-binding proteins, including kinesin motors. However, the molecular mechanisms that determine selective regulation and their relevance in cells are poorly understood. We report selective regulation of budding yeast kinesin-5 motors by the β-tubulin tail. Cin8, but not Kip1, requires the β-tubulin tail for recruitment to the mitotic spindle, creating a balance of both motors in the spindle and efficient mitotic progression. We identify a negatively charged patch in the β-tubulin tail that mediates interaction with Cin8. Using in vitro reconstitution with genetically modified yeast tubulin, we demonstrate that the charged patch of β-tubulin tail increases Cin8 plus-end-directed velocity and processivity. Finally, we determine that the positively charged amino-terminal extension of Cin8 coordinates interactions with the β-tubulin tail. Our work identifies a molecular mechanism underlying selective regulation of closely related kinesin motors by tubulin tails and how this regulation promotes proper function of the mitotic spindle.
Collapse
Affiliation(s)
- Ezekiel C Thomas
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Planelles-Herrero VJ, Genova M, Krüger LK, Bittleston A, McNally KE, Morgan TE, Degliesposti G, Magiera MM, Janke C, Derivery E. Elongator is a microtubule polymerase selective for polyglutamylated tubulin. EMBO J 2025; 44:1322-1353. [PMID: 39815006 PMCID: PMC11876699 DOI: 10.1038/s44318-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Elongator is a tRNA-modifying complex that regulates protein translation. Recently, a moonlighting function of Elongator has been identified in regulating the polarization of the microtubule cytoskeleton during asymmetric cell division. Elongator induces symmetry breaking of the anaphase midzone by selectively stabilizing microtubules on one side of the spindle, contributing to the downstream polarized segregation of cell-fate determinants, and therefore to cell fate determination. Here, we investigate how Elongator controls microtubule dynamics. Elongator binds both to the tip of microtubules and to free GTP-tubulin heterodimers using two different subcomplexes, Elp123 and Elp456, respectively. We show that these activities must be coupled for Elongator to decrease the tubulin critical concentration for microtubule elongation. As a consequence, Elongator increases the growth speed and decreases the catastrophe rate of microtubules. Surprisingly, the Elp456 subcomplex binds to tubulin tails and has strong selectivity towards polyglutamylated tubulin. Hence, microtubules assembled by Elongator become selectively enriched with polyglutamylated tubulin, as observed in vitro, in mouse and Drosophila cell lines, as well as in vivo in Drosophila Sensory Organ Precursor cells. Therefore, Elongator rewrites the tubulin code of growing microtubules, placing it at the core of cytoskeletal dynamics and polarization during asymmetric cell division.
Collapse
Affiliation(s)
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Lara K Krüger
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Alice Bittleston
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Kerrie E McNally
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Tomos E Morgan
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Gianluca Degliesposti
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Emmanuel Derivery
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
12
|
Simoes-da-Silva MM, Barisic M. How does the tubulin code facilitate directed cell migration? Biochem Soc Trans 2025; 53:BST20240841. [PMID: 39998313 DOI: 10.1042/bst20240841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Besides being a component of the cytoskeleton that provides structural integrity to the cell, microtubules also serve as tracks for intracellular transport. As the building units of the mitotic spindle, microtubules distribute chromosomes during cell division. By distributing organelles, vesicles, and proteins, they play a pivotal role in diverse cellular processes, including cell migration, during which they reorganize to facilitate cell polarization. Structurally, microtubules are built up of α/β-tubulin dimers, which consist of various tubulin isotypes that undergo multiple post-translational modifications (PTMs). These PTMs allow microtubules to differentiate into functional subsets, influencing the associated processes. This text explores the current understanding of the roles of tubulin PTMs in cell migration, particularly detyrosination and acetylation, and their implications in human diseases.
Collapse
Affiliation(s)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Sébastien M, Paquette AL, Prowse ENP, Hendricks AG, Brouhard GJ. Doublecortin restricts neuronal branching by regulating tubulin polyglutamylation. Nat Commun 2025; 16:1749. [PMID: 39966472 PMCID: PMC11836384 DOI: 10.1038/s41467-025-56951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Doublecortin is a neuronal microtubule-associated protein that regulates microtubule structure in neurons. Mutations in Doublecortin cause lissencephaly and subcortical band heterotopia by impairing neuronal migration. We use CRISPR/Cas9 to knock-out the Doublecortin gene in induced pluripotent stem cells and differentiate the cells into cortical neurons. DCX-KO neurons show reduced velocities of nuclear movements and an increased number of neurites early in neuronal development, consistent with previous findings. Neurite branching is regulated by a host of microtubule-associated proteins, as well as by microtubule polymerization dynamics. However, EB comet dynamics are unchanged in DCX-KO neurons. Rather, we observe a significant reduction in α-tubulin polyglutamylation in DCX-KO neurons. Polyglutamylation levels and neuronal branching are rescued by expression of Doublecortin or of TTLL11, an α-tubulin glutamylase. Using U2OS cells as an orthogonal model system, we show that DCX and TTLL11 act synergistically to promote polyglutamylation. We propose that Doublecortin acts as a positive regulator of α-tubulin polyglutamylation and restricts neurite branching. Our results indicate an unexpected role for Doublecortin in the homeostasis of the tubulin code.
Collapse
Affiliation(s)
- Muriel Sébastien
- Department of Biology, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | | | - Emily N P Prowse
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
14
|
Huang W, Djebali K, Cho KY, Gardner K, Fasano A, Meng D, Walker WA. Synergism between TLR4 and B. infantis in the development of the premature intestine. Pediatr Res 2025:10.1038/s41390-024-03676-5. [PMID: 39939519 DOI: 10.1038/s41390-024-03676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Intestinal microbiota has a role in early life maturation including maturation of intestinal immune function. However, the interaction of the TLR4 with colonizing bacteria in intestinal development is incompletely understood. METHODS An established human immature small intestinal cell line, human fetal intestinal organoids, and wild-type (WT) and TLR4 gene knockout (TLR4 -/-) neonatal mice were used to test the synergism between the innate immune receptor TLR4 and postbiotics from Bifidobacteria longum subsp. infantis (B. infantis) in development of the premature intestine. RESULTS TLR4-mediated postbiotics induced immature enterocyte proliferation and filamentous actin (F-actin) maturation both at the mRNA and protein levels. Proliferation of mRNA levels increased in wild-type mice but not in TLR4 -/- mice fed by postbiotics, both in the ileum and colon. Postbiotics can also change tight junction distribution in WT neonatal colon but not in TLR4 -/- mice. CONCLUSIONS Our data suggest a novel regulation of intestinal development by a synergistic role of the innate immune receptor TLR4 and early life colonizing bacteria, such as B. infantis. This study should provide new insights into the mechanisms of intestinal maturation as well as opportunities to target novel approaches to NEC prevention and treatment. IMPACT The innate immune system and postbiotics affect immature intestinal development. The innate immune receptor TLR4 prevention of NEC. Mechanism of prevention of NEC. This is the first time this has been demonstrated in human fetal intestine. In vitro process for future clinical studies for prevention of NEC.
Collapse
Affiliation(s)
- Wuyang Huang
- Institute of Agro‑Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
| | - Karim Djebali
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
- Department of Microbial Diseases, Eastman Dental Institute, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Ky Young Cho
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Kimberly Gardner
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
- Howard University, 2400 6th ST NW, Washington, DC, 20059, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA.
| | - Di Meng
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
| |
Collapse
|
15
|
Martí-Carvajal AJ, Gemmato-Valecillos MA, Monge Martín D, De Sanctis JB, Martí-Amarista CE, Hidalgo R, Alegría-Barrero E, Riera Lizardo RJ, Correa-Pérez A. Colchicine for the primary prevention of cardiovascular events. Cochrane Database Syst Rev 2025; 2:CD015003. [PMID: 39927511 PMCID: PMC11808834 DOI: 10.1002/14651858.cd015003.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
BACKGROUND Atherosclerotic cardiovascular diseases (ACVDs), a condition characterised by lipid accumulation in arterial walls, which is often exacerbated by chronic inflammation disorders, is the major cause of mortality and morbidity worldwide. Colchicine, with its first medicinal use in ancient Egypt, is an inexpensive drug with anti-inflammatory properties. However, its role in primary prevention of ACVDs in the general population remains unknown. OBJECTIVES To assess the clinical benefits and harms of colchicine as primary prevention of cardiovascular outcomes in the general population. SEARCH METHODS We searched the Cochrane Heart Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE (including In-Process & Other Non-Indexed Citations), Ovid Embase, Web of Science, and LILACS. We searched ClinicalTrials.gov and WHO ICTRP for ongoing and unpublished studies. We also scanned the reference lists of relevant included studies, reviews, meta-analyses, and health technology reports to identify additional studies. There were no limitations on language, date of publication, or study setting. The search results were updated on 31 May 2023. SELECTION CRITERIA Randomised controlled trials (RCTs) in any setting, recruiting adults without pre-existing cardiovascular disease. We included trials that compared colchicine versus placebo, non-steroidal anti-inflammatory drugs, corticosteroids, immunomodulating drugs, or usual care. Our primary outcomes were all-cause mortality, non-fatal myocardial infarction, stroke, and adverse events. DATA COLLECTION AND ANALYSIS Two or more review authors independently selected studies, extracted data, and performed risk of bias and GRADE assessments. MAIN RESULTS We identified 15 RCTs (1721 participants randomised; 1412 participants analysed) with follow-up periods ranging from 4 to 728 weeks. The intervention was oral colchicine compared with placebo, immunomodulating drugs, or usual care or no treatment. Due to biases and imprecision, the evidence was very uncertain for all outcomes. All trials but one had a high risk of bias. Five out of seven meta-analyses included fewer than six trials (71.4%). The objectives of the review were to assess cardiovascular outcomes in the general population, but many of the included trials focused on liver disease. Colchicine compared to placebo Colchicine may reduce all-cause mortality compared to placebo in primary prevention, but the evidence is very uncertain (risk ratio (RR) 0.68, 95% confidence interval (CI) 0.51 to 0.91; 6 studies, 463 participants; very low-certainty evidence; number needed to treat for an additional beneficial outcome (NNTB) 11, 95% CI 6 to 67). Colchicine may result in little to no difference in non-fatal myocardial infarction, but the evidence is very uncertain (RR 0.87, 95% CI 0.41 to 1.82; 1 study, 100 participants; very low-certainty evidence). Colchicine may not reduce the incidence of stroke, but the evidence is very uncertain (RR 2.43, 95% CI 0.67 to 8.86; 1 study, 100 participants; very low-certainty evidence). Regarding adverse events, colchicine may increase the incidence of diarrhoea (RR 3.99, 95% CI 1.44 to 11.06; 8 studies, 605 participants; very low-certainty evidence; number needed to treat for an additional harmful outcome (NNTH) 10, 95% CI 6 to 17), and may have little to no effect on neurological outcomes such as seizure or mental confusion (RR 0.72, 95% CI 0.31 to 1.66; 2 studies, 155 participants; very low-certainty evidence), but the evidence is very uncertain. The effect of colchicine on cardiovascular mortality is also very uncertain (RR 1.27, 95% CI 0.03 to 62.43; 2 studies, 160 participants; very low-certainty evidence). Colchicine may not reduce post-cardiac procedure atrial fibrillation, but the evidence is very uncertain (RR 0.74, 95% CI 0.25 to 2.19; 1 study, 100 participants). We found no trials reporting on pericardial effusion, peripheral artery disease, heart failure, or unstable angina. Colchicine compared to methotrexate (immunomodulating drug) Colchicine may result in little to no difference in all-cause mortality compared to methotrexate, but the evidence is very uncertain (RR 0.42, 95% CI 0.12 to 1.51; 1 study, 85 participants; very low-certainty evidence). We found no trials reporting other cardiovascular outcomes or adverse events for this comparison. Colchicine compared to usual care or no treatment The evidence is very uncertain about the effect of colchicine compared with usual care on all-cause mortality in primary prevention (RR 1.07, 95% CI 0.90 to 1.27; 2 studies, 729 participants; very low-certainty evidence). Regarding adverse events, colchicine may increase the incidence of diarrhoea compared to usual care, but the evidence is very uncertain (RR 3.32, 95% CI 1.56 to 7.03; 2 studies, 729 participants; very low-certainty evidence; NNTH 18, 95% CI 12 to 42). No trials reported other cardiovascular outcomes for this comparison. AUTHORS' CONCLUSIONS This Cochrane review evaluated the clinical benefits and harms of using colchicine for the primary prevention of cardiovascular events in the general population. Comparisons were made against placebo, immunomodulating medications, or usual care or no treatment. However, the certainty of the evidence for the predefined outcomes was very low, highlighting the pressing need for high-quality, rigorous studies to ascertain colchicine's clinical impact definitively. We identified numerous biases and inaccuracies in the included studies, limiting their generalisability and precluding a conclusive determination of colchicine's efficacy in preventing cardiovascular events. The existing evidence regarding colchicine's potential cardiovascular benefits or harms for primary prevention is inconclusive owing to the limitations inherent in the current studies. More robust clinical trials are needed to bridge this evidence gap effectively.
Collapse
Affiliation(s)
- Arturo J Martí-Carvajal
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador, Universidad UTE, Quito, Ecuador
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
- Cátedra Rectoral de Medicina Basada en la Evidencia, Universidad de Carabobo, Valencia, Venezuela
| | - Mario A Gemmato-Valecillos
- Department of Medicine, NYC Health + Hospitals / Elmhurst, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Juan Bautista De Sanctis
- The Institute of Molecular and Translational Medicine, Palacky University Olomouc, Faculty of Medicine and Dentistry, Olomouc, Czech Republic
| | | | - Ricardo Hidalgo
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador., Universidad UTE, Quito, Ecuador
| | | | - Ricardo J Riera Lizardo
- Cátedra Rectoral de Medicina Basada en la Evidencia, Universidad de Carabobo, Valencia, Venezuela
- Medicine Department, Rheumatology Unit, Universidad de Carabobo, Valencia, Venezuela
| | - Andrea Correa-Pérez
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
- Department of Hospital Pharmacy and Medical Devices, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| |
Collapse
|
16
|
Chew YM, Cross RA. Structural switching of tubulin in the microtubule lattice. Biochem Soc Trans 2025; 53:BST20240360. [PMID: 39910801 DOI: 10.1042/bst20240360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Microtubule (MT) dynamic instability, a cycle of growth, catastrophe, shrinkage and rescue, is driven by the switching of tubulin between two structural states, one stabilised by GTP and the other by GDP. Recent work has uncovered the ancient origins of this structural switch and revealed further fundamental elements of microtubule dynamic instability, whereby switching can be brought about by a range of allosteric effectors, propagate deep within the lattice of assembled MTs, and profoundly affect MT function. Here, we review evidence for structural switching within the MT lattice and discuss current ideas about its mechanisms.
Collapse
Affiliation(s)
- Yean-Ming Chew
- Centre for Mechanochemical Cell Biology, University of Warwick, Warwick Medical School, Coventry CV4 7LA, U.K
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, University of Warwick, Warwick Medical School, Coventry CV4 7LA, U.K
| |
Collapse
|
17
|
Corrales RM, Vincent J, Crobu L, Neish R, Nepal B, Espeut J, Pasquier G, Gillard G, Cazevieille C, Mottram JC, Wetzel DM, Sterkers Y, Rogowski K, Lévêque MF. Tubulin detyrosination shapes Leishmania cytoskeletal architecture and virulence. Proc Natl Acad Sci U S A 2025; 122:e2415296122. [PMID: 39808657 PMCID: PMC11761321 DOI: 10.1073/pnas.2415296122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Tubulin detyrosination has been implicated in various human disorders and is important for regulating microtubule dynamics. While in most organisms this modification is restricted to α-tubulin, in trypanosomatid parasites, it occurs on both α- and β-tubulin. Here, we show that in Leishmania, a single vasohibin (LmVASH) enzyme is responsible for differential kinetics of α- and β-tubulin detyrosination. LmVASH knockout parasites, which are completely devoid of detyrosination, show decreased levels of glutamylation and exhibit a strongly diminished pathogenicity in mice, correlating with decreased proliferation in macrophages. Reduced virulence is associated with altered morphogenesis and flagellum remodeling in detyrosination-deficient amastigotes. Flagellum shortening in the absence of detyrosination is caused by hyperactivity of a microtubule-depolymerizing Kinesin-13 homolog, demonstrating its function as a key reader of the trypanosomatid-tubulin code. Taken together, our work establishes the importance of tubulin detyrosination in remodeling the microtubule-based cytoskeleton required for efficient proliferation in the mammalian host. This highlights tubulin detyrosination as a potential target for therapeutic action against leishmaniasis.
Collapse
Affiliation(s)
- Rosa Milagros Corrales
- Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Jeremy Vincent
- Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Lucien Crobu
- Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Rachel Neish
- York Biomedical Research Institute, Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| | - Binita Nepal
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Julien Espeut
- Tubulin Code team, Institute of Human Genetics, CNRS, Université Montpellier, Montpellier34090, France
| | - Grégoire Pasquier
- Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Ghislain Gillard
- Tubulin Code team, Institute of Human Genetics, CNRS, Université Montpellier, Montpellier34090, France
| | - Chantal Cazevieille
- Université Montpellier, INSERM U1298, Institute for Neurosciences of Montpellier, Montpellier34090, France
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| | - Dawn M. Wetzel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yvon Sterkers
- Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Krzysztof Rogowski
- Tubulin Code team, Institute of Human Genetics, CNRS, Université Montpellier, Montpellier34090, France
| | - Maude F. Lévêque
- Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| |
Collapse
|
18
|
Kennard AS, Velle KB, Ranjan R, Schulz D, Fritz-Laylin LK. Tubulin sequence divergence is associated with the use of distinct microtubule regulators. Curr Biol 2025; 35:233-248.e8. [PMID: 39694029 PMCID: PMC11753955 DOI: 10.1016/j.cub.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Diverse eukaryotic cells assemble microtubule networks that vary in structure and composition. While we understand how cells build microtubule networks with specialized functions, we do not know how microtubule networks diversify across deep evolutionary timescales. This problem has remained unresolved because most organisms use shared pools of tubulins for multiple networks, making it difficult to trace the evolution of any single network. In contrast, the amoeboflagellate Naegleria expresses distinct tubulin genes to build distinct microtubule networks: while Naegleria builds flagella from conserved tubulins during differentiation, it uses divergent tubulins to build its mitotic spindle. This genetic separation makes for an internally controlled system to study independent microtubule networks in a single organismal and genomic context. To explore the evolution of these microtubule networks, we identified conserved microtubule-binding proteins and used transcriptional profiling of mitosis and differentiation to determine which are upregulated during the assembly of each network. Surprisingly, most microtubule-binding proteins are upregulated during only one process, suggesting that Naegleria uses distinct component pools to specialize its microtubule networks. Furthermore, the divergent residues of mitotic tubulins tend to fall within the binding sites of differentiation-specific microtubule regulators, suggesting that interactions between microtubules and their binding proteins constrain tubulin sequence diversification. We therefore propose a model for cytoskeletal evolution in which pools of microtubule network components constrain and guide the diversification of the entire network, so that the evolution of tubulin is inextricably linked to that of its binding partners.
Collapse
Affiliation(s)
- Andrew S Kennard
- Department of Biology and the Howard Hughes Medical Institute, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA
| | - Katrina B Velle
- Department of Biology and the Howard Hughes Medical Institute, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts-Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute of Applied Life Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Danae Schulz
- Department of Biology, Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA
| | - Lillian K Fritz-Laylin
- Department of Biology and the Howard Hughes Medical Institute, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
19
|
de Jager L, Jansen KI, Hoogebeen R, Akhmanova A, Kapitein LC, Förster F, Howes SC. StableMARK-decorated microtubules in cells have expanded lattices. J Cell Biol 2025; 224:e202206143. [PMID: 39387699 PMCID: PMC11471893 DOI: 10.1083/jcb.202206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Microtubules are crucial in cells and are regulated by various mechanisms like posttranslational modifications, microtubule-associated proteins, and tubulin isoforms. Recently, the conformation of the microtubule lattice has also emerged as a potential regulatory factor, but it has remained unclear to what extent different lattices co-exist within the cell. Using cryo-electron tomography, we find that, while most microtubules have a compacted lattice (∼41 Å monomer spacing), approximately a quarter of the microtubules displayed more expanded lattice spacings. The addition of the microtubule-stabilizing agent Taxol increased the lattice spacing of all microtubules, consistent with results on reconstituted microtubules. Furthermore, correlative cryo-light and electron microscopy revealed that the stable subset of microtubules labeled by StableMARK, a marker for stable microtubules, predominantly displayed a more expanded lattice spacing (∼41.9 Å), further suggesting a close connection between lattice expansion and microtubule stability. The coexistence of different lattices and their correlation with stability implicate lattice spacing as an important factor in establishing specific microtubule subsets.
Collapse
Affiliation(s)
- Leanne de Jager
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Klara I. Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Robin Hoogebeen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Stuart C. Howes
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Smaili W, Pezet C, Marlin S, Ernest S. R391 human dominant mutation does not affect TubB4b localization and sensory hair cells structure in zebrafish inner ear and lateral line. Dev Biol 2025; 517:301-316. [PMID: 39515407 DOI: 10.1016/j.ydbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Heterozygous R391 TUBB4B pathogenic variations are responsible for an association of hearing loss and retinal dystrophy in human. With the goal of understanding the functions of TuBB4b and the pathogenic role of R391 variations, we characterized tubB4B in zebrafish and identified the gene regulatory elements necessary and sufficient for expression of TubB4b as in endogenous tissues. Using knock-out and transgenic approaches, we determined that R391 mutations impair neither localization of TubB4B within sensory hair cells (SHC) nor their structure, but induced to a small decrease in SHC number from anterior crista. Expression of R391 mutations in sensory hair cells has no effect on zebrafish audition, suggesting a different equilibrium between various tubulin isotypes in zebrafish possibly due to compensatory mechanisms. The careful expression analysis and transgenic tools generated in this study could help understand how recently described pathogenic variants lead to more severe clinical forms of TUBB4B-related diseases.
Collapse
Affiliation(s)
- Wiam Smaili
- Université Paris Cité, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, F-75015, Paris, France
| | - Camille Pezet
- Université Paris Cité, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, F-75015, Paris, France
| | - Sandrine Marlin
- Université Paris Cité, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, F-75015, Paris, France; Centre de référence des surdités génétiques, Hôpital Necker-Enfants Malades, AP-HP, F-75015, Paris, France
| | - Sylvain Ernest
- Université Paris Cité, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, F-75015, Paris, France.
| |
Collapse
|
21
|
Slivka J, Yildiz A. Multicolor Tracking of Molecular Motors at Nanometer Resolution. Methods Mol Biol 2025; 2881:133-144. [PMID: 39704941 DOI: 10.1007/978-1-0716-4280-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Molecular motors move processively along cytoskeletal filaments by stepping of their motor domains (MDs). Observation of how the MDs step relative to each other reveals the mechanism of motor processivity and various gating mechanisms used by motors to coordinate the catalytic cycles of their MDs. This chapter will discuss developments in simultaneous observation of the stepping motions of the two MDs of processive motors using two-color single-particle tracking microscopy.Techniques presented: FIONA, multicolor tracking/image registration.
Collapse
Affiliation(s)
- Joseph Slivka
- Department of Physics, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
22
|
Xu Q, Tu Y, Zhang Y, Xiu Y, Yu Z, Jiang H, Wang C. Discovery and biological evaluation of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives with promising antitumor activities as novel colchicine-binding site inhibitors. Eur J Med Chem 2024; 279:116869. [PMID: 39316845 DOI: 10.1016/j.ejmech.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tubulin, as the fundamental unit of microtubules, is a crucial target in the investigation of anticarcinogens. The synthesis and assessment of small-molecule tubulin polymerization inhibitors remains a promising avenue for the development of novel cancer therapeutics. Through an analysis of reported colchicine-binding site inhibitors (CBSIs) and tubulin binding models, a set of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives were meticulously crafted as potential CBSIs. Notably, compound 14u exhibited potent anti-proliferative efficacy, displaying IC50 values ranging from 0.03 to 0.18 μM against three human cancer cell lines (Huh7, MCF-7, and SGC-7901). Mechanistic investigations revealed that compound 14u could disrupt tubulin polymerization, dismantle the microtubule architecture, arrest the cell cycle at G2/M phase, and induce apoptosis in cancer cells. Furthermore, compound 14u demonstrated significant inhibition of tumor proliferation in vivo with no discernible toxicity in the Huh7 orthotopic tumor model mice. Additionally, physicochemical property predictions indicated that compound 14u adhered well to Lipinski's rule of five. These findings collectively suggest that compound 14u holds promise as an antitumor agent targeting the colchicine-binding site on tubulin and warrants further investigation.
Collapse
Affiliation(s)
- Qianqian Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuxuan Tu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Zongjiang Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 26610, Shandong, China.
| | - Hongfei Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
23
|
Mercey O, Gadadhar S, Magiera MM, Lebrun L, Kostic C, Moulin A, Arsenijevic Y, Janke C, Guichard P, Hamel V. Glutamylation imbalance impairs the molecular architecture of the photoreceptor cilium. EMBO J 2024; 43:6679-6704. [PMID: 39528655 PMCID: PMC11649768 DOI: 10.1038/s44318-024-00284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Microtubules, composed of conserved α/β-tubulin dimers, undergo complex post-translational modifications (PTMs) that fine-tune their properties and interactions with other proteins. Cilia exhibit several tubulin PTMs, such as polyglutamylation, polyglycylation, detyrosination, and acetylation, with functions that are not fully understood. Mutations in AGBL5, which encodes the deglutamylating enzyme CCP5, have been linked to retinitis pigmentosa, suggesting that altered polyglutamylation may cause photoreceptor cell degeneration, though the underlying mechanisms are unclear. Using super-resolution ultrastructure expansion microscopy (U-ExM) in mouse and human photoreceptor cells, we observed that most tubulin PTMs accumulate at the connecting cilium that links outer and inner photoreceptor segments. Mouse models with increased glutamylation (Ccp5-/- and Ccp1-/-) or loss of tubulin acetylation (Atat1-/-) showed that aberrant glutamylation, but not acetylation loss, disrupts outer segment architecture. This disruption includes exacerbation of the connecting cilium, loss of the bulge region, and destabilization of the distal axoneme. Additionally, we found significant impairment in tubulin glycylation, as well as reduced levels of intraflagellar transport proteins and of retinitis pigmentosa-associated protein RPGR. Our findings indicate that proper glutamylation levels are crucial for maintaining the molecular architecture of the photoreceptor cilium.
Collapse
Affiliation(s)
- Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, India
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Laura Lebrun
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexandre Moulin
- Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.
- Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
24
|
Mahalingan KK, Grotjahn DA, Li Y, Lander GC, Zehr EA, Roll-Mecak A. Structural basis for α-tubulin-specific and modification state-dependent glutamylation. Nat Chem Biol 2024; 20:1493-1504. [PMID: 38658656 PMCID: PMC11529724 DOI: 10.1038/s41589-024-01599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. Tubulin tyrosine ligase-like (TTLL) enzymes introduce the most prevalent modifications on α-tubulin and β-tubulin. How TTLLs specialize for specific substrate recognition and ultimately modification-pattern generation is largely unknown. TTLL6, a glutamylase implicated in ciliopathies, preferentially modifies tubulin α-tails in microtubules. Cryo-electron microscopy, kinetic analysis and single-molecule biochemistry reveal an unprecedented quadrivalent recognition that ensures simultaneous readout of microtubule geometry and posttranslational modification status. By binding to a β-tubulin subunit, TTLL6 modifies the α-tail of the longitudinally adjacent tubulin dimer. Spanning two tubulin dimers along and across protofilaments (PFs) ensures fidelity of recognition of both the α-tail and the microtubule. Moreover, TTLL6 reads out and is stimulated by glutamylation of the β-tail of the laterally adjacent tubulin dimer, mediating crosstalk between α-tail and β-tail. This positive feedback loop can generate localized microtubule glutamylation patterns. Our work uncovers general principles that generate tubulin chemical and topographic complexity.
Collapse
Affiliation(s)
- Kishore K Mahalingan
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry & Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
25
|
Wu Q, Wang Y, Liu J, Guan X, Chang X, Liu Z, Liu R. Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies. Int J Biochem Cell Biol 2024; 175:106650. [PMID: 39237031 DOI: 10.1016/j.biocel.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Collapse
Affiliation(s)
- Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
26
|
Sun S, Xu Z, He L, Shen Y, Yan Y, Lv X, Zhu X, Li W, Tian WY, Zheng Y, Lin S, Sun Y, Li L. Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed α-tubulin lactylation. Nat Commun 2024; 15:8377. [PMID: 39333081 PMCID: PMC11437170 DOI: 10.1038/s41467-024-52729-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Posttranslational modifications (PTMs) of tubulin, termed the "tubulin code", play important roles in regulating microtubule functions within subcellular compartments for specialized cellular activities. While numerous tubulin PTMs have been identified, a comprehensive understanding of the complete repertoire is still underway. In this study, we report that α-tubulin lactylation is catalyzed by HDAC6 by using lactate to increase microtubule dynamics in neurons. We identify lactylation on lysine 40 of α-tubulin in the soluble tubulin dimers. Notably, lactylated α-tubulin enhances microtubule dynamics and facilitates neurite outgrowth and branching in cultured hippocampal neurons. Moreover, we discover an unexpected function of HDAC6, acting as the primary lactyltransferase to catalyze α-tubulin lactylation. HDAC6-catalyzed lactylation is a reversible process, dependent on lactate concentrations. Intracellular lactate concentration triggers HDAC6 to lactylate α-tubulin, a process dependent on its deacetylase activity. Additionally, the lactyltransferase activity may be conserved in HDAC family proteins. Our study reveals the primary role of HDAC6 in regulating α-tubulin lactylation, establishing a link between cell metabolism and cytoskeleton functions.
Collapse
Affiliation(s)
- Shuangshuang Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhe Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liying He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yihui Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuqing Yan
- Department of Pain management, HuaDong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xubing Lv
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xujing Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Wei-Ya Tian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yongjun Zheng
- Department of Pain management, HuaDong Hospital Affiliated to Fudan University, Shanghai, China
| | - Sen Lin
- Department of Neurology, 2nd Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
27
|
Sanzhaeva U, Boyd-Pratt H, Bender PTR, Saravanan T, Rhodes SB, Guan T, Billington N, Boye SE, Cunningham CL, Anderson CT, Ramamurthy V. TUBB4B is essential for the cytoskeletal architecture of cochlear supporting cells and motile cilia development. Commun Biol 2024; 7:1146. [PMID: 39277687 PMCID: PMC11401917 DOI: 10.1038/s42003-024-06867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Microtubules are essential for various cellular processes. The functional diversity of microtubules is attributed to the incorporation of various α- and β-tubulin isotypes encoded by different genes. In this work, we investigated the functional role of β4B-tubulin isotype (TUBB4B) in hearing and vision as mutations in TUBB4B are associated with sensorineural disease. Using a Tubb4b knockout mouse model, our findings demonstrate that TUBB4B is essential for hearing. Mice lacking TUBB4B are profoundly deaf due to defects in the inner and middle ear. Specifically, in the inner ear, the absence of TUBB4B lead to disorganized and reduced densities of microtubules in pillar cells, suggesting a critical role for TUBB4B in providing mechanical support for auditory transmission. In the middle ear, Tubb4b-/- mice exhibit motile cilia defects in epithelial cells, leading to the development of otitis media. However, Tubb4b deletion does not affect photoreceptor function or cause retinal degeneration. Intriguingly, β6-tubulin levels increase in retinas lacking β4B-tubulin isotype, suggesting a functional compensation mechanism. Our findings illustrate the essential roles of TUBB4B in hearing but not in vision in mice, highlighting the distinct functions of tubulin isotypes in different sensory systems.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Helen Boyd-Pratt
- Clinical Translational Sciences Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Philip T R Bender
- Rockefeller Neuroscience Institute and Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thamaraiselvi Saravanan
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Scott B Rhodes
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Tongju Guan
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Neil Billington
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christopher L Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles T Anderson
- Rockefeller Neuroscience Institute and Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Ophthalmology and Visual Sciences, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
28
|
Cracking the tubulin code: enzyme structures offer clues to microtubule control. Nature 2024:10.1038/d41586-024-02822-7. [PMID: 39261685 DOI: 10.1038/d41586-024-02822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
29
|
Xu K, Li Z, Mao L, Guo Z, Chen Z, Chai Y, Xie C, Yang X, Na J, Li W, Ou G. AlphaFold2-guided engineering of split-GFP technology enables labeling of endogenous tubulins across species while preserving function. PLoS Biol 2024; 22:e3002615. [PMID: 39159282 PMCID: PMC11361732 DOI: 10.1371/journal.pbio.3002615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/29/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Dynamic properties are essential for microtubule (MT) physiology. Current techniques for in vivo imaging of MTs present intrinsic limitations in elucidating the isotype-specific nuances of tubulins, which contribute to their versatile functions. Harnessing the power of the AlphaFold2 pipeline, we engineered a strategy for the minimally invasive fluorescence labeling of endogenous tubulin isotypes or those harboring missense mutations. We demonstrated that a specifically designed 16-amino acid linker, coupled with sfGFP11 from the split-sfGFP system and integration into the H1-S2 loop of tubulin, facilitated tubulin labeling without compromising MT dynamics, embryonic development, or ciliogenesis in Caenorhabditis elegans. Extending this technique to human cells and murine oocytes, we visualized MTs with the minimal background fluorescence and a pathogenic tubulin isoform with fidelity. The utility of our approach across biological contexts and species set an additional paradigm for studying tubulin dynamics and functional specificity, with implications for understanding tubulin-related diseases known as tubulinopathies.
Collapse
Affiliation(s)
- Kaiming Xu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiyuan Li
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Linfan Mao
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhengyang Guo
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Xuerui Yang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Besleaga I, Raptová R, Stoica AC, Milunovic MNM, Zalibera M, Bai R, Igaz N, Reynisson J, Kiricsi M, Enyedy ÉA, Rapta P, Hamel E, Arion VB. Are the metal identity and stoichiometry of metal complexes important for colchicine site binding and inhibition of tubulin polymerization? Dalton Trans 2024; 53:12349-12369. [PMID: 38989784 PMCID: PMC11264232 DOI: 10.1039/d4dt01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4N-phenyl-3-thiosemicarbazone (HL3), and mono-ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [CoIII(HL1)(L1)](NO3)2 (1), [CoIII(HL2)(L2)](NO3)2 (2), [CoIII(HL3)(L3)](NO3)2 (3), [FeIII(L2)2]NO3 (4), [FeIII(HL3)(L3)](NO3)2 (5), [NiII(L1)]Cl (6), [Zn(L1)Cl] (7) and [PdII(HL1)Cl]Cl (8). We discuss the effect of the metal identity and metal complex stoichiometry on in vitro cytotoxicity and antitubulin activity. The high antiproliferative activity of complex 4 correlated well with inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity were supported by experimental results and molecular docking calculations.
Collapse
Affiliation(s)
- Iuliana Besleaga
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Renáta Raptová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, A-8010 Graz, Austria
| | - Alexandru-Constantin Stoica
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Miljan N M Milunovic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Mónika Kiricsi
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Éva A Enyedy
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
31
|
Lu YM, Yan S, Ti SC, Zheng C. Editing of endogenous tubulins reveals varying effects of tubulin posttranslational modifications on axonal growth and regeneration. eLife 2024; 13:RP94583. [PMID: 38949652 PMCID: PMC11216746 DOI: 10.7554/elife.94583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of β-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.
Collapse
Affiliation(s)
- Yu-Ming Lu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SARHong KongChina
| | - Shan Yan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Shih-Chieh Ti
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SARHong KongChina
| |
Collapse
|
32
|
Chen J, Zehr EA, Gruschus JM, Szyk A, Liu Y, Tanner ME, Tjandra N, Roll-Mecak A. Tubulin code eraser CCP5 binds branch glutamates by substrate deformation. Nature 2024; 631:905-912. [PMID: 39020174 DOI: 10.1038/s41586-024-07699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Microtubule function is modulated by the tubulin code, diverse posttranslational modifications that are altered dynamically by writer and eraser enzymes1. Glutamylation-the addition of branched (isopeptide-linked) glutamate chains-is the most evolutionarily widespread tubulin modification2. It is introduced by tubulin tyrosine ligase-like enzymes and erased by carboxypeptidases of the cytosolic carboxypeptidase (CCP) family1. Glutamylation homeostasis, achieved through the balance of writers and erasers, is critical for normal cell function3-9, and mutations in CCPs lead to human disease10-13. Here we report cryo-electron microscopy structures of the glutamylation eraser CCP5 in complex with the microtubule, and X-ray structures in complex with transition-state analogues. Combined with NMR analysis, these analyses show that CCP5 deforms the tubulin main chain into a unique turn that enables lock-and-key recognition of the branch glutamate in a cationic pocket that is unique to CCP family proteins. CCP5 binding of the sequences flanking the branch point primarily through peptide backbone atoms enables processing of diverse tubulin isotypes and non-tubulin substrates. Unexpectedly, CCP5 exhibits inefficient processing of an abundant β-tubulin isotype in the brain. This work provides an atomistic view into glutamate branch recognition and resolution, and sheds light on homeostasis of the tubulin glutamylation syntax.
Collapse
Affiliation(s)
- Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - James M Gruschus
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yanjie Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
33
|
Vanegas C, Ursitti J, Kallenbach JG, Pinto K, Harriot A, Coleman AK, Shi G, Ward CW. Acute microtubule changes linked to DMD pathology are insufficient to impair contractile function or enhance contraction-induced injury in healthy muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599775. [PMID: 38948772 PMCID: PMC11212994 DOI: 10.1101/2024.06.19.599775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Duchenne muscular dystrophy (DMD) is marked by the genetic deficiency of the dystrophin protein in striated muscle whose consequence is a cascade of cellular changes that predispose the susceptibility to contraction injury central to DMD pathology. Recent evidence identified the proliferation of microtubules enriched in post-translationally modified tubulin as a consequence of dystrophins absence that increases the passive mechanics of the muscle fiber and the excess mechanotransduction elicited reactive oxygen species and calcium signals that promote contraction injury. Motivated by evidence that acutely normalizing the disease microtubule alterations reduced contraction injury in murine DMD muscle (mdx), here we sought the direct impact of these microtubule alterations independent of dystrophins absence and the multitude of other changes consequent to dystrophic disease. To this end we used acute pharmacologic (epithiolone-D, EpoD; 4 hours) or genetic (vashohibin-2 and small vasohibin binding protein overexpression via AAV9; 2 weeks) strategies to effectively model the proliferation of detyrosination enriched microtubules in the mdx muscle. Quantifying in vivo nerve evoked plantarflexor function we find no alteration in peak torque nor contraction kinetics in WT mice modeling these DMD relevant MT alterations. Quantifying the susceptibility to eccentric contraction injury we show EpoD treatment proffered a small but significant protection from contraction injury while VASH/SVBP had no discernable impact. We conclude that the disease dependent MT alterations act in concert with additional cellular changes to predispose contraction injury in DMD.
Collapse
Affiliation(s)
- Camilo Vanegas
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeanine Ursitti
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacob G Kallenbach
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaylie Pinto
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anicca Harriot
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew K Coleman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guoli Shi
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher W Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Shen Y, Ori-McKenney KM. Microtubule-associated protein MAP7 promotes tubulin posttranslational modifications and cargo transport to enable osmotic adaptation. Dev Cell 2024; 59:1553-1570.e7. [PMID: 38574732 PMCID: PMC11187767 DOI: 10.1016/j.devcel.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Cells remodel their cytoskeletal networks to adapt to their environment. Here, we analyze the mechanisms utilized by the cell to tailor its microtubule landscape in response to changes in osmolarity that alter macromolecular crowding. By integrating live-cell imaging, ex vivo enzymatic assays, and in vitro reconstitution, we probe the impact of cytoplasmic density on microtubule-associated proteins (MAPs) and tubulin posttranslational modifications (PTMs). We find that human epithelial cells respond to fluctuations in cytoplasmic density by modulating microtubule acetylation, detyrosination, or MAP7 association without differentially affecting polyglutamylation, tyrosination, or MAP4 association. These MAP-PTM combinations alter intracellular cargo transport, enabling the cell to respond to osmotic challenges. We further dissect the molecular mechanisms governing tubulin PTM specification and find that MAP7 promotes acetylation and inhibits detyrosination. Our data identify MAP7 in modulating the tubulin code, resulting in microtubule cytoskeleton remodeling and alteration of intracellular transport as an integrated mechanism of cellular adaptation.
Collapse
Affiliation(s)
- Yusheng Shen
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
35
|
Milunovic MM, Ohui K, Besleaga I, Petrasheuskaya TV, Dömötör O, Enyedy ÉA, Darvasiova D, Rapta P, Barbieriková Z, Vegh D, Tóth S, Tóth J, Kucsma N, Szakács G, Popović-Bijelić A, Zafar A, Reynisson J, Shutalev AD, Bai R, Hamel E, Arion VB. Copper(II) Complexes with Isomeric Morpholine-Substituted 2-Formylpyridine Thiosemicarbazone Hybrids as Potential Anticancer Drugs Inhibiting Both Ribonucleotide Reductase and Tubulin Polymerization: The Morpholine Position Matters. J Med Chem 2024; 67:9069-9090. [PMID: 38771959 PMCID: PMC11181322 DOI: 10.1021/acs.jmedchem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H2L3-H2L6, with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3-6. Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y•) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented.
Collapse
Affiliation(s)
| | - Katerina Ohui
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Iuliana Besleaga
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Tatsiana V. Petrasheuskaya
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Éva A. Enyedy
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Denisa Darvasiova
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Peter Rapta
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Zuzana Barbieriková
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Daniel Vegh
- Institute
of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Judit Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Nóra Kucsma
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Vienna A-1090, Austria
| | - Ana Popović-Bijelić
- Faculty
of Physical Chemistry, University of Belgrade, Belgrade 11158, Serbia
| | - Ayesha Zafar
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School
of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United
Kingdom
| | - Anatoly D. Shutalev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
- Inorganic
Polymers Department, “Petru Poni”
Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
36
|
Bak J, Brummelkamp TR, Perrakis A. Decoding microtubule detyrosination: enzyme families, structures, and functional implications. FEBS Lett 2024; 598:1453-1464. [PMID: 38811347 DOI: 10.1002/1873-3468.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Microtubules are a major component of the cytoskeleton and can accumulate a plethora of modifications. The microtubule detyrosination cycle is one of these modifications; it involves the enzymatic removal of the C-terminal tyrosine of α-tubulin on assembled microtubules and the re-ligation of tyrosine on detyrosinated tubulin dimers. This modification cycle has been implicated in cardiac disease, neuronal development, and mitotic defects. The vasohibin and microtubule-associated tyrosine carboxypeptidase enzyme families are responsible for microtubule detyrosination. Their long-sought discovery allows to review and summarise differences and similarities between the two enzymes families and discuss how they interplay with other modifications and functions of the tubulin code.
Collapse
Affiliation(s)
- Jitske Bak
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Viar GA, Pigino G. Tubulin posttranslational modifications through the lens of new technologies. Curr Opin Cell Biol 2024; 88:102362. [PMID: 38701611 DOI: 10.1016/j.ceb.2024.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
The Tubulin Code revolutionizes our understanding of microtubule dynamics and functions, proposing a nuanced system governed by tubulin isotypes, posttranslational modifications (PTMs) and microtubule-associated proteins (MAPs). Tubulin isotypes, diverse across species, contribute structural complexity, and are thought to influence microtubule functions. PTMs encode dynamic information on microtubules, which are read by several microtubule interacting proteins and impact on cellular processes. Here we discuss recent technological and methodological advances, such as in genome engineering, live cell imaging, expansion microscopy, and cryo-electron microscopy that reveal new elements and levels of complexity of the tubulin code, including new modifying enzymes and nanopatterns of PTMs on individual microtubules. The Tubulin Code's exploration holds transformative potential, guiding therapeutic strategies and illuminating connections to diseases like cancer and neurodegenerative disorders, underscoring its relevance in decoding fundamental cellular language.
Collapse
Affiliation(s)
| | - Gaia Pigino
- Human Technopole, via Rita Levi Montalcini 1, Milan, Italy.
| |
Collapse
|
38
|
Iuzzolino A, Pellegrini FR, Rotili D, Degrassi F, Trisciuoglio D. The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases. Cell Mol Life Sci 2024; 81:193. [PMID: 38652325 PMCID: PMC11039541 DOI: 10.1007/s00018-024-05227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.
Collapse
Affiliation(s)
- Angela Iuzzolino
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Francesca Romana Pellegrini
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Francesca Degrassi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| | - Daniela Trisciuoglio
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
39
|
Huang M, Han H, Liu H, Liu R, Li J, Li M, Guan Q, Zhang W, Wang D. Structure-based approaches for the design of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d][1,2,3]triazoles as tubulin polymerization inhibitors. Eur J Med Chem 2024; 269:116309. [PMID: 38471357 DOI: 10.1016/j.ejmech.2024.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The colchicine binding site on tubulin has been widely acknowledged as an attractive target for anticancer drug exploitation. Here, we reported the structural optimization of the lead compound 4, which was proved in our previous work as a colchicine binding site inhibitor (CBSI). Based on docking researches for the active binding conformation of compound 4, a series of novel 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d][1,2,3]triazole derivatives (9a-9x) were developed by replacing a CH group in the 1H-benzo[d]imidazole skeleton of compound 4 with a nitrogen atom as a hydrogen bond acceptor. Among them, compound 9a showed the strongest antiproliferative activity with IC50 values ranging from 14 to 45 nM against three human cancer cell lines (MCF-7, SGC-7901 and A549), lower than that of compound 4. Mechanistic studies indicated that compound 9a could inhibit tubulin polymerization, destroy the microtubule skeleton, block the cell cycle in G2/M phase, induce cancer cell apoptosis, prevent cancer cell migration and colony formation. Moreover, compound 9a significantly inhibited tumor growth in vivo without observable toxicity in the mice 4T1 xenograft tumor model. In conclusion, this report shows a successful case of the structure-based design approach of a potent tubulin polymerization inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Mingxin Huang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Hongyao Han
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Haoyuan Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Runlai Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jiwei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Mi Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qi Guan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Dun Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
40
|
Bonet-Ponce L, Tegicho T, Beilina A, Kluss JH, Li Y, Cookson MR. Opposing actions of JIP4 and RILPL1 provide antagonistic motor force to dynamically regulate membrane reformation during lysosomal tubulation/sorting driven by LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587808. [PMID: 38903076 PMCID: PMC11188082 DOI: 10.1101/2024.04.02.587808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by Leucine-Rich Repeat Kinase 2 [LRRK2]), wherein damaged lysosomes generate tubules sorted into mobile vesicles. LYTL is orchestrated by the Parkinson's disease-associated kinase LRRK2 that recruits the motor adaptor protein and RHD family member JIP4 to lysosomes via phosphorylated RAB proteins. To identify new players involved in LYTL, we performed unbiased proteomics on isolated lysosomes after LRRK2 kinase inhibition. Our results demonstrate that there is recruitment of RILPL1 to ruptured lysosomes via LRRK2 activity to promote phosphorylation of RAB proteins at the lysosomal surface. RILPL1, which is also a member of the RHD family, enhances the clustering of LRRK2-positive lysosomes in the perinuclear area and causes retraction of LYTL tubules, in contrast to JIP4 which promotes LYTL tubule extension. Mechanistically, RILPL1 binds to p150Glued, a dynactin subunit, facilitating the transport of lysosomes and tubules to the minus end of microtubules. Further characterization of the tubulation process revealed that LYTL tubules move along tyrosinated microtubules, with tubulin tyrosination proving essential for tubule elongation. In summary, our findings emphasize the dynamic regulation of LYTL tubules by two distinct RHD proteins and pRAB effectors, serving as opposing motor adaptor proteins: JIP4, promoting tubulation via kinesin, and RILPL1, facilitating tubule retraction through dynein/dynactin. We infer that the two opposing processes generate a metastable lysosomal membrane deformation that facilitates dynamic tubulation events.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tsion Tegicho
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jillian H. Kluss
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
41
|
Laporte D, Massoni-Laporte A, Lefranc C, Dompierre J, Mauboules D, Nsamba ET, Royou A, Gal L, Schuldiner M, Gupta ML, Sagot I. A stable microtubule bundle formed through an orchestrated multistep process controls quiescence exit. eLife 2024; 12:RP89958. [PMID: 38527106 PMCID: PMC10963028 DOI: 10.7554/elife.89958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Cells fine-tune microtubule assembly in both space and time to give rise to distinct edifices with specific cellular functions. In proliferating cells, microtubules are highly dynamics, and proliferation cessation often leads to their stabilization. One of the most stable microtubule structures identified to date is the nuclear bundle assembled in quiescent yeast. In this article, we characterize the original multistep process driving the assembly of this structure. This Aurora B-dependent mechanism follows a precise temporality that relies on the sequential actions of kinesin-14, kinesin-5, and involves both microtubule-kinetochore and kinetochore-kinetochore interactions. Upon quiescence exit, the microtubule bundle is disassembled via a cooperative process involving kinesin-8 and its full disassembly is required prior to cells re-entry into proliferation. Overall, our study provides the first description, at the molecular scale, of the entire life cycle of a stable microtubule structure in vivo and sheds light on its physiological function.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State UniversityAmesUnited States
| | - Anne Royou
- Univ. Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State UniversityAmesUnited States
| | | |
Collapse
|
42
|
Zhang X, Zhang T, Zhao Y, Jiang L, Sui X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem 2024; 436:137712. [PMID: 37852073 DOI: 10.1016/j.foodchem.2023.137712] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
43
|
Deshpande A, Brants J, Wasylyk C, van Hooij O, Verhaegh GW, Maas P, Schalken JA, Wasylyk B. TTLL12 has a potential oncogenic activity, suppression of ligation of nitrotyrosine to the C-terminus of detyrosinated α-tubulin, that can be overcome by molecules identified by screening a compound library. PLoS One 2024; 19:e0296960. [PMID: 38394155 PMCID: PMC10889654 DOI: 10.1371/journal.pone.0296960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Tubulin tyrosine ligase 12 (TTLL12) is a promising target for therapeutic intervention since it has been implicated in tumour progression, the innate immune response to viral infection, ciliogenesis and abnormal cell division. It is the most mysterious of a fourteen-member TTL/TTLL family, since, although it is the topmost conserved in evolution, it does not have predicted enzymatic activities. TTLL12 seems to act as a pseudo-enzyme that modulates various processes indirectly. Given the need to target its functions, we initially set out to identify a property of TTLL12 that could be used to develop a reliable high-throughput screening assay. We discovered that TTLL12 suppresses the cell toxicity of nitrotyrosine (3-nitrotyrosine) and its ligation to the C-terminus of detyrosinated α-tubulin (abbreviated to ligated-nitrotyrosine). Nitrotyrosine is produced by oxidative stress and is associated with cancer progression. Ligation of nitrotyrosine has been postulated to be a check-point induced by excessive cell stress. We found that the cytotoxicities of nitrotyrosine and tubulin poisons are independent of one another, suggesting that drugs that increase nitrotyrosination could be complementary to current tubulin-directed therapeutics. TTLL12 suppression of nitrotyrosination of α-tubulin was used to develop a robust cell-based ELISA assay that detects increased nitrotyrosination in cells that overexpress TTLL12 We adapted it to a high throughput format and used it to screen a 10,000 molecule World Biological Diversity SETTM collection of low-molecular weight molecules. Two molecules were identified that robustly activate nitrotyrosine ligation at 1 μM concentration. This is the pioneer screen for molecules that modulate nitrotyrosination of α-tubulin. The molecules from the screen will be useful for the study of TTLL12, as well as leads for the development of drugs to treat cancer and other pathologies that involve nitrotyrosination.
Collapse
Affiliation(s)
- Amit Deshpande
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Jan Brants
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Christine Wasylyk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Onno van Hooij
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald W. Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Maas
- Specs, Bleiswijkseweg, Zoetermeer, The Netherlands
| | - Jack A. Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bohdan Wasylyk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
44
|
Kennard AS, Velle KB, Ranjan R, Schulz D, Fritz-Laylin LK. An internally controlled system to study microtubule network diversification links tubulin evolution to the use of distinct microtubule regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.573270. [PMID: 38260630 PMCID: PMC10802493 DOI: 10.1101/2024.01.08.573270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Diverse eukaryotic cells assemble microtubule networks that vary in structure and composition. While we understand how cells build microtubule networks with specialized functions, we do not know how microtubule networks diversify across deep evolutionary timescales. This problem has remained unresolved because most organisms use shared pools of tubulins for multiple networks, making it impossible to trace the evolution of any single network. In contrast, the amoeboflagellate Naegleria uses distinct tubulin genes to build distinct microtubule networks: while Naegleria builds flagella from conserved tubulins during differentiation, it uses divergent tubulins to build its mitotic spindle. This genetic separation makes for an internally controlled system to study independent microtubule networks in a single organismal and genomic context. To explore the evolution of these microtubule networks, we identified conserved microtubule binding proteins and used transcriptional profiling of mitosis and differentiation to determine which are upregulated during the assembly of each network. Surprisingly, most microtubule binding proteins are upregulated during only one process, suggesting that Naegleria uses distinct component pools to specialize its microtubule networks. Furthermore, the divergent residues of mitotic tubulins tend to fall within the binding sites of differentiation-specific microtubule regulators, suggesting that interactions between microtubules and their binding proteins constrain tubulin sequence diversification. We therefore propose a model for cytoskeletal evolution in which pools of microtubule network components constrain and guide the diversification of the entire network, so that the evolution of tubulin is inextricably linked to that of its binding partners.
Collapse
Affiliation(s)
- Andrew S. Kennard
- Department of Biology, University of Massachusetts, Amherst MA, United States
| | - Katrina B. Velle
- Department of Biology, University of Massachusetts, Amherst MA, United States
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute of Applied Life Sciences, University of Massachusetts, Amherst MA, United States
| | - Danae Schulz
- Department of Biology, Harvey Mudd College, Claremont CA, United States
| | | |
Collapse
|
45
|
Brill MS, Fassier C, Song Y. Editorial: Cytoskeletal alterations in aging and disease. Front Cell Dev Biol 2024; 11:1359465. [PMID: 38299006 PMCID: PMC10828968 DOI: 10.3389/fcell.2023.1359465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Affiliation(s)
- Monika S. Brill
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Coralie Fassier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Yuyu Song
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
46
|
Shahrajabian MH, Sun W. Characterization of Intrinsically Disordered Proteins in Healthy and Diseased States by Nuclear Magnetic Resonance. Rev Recent Clin Trials 2024; 19:176-188. [PMID: 38409704 DOI: 10.2174/0115748871271420240213064251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Intrinsically Disordered Proteins (IDPs) are active in different cellular procedures like ordered assembly of chromatin and ribosomes, interaction with membrane, protein, and ligand binding, molecular recognition, binding, and transportation via nuclear pores, microfilaments and microtubules process and disassembly, protein functions, RNA chaperone, and nucleic acid binding, modulation of the central dogma, cell cycle, and other cellular activities, post-translational qualification and substitute splicing, and flexible entropic linker and management of signaling pathways. METHODS The intrinsic disorder is a precise structural characteristic that permits IDPs/IDPRs to be involved in both one-to-many and many-to-one signaling. IDPs/IDPRs also exert some dynamical and structural ordering, being much less constrained in their activities than folded proteins. Nuclear magnetic resonance (NMR) spectroscopy is a major technique for the characterization of IDPs, and it can be used for dynamic and structural studies of IDPs. RESULTS AND CONCLUSION This review was carried out to discuss intrinsically disordered proteins and their different goals, as well as the importance and effectiveness of NMR in characterizing intrinsically disordered proteins in healthy and diseased states.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
47
|
Sewell MT, Legué E, Liem KF. Tubb4b is required for multi-ciliogenesis in the mouse. Development 2024; 151:dev201819. [PMID: 38031972 PMCID: PMC10820790 DOI: 10.1242/dev.201819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Cilia are microtubule (MT)-based organelles present on the surface of nearly all vertebrate cells. MTs are polymers of α- and β-tubulins that are each encoded by multiple, individual isotype genes. Tubulin isotype composition is thought to influence MT behaviors. Ciliary MTs differ from other MTs in the cell in terms of organization, stability and post-translational modifications. However, little is known about the tubulin isotypes that build ciliary MTs and the functional requirements for tubulin isotypes in cilia have not been examined in vertebrates. Here, we have tested the role of the β-tubulin isotype genes in the mouse that harbor a conserved amino acid motif associated with ciliated organisms. We found that Tubb4b localizes to cilia in multi-ciliated cells (MCCs) specifically. In respiratory and oviduct MCCs, Tubb4b is asymmetrically localized within multi-cilia, indicating that the tubulin isotype composition changes along the length of the ciliary axonemal MTs. Deletion of Tubb4b resulted in striking structural defects within the axonemes of multi-cilia, without affecting primary cilia. These studies show that Tubb4b is essential for the formation of a specific MT-based subcellular organelle and sheds light on the requirements of tubulin isotypes in cilia.
Collapse
Affiliation(s)
- Mycah T. Sewell
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karel F. Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
48
|
Tang Q, Sensale S, Bond C, Xing J, Qiao A, Hugelier S, Arab A, Arya G, Lakadamyali M. Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets. Curr Biol 2023; 33:5169-5184.e8. [PMID: 37979580 PMCID: PMC10843832 DOI: 10.1016/j.cub.2023.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023]
Abstract
Microtubules in cells consist of functionally diverse subpopulations carrying distinct post-translational modifications (PTMs). Akin to the histone code, the tubulin code regulates a myriad of microtubule functions, ranging from intracellular transport to chromosome segregation. However, how individual PTMs only occur on subsets of microtubules to contribute to microtubule specialization is not well understood. In particular, microtubule detyrosination, the removal of the C-terminal tyrosine on α-tubulin subunits, marks the stable population of microtubules and modifies how microtubules interact with other microtubule-associated proteins to regulate a wide range of cellular processes. Previously, we found that in certain cell types, only ∼30% of microtubules are highly enriched with the detyrosination mark and that detyrosination spans most of the length of a microtubule, often adjacent to a completely tyrosinated microtubule. How the activity of a cytosolic detyrosinase, vasohibin (VASH), leads to only a small subpopulation of highly detyrosinated microtubules is unclear. Here, using quantitative super-resolution microscopy, we visualized nascent microtubule detyrosination events in cells consisting of 1-3 detyrosinated α-tubulin subunits after nocodazole washout. Microtubule detyrosination accumulates slowly and in a dispersed pattern across the microtubule length. By visualizing single molecules of VASH in live cells, we found that VASH engages with microtubules stochastically on a short timescale, suggesting limited removal of tyrosine per interaction, consistent with the super-resolution results. Combining these quantitative imaging results with simulations incorporating parameters from our experiments, we provide evidence for a stochastic model for cells to establish a subset of detyrosinated microtubules via a detyrosination-stabilization feedback mechanism.
Collapse
Affiliation(s)
- Qing Tang
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebastian Sensale
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; Department of Physics, Cleveland State University, Cleveland, OH 44115-2214, USA.
| | - Charles Bond
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiazheng Xing
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy Qiao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arian Arab
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Lawrence EJ, Chatterjee S, Zanic M. More is different: Reconstituting complexity in microtubule regulation. J Biol Chem 2023; 299:105398. [PMID: 37898404 PMCID: PMC10694663 DOI: 10.1016/j.jbc.2023.105398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
50
|
Zhang Z, Zhanghuang C, Mi T, Jin L, Liu J, Li M, Wu X, Wang J, Li M, Wang Z, Guo P, He D. The PI3K-AKT-mTOR signaling pathway mediates the cytoskeletal remodeling and epithelial-mesenchymal transition in bladder outlet obstruction. Heliyon 2023; 9:e21281. [PMID: 38027933 PMCID: PMC10663759 DOI: 10.1016/j.heliyon.2023.e21281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Partial bladder outlet obstruction(pBOO) is the most common cause of lower urinary tract symptoms (LUTS) and significantly affects the quality of life. Long-term pBOO can cause changes in bladder structure and function, referred to as bladder remodeling. The pathogenesis of pBOO-induced bladder remodeling has yet to be fully understood, so effective treatment options are lacking. Our study aimed to explore how pBOO-induced bladder remodeling brings new strategies for treating pBOO. Methods A rat model of pBOO was established by partial ligation of the bladder neck, and the morphological changes and fibrosis changes in the bladder tissues were detected by H&E and Masson trichrome staining. Furthermore, EMT(epithelial-mesenchymal transition) related indicators and related pathway changes were further examined after TGF- β treatment of urothelial cells SV-HUC-1. Finally, the above indicators were tested again after using the PI3K inhibitor. Subsequently, RNA sequencing of bladder tissues to identify differential genes and related pathways enrichment and validated by immunofluorescence and western blotting analysis. Results The pBOO animal model was successfully established by partially ligating the bladder neck. H&E staining showed significant changes in the bladder structure, and Masson trichrome staining showed significantly increased collagen fibers. RNA sequencing results significantly enriched in the cytoskeleton, epithelial-mesenchymal transformation, and the PI3K-AKT-mTOR signaling pathway. Immunofluorescence and western blotting revealed EMT and cytoskeletal remodeling in SV-HUC-1 cells after induction of TGF- β and in the pBOO bladder tissues. The western blotting showed significant activation of the PI3K-AKT-mTOR signaling pathway in SV-HUC-1 cells after induction of TGF-β and in pBOO bladder tissues. Furthermore, EMT and cytoskeletal damage were partially reversed after PI3K pathway inhibition using PI3K inhibitors. Conclusions In the pBOO rat model, the activation of the PI3K-AKT-mTOR signaling pathway can mediate the cytoskeletal remodeling and the EMT to induce fibrosis in the bladder tissues. PI3K inhibitors partially reversed EMT and cytoskeletal damage.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Chenghao Zhanghuang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
- Department of Urology, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650103, PR China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Maoxian Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Mujie Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Zhang Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| |
Collapse
|