1
|
Wang JL, Li Z, Song ZX, Zhao S, Zhao LB, Shuang PZ, Liu FF, Li HZ, Wang XL, Liu P. The effect of spinal cord STING/ATG5-mediated autophagy activation on the development of diabetic neuropathic pain in rats. Biochem Biophys Res Commun 2025; 760:151686. [PMID: 40174367 DOI: 10.1016/j.bbrc.2025.151686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Diabetic neuropathic pain (DNP) is associated with concurrent spinal cord autophagy activation, mTOR pathway activation, and neuroinflammation. However, the mechanistic interplay between these processes remains unclear, as mTOR activation typically suppresses autophagy under physiological conditions. This study investigates the role of spinal STING/ATG5-mediated autophagy in DNP pathogenesis and its relationship with mTOR signaling and neuroinflammatory pathways. Utilizing a rat model of DNP, we observed significant increases in spinal autophagosome density, LC3-II/LC3-I ratio, and STING/ATG5 expression, accompanied by elevated p-mTOR/mTOR ratios, compared to healthy controls. Notably, Beclin-1 expression remained unchanged. Pharmacological inhibition of STING or ATG5 silencing via intrathecal administration attenuated mechanical allodynia and reduced LC3-II/LC3-I ratios, whereas STING activation exacerbated pain behaviors while further upregulating STING/ATG5 expression and LC3-II/LC3-I ratios, but paradoxically decreased p-mTOR/mTOR ratios. mTOR inhibition with rapamycin alleviated DNP symptoms and suppressed TNF-α/IL-1β-mediated neuroinflammation, yet failed to modulate LC3-II/LC3-I ratios despite increasing Beclin-1 expression. Crucially, STING/ATG5 pathway manipulation did not alter pro-inflammatory cytokine levels, while rapamycin's analgesic effects correlated with anti-inflammatory activity. These findings demonstrate that STING/ATG5-driven autophagy contributes to DNP progression through a mechanism independent of both canonical mTOR-dependent autophagy regulation and inflammatory cytokine modulation. Conversely, mTOR inhibition exerts therapeutic effects predominantly via anti-inflammatory pathways rather than autophagy regulation. This study identifies a novel non-canonical autophagy pathway in DNP pathophysiology and clarifies distinct mechanistic bases for STING/ATG5-versus mTOR-targeted interventions.
Collapse
Affiliation(s)
- Jia-Lu Wang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Zhao Li
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Zhi-Xue Song
- HeBei Medical University, No. 361, Zhong Shan Road, Shi jia zhuang, 050000, China
| | - Shuang Zhao
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Long-Biao Zhao
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Peng-Zhan Shuang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Fei-Fei Liu
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Hui-Zhou Li
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Xiu-Li Wang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Peng Liu
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China.
| |
Collapse
|
2
|
Chubanava S, Karavaeva I, Ehrlich AM, Justicia RM, Basse AL, Kulik I, Dalbram E, Ahwazi D, Heaselgrave SR, Trošt K, Stocks B, Hodek O, Rodrigues RN, Havelund JF, Schlabs FL, Larsen S, Yonamine CY, Henriquez-Olguín C, Giustarini D, Rossi R, Gerhart-Hines Z, Moritz T, Zierath JR, Sakamoto K, Jensen TE, Færgeman NJ, Lavery GG, Deshmukh AS, Treebak JT. NAD depletion in skeletal muscle does not compromise muscle function or accelerate aging. Cell Metab 2025:S1550-4131(25)00212-8. [PMID: 40311622 DOI: 10.1016/j.cmet.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a ubiquitous electron carrier essential for energy metabolism and post-translational modification of numerous regulatory proteins. Dysregulations of NAD metabolism are widely regarded as detrimental to health, with NAD depletion commonly implicated in aging. However, the extent to which cellular NAD concentration can decline without adverse consequences remains unclear. To investigate this, we generated a mouse model in which nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD+ biosynthesis was disrupted in adult skeletal muscle. The intervention resulted in an 85% reduction in muscle NAD+ abundance while maintaining tissue integrity and functionality, as demonstrated by preserved muscle morphology, contractility, and exercise tolerance. This absence of functional impairments was further supported by intact mitochondrial respiratory capacity and unaltered muscle transcriptomic and proteomic profiles. Furthermore, lifelong NAD depletion did not accelerate muscle aging or impair whole-body metabolism. Collectively, these findings suggest that NAD depletion does not contribute to age-related decline in skeletal muscle function.
Collapse
Affiliation(s)
- Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iuliia Karavaeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roger M Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Kulik
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Munich, Germany
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Danial Ahwazi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel R Heaselgrave
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Kajetan Trošt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ondřej Hodek
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Raissa N Rodrigues
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Farina L Schlabs
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Caio Y Yonamine
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henriquez-Olguín
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Center for Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Integrative Physiology, Department of Molecular Medicine and Surgery and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Stefanatos R, Robertson F, Castejon-Vega B, Yu Y, Uribe AH, Myers K, Kataura T, Korolchuk VI, Maddocks ODK, Martins LM, Sanz A. Developmental mitochondrial complex I activity determines lifespan. EMBO Rep 2025; 26:1957-1983. [PMID: 40097814 PMCID: PMC12019323 DOI: 10.1038/s44319-025-00416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Aberrant mitochondrial function has been associated with an increasingly large number of human disease states. Observations from in vivo models where mitochondrial function is altered suggest that maladaptations to mitochondrial dysfunction may underpin disease pathology. We hypothesized that the severity of this maladaptation could be shaped by the plasticity of the system when mitochondrial dysfunction manifests. To investigate this, we have used inducible fly models of mitochondrial complex I (CI) dysfunction to reduce mitochondrial function at two stages of the fly lifecycle, from early development and adult eclosion. Here, we show that in early life (developmental) mitochondrial dysfunction results in severe reductions in survival and stress resistance in adulthood, while flies where mitochondrial function is perturbed from adulthood, are long-lived and stress resistant despite having up to a 75% reduction in CI activity. After excluding developmental defects as a cause, we went on to molecularly characterize these two populations of mitochondrially compromised flies, short- and long-lived. We find that our short-lived flies have unique transcriptomic, proteomic and metabolomic responses, which overlap significantly in discrete models of CI dysfunction. Our data demonstrate that early mitochondrial dysfunction via CI depletion elicits a maladaptive response, which severely reduces survival, while CI depletion from adulthood is insufficient to reduce survival and stress resistance.
Collapse
Affiliation(s)
- Rhoda Stefanatos
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK.
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK.
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| | - Fiona Robertson
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Beatriz Castejon-Vega
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, CB2 1QR, Cambridge, UK
| | - Alejandro Huerta Uribe
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, G61 1QH, Glasgow, UK
| | - Kevin Myers
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Tetsushi Kataura
- Department of Neurology, Institute of Medicine, University of Tsukuba, 305-8575, Ibaraki, Japan
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK
| | - Oliver D K Maddocks
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, G61 1QH, Glasgow, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, CB2 1QR, Cambridge, UK
| | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
4
|
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI, Rubinsztein DC. Autophagy, aging, and age-related neurodegeneration. Neuron 2025; 113:29-48. [PMID: 39406236 DOI: 10.1016/j.neuron.2024.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that occurs with increasing age in non-diseased brains as well as in response to neurodegeneration-associated stresses. However, aging and many neurodegeneration-associated proteins and mutations impair autophagy. This creates a potentially detrimental feedback loop whereby the accumulation of these disease-associated proteins impairs their autophagic clearance, facilitating their further accumulation and aggregation. Thus, understanding how autophagy interacts with aging, senescence, and neurodegenerative diseases in a temporal, cellular, and genetic context is important for the future clinical application of autophagy-modulating therapies in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer E Palmer
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sung Min Son
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Pawel Obrocki
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Matea Rob
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
5
|
Zhou AJ, Xiong ZE, Wang L, Chen XX, Wang ZP, Zhang YD, Chen WW, Cai XL, Xu YL, Rong S, Wang T. Long-Term Administration of Nicotinamide Mononucleotide Mitigates High-Fat-Diet-Induced Physiological Decline in Aging Mice. J Nutr 2025; 155:237-249. [PMID: 39424071 DOI: 10.1016/j.tjnut.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) levels decline with age, and boosting it can improve multi-organ functions and lifespan. OBJECTIVES Nicotinamide mononucleotide (NMN) is a natural NAD+ precursor with the ability to enhance NAD+ biosynthesis. Numerous studies have shown that a high-fat diet (HFD) can accelerate the process of aging and many diseases. We hypothesized that long-term administration of NMN could exert protective effects on adipose, muscle, and kidney tissues in mice on an HFD act by affecting the autophagic pathway. METHODS Mice at 14 mo of age were fed an HFD, and NMN was added to their drinking water at a dose of 400 mg/kg for 7 mo. The locomotor ability of the mice was assessed by behavioral experiments such as grip test, wire hang test, rotarod, and beam-walking test. At the end of the behavioral experiments, the pathological changes of each peripheral organ and the expression of autophagy-related proteins, as well as the markers of the senescence and inflammaging were analyzed by pathological staining, immunohistochemical staining, and western blotting, respectively. RESULTS We found that NMN supplementation increased NAD+ levels and ultimately attenuated age- and diet-related physiological decline in mice. NMN inhibited HFD-induced obesity, promoted physical activity, improved glucose and lipid metabolism, improved skeletal muscle function and renal damage, as well as mitigated the senescence and inflammaging as demonstrated by p16, interleukin 1β, and tumor necrosis factor α levels. In addition, the present study further emphasizes the potential mechanisms underlying the bidirectional relationship between NAD+ and autophagy. We detected changes in autophagy levels in various tissue organs, and NMN may play a protective role by inhibiting excessive autophagy induced by HFD. CONCLUSIONS Our findings demonstrated that NMN administration attenuated HFD-induced metabolic disorders and physiological decline in aging mice.
Collapse
Affiliation(s)
- Ao-Jia Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Department of Pharmacy, Institute of Pharmaceutical Process, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zhang-E Xiong
- Department of Gastroenterology, Wuhan Third Hospital, Wuhan, China
| | - Li Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Department of Pharmacy, Institute of Pharmaceutical Process, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiao-Xuan Chen
- Department of Pharmacy, Institute of Pharmaceutical Process, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zi-Ping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yi-Dan Zhang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wen-Wen Chen
- Department of Pharmacy, Institute of Pharmaceutical Process, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiao-Li Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yang-Liu Xu
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China.
| | - Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Department of Pharmacy, Institute of Pharmaceutical Process, College of Medicine, Wuhan University of Science and Technology, Wuhan, China; Wuhan Asia General Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Meng F, Yan Y, Zhou L, Zhao S, Sun L, Yu H. Targeting autophagy promotes the antitumor effect of radiotherapy on cervical cancer cells. Cancer Biol Ther 2024; 25:2431136. [PMID: 39635971 PMCID: PMC11622585 DOI: 10.1080/15384047.2024.2431136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Radiotherapy is the mainstay of cancer treatment, and reducing radioresistance is still a poorly explored issue in radiotherapy. Our study was designed to explore the possible functions and mechanisms of autophagy in cervical cancer cells treated with radiotherapy. We discovered that autophagy was activated in C33a and HeLa cervical cancer cells in parallel with increased apoptosis and formation of polyploid giant carcinoma cells (PGCCs) after radiation. Inhibition of autophagy significantly enhances radiation-induced cytotoxicity and apoptosis in cervical cancer cells and reduces PGCCs formation. Immunoblot analysis, as part of the mechanistic experiments, showed that the phosphorylation levels of Akt, mTOR, and P70S6K were downregulated. Thus, our research demonstrated that inhibiting autophagy enhances the antitumor effects of radiation on cervical cancer cells.
Collapse
Affiliation(s)
- Fanjie Meng
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Yan
- Country Department of Radiotherapy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li Zhou
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Song Zhao
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
7
|
Sun F, Ali NN, Londoño-Vásquez D, Simintiras CA, Qiao H, Ortega MS, Agca Y, Takahashi M, Rivera RM, Kelleher AM, Sutovsky P, Patterson AL, Balboula AZ. Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation. Nat Commun 2024; 15:9463. [PMID: 39487138 PMCID: PMC11530536 DOI: 10.1038/s41467-024-53559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Unlike mild DNA damage exposure, DNA damage repair (DDR) is reported to be ineffective in full-grown mammalian oocytes exposed to moderate or severe DNA damage. The underlying mechanisms of this weakened DDR are unknown. Here, we show that moderate DNA damage in full-grown oocytes leads to aneuploidy. Our data reveal that DNA-damaged oocytes have an altered, closed, chromatin state, and suggest that the failure to repair damaged DNA could be due to the inability of DDR proteins to access damaged loci. Our data also demonstrate that, unlike somatic cells, mouse and porcine oocytes fail to activate autophagy in response to DNA double-strand break-inducing treatment, which we suggest may be the cause of the altered chromatin conformation and inefficient DDR. Importantly, autophagy activity is further reduced in maternally aged oocytes (which harbor severe DNA damage), and its induction is correlated with reduced DNA damage in maternally aged oocytes. Our findings provide evidence that reduced autophagy activation contributes to weakened DDR in oocytes, especially in those from aged females, offering new possibilities to improve assisted reproductive therapy in women with compromised oocyte quality.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nourhan Nashat Ali
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Sun SS, Feng L, Jiang WD, Liu Y, Ren HM, Jin XW, Zhou XQ, Wu P. Declined flesh quality resulting from niacin deficiency is associated with elevated glycolysis and impaired mitochondrial homeostasis in grass carp (Ctenopharyngodon idella). Food Chem 2024; 451:139426. [PMID: 38670026 DOI: 10.1016/j.foodchem.2024.139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Energy metabolism exerts profound impacts on flesh quality. Niacin can be transformed into nicotinamide adenine dinucleotide (NAD), which is indispensable to energy metabolism. To investigate whether niacin deficiency could affect energy metabolism and flesh quality, six diets with graded levels of 0.49, 9.30, 21.30, 33.30, 45.30 and 57.30 mg/kg niacin were fed to grass carp (Ctenopharyngodon idella) for 63 days. The results showed that niacin deficiency declined flesh quality by changing amino acid and fatty acid profiles, decreasing shear force, increasing cooking loss and accelerating pH decline. The accelerated pH decline might be associated with enhanced glycolysis as evident by increased hexokinase (HK), pyruvate kinase (PK) and lactic dehydrogenase (LDH) activities, and mitochondrial dysfunction as evident by destroyed mitochondrial morphology, impaired respiratory chain complex I and antioxidant ability. Based on PWG and cooking loss, the niacin requirements for sub-adult grass carp were 31.95 mg/kg and 29.66 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shun-Shi Sun
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
9
|
Kelly G, Kataura T, Panek J, Ma G, Salmonowicz H, Davis A, Kendall H, Brookes C, Ayine-Tora DM, Banks P, Nelson G, Dobby L, Pitrez PR, Booth L, Costello L, Richardson GD, Lovat P, Przyborski S, Ferreira L, Greaves L, Szczepanowska K, von Zglinicki T, Miwa S, Brown M, Flagler M, Oblong JE, Bascom CC, Carroll B, Reynisson J, Korolchuk VI. Suppressed basal mitophagy drives cellular aging phenotypes that can be reversed by a p62-targeting small molecule. Dev Cell 2024; 59:1924-1939.e7. [PMID: 38897197 DOI: 10.1016/j.devcel.2024.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/25/2023] [Accepted: 04/28/2024] [Indexed: 06/21/2024]
Abstract
Selective degradation of damaged mitochondria by autophagy (mitophagy) is proposed to play an important role in cellular homeostasis. However, the molecular mechanisms and the requirement of mitochondrial quality control by mitophagy for cellular physiology are poorly understood. Here, we demonstrated that primary human cells maintain highly active basal mitophagy initiated by mitochondrial superoxide signaling. Mitophagy was found to be mediated by PINK1/Parkin-dependent pathway involving p62 as a selective autophagy receptor (SAR). Importantly, this pathway was suppressed upon the induction of cellular senescence and in naturally aged cells, leading to a robust shutdown of mitophagy. Inhibition of mitophagy in proliferating cells was sufficient to trigger the senescence program, while reactivation of mitophagy was necessary for the anti-senescence effects of NAD precursors or rapamycin. Furthermore, reactivation of mitophagy by a p62-targeting small molecule rescued markers of cellular aging, which establishes mitochondrial quality control as a promising target for anti-aging interventions.
Collapse
Affiliation(s)
- George Kelly
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Johan Panek
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Gailing Ma
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Hanna Salmonowicz
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Ashley Davis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Hannah Kendall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte Brookes
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | | | - Peter Banks
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Glyn Nelson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Laura Dobby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Patricia R Pitrez
- FMUC - Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central Azinhaga de Santa Comba, Coimbra 3000-354, Portugal
| | - Laura Booth
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lydia Costello
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Gavin D Richardson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Penny Lovat
- Precision Medicine, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | - Lino Ferreira
- FMUC - Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central Azinhaga de Santa Comba, Coimbra 3000-354, Portugal
| | - Laura Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Karolina Szczepanowska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Max Brown
- The Procter & Gamble Company, Cincinnati, OH 45040, USA
| | | | - John E Oblong
- The Procter & Gamble Company, Cincinnati, OH 45040, USA
| | | | | | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle under Lyme ST5 5BG, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
10
|
Neves SP, Bomfim LM, Kataura T, Carvalho SG, Nogueira ML, Dias RB, Valverde LDF, Gurgel Rocha CA, Soares MBP, Silva MMD, Batista AA, Korolchuk VI, Bezerra DP. Ruthenium complex containing 1,3-thiazolidine-2-thione inhibits hepatic cancer stem cells by suppressing Akt/mTOR signalling and leading to apoptotic and autophagic cell death. Biomed Pharmacother 2024; 177:117059. [PMID: 38955086 DOI: 10.1016/j.biopha.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatic cancer is one of the main causes of cancer-related death worldwide. Cancer stem cells (CSCs) are a unique subset of cancer cells that promote tumour growth, maintenance, and therapeutic resistance, leading to recurrence. In the present work, the ability of a ruthenium complex containing 1,3-thiazolidine-2-thione (RCT), with the chemical formula [Ru(tzdt)(bipy)(dppb)]PF6, to inhibit hepatic CSCs was explored in human hepatocellular carcinoma HepG2 cells. RCT exhibited potent cytotoxicity to solid and haematological cancer cell lines and reduced the clonogenic potential, CD133+ and CD44high cell percentages and tumour spheroid growth of HepG2 cells. RCT also inhibited cell motility, as observed in the wound healing assay and transwell cell migration assay. RCT reduced the levels of Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308), phospho-mTOR (Ser2448), and phospho-S6 (Ser235/Ser236) in HepG2 cells, indicating that interfering with Akt/mTOR signalling is a mechanism of action of RCT. The levels of active caspase-3 and cleaved PARP (Asp214) were increased in RCT-treated HepG2 cells, indicating the induction of apoptotic cell death. In addition, RCT modulated the autophagy markers LC3B and p62/SQSTM1 in HepG2 cells and increased mitophagy in a mt-Keima-transfected mouse embryonic fibroblast (MEF) cell model, and RCT-induced cytotoxicity was partially prevented by autophagy inhibitors. Furthermore, mutant Atg5-/- MEFs and PentaKO HeLa cells (human cervical adenocarcinoma with five autophagy receptor knockouts) were less sensitive to RCT cytotoxicity than their parental cell lines, indicating that RCT induces autophagy-mediated cell death. Taken together, these data indicate that RCT is a novel potential anti-liver cancer drug with a suppressive effect on CSCs.
Collapse
Affiliation(s)
- Sara P Neves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Larissa M Bomfim
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sabrine G Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Mateus L Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil; Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - Ludmila de F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Dentistry, Federal University of Sergipe, Lagarto, Sergipe, 49400-000, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Bahia, 41253-190, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador, Bahia, 41650-010, Brazil
| | - Monize M da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901 Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901 Brazil
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
11
|
Hosen MHA, Whitworth DJ, Leusch FDL, Yuen N, Bengtson Nash SM. Bioenergetic Shifts in Humpback Whale Fibroblasts Upon Chemical Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12313-12319. [PMID: 38958666 DOI: 10.1021/acs.est.3c10595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Southern Hemisphere humpback whales accumulate persistent and toxic chemicals, which are transported to Antarctica through distant sources and in situ usage. The extreme seasonal migration-associated fast of humpback whales results in the remobilization of persistent and lipophilic environmental contaminants from liberated fat stores. Mitochondria play a key role in lipid metabolism, and any disruption to mitochondrial function is expected to influence whole-organism bioenergetics. It is therefore of interest to advance understanding of the impact of known contaminants of the Antarctic sea-ice ecosystem upon humpback whale cellular bioenergetics. Using cell line-based in vitro testing, this study employed the Seahorse Extracellular Flux Analyzer to study cellular metabolic activity in live humpback whale fibroblast cells. The assay, based on oxygen consumption rate, provides insights into the cause of cellular bioenergetic disruption. Immortalized skin fibroblasts were exposed to four priority environmental chemicals found in the Antarctic sea-ice ecosystem. Our findings reveal chemical-dependent functional alterations and varying bioenergetic profile responses. Chlorpyrifos was observed to decrease mitochondrial basal oxygen consumption; dieldrin increased basal oxygen consumption; trifluralin's impact was dose-specific, and endosulfan displayed no effect. Our results provide unique insights into environmental chemical mechanisms of action on cellular bioenergetics, generating much-needed taxa-specific chemical effect data in support of evidence-based conservation policy and management.
Collapse
Affiliation(s)
- Md Hafiz All Hosen
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Deanne J Whitworth
- The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nicholas Yuen
- The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Susan M Bengtson Nash
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
12
|
Mohamed Yusof NIS, Mohd Fauzi F. Nature's Toolbox for Alzheimer's Disease: A Review on the Potential of Natural Products as Alzheimer's Disease Drugs. Neurochem Int 2024; 176:105738. [PMID: 38616012 DOI: 10.1016/j.neuint.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Numerous clinical trials involving natural products have been conducted to observe cognitive performances and biomarkers in Alzheimer's Disease (AD) patients. However, to date, no natural-based drugs have been approved by the FDA as treatments for AD. In this review, natural product-based compounds that were tested in clinical trials from 2011 to 2023, registered at www.clinicaltrials.gov were reviewed. Thirteen compounds, encompassing 7 different mechanisms of action were covered. Several observations were deduced, which are: i) several compounds showed cognitive improvement, but these improvements may not extend to AD, ii) compounds that are endogenous to the human body showed better outcomes, and iii) Docosahexaenoic acid (DHA) and cerebrolysin had the most potential as AD drugs among the 13 compounds. Based on the current findings, natural products may be more suitable as a supplement than AD drugs in most cases. However, the studies covered here were conducted in a relatively short amount of time, where compounds acting on AD pathways may take time to show any effect. Given the diverse pathways that these natural products are involved in, they may potentially produce synergistic effects that would be beneficial in treating AD. Additionally, natural products benefit from both physicochemical properties being in more favorable ranges and active transport playing a more significant role than it does for synthetic compounds.
Collapse
Affiliation(s)
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia; Center for Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
13
|
Kataura T, Sedlackova L, Sun C, Kocak G, Wilson N, Banks P, Hayat F, Trushin S, Trushina E, Maddocks ODK, Oblong JE, Miwa S, Imoto M, Saiki S, Erskine D, Migaud ME, Sarkar S, Korolchuk VI. Targeting the autophagy-NAD axis protects against cell death in Niemann-Pick type C1 disease models. Cell Death Dis 2024; 15:382. [PMID: 38821960 PMCID: PMC11143325 DOI: 10.1038/s41419-024-06770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Impairment of autophagy leads to an accumulation of misfolded proteins and damaged organelles and has been implicated in plethora of human diseases. Loss of autophagy in actively respiring cells has also been shown to trigger metabolic collapse mediated by the depletion of nicotinamide adenine dinucleotide (NAD) pools, resulting in cell death. Here we found that the deficit in the autophagy-NAD axis underpins the loss of viability in cell models of a neurodegenerative lysosomal storage disorder, Niemann-Pick type C1 (NPC1) disease. Defective autophagic flux in NPC1 cells resulted in mitochondrial dysfunction due to impairment of mitophagy, leading to the depletion of both the reduced and oxidised forms of NAD as identified via metabolic profiling. Consequently, exhaustion of the NAD pools triggered mitochondrial depolarisation and apoptotic cell death. Our chemical screening identified two FDA-approved drugs, celecoxib and memantine, as autophagy activators which effectively restored autophagic flux, NAD levels, and cell viability of NPC1 cells. Of biomedical relevance, either pharmacological rescue of the autophagy deficiency or NAD precursor supplementation restored NAD levels and improved the viability of NPC1 patient fibroblasts and induced pluripotent stem cell (iPSC)-derived cortical neurons. Together, our findings identify the autophagy-NAD axis as a mechanism of cell death and a target for therapeutic interventions in NPC1 disease, with a potential relevance to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Lucia Sedlackova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gamze Kocak
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Peter Banks
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Faisal Hayat
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | | | - John E Oblong
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Masaya Imoto
- Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Shinji Saiki
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
14
|
Peng Y, Tao Y, Liu L, Zhang J, Wei B. Crosstalk among Reactive Oxygen Species, Autophagy and Metabolism in Myocardial Ischemia and Reperfusion Stages. Aging Dis 2024; 15:1075-1107. [PMID: 37728583 PMCID: PMC11081167 DOI: 10.14336/ad.2023.0823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial ischemia is the most common cardiovascular disease. Reperfusion, an important myocardial ischemia tool, causes unexpected and irreversible damage to cardiomyocytes, resulting in myocardial ischemia/reperfusion (MI/R) injury. Upon stress, especially oxidative stress induced by reactive oxygen species (ROS), autophagy, which degrades the intracellular energy storage to produce metabolites that are recycled into metabolic pathways to buffer metabolic stress, is initiated during myocardial ischemia and MI/R injury. Excellent cardioprotective effects of autophagy regulators against MI and MI/R have been reported. Reversing disordered cardiac metabolism induced by ROS also exhibits cardioprotective action in patients with myocardial ischemia. Herein, we review current knowledge on the crosstalk between ROS, cardiac autophagy, and metabolism in myocardial ischemia and MI/R. Finally, we discuss the possible regulators of autophagy and metabolism that can be exploited to harness the therapeutic potential of cardiac metabolism and autophagy in the diagnosis and treatment of myocardial ischemia and MI/R.
Collapse
Affiliation(s)
- Yajie Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yachuan Tao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, Shanghai, China
| | - Lingxu Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Zhang
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, Henan, China.
| | - Bo Wei
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
16
|
Chang X, Zhang Q, Huang Y, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Quercetin inhibits necroptosis in cardiomyocytes after ischemia-reperfusion via DNA-PKcs-SIRT5-orchestrated mitochondrial quality control. Phytother Res 2024; 38:2496-2517. [PMID: 38447978 DOI: 10.1002/ptr.8177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Xu H, Lu J, Huang F, Zhang Q, Liu S, Chen Z, Li S. A genome-wide CRISPR screen identified host genes essential for intracellular Brucella survival. Microbiol Spectr 2024; 12:e0338323. [PMID: 38376367 PMCID: PMC10986529 DOI: 10.1128/spectrum.03383-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Brucella is a zoonotic intracellular bacterium that poses threats to human health and economic security. Intracellular infection is a hallmark of the agent Brucella and a primary cause of distress, through which the bacterium regulates the host intracellular environment to promote its own colonization and replication, evading host immunity and pharmaceutical killing. Current studies of Brucella intracellular processes are typically premised on bacterial phenotype such as intracellular bacterial survival, followed by biochemical or molecular biological approaches to reveal detailed mechanisms. While such processes can deepen the understanding of Brucella-host interaction, the insights into host alterations in infection would be easily restricted to known pathways. In the current study, we applied CRISPR Cas9 screen to identify host genes that are most affected by Brucella infection on cell viability at the genomic level. As a result of CRISPR screening, we firstly identified that knockout of the negatively selected genes GOLGA6L6, DEFB103B, OR4F29, and ERCC6 attenuate the viability of both the host cells and intracellular Brucella, suggesting these genes to be potential therapeutic targets for Brucella control. In particular, knockout of DEFB103B diminished Brucella intracellular survival by altering host cell autophagy. Conversely, knockout of positive screening genes promoted intracellular proliferation of Brucella. In summary, we screened host genes at the genomic level throughout Brucella infection, identified host genes that are previously not recognized to be involved in Brucella infection, and provided targets for intracellular infection control.IMPORTANCEBrucella is a Gram-negative bacterium that infects common mammals causing arthritis, myalgia, neuritis, orchitis, or miscarriage and is difficult to cure with antibiotics due to its intracellular parasitism. Therefore, unraveling the mechanism of Brucella-host interactions will help controlling Brucella infections. CRISPR-Cas9 is a gene editing technology that directs knockout of individual target genes by guided RNA, from which genome-wide gene-knockout cell libraries can be constructed. Upon infection with Brucella, the cell library would show differences in viability as a result of the knockout and specific genes could be revealed by genomic DNA sequencing. As a result, genes affecting cell viability during Brucella infection were identified. Further testing of gene function may reveal the mechanisms of Brucella-host interactions, thereby contributing to clinical therapy.
Collapse
Affiliation(s)
- Heling Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jingjing Lu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qi Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shuang Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
18
|
Ren H, Su P, Zhao F, Zhang Q, Huang X, He C, Wu Q, Wang Z, Ma J, Wang Z. Adipose mesenchymal stem cell-derived exosomes promote skin wound healing in diabetic mice by regulating epidermal autophagy. BURNS & TRAUMA 2024; 12:tkae001. [PMID: 38434722 PMCID: PMC10905655 DOI: 10.1093/burnst/tkae001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Adipose mesenchymal stem cell-derived exosomes (ADSC-Exos) have great potential in the field of tissue repair and regenerative medicine, particularly in cases of refractory diabetic wounds. Interestingly, autophagy plays a role in wound healing, and recent research has demonstrated that exosomes are closely associated with intracellular autophagy in biogenesis and molecular signaling mechanisms. Therefore, this study aimed to investigate whether ADSC-Exos promote the repair of diabetic wounds by regulating autophagy to provide a new method and theoretical basis for the treatment of diabetic wounds. METHODS Western blot analysis and autophagy double-labelled adenovirus were used to monitor changes in autophagy flow in human immortalized keratinocyte cell line (HaCaT) cells. ADSC-Exos were generated from ADSC supernatants via ultracentrifugation. The effectiveness of ADSC-Exos on HaCaT cells was assessed using a live-cell imaging system, cell counting kit-8 and cell scratch assays. The cells were treated with the autophagy inhibitor bafilomycin A1 to evaluate the effects of autophagy on cell function. The recovery of diabetic wounds after ADSC-Exo treatment was determined by calculating the healing rates and performing histological analysis. High-throughput transcriptome sequencing was used to analyze changes in mRNA expression after the treatment of HaCaT cells with ADSC-Exos. RESULTS ADSC-Exos activated autophagy in HaCaT cells, which was inhibited by high glucose levels, and potentiated their cellular functions. Moreover, ADSC-Exos in combination with the autophagy inhibitor bafilomycin A1 showed that autophagy defects further impaired the biological function of epidermal cells under high-glucose conditions and partially weakened the healing effect of ADSC-Exos. Using a diabetes wound model, we found that ADSC-Exos promoted skin wound healing in diabetic mice, as evidenced by increased epidermal autophagy and rapid re-epithelialization. Finally, sequencing results showed that increased expression of autophagy-related genes nicotinamide phosphoribosyltransferase (NAMPT), CD46, vesicle-associated membrane protein 7 (VAMP7), VAMP3 and eukaryotic translation initiation factor 2 subunit alpha (EIF2S1) may contribute to the underlying mechanism of ADSC-Exo action. CONCLUSIONS This study elucidated the molecular mechanism through which ADCS-Exos regulate autophagy in skin epithelial cells, thereby providing a new theoretical basis for the treatment and repair of skin epithelial damage by ADSC-Exos.
Collapse
Affiliation(s)
- Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Quan Wu
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| |
Collapse
|
19
|
Ramos VM, Serna JDC, Vilas-Boas EA, Cabral-Costa JV, Cunha FM, Kataura T, Korolchuk VI, Kowaltowski AJ. Mitochondrial sodium/calcium exchanger (NCLX) regulates basal and starvation-induced autophagy through calcium signaling. FASEB J 2024; 38:e23454. [PMID: 38315457 DOI: 10.1096/fj.202301368rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Mitochondria shape intracellular Ca2+ signaling through the concerted activity of Ca2+ uptake via mitochondrial calcium uniporters and efflux by Na+ /Ca2+ exchangers (NCLX). Here, we describe a novel relationship among NCLX, intracellular Ca2+ , and autophagic activity. Conditions that stimulate autophagy in vivo and in vitro, such as caloric restriction and nutrient deprivation, upregulate NCLX expression in hepatic tissue and cells. Conversely, knockdown of NCLX impairs basal and starvation-induced autophagy. Similarly, acute inhibition of NCLX activity by CGP 37157 affects bulk and endoplasmic reticulum autophagy (ER-phagy) without significant impacts on mitophagy. Mechanistically, CGP 37157 inhibited the formation of FIP200 puncta and downstream autophagosome biogenesis. Inhibition of NCLX caused decreased cytosolic Ca2+ levels, and intracellular Ca2+ chelation similarly suppressed autophagy. Furthermore, chelation did not exhibit an additive effect on NCLX inhibition of autophagy, demonstrating that mitochondrial Ca2+ efflux regulates autophagy through the modulation of Ca2+ signaling. Collectively, our results show that the mitochondrial Ca2+ extrusion pathway through NCLX is an important regulatory node linking nutrient restriction and autophagy regulation.
Collapse
Affiliation(s)
- Vitor M Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa A Vilas-Boas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fernanda M Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Zhang Q, Li Z, Li Q, Trammell SA, Schmidt MS, Pires KM, Cai J, Zhang Y, Kenny H, Boudina S, Brenner C, Abel ED. Control of NAD + homeostasis by autophagic flux modulates mitochondrial and cardiac function. EMBO J 2024; 43:362-390. [PMID: 38212381 PMCID: PMC10897141 DOI: 10.1038/s44318-023-00009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.
Collapse
Affiliation(s)
- Quanjiang Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhonggang Li
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Qiuxia Li
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Aj Trammell
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jinjin Cai
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yuan Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Helena Kenny
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - E Dale Abel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
21
|
Huang H, Tian Y, Huo Y, Liu Y, Yang W, Li Y, Zhuo M, Xiang D, Li C, Yi G, Liu S. The Autophagy-Related Musa acuminata Protein MaATG8F Interacts with MaATG4B, Regulating Banana Disease Resistance to Fusarium oxysporum f. sp. cubense Tropical Race 4. J Fungi (Basel) 2024; 10:91. [PMID: 38392763 PMCID: PMC10890345 DOI: 10.3390/jof10020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Banana is one of the most important fruits in the world due to its status as a major food source for more than 400 million people. Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) causes substantial losses of banana crops every year, and molecular host resistance mechanisms are currently unknown. We here performed a genomewide analysis of the autophagy-related protein 8 (ATG8) family in a wild banana species. The banana genome was found to contain 10 MaATG8 genes. Four MaATG8s formed a gene cluster in the distal part of chromosome 4. Phylogenetic analysis of ATG8 families in banana, Arabidopsis thaliana, citrus, rice, and ginger revealed five major phylogenetic clades shared by all of these plant species, demonstrating evolutionary conservation of the MaATG8 families. The transcriptomic analysis of plants infected with Foc TR4 showed that nine of the MaATG8 genes were more highly induced in resistant cultivars than in susceptible cultivars. Finally, MaATG8F was found to interact with MaATG4B in vitro (with yeast two-hybrid assays), and MaATG8F and MaATG4B all positively regulated banana resistance to Foc TR4. Our study provides novel insights into the structure, distribution, evolution, and expression of the MaATG8 family in bananas. Furthermore, the discovery of interactions between MaATG8F and MaATG4B could facilitate future research of disease resistance genes for the genetic improvement of bananas.
Collapse
Affiliation(s)
- Huoqing Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Yuzhen Tian
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yile Huo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Yushan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Wenlong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Yuqing Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Mengxia Zhuo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Dandan Xiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Siwen Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
22
|
Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches. Front Cell Neurosci 2024; 17:1307636. [PMID: 38259504 PMCID: PMC10801191 DOI: 10.3389/fncel.2023.1307636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by the depletion of the ubiquitously expressed survival motor neuron (SMN) protein. While the genetic cause of SMA has been well documented, the exact mechanism(s) by which SMN depletion results in disease progression remain elusive. A wide body of evidence has highlighted the involvement and dysregulation of autophagy in SMA. Autophagy is a highly conserved lysosomal degradation process which is necessary for cellular homeostasis; defects in the autophagic machinery have been linked with a wide range of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. The pathway is particularly known to prevent neurodegeneration and has been suggested to act as a neuroprotective factor, thus presenting an attractive target for novel therapies for SMA patients. In this review, (a) we provide for the first time a comprehensive summary of the perturbations in the autophagic networks that characterize SMA development, (b) highlight the autophagic regulators which may play a key role in SMA pathogenesis and (c) propose decreased autophagic flux as the causative agent underlying the autophagic dysregulation observed in these patients.
Collapse
Affiliation(s)
| | - Maria Dimitriadi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
23
|
Lautrup S, Hou Y, Fang EF, Bohr VA. Roles of NAD + in Health and Aging. Cold Spring Harb Perspect Med 2024; 14:a041193. [PMID: 37848251 PMCID: PMC10759992 DOI: 10.1101/cshperspect.a041193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
NAD+, the essential metabolite involved in multiple reactions such as the regulation of cellular metabolism, energy production, DNA repair, mitophagy and autophagy, inflammation, and neuronal function, has been the subject of intense research in the field of aging and disease over the last decade. NAD+ levels decline with aging and in some age-related diseases, and reduction in NAD+ affects all the hallmarks of aging. Here, we present an overview of the discovery of NAD+, the cellular pathways of producing and consuming NAD+, and discuss how imbalances in the production rate and cellular request of NAD+ likely contribute to aging and age-related diseases including neurodegeneration. Preclinical studies have revealed great potential for NAD+ precursors in promotion of healthy aging and improvement of neurodegeneration. This has led to the initiation of several clinical trials with NAD+ precursors to treat accelerated aging, age-associated dysfunctions, and diseases including Alzheimer's and Parkinson's. NAD supplementation has great future potential clinically, and these studies will also provide insight into the mechanisms of aging.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Vilhelm A Bohr
- DNA Repair Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Pham TNM, Perumal N, Manicam C, Basoglu M, Eimer S, Fuhrmann DC, Pietrzik CU, Clement AM, Körschgen H, Schepers J, Behl C. Adaptive responses of neuronal cells to chronic endoplasmic reticulum (ER) stress. Redox Biol 2023; 67:102943. [PMID: 37883843 PMCID: PMC10618786 DOI: 10.1016/j.redox.2023.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Accumulation of misfolded proteins or perturbation of calcium homeostasis leads to endoplasmic reticulum (ER) stress and is linked to the pathogenesis of neurodegenerative diseases. Hence, understanding the ability of neuronal cells to cope with chronic ER stress is of fundamental interest. Interestingly, several brain areas uphold functions that enable them to resist challenges associated with neurodegeneration. Here, we established novel clonal mouse hippocampal (HT22) cell lines that are resistant to prolonged (chronic) ER stress induced by thapsigargin (TgR) or tunicamycin (TmR) as in vitro models to study the adaption to ER stress. Morphologically, we observed a significant increase in vesicular und autophagosomal structures in both resistant lines and 'giant lysosomes', especially striking in TgR cells. While autophagic activity increased under ER stress, lysosomal function appeared slightly impaired; in both cell lines, we observed enhanced ER-phagy. However, proteomic analyses revealed that various protein clusters and signaling pathways were differentially regulated in TgR versus TmR cells in response to chronic ER stress. Additionally, bioenergetic analyses in both resistant cell lines showed a shift toward aerobic glycolysis ('Warburg effect') and a defective complex I of the oxidative phosphorylation (OXPHOS) machinery. Furthermore, ER stress-resistant cells differentially activated the unfolded protein response (UPR) comprising IRE1α and ATF6 pathways. These findings display the wide portfolio of adaptive responses of neuronal cells to chronic ER stress. ER stress-resistant neuronal cells could be the basis to uncover molecular modulators of adaptation, resistance, and neuroprotection as potential pharmacological targets for preventing neurodegeneration.
Collapse
Affiliation(s)
- Thu Nguyen Minh Pham
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marion Basoglu
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Stefan Eimer
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Albrecht M Clement
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jana Schepers
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
25
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
26
|
Ratliffe J, Kataura T, Otten EG, Korolchuk VI. The evolution of selective autophagy as a mechanism of oxidative stress response: The evolutionarily acquired ability of selective autophagy receptors to respond to oxidative stress is beneficial for human longevity. Bioessays 2023; 45:e2300076. [PMID: 37603398 PMCID: PMC11475373 DOI: 10.1002/bies.202300076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Ageing is associated with a decline in autophagy and elevated reactive oxygen species (ROS), which can breach the capacity of antioxidant systems. Resulting oxidative stress can cause further cellular damage, including DNA breaks and protein misfolding. This poses a challenge for longevous organisms, including humans. In this review, we hypothesise that in the course of human evolution selective autophagy receptors (SARs) acquired the ability to sense and respond to localised oxidative stress. We posit that in the vicinity of protein aggregates and dysfunctional mitochondria oxidation of key cysteine residues in SARs induces their oligomerisation which initiates autophagy. The degradation of damaged cellular components thus could reduce ROS production and restore redox homeostasis. This evolutionarily acquired function of SARs may represent one of the biological adaptations that contributed to longer lifespan. Inversely, loss of this mechanism can lead to age-related diseases associated with impaired autophagy and oxidative stress.
Collapse
Affiliation(s)
- Joshua Ratliffe
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Elsje G. Otten
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Present address:
Amphista TherapeuticsCambridgeUK
| | - Viktor I. Korolchuk
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
27
|
Xu Y, Xiao W. NAD+: An Old but Promising Therapeutic Agent for Skeletal Muscle Ageing. Ageing Res Rev 2023; 92:102106. [PMID: 39492424 DOI: 10.1016/j.arr.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
More than a century after the discovery of nicotinamide adenine dinucleotide (NAD+), our understanding of the molecule's role in the biology of ageing continues to evolve. As a coenzyme or substrate for many enzymes, NAD+ governs a wide range of biological processes, including energy metabolism, genomic stability, signal transduction, and cell fate. NAD+ deficiency has been recognised as a bona fide hallmark of tissue degeneration, and restoring NAD+ homeostasis helps to rejuvenate multiple mechanisms associated with tissue ageing. The progressive loss of skeletal muscle homeostasis with age is directly associated with high morbidity, disability and mortality. The aetiology of skeletal muscle ageing is complex, involving mitochondrial dysfunction, senescence and stem cell depletion, autophagy defects, chronic cellular stress, intracellular ion overload, immune cell dysfunction, circadian clock disruption, microcirculation disorders, persistent denervation, and gut microbiota dysbiosis. This review focuses on the therapeutic potential of NAD+ restoration to alleviate the above pathological factors and discusses the effects of in vivo administration of different NAD+ boosting strategies on skeletal muscle homeostasis, aiming to provide a reference for combating skeletal muscle ageing.
Collapse
Affiliation(s)
- Yingying Xu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
28
|
Delorme-Axford E, Wen X, Klionsky DJ. The yeast transcription factor Stb5 acts as a negative regulator of autophagy by modulating cellular metabolism. Autophagy 2023; 19:2719-2732. [PMID: 37345792 PMCID: PMC10472870 DOI: 10.1080/15548627.2023.2228533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved pathway of cellular degradation and recycling that maintains cell health during homeostatic conditions and facilitates survival during stress. Aberrant cellular autophagy contributes to the pathogenesis of human diseases such as cancer, neurodegeneration, and cardiovascular, metabolic and lysosomal storage disorders. Despite decades of research, there remain unanswered questions as to how autophagy modulates cellular metabolism, and, conversely, how cellular metabolism affects autophagy activity. Here, we have identified the yeast metabolic transcription factor Stb5 as a negative regulator of autophagy. Chromosomal deletion of STB5 in the yeast Saccharomyces cerevisiae enhances autophagy. Loss of Stb5 results in the upregulation of select autophagy-related (ATG) transcripts under nutrient-replete conditions; however, the Stb5-mediated impact on autophagy occurs primarily through its effect on genes involved in NADPH production and the pentose phosphate pathway. This work provides insight into the intersection of Stb5 as a transcription factor that regulates both cellular metabolic responses and autophagy activity.Abbreviations: bp, base pairs; ChIP, chromatin immunoprecipitation; G6PD, glucose-6-phosphate dehydrogenase; GFP, green fluorescent protein; IDR, intrinsically disordered region; NAD, nicotinamide adenine dinucleotide; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide adenine dinucleotide phosphate (reduced); ORF, open reading frame; PA, protein A; PCR, polymerase chain reaction; PE, phosphatidylethanolamine; PPP, pentose phosphate pathway; prApe1, precursor aminopeptidase I; ROS, reactive oxygen species; RT-qPCR, real-time quantitative PCR; SD, standard deviation; TF, transcription factor; TOR, target of rapamycin; WT, wild-type.
Collapse
Affiliation(s)
| | - Xin Wen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Korsgen ME, Sun C, Seranova E, Zatyka M, Astuti D, Kataura T, Barrett T, Korolchuk VI, Sarkar S. Analysis of autophagy deficiency and cytotoxicity in autophagy-deficient human embryonic stem cell-derived neurons. STAR Protoc 2023; 4:102529. [PMID: 37624702 PMCID: PMC10474488 DOI: 10.1016/j.xpro.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Autophagy, a catabolic process governing cellular and energy homeostasis, is essential for cell survival and human health. Here, we present a protocol for generating autophagy-deficient (ATG5-/-) human neurons from human embryonic stem cell (hESC)-derived neural precursors. We describe steps for analyzing loss of autophagy by immunoblotting. We then detail analysis of cell death by luminescence-based cytotoxicity assay and fluorescence-based TUNEL staining. This hESC-based experimental platform provides a genetic knockout model for undertaking autophagy studies relevant to human biology. For complete details on the use and execution of this protocol, please refer to Sun et al. (2023).1.
Collapse
Affiliation(s)
- Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Malgorzata Zatyka
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dewi Astuti
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Endocrinology, Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
30
|
Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI. The autophagy-NAD axis in longevity and disease. Trends Cell Biol 2023; 33:788-802. [PMID: 36878731 DOI: 10.1016/j.tcb.2023.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Autophagy is an intracellular degradation pathway that recycles subcellular components to maintain metabolic homeostasis. NAD is an essential metabolite that participates in energy metabolism and serves as a substrate for a series of NAD+-consuming enzymes (NADases), including PARPs and SIRTs. Declining levels of autophagic activity and NAD represent features of cellular ageing, and consequently enhancing either significantly extends health/lifespan in animals and normalises metabolic activity in cells. Mechanistically, it has been shown that NADases can directly regulate autophagy and mitochondrial quality control. Conversely, autophagy has been shown to preserve NAD levels by modulating cellular stress. In this review we highlight the mechanisms underlying this bidirectional relationship between NAD and autophagy, and the potential therapeutic targets it provides for combatting age-related disease and promoting longevity.
Collapse
Affiliation(s)
- Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
31
|
Dang CV. Cancer Metabolism Historical Perspectives: A Chronicle of Controversies and Consensus. Cold Spring Harb Perspect Med 2023; 13:a041530. [PMID: 37553212 PMCID: PMC10691493 DOI: 10.1101/cshperspect.a041530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A century ago, Otto Warburg's work sparked the field of cancer metabolism, which has since taken a tortuous path. As evidence accumulated over the decades, consensus views of causes of cancer emerged, whereby genetic and epigenetic oncogenic drivers promoted immune evasion and induced new blood vessels and neoplastic metabolism to support tumor growth. Neoplastic cells abandon social cues of intercellular cooperation, escape tissue confinement, metastasize, and ultimately kill the host. Herein, key milestones in the study of cancer metabolism are chronicled with an emphasis on carbohydrate metabolism. The field began with a cancer cell-autonomous view that has been refined by a richer understanding of solid cancers as growing, immune-suppressive, complex organs comprising different cell types that are nourished by a variety of nutrients and variable amounts of oxygen through abnormal neovasculatures. Based on foundational historical studies, our current understanding of cancer metabolism offers a hopeful outlook for targeting metabolism to enhance cancer therapy.
Collapse
Affiliation(s)
- Chi V Dang
- Ludwig Institute for Cancer Research, New York, New York 10017, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
32
|
Sedlackova L, Kataura T, Sarkar S, Korolchuk VI. Metabolic function of autophagy is essential for cell survival. Autophagy 2023; 19:2395-2397. [PMID: 36727253 PMCID: PMC10351444 DOI: 10.1080/15548627.2023.2165753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Age-related human pathologies present with a multitude of molecular and metabolic phenotypes, which individually or synergistically contribute to tissue degeneration. However, current lack of understanding of the interdependence of these molecular pathologies limits the potential range of existing therapeutic intervention strategies. In our study, we set out to understand the chain of molecular events, which underlie the loss of cellular viability in macroautophagy/autophagy deficiency associated with aging and age-related disease. We discover a novel axis linking autophagy, a cellular waste disposal pathway, and a metabolite, nicotinamide adenine dinucleotide (NAD). The axis connects multiple organelles, molecules and stress response pathways mediating cellular demise when autophagy becomes dysfunctional. By elucidating the steps on the path from efficient mitochondrial recycling to NAD maintenance and ultimately cell viability, we highlight targets potentially receptive to therapeutic interventions in a range of genetic and age-related diseases associated with autophagy dysfunction.Abbreviations: IMM: inner mitochondrial membrane; NAD: nicotinamide dinucleotide; OXPHOS: oxidative phosphorylation; PARP: poly(ADP-ribose) polymerase; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- Lucia Sedlackova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Viktor I. Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Sun C, Seranova E, Cohen MA, Chipara M, Roberts J, Astuti D, Palhegyi AM, Acharjee A, Sedlackova L, Kataura T, Otten EG, Panda PK, Lara-Reyna S, Korsgen ME, Kauffman KJ, Huerta-Uribe A, Zatyka M, Silva LFSE, Torresi J, Zhang S, Hughes GW, Ward C, Kuechler ER, Cartwright D, Trushin S, Trushina E, Sahay G, Buganim Y, Lavery GG, Gsponer J, Anderson DG, Frickel EM, Rosenstock TR, Barrett T, Maddocks ODK, Tennant DA, Wang H, Jaenisch R, Korolchuk VI, Sarkar S. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Cell Rep 2023; 42:112372. [PMID: 37086404 PMCID: PMC10556436 DOI: 10.1016/j.celrep.2023.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 01/22/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.
Collapse
Affiliation(s)
- Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dewi Astuti
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adina M Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK; Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, Birmingham B15 2TT, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Lucia Sedlackova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Elsje G Otten
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Prashanta K Panda
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kevin J Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alejandro Huerta-Uribe
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Malgorzata Zatyka
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Luiz F S E Silva
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jorge Torresi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Georgina W Hughes
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carl Ward
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Erich R Kuechler
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Cartwright
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, Rochester, MN 55901, USA
| | | | - Gaurav Sahay
- Department of Pharmaceutical Sciences and Department of Biomedical Engineering, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Gareth G Lavery
- Department for Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Joerg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Tatiana R Rosenstock
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Endocrinology, Birmingham Women's and Children's Hospital, Steelehouse Lane, Birmingham B4 6NH, UK
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Haoyi Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
34
|
Jain V, Singh MP, Amaravadi RK. Recent advances in targeting autophagy in cancer. Trends Pharmacol Sci 2023; 44:290-302. [PMID: 36931971 PMCID: PMC10106406 DOI: 10.1016/j.tips.2023.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Autophagy is a cellular homeostasis mechanism that fuels the proliferation and survival of advanced cancers by degrading and recycling organelles and proteins. Preclinical studies have identified that within an established tumor, tumor cell autophagy and host cell autophagy conspire to support tumor growth. A growing body of evidence suggests that autophagy inhibition can augment the efficacy of chemotherapy, targeted therapy, or immunotherapy to enhance tumor shrinkage. First-generation autophagy inhibition trials in cancer using the lysosomal inhibitor hydroxychloroquine (HCQ) have produced mixed results but have guided the way for the development of more potent and specific autophagy inhibitors in clinical trials. In this review, we will discuss the role of autophagy in cancer, newly discovered molecular mechanisms of the autophagy pathway, the effects of autophagy modulation in cancer and host cells, and novel autophagy inhibitors that are entering clinical trials.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahendra Pal Singh
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Perez MJ, Deleidi M. New insights into the autophagy-NAD axis in brain disease. Cell Rep 2023; 42:112420. [PMID: 37083331 DOI: 10.1016/j.celrep.2023.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Sun et al. demonstrate that defects in autophagy cause nicotinamide adenine dinucleotide (NAD) depletion and neurotoxicity.1 Restoring NAD levels rescues cytotoxicity in autophagy-deficient neurons, providing a potential therapy for neurodegenerative and lysosomal storage diseases associated with autophagy defects.
Collapse
Affiliation(s)
- Maria Jose Perez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michela Deleidi
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institut Imagine, INSERM UMR1163 Paris Cité University, 24 boulevard du Montparnasse, 75015 Paris, France.
| |
Collapse
|
36
|
Shafique A, Brughera M, Lualdi M, Alberio T. The Role of Rab Proteins in Mitophagy: Insights into Neurodegenerative Diseases. Int J Mol Sci 2023; 24:6268. [PMID: 37047239 PMCID: PMC10094445 DOI: 10.3390/ijms24076268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondrial dysfunction and vesicular trafficking alterations have been implicated in the pathogenesis of several neurodegenerative diseases. It has become clear that pathogenetic pathways leading to neurodegeneration are often interconnected. Indeed, growing evidence suggests a concerted contribution of impaired mitophagy and vesicles formation in the dysregulation of neuronal homeostasis, contributing to neuronal cell death. Among the molecular factors involved in the trafficking of vesicles, Ras analog in brain (Rab) proteins seem to play a central role in mitochondrial quality checking and disposal through both canonical PINK1/Parkin-mediated mitophagy and novel alternative pathways. In turn, the lack of proper elimination of dysfunctional mitochondria has emerged as a possible causative/early event in some neurodegenerative diseases. Here, we provide an overview of major findings in recent years highlighting the role of Rab proteins in dysfunctional mitochondrial dynamics and mitophagy, which are characteristic of neurodegenerative diseases. A further effort should be made in the coming years to clarify the sequential order of events and the molecular factors involved in the different processes. A clear cause-effect view of the pathogenetic pathways may help in understanding the molecular basis of neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Tiziana Alberio
- Department of Science and High Technology, Center of Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, VA, Italy
| |
Collapse
|
37
|
Temozolomide, Simvastatin and Acetylshikonin Combination Induces Mitochondrial-Dependent Apoptosis in GBM Cells, Which Is Regulated by Autophagy. BIOLOGY 2023; 12:biology12020302. [PMID: 36829578 PMCID: PMC9953749 DOI: 10.3390/biology12020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest cancers. Temozolomide (TMZ) is the most common chemotherapy used for GBM patients. Recently, combination chemotherapy strategies have had more effective antitumor effects and focus on slowing down the development of chemotherapy resistance. A combination of TMZ and cholesterol-lowering medications (statins) is currently under investigation in in vivo and clinical trials. In our current investigation, we have used a triple-combination therapy of TMZ, Simvastatin (Simva), and acetylshikonin, and investigated its apoptotic mechanism in GBM cell lines (U87 and U251). We used viability, apoptosis, reactive oxygen species, mitochondrial membrane potential (MMP), caspase-3/-7, acridine orange (AO) and immunoblotting autophagy assays. Our results showed that a TMZ/Simva/ASH combination therapy induced significantly more apoptosis compared to TMZ, Simva, ASH, and TMZ/Simva treatments in GBM cells. Apoptosis via TMZ/Simva/ASH treatment induced mitochondrial damage (increase of ROS, decrease of MMP) and caspase-3/7 activation in both GBM cell lines. Compared to all single treatments and the TMZ/Simva treatment, TMZ/Simva/ASH significantly increased positive acidic vacuole organelles. We further confirmed that the increase of AVOs during the TMZ/Simva/ASH treatment was due to the partial inhibition of autophagy flux (accumulation of LC3β-II and a decrease in p62 degradation) in GBM cells. Our investigation also showed that TMZ/Simva/ASH-induced cell death was depended on autophagy flux, as further inhibition of autophagy flux increased TMZ/Simva/ASH-induced cell death in GBM cells. Finally, our results showed that TMZ/Simva/ASH treatment potentially depends on an increase of Bax expression in GBM cells. Our current investigation might open new avenues for a more effective treatment of GBM, but further investigations are required for a better identification of the mechanisms.
Collapse
|
38
|
Trushina E, Nguyen TKO, Trushin S. Modulation of Mitochondrial Function as a Therapeutic Strategy for Neurodegenerative Diseases. J Prev Alzheimers Dis 2023; 10:675-685. [PMID: 37874088 PMCID: PMC12023916 DOI: 10.14283/jpad.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Despite recent FDA approval of anti-amyloid antibodies for Alzheimer's Disease, strategies that target early molecular mechanisms and could delay or change the disease trajectory are still needed. Mitochondria emerge as a signaling organelle that could modulate multiple molecular mechanisms to enhance cellular bioenergetics and promote neuronal survival. Approaches to enhance mitochondrial function could promote healthy aging delaying the onset of age-related diseases such as Alzheimer's Disease. Some of these strategies have been recently tested in clinical trials. Emerging evidence demonstrates that in response to mild energetic stress, mitochondria could orchestrate a robust adaptive stress response activating multiple neuroprotective mechanism. The objective of this review is to highlight recent development of mitochondria-targeting therapeutics for neurodegenerative diseases, mitochondria complex I inhibitors in particular.
Collapse
Affiliation(s)
- E Trushina
- Eugenia Trushina, Ph.D., Mayo Clinic, 200 First Street SW, Guggenheim Building 1442B, Rochester, MN 55905, USA, Phone: 507-284-8197,
| | | | | |
Collapse
|