1
|
Meza-Torres J, Tinevez JY, Crouzols A, Mary H, Kim M, Hunault L, Chamorro-Rodriguez S, Lejal E, Altamirano-Silva P, Groussard D, Gobaa S, Peltier J, Chassaing B, Dupuy B. Clostridioides difficile binary toxin CDT induces biofilm-like persisting microcolonies. Gut Microbes 2025; 17:2444411. [PMID: 39719371 DOI: 10.1080/19490976.2024.2444411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Clinical symptoms of Clostridioides difficile infection (CDI) range from diarrhea to pseudomembranous colitis. A major challenge in managing CDI is the high rate of relapse. Several studies correlate the production of CDT binary toxin by clinical strains of C. difficile with higher relapse rates. Although the mechanism of action of CDT on host cells is known, its exact contribution to CDI is still unclear. To understand the physiological role of CDT during CDI, we established two hypoxic relevant intestinal models, Transwell and Microfluidic Intestine-on-Chip systems. Both were challenged with the epidemic strain UK1 CDT+ and its isogenic CDT- mutant. We report that CDT induces mucin-associated microcolonies that increase C. difficile colonization and display biofilm-like properties by enhancing C. difficile resistance to vancomycin. Importantly, biofilm-like microcolonies were also observed in the cecum and colon of infected mice. Hence, our study shows that CDT induces biofilm-like microcolonies, increasing C. difficile persistence and risk of relapse.
Collapse
Affiliation(s)
- Jazmin Meza-Torres
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, Department of Cell Biology and Infection, Institut Pasteur, Université Paris Cité, Paris, France
| | - Aline Crouzols
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Minhee Kim
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Lise Hunault
- Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, France
| | - Susan Chamorro-Rodriguez
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Emilie Lejal
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | | | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Department of Microbiology, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Bruno Dupuy
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| |
Collapse
|
2
|
Batho-Samblas C, Smith J, Keavey L, Clancy N, McTeir L, Davey MG. Characterisation of the avascular mesenchyme during digit outgrowth. Dev Biol 2025; 523:99-110. [PMID: 40210155 DOI: 10.1016/j.ydbio.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The avascular mesenchyme at the tip of the developing digit contributes to digit outgrowth and patterning, however, it has been poorly characterised. Using newly developed fate mapping approaches, tissue manipulation and single-cell mRNA sequencing data, we explore the transcriptional nature and developmental potential of this tissue. We find that the avascular mesenchyme is essential to normal segmental patterning of the digit and has a distinct transcriptional identity. In addition, we uncover an unexpected relationship between the unspecified tissue of the avascular mesenchyme and the committed phalanx forming region, which controls patterning, but not outgrowth of the digit. This multifaceted approach provides insights into the mechanics and genetic pathways that regulate digit outgrowth and patterning.
Collapse
Affiliation(s)
- Cameron Batho-Samblas
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Jonathan Smith
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lois Keavey
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; UK Dementia Research Institute, University of Edinburgh, EH16 4SB, UK
| | - Noah Clancy
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Lynn McTeir
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Megan G Davey
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; RICE- Roslin Institute Chicken Embryology, UK.
| |
Collapse
|
3
|
Bubna-Litic M, Mayor R. Beyond mechanosensing: How cells sense and shape their physical environment during development. Curr Opin Cell Biol 2025; 94:102514. [PMID: 40209565 DOI: 10.1016/j.ceb.2025.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 04/12/2025]
Abstract
The role of mechanics as a regulator of cell behaviour and embryo development has been widely recognised. However, much of the focus in mechanobiology during embryo development has been on how the mechanical properties of a cell affect its behaviour and fate determination. We discuss the role of mechanosignalling in development and propose that an equally important aspect of embryo mechanobiology is understanding how dynamic changes in tissue mechanics are regulated. Comparably to how chemical signals influence the fate of responding tissues during embryonic induction, we suggest that embryonic cell populations can alter the mechanical properties of adjacent tissues in a process we name 'actuation'. Several examples of embryonic actuation and mechanical feedback are discussed.
Collapse
Affiliation(s)
- Matyas Bubna-Litic
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Malkmus J, Morabito A, Lopez-Delisle L, Avino-Esteban L, Mayran A, Zuniga A, Sharpe J, Zeller R, Sheth R. WNT signaling coordinately controls mouse limb bud outgrowth and establishment of the digit-interdigit pattern. Development 2025; 152:dev204606. [PMID: 40446196 DOI: 10.1242/dev.204606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/06/2025] [Indexed: 06/11/2025]
Abstract
Self-organization, such as the emergence of a pattern from a homogenous state, is a fascinating property of biological systems. Early limb bud outgrowth and patterning in mice are controlled by a robust and self-regulatory signaling system, and initiation of the periodic digit-interdigit pattern appears to be under the control of a self-regulatory Turing system. Previous studies established the requirement of WNT and BMP signaling for both early limb bud and digit-interdigit morphogenesis, but the molecular changes underlying the transition from early limb bud signaling to the digit-interdigit patterning system remained unknown. Here, we have used small molecule inhibitors to rapidly but transiently block WNT signaling to identify the early transcriptional targets that are altered during disruption and recovery of limb bud and digit development. Together, this study highlights the overarching role of WNT signaling in controlling early limb bud outgrowth and patterning, and the establishment of the periodic digit-interdigit pattern. Finally, the transient WNT signaling disruption approach reveals the plasticity and robustness of these self-organizing limb bud- and digit-patterning systems.
Collapse
Affiliation(s)
- Jonas Malkmus
- Developmental Genetics, Department of Biomedicine, University of Basel, CH4054 Basel, Switzerland
| | - Angela Morabito
- Developmental Genetics, Department of Biomedicine, University of Basel, CH4054 Basel, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Laura Avino-Esteban
- Multicellular Systems Biology, European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
| | - Alexandre Mayran
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Aimee Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, CH4054 Basel, Switzerland
| | - James Sharpe
- Multicellular Systems Biology, European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, CH4054 Basel, Switzerland
| | - Rushikesh Sheth
- Developmental Genetics, Department of Biomedicine, University of Basel, CH4054 Basel, Switzerland
| |
Collapse
|
5
|
Michaut A, Chamolly A, Villedieu A, Corson F, Gros J. A tension-induced morphological transition shapes the avian extra-embryonic territory. Curr Biol 2025; 35:1681-1692.e4. [PMID: 40081377 DOI: 10.1016/j.cub.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The segregation of the extra-embryonic lineage is one of the earliest events and a key step in amniote development. Whereas the regulation of extra-embryonic cell fate specification has been extensively studied, little is known about the morphogenetic events underlying the formation of this lineage. Here, taking advantage of the amenability of avian embryos to live and quantitative imaging, we investigate the cell- and tissue-scale dynamics of epiboly, the process during which the epiblast expands to engulf the entire yolk. We show that tension arising from the outward migration of the epiblast border on the vitelline membrane stretches extra-embryonic cells, which reversibly transition from a columnar to a squamous morphology. The propagation of this tension is strongly attenuated in the embryonic territory, which concomitantly undergoes fluid-like motion, culminating in the formation of the primitive streak. We formulate a simple viscoelastic model in which the epiblast responds elastically to isotropic stress but, on a similar timescale, flows in response to shear stress, and we show that it recapitulates the flows and deformation of both embryonic and extra-embryonic tissues. Together, our results clarify the mechanical basis of early avian embryogenesis and provide a framework unifying the divergent mechanical behaviors observed in the contiguous embryonic and extra-embryonic territories that make up the epiblast.
Collapse
Affiliation(s)
- Arthur Michaut
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, 75015 Paris, France
| | - Alexander Chamolly
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, 75015 Paris, France; Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Aurélien Villedieu
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, 75015 Paris, France
| | - Francis Corson
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France.
| | - Jérôme Gros
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, 75015 Paris, France.
| |
Collapse
|
6
|
Zhu M, Zhang K, Thomas EC, Xu R, Ciruna B, Hopyan S, Sun Y. Tissue stiffness mapping by light sheet elastography. SCIENCE ADVANCES 2025; 11:eadt7274. [PMID: 40085703 PMCID: PMC11908498 DOI: 10.1126/sciadv.adt7274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Tissue stiffness plays a crucial role in regulating morphogenesis. The ability to measure and monitor the dynamic progression of tissue stiffness is important for generating and testing mechanistic hypotheses. Methods to measure tissue properties in vivo have been emerging but present challenges with spatial and temporal resolution especially in 3D, by their reliance on highly specialized equipment, and/or due to their invasive nature. Here, we introduce light sheet elastography, a noninvasive method that couples low-frequency shear waves with light sheet fluorescence microscopy by adapting commercially available instruments. With this method, we achieved in toto stiffness mapping of organ-stage mouse and zebrafish embryos at cellular resolution. Versatility of the method enabled time-lapse stiffness mapping during tissue remodeling and of the beating embryonic heart. This method expands the spectrum of tools available to biologists and presents opportunities for uncovering the mechanical basis of morphogenesis.
Collapse
Affiliation(s)
- Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Kaiwen Zhang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Evan C. Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Ran Xu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Brian Ciruna
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| |
Collapse
|
7
|
Mead A, Funston G, Brusatte S. Forelimb reduction and digit loss were evolutionarily decoupled in oviraptorosaurian theropod dinosaurs. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242114. [PMID: 40144282 PMCID: PMC11937923 DOI: 10.1098/rsos.242114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/04/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025]
Abstract
Theropod forelimbs exhibit wide morphological disparity, from the elongated wings of birds to the diminutive arms of T. rex. A wealth of work has sought to understand the evolution of bird flight via arm elongation, but despite widespread occurrences of forelimb reduction and digit loss throughout theropod dinosaurs, the evolutionary drivers behind these patterns are poorly understood. Previous studies demonstrate broad allometric trends that can account for some instances of forelimb reduction, but the repeated loss of digits, and their hypothesized link to forelimb shortening, has received less attention. Here, we evaluate evolutionary associations between digit loss and forelimb reduction in an iconic and data-rich theropod clade, Oviraptorosauria. Unexpectedly, we find that the evolution of digit III and the rest of the forelimb are decoupled. Support for different evolutionary models and a lower phylogenetic signal in digit III than the rest of the forelimb suggests these segments were subject to different evolutionary processes leading to independent morphological change. Oviraptorosaurs exhibit four distinct forelimb morphotypes, but these do not exactly correspond to patterns of dietary niche partitioning. Overall, forelimb evolution in oviraptorosaurs is more complex than anticipated, potentially as a result of an evolutionary radiation they underwent in the Late Cretaceous.
Collapse
Affiliation(s)
- Amelia Mead
- Department of Geology and of Geophysics, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Gregory Funston
- Royal Ontario Museum, Toronto, Ontario, Canada
- University of California Davis, Davis, CA, USA
| | - Stephen Brusatte
- Department of Geology and of Geophysics, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
van de Wouw HL, Yen ST, Valet M, Garcia JA, Gomez CO, Vian A, Liu Y, Pollock J, Pospíšil P, Campàs O, Sletten EM. Non-Ionic Fluorosurfactants for Droplet-Based in vivo Applications. Angew Chem Int Ed Engl 2024; 63:e202404956. [PMID: 39340199 DOI: 10.1002/anie.202404956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Fluorocarbon oils are uniquely suited for many biomedical applications due to their inert, bioorthogonal properties. In order to interface fluorocarbon oils with biological systems, non-ionic fluorosurfactants are necessary. However, there is a paucity of non-ionic fluorosurfactants with low interfacial tension (IFT) to stabilize fluorocarbon phases in aqueous environments (such as oil-in-water emulsions). We developed non-ionic fluorosurfactants composed of a polyethylene glycol (PEG) segment covalently bonded to a flexible perfluoropolyether (PFPE) segment that confer low IFTs between a fluorocarbon oil (HFE-7700) and water. The synthesis of a panel of surfactants spanning a molecular weight range of 0.64-66 kDa with various hydrophilic-lipophilic balances allowed for identification of minimal IFTs, ranging from 1.4 to 17.8 mN m-1. The majority of these custom fluorosurfactants display poor solubility in water, allowing their co-introduction with fluorocarbon oils and minimal leaching. We applied the PEG5PFPE1 surfactant for mechanical force measurements in zebrafish, enabling exceptional sensitivity.
Collapse
Affiliation(s)
- Heidi L van de Wouw
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095, USA
- Present address: School of Chemistry and Biochemistry, Georgia Institute of Technology, 770 State Street N.W., Atlanta, GA, 30332, USA
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Manon Valet
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
| | - Joseph A Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095, USA
| | - Carlos O Gomez
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Antoine Vian
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jennifer Pollock
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Petr Pospíšil
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
| | - Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Arnoldstrasse 18, 01307, Dresden, Germany
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Kasirer S, Sprinzak D. Interplay between Notch signaling and mechanical forces during developmental patterning processes. Curr Opin Cell Biol 2024; 91:102444. [PMID: 39608232 DOI: 10.1016/j.ceb.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
The coordination between biochemical signals and cell mechanics has emerged in recent years as a crucial mechanism driving developmental patterning processes across a variety of developing and homeostatic systems. An important class of such developmental processes relies on local communication between neighboring cells through Notch signaling. Here, we review how the coordination between Notch-mediated differentiation and cell mechanics can give rise to unique cellular patterns. We discuss how global and local mechanical cues can affect, and be affected by, cellular differentiation and reorganization controlled by Notch signaling. We compare recent studies of such developmental processes, including the mammalian inner ear, Drosophila ommatidia, intestinal organoids, and zebrafish myocardium, to draw shared general concepts and their broader implications in biology.
Collapse
Affiliation(s)
- Shahar Kasirer
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel; Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|
10
|
Kim S, Amini R, Yen ST, Pospíšil P, Boutillon A, Deniz IA, Campàs O. A nuclear jamming transition in vertebrate organogenesis. NATURE MATERIALS 2024; 23:1592-1599. [PMID: 39134649 DOI: 10.1038/s41563-024-01972-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/11/2024] [Indexed: 11/01/2024]
Abstract
Jamming of cell collectives and associated rigidity transitions have been shown to play a key role in tissue dynamics, structure and morphogenesis. Cellular jamming is controlled by cellular density and the mechanics of cell-cell contacts. However, the contribution of subcellular organelles to the physical state of the emergent tissue is unclear. Here we report a nuclear jamming transition in zebrafish retina and brain tissues, where physical interactions between highly packed nuclei restrict cellular movements and control tissue mechanics and architecture. Computational modelling suggests that the nuclear volume fraction and anisotropy of cells control the emerging tissue physical state. Analysis of tissue architecture, mechanics and nuclear movements during eye development show that retina tissues undergo a nuclear jamming transition as they form, with increasing nuclear packing leading to more ordered cellular arrangements, reminiscent of the crystalline cellular packings in the functional adult eye. Our results reveal an important role of the cell nucleus in tissue mechanics and architecture.
Collapse
Affiliation(s)
- Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rana Amini
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Petr Pospíšil
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Arthur Boutillon
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Ilker Ali Deniz
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Liu J, Prahl LS, Huang AZ, Hughes AJ. Measurement of adhesion and traction of cells at high yield reveals an energetic ratchet operating during nephron condensation. Proc Natl Acad Sci U S A 2024; 121:e2404586121. [PMID: 39292750 PMCID: PMC11441508 DOI: 10.1073/pnas.2404586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Developmental biology-inspired strategies for tissue-building have extraordinary promise for regenerative medicine, spurring interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here, we present multiplexed adhesion and traction of cells at high yield (MATCHY). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell-cell adhesion assays using microfabrication and a semiautomated computation scheme with machine learning-driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for rearranged during transfection (RET) tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We then use MATCHY to create a biophysical atlas of mouse embryonic kidney primary cells and identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an "energetic ratchet" that accounts for spatial trends in nephron progenitor cell condensation as they differentiate into early nephron structures, which we validate through agent-based computational simulation. MATCHY offers semiautomated cell biophysical characterization at >10,000-cell throughput, an advance benefiting fundamental studies and new synthetic tissue strategies for regenerative medicine.
Collapse
Affiliation(s)
- Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
| | - Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA19104
| | - Aria Zheyuan Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA19104
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA19104
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA19104
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA19104
- Materials Research Science and Engineering Center, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
12
|
Zhu M, Gu B, Thomas EC, Huang Y, Kim YK, Tao H, Yung TM, Chen X, Zhang K, Woolaver EK, Nevin MR, Huang X, Winklbauer R, Rossant J, Sun Y, Hopyan S. A fibronectin gradient remodels mixed-phase mesoderm. SCIENCE ADVANCES 2024; 10:eadl6366. [PMID: 39028807 PMCID: PMC11259159 DOI: 10.1126/sciadv.adl6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Physical processes ultimately shape tissue during development. Two emerging proposals are that cells migrate toward stiffer tissue (durotaxis) and that the extent of cell rearrangements reflects tissue phase, but it is unclear whether and how these concepts are related. Here, we identify fibronectin-dependent tissue stiffness as a control variable that underlies and unifies these phenomena in vivo. In murine limb bud mesoderm, cells are either caged, move directionally, or intercalate as a function of their location along a stiffness gradient. A modified Landau phase equation that incorporates tissue stiffness accurately predicts cell diffusivity upon loss or gain of fibronectin. Fibronectin is regulated by WNT5A-YAP feedback that controls cell movements, tissue shape, and skeletal pattern. The results identify a key determinant of phase transition and show how fibronectin-dependent directional cell movement emerges in a mixed-phase environment in vivo.
Collapse
Affiliation(s)
- Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Bin Gu
- Department of Obstetrics Gynecology and Reproductive Biology, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evan C. Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yunyun Huang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora M. Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaiwen Zhang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Elizabeth K. Woolaver
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mikaela R. Nevin
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rudolph Winklbauer
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yu Sun
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
13
|
Ding Y, Chen ZQ, Pan WF, Chen HJ, Wu M, Lyu YQ, Xie H, Huang YC, Chen ZZ, Chen F. The association and underlying mechanism of the digit ratio (2D:4D) in hypospadias. Asian J Androl 2024; 26:356-365. [PMID: 38563741 PMCID: PMC11280205 DOI: 10.4103/aja202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
The second-to-fourth digit (2D:4D) ratio is thought to be associated with prenatal androgen exposure. However, the relationship between the 2D:4D ratio and hypospadias is poorly understood, and its molecular mechanism is not clear. In this study, by analyzing the hand digit length of 142 boys with hypospadias (23 distal, 68 middle, and 51 proximal) and 196 controls enrolled in Shanghai Children's Hospital (Shanghai, China) from December 2020 to December 2021, we found that the 2D:4D ratio was significantly increased in boys with hypospadias ( P < 0.001) and it was positively correlated with the severity of the hypospadias. This was further verified by the comparison of control mice and prenatal low testosterone mice model obtained by knocking out the risk gene (dynein axonemal heavy chain 8 [ DNAH8 ]) associated with hypospadias. Furthermore, the discrepancy was mainly caused by a shift in 4D. Proteomic characterization of a mouse model validated that low testosterone levels during pregnancy can impair the growth and development of 4D. Comprehensive mechanistic explorations revealed that during the androgen-sensitive window, the downregulation of the androgen receptor (AR) caused by low testosterone levels, as well as the suppressed expression of chondrocyte proliferation-related genes such as Wnt family member 5a ( Wnt5a ), Wnt5b , Smad family member 2 ( Smad2 ), and Smad3 ; mitochondrial function-related genes in cartilage such as AMP-activated protein kinase ( AMPK ) and nuclear respiratory factor 1 ( Nrf-1 ); and vascular development-related genes such as myosin light chain ( MLC ), notch receptor 3 ( Notch3 ), and sphingosine kinase 1 ( Sphk1 ), are responsible for the limitation of 4D growth, which results in a higher 2D:4D ratio in boys with hypospadias via decreased endochondral ossification. This study indicates that the ratio of 2D:4D is a risk marker of hypospadias and provides a potential molecular mechanism.
Collapse
Affiliation(s)
- Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zu-Quan Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wen-Feng Pan
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hao-Jie Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Min Wu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Qing Lyu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Chen Huang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhong-Zhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center for Hypospadias, Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
14
|
Eisenstein M. Push and pull: how to measure the forces that sculpt embryos. Nature 2024; 630:780-782. [PMID: 38886553 DOI: 10.1038/d41586-024-02029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
|
15
|
Boutillon A, Banavar SP, Campàs O. Conserved physical mechanisms of cell and tissue elongation. Development 2024; 151:dev202687. [PMID: 38767601 PMCID: PMC11190436 DOI: 10.1242/dev.202687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Living organisms have the ability to self-shape into complex structures appropriate for their function. The genetic and molecular mechanisms that enable cells to do this have been extensively studied in several model and non-model organisms. In contrast, the physical mechanisms that shape cells and tissues have only recently started to emerge, in part thanks to new quantitative in vivo measurements of the physical quantities guiding morphogenesis. These data, combined with indirect inferences of physical characteristics, are starting to reveal similarities in the physical mechanisms underlying morphogenesis across different organisms. Here, we review how physics contributes to shape cells and tissues in a simple, yet ubiquitous, morphogenetic transformation: elongation. Drawing from observed similarities across species, we propose the existence of conserved physical mechanisms of morphogenesis.
Collapse
Affiliation(s)
- Arthur Boutillon
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Samhita P. Banavar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | - Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
16
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
17
|
Shroff NP, Xu P, Kim S, Shelton ER, Gross BJ, Liu Y, Gomez CO, Ye Q, Drennon TY, Hu JK, Green JBA, Campàs O, Klein OD. Proliferation-driven mechanical compression induces signalling centre formation during mammalian organ development. Nat Cell Biol 2024; 26:519-529. [PMID: 38570617 PMCID: PMC11482733 DOI: 10.1038/s41556-024-01380-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024]
Abstract
Localized sources of morphogens, called signalling centres, play a fundamental role in coordinating tissue growth and cell fate specification during organogenesis. However, how these signalling centres are established in tissues during embryonic development is still unclear. Here we show that the main signalling centre orchestrating development of rodent incisors, the enamel knot (EK), is specified by a cell proliferation-driven buildup in compressive stresses (mechanical pressure) in the tissue. Direct mechanical measurements indicate that the stresses generated by cell proliferation are resisted by the surrounding tissue, creating a circular pattern of mechanical anisotropy with a region of high compressive stress at its centre that becomes the EK. Pharmacological inhibition of proliferation reduces stresses and suppresses EK formation, and application of external pressure in proliferation-inhibited conditions rescues the formation of the EK. Mechanical information is relayed intracellularly through YAP protein localization, which is cytoplasmic in the region of compressive stress that establishes the EK and nuclear in the stretched anisotropic cells that resist the pressure buildup around the EK. Together, our data identify a new role for proliferation-driven mechanical compression in the specification of a model signalling centre during mammalian organ development.
Collapse
Affiliation(s)
- Neha Pincha Shroff
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Pengfei Xu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elijah R Shelton
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Ben J Gross
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Carlos O Gomez
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Tingsheng Yu Drennon
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeremy B A Green
- Centre for Craniofacial Regeneration and Biology, King's College London, London, UK
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Contractility drives the spatio-temporal coordination of morphogenesis and cell fate in hair follicles. Nat Cell Biol 2024; 26:325-326. [PMID: 38396120 DOI: 10.1038/s41556-024-01371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
|
19
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
20
|
Sudderick ZR, Glover JD. Periodic pattern formation during embryonic development. Biochem Soc Trans 2024; 52:75-88. [PMID: 38288903 PMCID: PMC10903485 DOI: 10.1042/bst20230197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
During embryonic development many organs and structures require the formation of series of repeating elements known as periodic patterns. Ranging from the digits of the limb to the feathers of the avian skin, the correct formation of these embryonic patterns is essential for the future form and function of these tissues. However, the mechanisms that produce these patterns are not fully understood due to the existence of several modes of pattern generation which often differ between organs and species. Here, we review the current state of the field and provide a perspective on future approaches to studying this fundamental process of embryonic development.
Collapse
Affiliation(s)
- Zoe R. Sudderick
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| | - James D. Glover
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
21
|
Villeneuve C, Hashmi A, Ylivinkka I, Lawson-Keister E, Miroshnikova YA, Pérez-González C, Myllymäki SM, Bertillot F, Yadav B, Zhang T, Matic Vignjevic D, Mikkola ML, Manning ML, Wickström SA. Mechanical forces across compartments coordinate cell shape and fate transitions to generate tissue architecture. Nat Cell Biol 2024; 26:207-218. [PMID: 38302719 PMCID: PMC10866703 DOI: 10.1038/s41556-023-01332-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.
Collapse
Affiliation(s)
- Clémentine Villeneuve
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ali Hashmi
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Irene Ylivinkka
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Yekaterina A Miroshnikova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carlos Pérez-González
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Satu-Marja Myllymäki
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Fabien Bertillot
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bhagwan Yadav
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY, USA.
| | - Sara A Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Pfeifer CR, Shyer AE, Rodrigues AR. Creative processes during vertebrate organ morphogenesis: Biophysical self-organization at the supracellular scale. Curr Opin Cell Biol 2024; 86:102305. [PMID: 38181658 DOI: 10.1016/j.ceb.2023.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Here, we review recent developments in the literature that provide insight into self-organization at supracellular scales in vertebrate organ morphogenesis. We briefly present a historical and conceptual analysis of the term "self-organization." Based on this analysis, we suggest that self-organizing processes, at their root, possess a form of causal relationship, reciprocal causality, that is markedly distinct from linear causal chains. We survey the extent to which reciprocal causality can be used to interpret or clarify supracellular studies in development and disease. Finally, we explore how reciprocal causality can exist across length-scales, identifying situations where multiple scales require simultaneous analysis.
Collapse
Affiliation(s)
- Charlotte R Pfeifer
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Amy E Shyer
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Alan R Rodrigues
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
23
|
Eroshkin FM, Fefelova EA, Bredov DV, Orlov EE, Kolyupanova NM, Mazur AM, Sokolov AS, Zhigalova NA, Prokhortchouk EB, Nesterenko AM, Zaraisky AG. Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues. Int J Mol Sci 2024; 25:870. [PMID: 38255964 PMCID: PMC10815341 DOI: 10.3390/ijms25020870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
During gastrulation and neurulation, the chordamesoderm and overlying neuroectoderm of vertebrate embryos converge under the control of a specific genetic programme to the dorsal midline, simultaneously extending along it. However, whether mechanical tensions resulting from these morphogenetic movements play a role in long-range feedback signaling that in turn regulates gene expression in the chordamesoderm and neuroectoderm is unclear. In the present work, by using a model of artificially stretched explants of Xenopus midgastrula embryos and full-transcriptome sequencing, we identified genes with altered expression in response to external mechanical stretching. Importantly, mechanically activated genes appeared to be expressed during normal development in the trunk, i.e., in the stretched region only. By contrast, genes inhibited by mechanical stretching were normally expressed in the anterior neuroectoderm, where mechanical stress is low. These results indicate that mechanical tensions may play the role of a long-range signaling factor that regulates patterning of the embryo, serving as a link coupling morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Fedor M. Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Elena A. Fefelova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Denis V. Bredov
- Laboratory of Development Biophysics, Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugeny E. Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Nataliya M. Kolyupanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander M. Mazur
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Alexey S. Sokolov
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Nadezhda A. Zhigalova
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Egor B. Prokhortchouk
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Alexey M. Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
- Federal Center of Brain Research and Biotechnologies of Federal Medical-Biological Agency, 1 Build 10 Ostrovityanova Str., 117513 Moscow, Russia
| | - Andrey G. Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, 1 Build 70 Ostrovityanova Str., 117513 Moscow, Russia
| |
Collapse
|
24
|
Grall E, Feregrino C, Fischer S, De Courten A, Sacher F, Hiscock TW, Tschopp P. Self-organized BMP signaling dynamics underlie the development and evolution of digit segmentation patterns in birds and mammals. Proc Natl Acad Sci U S A 2024; 121:e2304470121. [PMID: 38175868 PMCID: PMC10786279 DOI: 10.1073/pnas.2304470121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024] Open
Abstract
Repeating patterns of synovial joints are a highly conserved feature of articulated digits, with variations in joint number and location resulting in diverse digit morphologies and limb functions across the tetrapod clade. During the development of the amniote limb, joints form iteratively within the growing digit ray, as a population of distal progenitors alternately specifies joint and phalanx cell fates to segment the digit into distinct elements. While numerous molecular pathways have been implicated in this fate choice, it remains unclear how they give rise to a repeating pattern. Here, using single-cell RNA sequencing and spatial gene expression profiling, we investigate the transcriptional dynamics of interphalangeal joint specification in vivo. Combined with mathematical modeling, we predict that interactions within the BMP signaling pathway-between the ligand GDF5, the inhibitor NOGGIN, and the intracellular effector pSMAD-result in a self-organizing Turing system that forms periodic joint patterns. Our model is able to recapitulate the spatiotemporal gene expression dynamics observed in vivo, as well as phenocopy digit malformations caused by BMP pathway perturbations. By contrasting in silico simulations with in vivo morphometrics of two morphologically distinct digits, we show how changes in signaling parameters and growth dynamics can result in variations in the size and number of phalanges. Together, our results reveal a self-organizing mechanism that underpins amniote digit segmentation and its evolvability and, more broadly, illustrate how Turing systems based on a single molecular pathway may generate complex repetitive patterns in a wide variety of organisms.
Collapse
Affiliation(s)
- Emmanuelle Grall
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Aline De Courten
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Fabio Sacher
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Tom W. Hiscock
- Institute of Medical Sciences, University of Aberdeen, AberdeenAB25 2ZD, Scotland, United Kingdom
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| |
Collapse
|
25
|
Banavar SP, Nelson CM. Mechanical properties pattern the skin. Science 2023; 382:880. [PMID: 37995222 DOI: 10.1126/science.adl2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Morphogens induce variations in tissue mechanics to promote feather budding.
Collapse
Affiliation(s)
- Samhita P Banavar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
26
|
Viola JM, Liu J, Huang A, Grindel SH, Prahl LS, Hughes AJ. Rho/ROCK activity tunes cell compartment segregation and differentiation in nephron-forming niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566308. [PMID: 37986773 PMCID: PMC10659296 DOI: 10.1101/2023.11.08.566308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Controlling the time and place of nephron formation in vitro would improve nephron density and connectivity in next-generation kidney replacement tissues. Recent developments in kidney organoid technology have paved the way to achieving self-sustaining nephrogenic niches in vitro. The physical and geometric structure of the niche are key control parameters in tissue engineering approaches. However, their relationship to nephron differentiation is unclear. Here we investigate the relationship between niche geometry, cell compartment mixing, and nephron differentiation by targeting the Rho/ROCK pathway, a master regulator of the actin cytoskeleton. We find that the ROCK inhibitor Y-27632 increases mixing between nephron progenitor and stromal compartments in native mouse embryonic kidney niches, and also increases nephrogenesis. Similar increases are also seen in reductionist mouse primary cell and human induced pluripotent stem cell (iPSC)-derived organoids perturbed by Y-27632, dependent on the presence of stromal cells. Our data indicate that niche organization is a determinant of nephron formation rate, bringing renewed focus to the spatial context of cell-cell interactions in kidney tissue engineering efforts.
Collapse
Affiliation(s)
- John M. Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Aria Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H. Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
27
|
Vian A, Pochitaloff M, Yen ST, Kim S, Pollock J, Liu Y, Sletten EM, Campàs O. In situ quantification of osmotic pressure within living embryonic tissues. Nat Commun 2023; 14:7023. [PMID: 37919265 PMCID: PMC10622550 DOI: 10.1038/s41467-023-42024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Mechanics is known to play a fundamental role in many cellular and developmental processes. Beyond active forces and material properties, osmotic pressure is believed to control essential cell and tissue characteristics. However, it remains very challenging to perform in situ and in vivo measurements of osmotic pressure. Here we introduce double emulsion droplet sensors that enable local measurements of osmotic pressure intra- and extra-cellularly within 3D multicellular systems, including living tissues. After generating and calibrating the sensors, we measure the osmotic pressure in blastomeres of early zebrafish embryos as well as in the interstitial fluid between the cells of the blastula by monitoring the size of droplets previously inserted in the embryo. Our results show a balance between intracellular and interstitial osmotic pressures, with values of approximately 0.7 MPa, but a large pressure imbalance between the inside and outside of the embryo. The ability to measure osmotic pressure in 3D multicellular systems, including developing embryos and organoids, will help improve our understanding of its role in fundamental biological processes.
Collapse
Affiliation(s)
- Antoine Vian
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Marie Pochitaloff
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Shuo-Ting Yen
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Jennifer Pollock
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, 01307, Dresden, Germany.
| |
Collapse
|
28
|
Shellard A, Mayor R. Sculpting with stiffness: rigidity as a regulator of morphogenesis. Biochem Soc Trans 2023; 51:1009-1021. [PMID: 37114613 PMCID: PMC10317161 DOI: 10.1042/bst20220826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
From a physical perspective, morphogenesis of tissues results from interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognised, whereas the importance of tissue material properties in vivo, like stiffness, has only begun to receive attention in recent years. In this mini-review, we highlight key themes and concepts that have emerged related to how tissue stiffness, a fundamental material property, guides various morphogenetic processes in living organisms.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
29
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Uechi H, Kuranaga E. Underlying mechanisms that ensure actomyosin-mediated directional remodeling of cell-cell contacts for multicellular movement: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis. Bioessays 2023; 45:e2200211. [PMID: 36929512 DOI: 10.1002/bies.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Actomyosin (actin-myosin II complex)-mediated contractile forces are central to the generation of multifaceted uni- and multi-cellular material properties and dynamics such as cell division, migration, and tissue morphogenesis. In the present article, we summarize our recent researches addressing molecular mechanisms that ensure actomyosin-mediated directional cell-cell junction remodeling, either shortening or extension, driving cell rearrangement for epithelial morphogenesis. Genetic perturbation clarified two points concerning cell-cell junction remodeling: an inhibitory mechanism against negative feedback in which actomyosin contractile forces, which are well known to induce cell-cell junction shortening, can concomitantly alter actin dynamics, oppositely leading to perturbation of the shortening; and tricellular junctions as a point that organizes extension of new cell-cell junctions after shortening. These findings highlight the notion that cells develop underpinning mechanisms to transform the multi-tasking property of actomyosin contractile forces into specific and proper cellular dynamics in space and time.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
31
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
32
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
33
|
Duarte-Olivenza C, Hurle JM, Montero JA, Lorda-Diez CI. Modeling the Differentiation of Embryonic Limb Chondroprogenitors by Cell Death and Cell Senescence in High Density Micromass Cultures and Their Regulation by FGF Signaling. Cells 2022; 12:cells12010175. [PMID: 36611968 PMCID: PMC9818968 DOI: 10.3390/cells12010175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Considering the importance of programmed cell death in the formation of the skeleton during embryonic development, the aim of the present study was to analyze whether regulated cell degeneration also accompanies the differentiation of embryonic limb skeletal progenitors in high-density tridimensional cultures (micromass cultures). Our results show that the formation of primary cartilage nodules in the micromass culture assay involves a patterned process of cell death and cell senescence, complementary to the pattern of chondrogenesis. As occurs in vivo, the degenerative events were preceded by DNA damage detectable by γH2AX immunolabeling and proceeded via apoptosis and cell senescence. Combined treatments of the cultures with growth factors active during limb skeletogenesis, including FGF, BMP, and WNT revealed that FGF signaling modulates the response of progenitors to signaling pathways implicated in cell death. Transcriptional changes induced by FGF treatments suggested that this function is mediated by the positive regulation of the genetic machinery responsible for apoptosis and cell senescence together with hypomethylation of the Sox9 gene promoter. We propose that FGF signaling exerts a primordial function in the embryonic limb conferring chondroprogenitors with their biological properties.
Collapse
Affiliation(s)
| | | | - Juan A. Montero
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| | - Carlos I. Lorda-Diez
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| |
Collapse
|