1
|
You M, Wang B, Li L, Liu M, Wang L, Cao T, Zhou Q, Mou A, Wang H, Sun M, Lu Z, Zhu Z, Yan Z, Gao P. SIRT3 Represses Vascular Remodeling via Reducing Mitochondrial Ac-CoA Accumulation in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2025; 45:985-1005. [PMID: 40242869 DOI: 10.1161/atvbaha.125.322428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Vascular remodeling characterized by vascular smooth muscle cell (VSMC) phenotypic switching is a key pathological process leading to numerous cardiovascular diseases, often accompanied by a decrease in mitochondrial oxidative phosphorylation. However, whether VSMC mitochondrial homeostasis plays a central role in vascular remodeling remains elusive. In this study, we investigated the role of SIRT3 (sirtuin 3), a deacetylase that maintains mitochondrial homeostasis, in vascular remodeling. METHODS We established a VSMC-specific SIRT3 knockout mouse and a VSMC-specific SIRT3 overexpression mouse. Mice were infused with Ang II (angiotensin II) to establish the conventional abdominal aortic aneurysm model and underwent carotid artery ligation to establish the neointima formation model to investigate the role of SIRT3 in vascular remodeling. In vitro, quiescent-state VSMCs were stimulated with PDGF-BB (platelet-derived growth factor type BB) to investigate the direct role of SIRT3 in VSMC phenotypic switching, and the detailed mechanisms were investigated. RESULTS The expression and activity of SIRT3 were decreased in the aortas from mice with Ang II-induced abdominal aortic aneurysm or ligation-induced neointima formation. VSMC-specific knockout of SIRT3 exacerbated vascular remodeling, whereas overexpression or activation of SIRT3 in VSMCs displayed therapeutic effect. Moreover, the reduction of SIRT3 was shown to increase the expression level of KLF4 (Kruppel-like factor 4), an important transcription factor that orchestrates VSMC phenotypic switching. Mechanistically, SIRT3 repression caused mitochondrial Ac-CoA (acetyl coenzyme A) accumulation that increased acetylated histone 3 lysine 27 levels in the KLF4 gene promoter region. Blockage of mitochondrial Ac-CoA transporting into the cytoplasm by inhibiting ACLY (ATP-citrate lyase) also inhibited VSMC phenotypic switching and thus attenuated vascular remodeling even when SIRT3 was knocked down. CONCLUSIONS This study provides evidence that mitochondrial dysfunction induced by SIRT3 inhibition is a major factor leading to VSMC phenotypic switching and vascular remodeling. Restoration of mitochondrial function and inhibition of mitochondrial Ac-CoA accumulation by activation of SIRT3 may help to treat remodeling-related cardiovascular damage.
Collapse
MESH Headings
- Animals
- Sirtuin 3/genetics
- Sirtuin 3/metabolism
- Sirtuin 3/deficiency
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Vascular Remodeling/drug effects
- Kruppel-Like Factor 4
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Mice, Knockout
- Disease Models, Animal
- Neointima
- Phenotype
- Cells, Cultured
- Mice, Inbred C57BL
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Male
- Acetyl Coenzyme A/metabolism
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Acetylation
- Angiotensin II
- Signal Transduction
- Mice
- Humans
Collapse
Affiliation(s)
- Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Bowen Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Min Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Hongya Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Min Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
- Chongqing Institute of Brain and Science, China (Z.Z.)
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| |
Collapse
|
2
|
Jung C, Han JW, Lee SJ, Kim KH, Oh JE, Bae S, Lee S, Nam YJ, Kim S, Dang C, Kim J, Chu N, Lee EJ, Yoon YS. Novel Directly Reprogrammed Smooth Muscle Cells Promote Vascular Regeneration as Microvascular Mural Cells. Circulation 2025; 151:1076-1094. [PMID: 39945059 PMCID: PMC11996609 DOI: 10.1161/circulationaha.124.070217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Although cell therapy has emerged as a promising approach to promote neovascularization, its effects are mostly limited to capillaries. To generate larger or more stable vessels, layering of mural cells such as smooth muscle cells (SMCs) or pericytes is required. Recently, direct reprogramming approaches have been developed for generating SMCs. However, such reprogrammed SMCs lack genuine features of contractile SMCs, a native SMC phenotype; thus, their therapeutic and vessel-forming potential in vivo was not explored. Therefore, we aimed to directly reprogram human dermal fibroblasts toward contractile SMCs (rSMCs) and investigated their role for generating vascular mural cells in vivo and their therapeutic effects on ischemic disease. METHODS We applied myocardin and all-trans retinoic acid with specific culture conditions to directly reprogram human dermal fibroblasts into rSMCs. We characterized their phenotype as contractile SMCs through quantitative reverse-transcriptase polymerase chain reaction, flow cytometry, and immunostaining. We then explored their contractility using a vasoconstrictor, carbachol, and through transmission electron microscope and bulk RNA sequencing. Next, we evaluated whether transplantation of rSMCs improves blood flow and induces vessel formation as mural cells in a mouse model of hindlimb ischemia with laser Doppler perfusion imaging and histological analysis. We also determined their paracrine effects. RESULTS Our novel culture conditions using myocardin and all-trans retinoic acid efficiently reprogrammed human dermal fibroblasts into SMCs. These rSMCs displayed characteristics of contractile SMCs at the mRNA, protein, and cellular levels. Transplantation of rSMCs into ischemic mouse hind limbs enhanced blood flow recovery and vascular repair and improved limb salvage. Histological examination showed that vascular density was increased and the engrafted rSMCs were incorporated into the vascular wall as pericytes and vascular SMCs, thereby contributing to formation of more stable and larger microvessels. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed that these transplanted rSMCs exerted pleiotropic effects, including angiogenic, arteriogenic, vessel-stabilizing, and tissue regenerative effects, on ischemic limbs. CONCLUSIONS A combination of myocardin and all-trans retinoic acid in defined culture conditions efficiently reprogrammed human fibroblasts into contractile and functional SMCs. The rSMCs were shown to be effective for vascular repair and contributed to neovascularization through mural cells and various paracrine effects. These human rSMCs could represent a novel source for cell-based therapy and research.
Collapse
Affiliation(s)
- Cholomi Jung
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyung Hee Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seongho Bae
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chaewon Dang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nakhyung Chu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun Jig Lee
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Endocrinology, Division of Endocrinology and Metabolism, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Singh S, Bruder A, Costa RM, Alves JV, Bharathi S, Goetzman ES, Bruder‐Nascimento T. Vascular Contractility Relies on Integrity of Progranulin Pathway: Insights Into Mitochondrial Function. J Am Heart Assoc 2025; 14:e037640. [PMID: 39895524 PMCID: PMC12074767 DOI: 10.1161/jaha.124.037640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The complex interplay between vascular contractility and mitochondrial function is central to cardiovascular disease. The progranulin gene (GRN) encodes glycoprotein PGRN (progranulin), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in cardiovascular disease remains undefined. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. METHODS AND RESULTS We used aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice. Our results showed suppression of contractile activity in PGRN-/-, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency suppressed mitochondrial respiration, induced mitochondrial fission, and disturbed autophagy process and redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted mitochondria activity. In addition, in vivo treatment with mitochondrial fission inhibitor restored mitochondrial quality and vascular contractility, while vascular smooth muscle cells overexpressing PGRN displayed higher lysosome biogenesis, accelerated mitophagy flux, and mitochondrial respiration accompanied by vascular hypercontractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/-, suggesting a key role of PGRN to maintain the vascular tone. CONCLUSIONS Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial activity and dynamics, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in cardiovascular disease.
Collapse
Affiliation(s)
- Shubhnita Singh
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Children’s Hospital of Philadelphia (CHOP)Department of Genetics at the University of Pennsylvania School of MedicinePhiladelphiaPA
- Department of Human Genetics, School of Public HealthUniversity of PittsburghPA
| | - Ariane Bruder
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Department of Physiology & Cell Biology, School of MedicineUniversity of South AlabamaMobileAL
| | - Rafael M. Costa
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Department of Physiology & Cell Biology, School of MedicineUniversity of South AlabamaMobileAL
| | - Juliano V. Alves
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
| | - Sivakama Bharathi
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
| | - Eric S. Goetzman
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Department of Human Genetics, School of Public HealthUniversity of PittsburghPA
- Genetic and Genomic Medicine Division at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
| | - Thiago Bruder‐Nascimento
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Department of Physiology & Cell Biology, School of MedicineUniversity of South AlabamaMobileAL
| |
Collapse
|
5
|
Lambert J, Jørgensen HF. Epigenetic regulation of vascular smooth muscle cell phenotypes in atherosclerosis. Atherosclerosis 2025; 401:119085. [PMID: 39709233 DOI: 10.1016/j.atherosclerosis.2024.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions. The changes in gene expression underlying this phenotypic diversity are mediated by epigenetic modifications which affect transcription factor access and thereby gene expression dynamics. Additionally, epigenetic mechanisms can maintain cellular memory, potentially facilitating reversion to the contractile state. While technological advances have provided some insight, a comprehensive understanding of how VSMC phenotypes are governed in disease remains elusive. Here we review current literature in light of novel insight from studies at single-cell resolution. We also discuss how lessons from epigenetic studies of cellular regulation in other fields could help in translating the potential of targeting VSMC phenotype conversion into novel therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
6
|
Behzadi P, Cuevas RA, Crane A, Wendling AA, Chu CC, Moorhead WJ, Wong R, Brown M, Tamakloe J, Suresh S, Salehi P, Jaffe IZ, Kuipers AL, Lukashova L, Verdelis K, St Hilaire C. Rapamycin Reduces Arterial Mineral Density and Promotes Beneficial Vascular Remodeling in a Murine Model of Severe Medial Arterial Calcification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606196. [PMID: 39149364 PMCID: PMC11326142 DOI: 10.1101/2024.08.01.606196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Peripheral artery disease (PAD) is the narrowing of the arteries that carry blood to the lower extremities. PAD has been traditionally associated with atherosclerosis. However, recent studies have found that medial arterial calcification (MAC) is the primary cause of chronic limb ischemia below the knee. MAC involves calcification of the elastic fibers surrounding smooth muscle cells (SMCs) in arteries. Matrix GLA protein (MGP) inhibits vascular calcification by binding circulating calcium and preventing hydroxyapatite crystal deposition, while also modulating osteogenic signaling by blocking BMP-2 activation of RUNX2. Mgp -/- mice develop severe MAC and die around 8 weeks after birth due to aortic rupture or heart failure. We previously discovered a rare genetic disease Arterial Calcification due to Deficiency in CD73 (ACDC) in which patients present with extensive MAC in their lower extremity arteries. Using a patient-specific induced pluripotent stem cell model we found that rapamycin inhibited calcification. Here we investigated whether rapamycin could reduce MAC in vivo using the Mgp -/- murine model. Mgp +/+ and Mgp -/- mice received 5mg/kg rapamycin or vehicle. Calcification content was assessed via microCT, and vascular morphology and extracellular matrix content assessed histologically. Immunostaining and western blot analysis were used to examine SMC phenotype and extracellular matrix content. Rapamycin prolonged Mgp -/- mice lifespan, decreased mineral density in the arteries, maintained SMC contractile phenotype, and improved vessel structure, however, calcification volume was unchanged. Mgp -/- mice with SMC-specific deletion of Raptor or Rictor, did not recapitulate treatment with rapamycin. These findings suggest rapamycin promotes beneficial vascular remodeling in vessels with MAC.
Collapse
Affiliation(s)
- Parya Behzadi
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rolando A Cuevas
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex Crane
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Wendling
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire C Chu
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William J Moorhead
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Wong
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark Brown
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua Tamakloe
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Swathi Suresh
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Payam Salehi
- CardioVascular Center, Vascular Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111-1800, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111-1800, USA
| | - Allison L Kuipers
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lyudmila Lukashova
- Departments of Endodontics and Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos Verdelis
- Departments of Endodontics and Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia St Hilaire
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Lin A, Miano JM, Fisher EA, Misra A. Chronic inflammation and vascular cell plasticity in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1408-1423. [PMID: 39653823 DOI: 10.1038/s44161-024-00569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Vascular smooth muscle cells, endothelial cells and macrophages undergo phenotypic conversions throughout atherosclerosis progression, both as a consequence of chronic inflammation and as subsequent drivers of it. The inflammatory hypothesis of atherosclerosis has been catapulted to the forefront of cardiovascular research as clinical trials have shown that anti-inflammatory therapy reduces adverse cardiovascular events. However, no current therapies have been specifically designed to target the phenotype of plaque cells. Fate mapping has revealed that plaque cells convert to detrimental and beneficial cell phenotypes during atherosclerosis, with cumulative evidence highlighting that vascular cell plasticity is intimately linked with plaque inflammation, ultimately impacting lesion stability. Here we review vascular cell plasticity during atherosclerosis in the context of the chronic inflammatory plaque microenvironment. We highlight the need to better understand how plaque cells behave during therapeutic intervention. We then propose modulating plaque cell phenotype as an unexplored therapeutic paradigm in the clinical setting.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ashish Misra
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol 2024; 327:H1361-H1375. [PMID: 39453431 PMCID: PMC11588312 DOI: 10.1152/ajpheart.00267.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied; however, emerging studies now show that MAC is a significant pathology independent from atherosclerosis. Furthermore, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. Although the contributions of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein, we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
Collapse
Affiliation(s)
- Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
9
|
Chen D, Xu W, Zheng H, Zhang Y, Lin Y, Han Y, Yao F, Shen H. The methyltransferase METTL3 regulates endothelial cell proliferation and inflammation via m 6A RNA methylation-mediated TRAF1 expression. Biochem Biophys Res Commun 2024; 732:150399. [PMID: 39033551 DOI: 10.1016/j.bbrc.2024.150399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The imbalance of vascular endothelial cell homeostasis is the key mechanism for the progression of many vascular diseases. RNA modification, particularly N6-Methyladenosine (m6A), plays important function in numerous biological processes. Nevertheless, the regulatory function of m6A RNA methylation in endothelial dysfunction remains insufficiently characterized. In this study, we established that the m6A methyltransferase METTL3 is critical for regulating endothelial function. Functionally, depletion of METTL3 results in decreased endothelial cells proliferation, survival and inflammatory response. Conversely, overexpression of METTL3 elicited the opposite effects. Mechanistically, MeRIP-seq identified that METTL3 catalyzed m6A modification of TRAF1 mRNA and enhanced TRAF1 translation, thereby up-regulation of TRAF1 protein. Over-expression of TRAF1 successfully rescued the inhibition of proliferation and adhesion of endothelial cells due to METTL3 knockdown. Additionally, m6A methylation-mediated TRAF1 expression can be reversed by the demethylase ALKBH5. Knockdown of ALKBH5 upregulated the level of m6A and protein level of TRAF1, and also increased endothelial cells adhesion and inflammatory response. Collectively, our findings suggest that METTL3 regulates vascular endothelium homeostasis through TRAF1 m6A modification, suggesting that targeting the METTL3-m6A-TRAF1 axis may hold therapeutic potential for patients with vascular diseases.
Collapse
Affiliation(s)
- Duchu Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Wentao Xu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huaxian Zheng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuxuan Zhang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yongzhi Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yulin Han
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fenfen Yao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Haohan Shen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
11
|
Mangum KD, Li Q, Bauer TM, Wolf SJ, Shadiow J, Moon JY, Barrett EC, Joshi AD, Ahmed Z, Wasikowski R, Boyer K, Obi AT, Davis FM, Chang L, Tsoi LC, Gudjonsson J, Gallagher KA. Epigenetic Alteration of Smooth Muscle Cells Regulates Endothelin-Dependent Blood Pressure and Hypertensive Arterial Remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310178. [PMID: 39040193 PMCID: PMC11261912 DOI: 10.1101/2024.07.09.24310178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Long-standing hypertension (HTN) affects multiple organ systems and leads to pathologic arterial remodeling, which is driven largely by smooth muscle cell (SMC) plasticity. Although genome wide association studies (GWAS) have identified numerous variants associated with changes in blood pressure in humans, only a small percentage of these variants actually cause HTN. In order to identify relevant genes important in SMC function in HTN, we screened three separate human GWAS and Mendelian randomization studies to identify SNPs located within non-coding gene regions, focusing on genes encoding epigenetic enzymes, as these have been recently identified to control SMC fate in cardiovascular disease. We identified SNPs rs62059712 and rs74480102 in the promoter of the human JMJD3 gene and show that the minor C allele increases JMJD3 transcription in SMCs via increased SP1 binding to the JMJD3 promoter. Using our novel SMC-specific Jmjd3-deficient murine model ( Jmjd3 flox/flox Myh11 CreERT ), we show that loss of Jmjd3 in SMCs results in HTN, mechanistically, due to decreased EDNRB expression and a compensatory increase in EDNRA expression. As a translational corollary, through single cell RNA-sequencing (scRNA-seq) of human arteries, we found strong correlation between JMJD3 and EDNRB expression in SMCs. Further, we identified that JMJD3 is required for SMC-specific gene expression, and loss of JMJD3 in SMCs in the setting of HTN results in increased arterial remodeling by promoting the SMC synthetic phenotype. Our findings link a HTN-associated human DNA variant with regulation of SMC plasticity, revealing therapeutic targets that may be used in the screening and/or personalized treatment of HTN.
Collapse
|
12
|
Towler DA. Parathyroid hormone-PTH1R signaling in cardiovascular disease and homeostasis. Trends Endocrinol Metab 2024; 35:648-660. [PMID: 38429163 PMCID: PMC11233248 DOI: 10.1016/j.tem.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Primary hyperparathyroidism (pHPT) afflicts our aging population with an incidence approaching 50 per 100 000 patient-years at a female:male ratio of ~3:1. Decisions surrounding surgical management are currently driven by age, hypercalcemia severity, presence of osteoporosis, renal insufficiency, or hypercalciuria with or without nephrolithiasis. Cardiovascular (CV) disease (CVD) is not systematically considered. This is notable since the parathyroid hormone (PTH) 1 receptor (PTH1R) is biologically active in the vasculature, and adjusted CV mortality risk is increased almost threefold in individuals with pHPT who do not meet contemporary recommendations for surgical cure. We provide an overview of epidemiology, pharmacology, and physiology that highlights the need to: (i) identify biomarkers that establish a healthy 'set point' for CV PTH1R signaling tone; (ii) better understand the pharmacokinetic-pharmacodynamic (PK-PD) relationships of PTH1R ligands in CV homeostasis; and (iii) incorporate CVD risk assessment into the management of hyperparathyroidism.
Collapse
Affiliation(s)
- Dwight A Towler
- Department of Internal Medicine - Endocrine Division, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Swiatlowska P, Iskratsch T. Cardiovascular Mechano-Epigenetics: Force-Dependent Regulation of Histone Modifications and Gene Regulation. Cardiovasc Drugs Ther 2024; 38:215-222. [PMID: 36653625 PMCID: PMC10959834 DOI: 10.1007/s10557-022-07422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
The local mechanical microenvironment impacts on the cell behavior. In the cardiovascular system, cells in both the heart and the vessels are exposed to continuous blood flow, blood pressure, stretching forces, and changing extracellular matrix stiffness. The force-induced signals travel all the way to the nucleus regulating epigenetic changes such as chromatin dynamics and gene expression. Mechanical cues are needed at the very early stage for a faultless embryological development, while later in life, aberrant mechanical signaling can lead to a range of pathologies, including diverse cardiovascular diseases. Hence, an investigation of force-generated epigenetic alteration at different time scales is needed to understand fully the phenotypic changes in disease onset and progression. That being so, cardiovascular mechano-epigenetics emerges as an attractive field of study. Given the rapid advances in this emergent field of research, this short review aims to provide an analysis of the state of knowledge of force-induced epigenetic changes in the cardiovascular field.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
15
|
Liu H, Zhao Y, Zhao G, Deng Y, Chen YE, Zhang J. SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies. Cells 2024; 13:168. [PMID: 38247859 PMCID: PMC10814623 DOI: 10.3390/cells13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation. In this review, we provide a summary of research related to the involvement of the SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries shed light on our understanding of VSMC biology and pave the way for developing innovative therapeutic strategies in CVD treatment.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| |
Collapse
|
16
|
Scipione CA, Hyduk SJ, Polenz CK, Cybulsky MI. Unveiling the Hidden Landscape of Arterial Diseases at Single-Cell Resolution. Can J Cardiol 2023; 39:1781-1794. [PMID: 37716639 DOI: 10.1016/j.cjca.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
High-resolution single-cell technologies have shed light on the pathogenesis of cardiovascular diseases by enabling the discovery of novel cellular and transcriptomic signatures associated with various conditions, and uncovering new contributions of inflammatory processes, immunity, metabolic stress, and risk factors. We review the information obtained from studies using single-cell technologies in tissues with atherosclerosis and aortic aneurysms. Insights are provided on the biology of endothelial, smooth muscle, and immune cells in the arterial intima and media. In addition to cellular diversity, numerous examples of plasticity and phenotype switching are highlighted and presented in the context of normal cell functions.
Collapse
Affiliation(s)
- Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Luo L, Fu C, Bell CF, Wang Y, Leeper NJ. Role of vascular smooth muscle cell clonality in atherosclerosis. Front Cardiovasc Med 2023; 10:1273596. [PMID: 38089777 PMCID: PMC10713728 DOI: 10.3389/fcvm.2023.1273596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/24/2023] [Indexed: 02/01/2024] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of death worldwide. While many cell types contribute to the growing atherosclerotic plaque, the vascular smooth muscle cell (SMC) is a major contributor due in part to its remarkable plasticity and ability to undergo phenotype switching in response to injury. SMCs can migrate into the fibrous cap, presumably stabilizing the plaque, or accumulate within the lesional core, possibly accelerating vascular inflammation. How SMCs expand and react to disease stimuli has been a controversial topic for many decades. While early studies relying on X-chromosome inactivation were inconclusive due to low resolution and sensitivity, recent advances in multi-color lineage tracing models have revitalized the concept that SMCs likely expand in an oligoclonal fashion during atherogenesis. Current efforts are focused on determining whether all SMCs have equal capacity for clonal expansion or if a "stem-like" progenitor cell may exist, and to understand how constituents of the clone decide which phenotype they will ultimately adopt as the disease progresses. Mechanistic studies are also beginning to dissect the processes which confer cells with their overall survival advantage, test whether these properties are attributable to intrinsic features of the expanding clone, and define the role of cross-talk between proliferating SMCs and other plaque constituents such as neighboring macrophages. In this review, we aim to summarize the historical perspectives on SMC clonality, highlight unanswered questions, and identify translational issues which may need to be considered as therapeutics directed against SMC clonality are developed as a novel approach to targeting atherosclerosis.
Collapse
Affiliation(s)
- Lingfeng Luo
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Changhao Fu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Caitlin F. Bell
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nicholas J. Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
18
|
Singh S, Bruder-Nascimento A, Costa RM, Alves JV, Bharathi S, Goetzman ES, Bruder-Nascimento T. Adjusted vascular contractility relies on integrity of progranulin pathway: Insights into mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564485. [PMID: 37961631 PMCID: PMC10634918 DOI: 10.1101/2023.10.27.564485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Cardiovascular disease (CVD) is a global health crisis and a leading cause of mortality. The intricate interplay between vascular contractility and mitochondrial function is central to CVD pathogenesis. The progranulin gene (GRN) encodes glycoprotein progranulin (PGRN), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in CVD remains enigmatic. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. Method Our investigation utilized aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice, encompassing wire myograph assays to assess vascular contractility and primary aortic vascular smooth muscle cells (VSMCs) for mechanistic insights. Results Our results showed suppression of contractile activity in PGRN-/- VSMCs and aorta, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency impaired mitochondrial oxygen consumption rate (OCR), complex I activity, mitochondrial turnover, and mitochondrial redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted OCR. In addition, VSMC overexpressing PGRN displayed higher mitochondrial respiration and complex I activity accompanied by cellular hypercontractility. Furthermore, increased PGRN triggered lysosome biogenesis by regulating transcription factor EB and accelerated mitophagy flux in VSMC, while treatment with spermidine, an autophagy inducer, improved mitochondrial phenotype and enhanced vascular contractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/- suggesting a key role of PGRN to maintain the vascular tone. Conclusion Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial complex I activity, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in CVD development.
Collapse
Affiliation(s)
- Shubhnita Singh
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Ariane Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rafael M Costa
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sivakama Bharathi
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S Goetzman
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Genetic and Genomic Medicine Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Zhu N, Guo ZF, Kazama K, Yi B, Tongmuang N, Yao H, Yang R, Zhang C, Qin Y, Han L, Sun J. Epigenetic regulation of vascular smooth muscle cell phenotypic switch and neointimal formation by PRMT5. Cardiovasc Res 2023; 119:2244-2255. [PMID: 37486354 PMCID: PMC10578915 DOI: 10.1093/cvr/cvad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 07/25/2023] Open
Abstract
AIMS Phenotypic transition of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic state is involved in the development of cardiovascular diseases, including atherosclerosis, hypertension, and post-angioplasty restenosis. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) has been implicated in multiple cellular processes, however, its role in VSMC biology remains undetermined. The objective of this study was to determine the role of PRMTs in VSMC phenotypic switch and vascular remodelling after injury. METHODS AND RESULTS Our results show that PRMT5 is the most abundantly expressed PRMT in human aortic SMCs, and its expression is up-regulated in platelet-derived growth factor (PDGF)-stimulated VSMCs, human atherosclerotic lesions, and rat carotid arteries after injury, as determined by western blot and immunohistochemical staining. PRMT5 overexpression inhibits the expression of SMC marker genes and promotes VSMC proliferation and migration, while silencing PRMT5 exerts the opposite effects. Mechanistically, we found that PRMT5 overexpression led to histone di-methylation of H3R8 and H4R3, which in turn attenuates acetylation of H3K9 and H4, thus limiting recruitment of the SRF/myocardin complexes to the CArG boxes of SMC marker genes. Furthermore, both SMC-specific deletion of PRMT5 in mice and local delivery of lentivirus expressing shPRMT5 to rat carotid arteries significantly attenuated neointimal formation after injury. Likewise, pharmacological inhibition of PRMT5 by EPZ015666 markedly inhibited carotid artery ligation-induced neointimal formation in mice. CONCLUSIONS Our results identify PRMT5 as a novel regulator in VSMC phenotypic switch and suggest that inhibition of PRMT5 may represent an effective therapeutic strategy for proliferative vascular diseases.
Collapse
Affiliation(s)
- Ni Zhu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Zhi-Fu Guo
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Nopprarat Tongmuang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Huijuan Yao
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Ruifeng Yang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Chen Zhang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Yongwen Qin
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China
| | - Lin Han
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| |
Collapse
|
20
|
Yuan X, Huang J, Wen L, Novakovic B, Kilby MD, Tong C, Qi H, Saffery R, Baker PN. Genome-wide DNA methylation analysis of discordant monozygotic twins reveals consistent sites of differential methylation associated with congenital heart disease. Genomics 2023; 115:110565. [PMID: 36690264 DOI: 10.1016/j.ygeno.2023.110565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite being essentially genetically identical, monozygotic (MZ) twins can be discordant for congenital heart disease (CHD), thus highlighting the importance of in utero environmental factors for CHD pathogenesis. This study aimed to identify the epigenetic variations between discordant MZ twin pairs that are associated with CHD at birth. METHODS Cord blood of CHD-discordant MZ twins from the Chongqing Longitudinal Twin Study Cohort was subjected to whole-genome bisulfite sequencing, then validated by MeDIP-qPCR and qRT-PCR. RESULTS 379 DMRs mapped to 175 differentially methylated genes (DMGs) were associated with CHD. Functional enrichment analysis identified these DMGs are involved in histone methylation, actin cytoskeleton organization, the regulation of cell differentiation, and adrenergic signaling in cardiomyocytes. Of note, SPESP1 and NOX5 were hypermethylated in CHD, and associated with lower gene expression levels. CONCLUSIONS Specific DNA methy (DNAm) variations in cord blood were associated with CHD, thus illustrating new biomarkers and potential interventional targets for CHD. TRIAL REGISTRATION ChiCTR-OOC-16008203, registered on 1 April 2016 at the Chinese Clinical Trial Registry.
Collapse
Affiliation(s)
- Xi Yuan
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiayu Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Wen
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham B15 2TG, UK; Institute of Metabolism & Systems Research, College of Medical & Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Philip N Baker
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
21
|
Wang Z, Quan Y, Hu M, Xu Y, Chen Y, Jin P, Ma J, Chen X, Fan J, Fan X, Gong Y, Li M, Wang Y. VGLL4-TEAD1 promotes vascular smooth muscle cell differentiation from human pluripotent stem cells via TET2. J Mol Cell Cardiol 2023; 176:21-32. [PMID: 36657637 DOI: 10.1016/j.yjmcc.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The Hippo signaling pathway plays a critical role in cardiovascular development and stem cell differentiation. Using microarray profiling, we found that the Hippo pathway components vestigial-like family member 4 (VGLL4) and TEA domain transcription factor 1 (TEAD1) were upregulated during vascular smooth muscle cell (VSMC) differentiation from H1 ESCs (H1 embryonic stem cells). To further explore the role and molecular mechanisms of VGLL4 in regulating VSMC differentiation, we generated a VGLL4-knockdown H1 ESC line (heterozygous knockout) using the CRISPR/Cas9 system and found that VGLL4 knockdown inhibited VSMC specification. In contrast, overexpression of VGLL4 using the PiggyBac transposon system facilitated VSMC differentiation. We confirmed that this effect was mediated via TEAD1 and VGLL4 interaction. In addition, bioinformatics analysis revealed that Ten-eleven-translocation 2 (TET2), a DNA dioxygenase, is a target of TEAD1, and a luciferase assay further verified that TET2 is the target of the VGLL4-TEAD1 complex. Indeed, TET2 overexpression promoted VSMC marker gene expression and countered the VGLL4 knockdown-mediated inhibitory effects on VSMC differentiation. In summary, we revealed a novel role of VGLL4 in promoting VSMC differentiation from hESCs and identified TET2 as a new target of the VGLL4-TEAD1 complex, which may demethylate VSMC marker genes and facilitate VSMC differentiation. This study provides new insights into the VGLL4-TEAD1-TET2 axis in VSMC differentiation and vascular development.
Collapse
Affiliation(s)
- Zuxuan Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yingyi Quan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Minjie Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yubin Xu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yuhao Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Peifeng Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiufang Chen
- Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China; Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| |
Collapse
|
22
|
Bhagwani AR, Ali M, Piper B, Liu M, Hudson J, Kelly N, Bogamuwa S, Yang H, Londino JD, Bednash JS, Farkas D, Mallampalli RK, Nicolls MR, Ryan JJ, Thompson AR, Chan SY, Gomez D, Goncharova EA, Farkas L. A p53-TLR3 axis ameliorates pulmonary hypertension by inducing BMPR2 via IRF3. iScience 2023; 26:105935. [PMID: 36685041 PMCID: PMC9852960 DOI: 10.1016/j.isci.2023.105935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) features pathogenic and abnormal endothelial cells (ECs), and one potential origin is clonal selection. We studied the role of p53 and toll-like receptor 3 (TLR3) in clonal expansion and pulmonary hypertension (PH) via regulation of bone morphogenetic protein (BMPR2) signaling. ECs of PAH patients had reduced p53 expression. EC-specific p53 knockout exaggerated PH, and clonal expansion reduced p53 and TLR3 expression in rat lung CD117+ ECs. Reduced p53 degradation (Nutlin 3a) abolished clonal EC expansion, induced TLR3 and BMPR2, and ameliorated PH. Polyinosinic/polycytidylic acid [Poly(I:C)] increased BMPR2 signaling in ECs via enhanced binding of interferon regulatory factor-3 (IRF3) to the BMPR2 promoter and reduced PH in p53-/- mice but not in mice with impaired TLR3 downstream signaling. Our data show that a p53/TLR3/IRF3 axis regulates BMPR2 expression and signaling in ECs. This link can be exploited for therapy of PH.
Collapse
Affiliation(s)
- Aneel R. Bhagwani
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mehboob Ali
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Bryce Piper
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jaylen Hudson
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Neil Kelly
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Srimathi Bogamuwa
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Hu Yang
- Chemical & Biochemical Engineering, Missouri S&T, Rolla, MO 65409, USA
| | - James D. Londino
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Daniela Farkas
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mark R. Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John J. Ryan
- College of Humanities & Sciences, Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - A.A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA 95616, USA
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Cuevas RA, Wong R, Joolharzadeh P, Moorhead WJ, Chu CC, Callahan J, Crane A, Boufford CK, Parise AM, Parwal A, Behzadi P, St Hilaire C. Ecto-5'-nucleotidase (Nt5e/CD73)-mediated adenosine signaling attenuates TGFβ-2 induced elastin and cellular contraction. Am J Physiol Cell Physiol 2023; 324:C327-C338. [PMID: 36503240 PMCID: PMC9902218 DOI: 10.1152/ajpcell.00054.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Arterial calcification due to deficiency of CD73 (ACDC) is a rare genetic disease caused by a loss-of-function mutation in the NT5E gene encoding the ecto-5'-nucleotidase (cluster of differentiation 73, CD73) enzyme. Patients with ACDC develop vessel arteriomegaly, tortuosity, and vascular calcification in their lower extremity arteries. Histological analysis shows that patients with ACDC vessels exhibit fragmented elastin fibers similar to that seen in aneurysmal-like pathologies. It is known that alterations in transforming growth factor β (TGFβ) pathway signaling contribute to this elastin phenotype in several connective tissue diseases, as TGFβ regulates extracellular matrix (ECM) remodeling. Our study investigates whether CD73-derived adenosine modifies TGFβ signaling in vascular smooth muscle cells (SMCs). We show that Nt5e-/- SMCs have elevated contractile markers and elastin gene expression compared with Nt5e+/+ SMCs. Ecto-5'-nucleotidase (Nt5e)-deficient SMCs exhibit increased TGFβ-2 and activation of small mothers against decapentaplegic (SMAD) signaling, elevated elastin transcript and protein, and potentiate SMC contraction. These effects were diminished when the A2b adenosine receptor was activated. Our results identify a novel link between adenosine and TGFβ signaling, where adenosine signaling via the A2b adenosine receptor attenuates TGFβ signaling to regulate SMC homeostasis. We discuss how disruption in adenosine signaling is implicated in ACDC vessel tortuosity and could potentially contribute to other aneurysmal pathogenesis.
Collapse
Affiliation(s)
- Rolando A Cuevas
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Wong
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pouya Joolharzadeh
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Moorhead
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claire C Chu
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jack Callahan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alex Crane
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Camille K Boufford
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Angelina M Parise
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aneesha Parwal
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Parya Behzadi
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Williams MJ, White SC, Joseph Z, Hruska KA. Updates in the chronic kidney disease-mineral bone disorder show the role of osteocytic proteins, a potential mechanism of the bone-Vascular paradox, a therapeutic target, and a biomarker. Front Physiol 2023; 14:1120308. [PMID: 36776982 PMCID: PMC9909112 DOI: 10.3389/fphys.2023.1120308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The chronic kidney disease-mineral bone disorder (CKD-MBD) is a complex multi-component syndrome occurring during kidney disease and its progression. Here, we update progress in the components of the syndrome, and synthesize recent investigations, which suggest a potential mechanism of the bone-vascular paradox. The discovery that calcified arteries in chronic kidney disease inhibit bone remodeling lead to the identification of factors produced by the vasculature that inhibit the skeleton, thus providing a potential explanation for the bone-vascular paradox. Among the factors produced by calcifying arteries, sclerostin secretion is especially enlightening. Sclerostin is a potent inhibitor of bone remodeling and an osteocyte specific protein. Its production by the vasculature in chronic kidney disease identifies the key role of vascular cell osteoblastic/osteocytic transdifferentiation in vascular calcification and renal osteodystrophy. Subsequent studies showing that inhibition of sclerostin activity by a monoclonal antibody improved bone remodeling as expected, but stimulated vascular calcification, demonstrate that vascular sclerostin functions to brake the Wnt stimulation of the calcification milieu. Thus, the target of therapy in the chronic kidney disease-mineral bone disorder is not inhibition of sclerostin function, which would intensify vascular calcification. Rather, decreasing sclerostin production by decreasing the vascular osteoblastic/osteocytic transdifferentiation is the goal. This might decrease vascular calcification, decrease vascular stiffness, decrease cardiac hypertrophy, decrease sclerostin production, reduce serum sclerostin and improve skeletal remodeling. Thus, the therapeutic target of the chronic kidney disease-mineral bone disorder may be vascular osteoblastic transdifferentiation, and sclerostin levels may be a useful biomarker for the diagnosis of the chronic kidney disease-mineral bone disorder and the progress of its therapy.
Collapse
Affiliation(s)
- Matthew J. Williams
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Sarah C. White
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Zachary Joseph
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Keith A. Hruska
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
- Departments of Medicine and Cell Biology, Washington University, Saint Louis, MO, United States
| |
Collapse
|
25
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
26
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
27
|
Chen Y, Liang L, Wu C, Cao Z, Xia L, Meng J, Wang Z. Epigenetic Control of Vascular Smooth Muscle Cell Function in Atherosclerosis: A Role for DNA Methylation. DNA Cell Biol 2022; 41:824-837. [PMID: 35900288 DOI: 10.1089/dna.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a complex vascular inflammatory disease in which multiple cell types are involved, including vascular smooth muscle cells (VSMCs). In response to vascular injury and inflammatory stimuli, VSMCs undergo a "phenotypic switching" characterized by extracellular matrix secretion, loss of contractility, and abnormal proliferation and migration, which play a key role in the progression of atherosclerosis. DNA methylation modification is an important epigenetic mechanism that plays an important role in atherosclerosis. Studies investigating abnormal DNA methylation in patients with atherosclerosis have determined a specific DNA methylation profile, and proposed multiple pathways and genes involved in the etiopathogenesis of atherosclerosis. Recent studies have also revealed that DNA methylation modification controls VSMC function by regulating gene expression involved in atherosclerosis. In this review, we summarize the recent advances regarding the epigenetic control of VSMC function by DNA methylation in atherosclerosis and provide insights into the development of VSMC-centered therapeutic strategies.
Collapse
Affiliation(s)
- Yanjun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingli Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunyan Wu
- The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Zitong Cao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Linzhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
28
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
29
|
Du M, Espinosa-Diez C, Liu M, Ahmed IA, Mahan S, Wei J, Handen AL, Chan SY, Gomez D. miRNA/mRNA co-profiling identifies the miR-200 family as a central regulator of SMC quiescence. iScience 2022; 25:104169. [PMID: 35465051 PMCID: PMC9018390 DOI: 10.1016/j.isci.2022.104169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
miRNAs are versatile regulators of smooth muscle cell (SMC) fate and behavior in vascular development and disease. Targeted loss-of-function studies have established the relevance of specific miRNAs in controlling SMC differentiation or mediating phenotypic modulation. Our goal was to characterize SMC miRNAome and its contribution to transcriptome changes during phenotypic modulation. Small RNA sequencing revealed that dedifferentiation led to the differential expression of over 50 miRNAs in cultured SMC. miRNA/mRNA comparison predicted that over a third of SMC transcript expression was regulated by differentially expressed miRNAs. Our screen identified the miR-200 cluster as highly downregulated during dedifferentiation. miR-200 maintains SMC quiescence and represses proliferation, migration, and neointima formation, in part by targeting Quaking, a central SMC phenotypic switching mediator. Our study unraveled the substantial contribution of miRNAs in regulating the SMC transcriptome and identified the miR-200 cluster as a pro-quiescence mechanism and a potential inhibitor of vascular restenosis.
Collapse
Affiliation(s)
- Mingyuan Du
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ibrahim Adeola Ahmed
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sidney Mahan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jianxin Wei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adam L Handen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
30
|
Susser LI, Rayner KJ. Through the layers: how macrophages drive atherosclerosis across the vessel wall. J Clin Invest 2022; 132:157011. [PMID: 35499077 PMCID: PMC9057606 DOI: 10.1172/jci157011] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Leah I. Susser
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Katey J. Rayner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Harryman WL, Marr KD, Nagle RB, Cress AE. Integrins and Epithelial-Mesenchymal Cooperation in the Tumor Microenvironment of Muscle-Invasive Lethal Cancers. Front Cell Dev Biol 2022; 10:837585. [PMID: 35300411 PMCID: PMC8921537 DOI: 10.3389/fcell.2022.837585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Muscle-invasive lethal carcinomas traverse into and through this specialized biophysical and growth factor enriched microenvironment. We will highlight cancers that originate in organs surrounded by smooth muscle, which presents a barrier to dissemination, including prostate, bladder, esophageal, gastric, and colorectal cancers. We propose that the heterogeneity of cell-cell and cell-ECM adhesion receptors is an important driver of aggressive tumor networks with functional consequences for progression. Phenotype heterogeneity of the tumor provides a biophysical advantage for tumor network invasion through the tensile muscle and survival of the tumor network. We hypothesize that a functional epithelial-mesenchymal cooperation (EMC)exists within the tumor invasive network to facilitate tumor escape from the primary organ, invasion and traversing of muscle, and navigation to metastatic sites. Cooperation between specific epithelial cells within the tumor and stromal (mesenchymal) cells interacting with the tumor is illustrated using the examples of laminin-binding adhesion molecules—especially integrins—and their response to growth and inflammatory factors in the tumor microenvironment. The cooperation between cell-cell (E-cadherin, CDH1) and cell-ECM (α6 integrin, CD49f) expression and growth factor receptors is highlighted within poorly differentiated human tumors associated with aggressive disease. Cancer-associated fibroblasts are examined for their role in the tumor microenvironment in generating and organizing various growth factors. Cellular structural proteins are potential utility markers for future spatial profiling studies. We also examine the special characteristics of the smooth muscle microenvironment and how invasion by a primary tumor can alter this environment and contribute to tumor escape via cooperation between epithelial and stromal cells. This cooperative state allows the heterogenous tumor clusters to be shaped by various growth factors, co-opt or evade immune system response, adapt from hypoxic to normoxic conditions, adjust to varying energy sources, and survive radiation and chemotherapeutic interventions. Understanding the epithelial-mesenchymal cooperation in early tumor invasive networks holds potential for both identifying early biomarkers of the aggressive transition and identification of novel agents to prevent the epithelial-mesenchymal cooperation phenotype. Epithelial-mesenchymal cooperation is likely to unveil new tumor subtypes to aid in selection of appropriate therapeutic strategies.
Collapse
Affiliation(s)
- William L Harryman
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Kendra D Marr
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States.,Medical Scientist Training Program, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ray B Nagle
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anne E Cress
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Cellular and Molecular Medicine and Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
32
|
Zhang F, Guo X, Xia Y, Mao L. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell Mol Life Sci 2021; 79:6. [PMID: 34936041 PMCID: PMC11072026 DOI: 10.1007/s00018-021-04079-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are involved in phenotypic switching in atherosclerosis. This switching is characterized by VSMC dedifferentiation, migration, and transdifferentiation into other cell types. VSMC phenotypic transitions have historically been considered bidirectional processes. Cells can adopt a physiological contraction phenotype or an alternative "synthetic" phenotype in response to injury. However, recent studies, including lineage tracing and single-cell sequencing studies, have shown that VSMCs downregulate contraction markers during atherosclerosis while adopting other phenotypes, including macrophage-like, foam cell, mesenchymal stem-like, myofibroblast-like, and osteochondral-like phenotypes. However, the molecular mechanism and processes regulating the switching of VSMCs at the onset of atherosclerosis are still unclear. This systematic review aims to review the critical outstanding challenges and issues that need further investigation and summarize the current knowledge in this field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|