1
|
Schanne G, Demignot S, Policar C, Delsuc N. Cellular evaluation of superoxide dismutase mimics as catalytic drugs: Challenges and opportunities. Coord Chem Rev 2024; 514:215906. [DOI: 10.1016/j.ccr.2024.215906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Argaev-Frenkel L, Rosenzweig T. Redox Balance in Type 2 Diabetes: Therapeutic Potential and the Challenge of Antioxidant-Based Therapy. Antioxidants (Basel) 2023; 12:antiox12050994. [PMID: 37237860 DOI: 10.3390/antiox12050994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is an important factor in the development of type 2 diabetes (T2D) and associated complications. Unfortunately, most clinical studies have failed to provide sufficient evidence regarding the benefits of antioxidants (AOXs) in treating this disease. Based on the known complexity of reactive oxygen species (ROS) functions in both the physiology and pathophysiology of glucose homeostasis, it is suggested that inappropriate dosing leads to the failure of AOXs in T2D treatment. To support this hypothesis, the role of oxidative stress in the pathophysiology of T2D is described, together with a summary of the evidence for the failure of AOXs in the management of diabetes. A comparison of preclinical and clinical studies indicates that suboptimal dosing of AOXs might explain the lack of benefits of AOXs. Conversely, the possibility that glycemic control might be adversely affected by excess AOXs is also considered, based on the role of ROS in insulin signaling. We suggest that AOX therapy should be given in a personalized manner according to the need, which is the presence and severity of oxidative stress. With the development of gold-standard biomarkers for oxidative stress, optimization of AOX therapy may be achieved to maximize the therapeutic potential of these agents.
Collapse
Affiliation(s)
| | - Tovit Rosenzweig
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Adison School of Medicine, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
3
|
Li L, Zhou J, Fan W, Niu L, Song M, Qin B, Sun X, Lei Y. Lifetime exposure of ambient PM 2.5 elevates intraocular pressure in young mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112963. [PMID: 34781126 DOI: 10.1016/j.ecoenv.2021.112963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological studies suggest that ambient particulate matter exposure may be a new risk factor of glaucoma, but it lacks solid experimental evidence to establish a causal relationship. In this study, young mice (4 weeks old) were exposed concentrated ambient PM2.5 (CAP) for 9 months, which is throughout most of the life span of a mouse under heavy pollution. CAP was introduced using a versatile aerosol concentration enrichment system which mimics natural PM2.5 exposure. CAP exposure caused a gradual elevation of intraocular pressure (IOP) and an increase in aqueous humor outflow resistance. In the conventional outflow tissues that regulates IOP, inducible nitric oxide synthase (iNOS) was up-regulated and 3-nitrotyrosine (3-NT) formation increased. At the cellular level, PM2.5 exposure increased the transendothelial electrical resistance of cells that control IOP (AAP cells). This is accompanied by increased reactive oxygen species (ROS), iNOS and 3-NT levels. Peroxynitrite scavenger MnTMPyP successfully treated the IOP elevation and restored it to normal levels by reducing 3-NT formation in outflow tissues. This study provides the novel evidence that in young mice, lifetime whole-body PM2.5 exposure has a direct toxic effect on intraocular tissues, which imposes a significant risk of IOP elevation and may initiate the development of ocular hypertension and glaucoma. This occurs as a result of protein nitration of conventional aqueous humor outflow tissues.
Collapse
Affiliation(s)
- Liping Li
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China; Shanghai Typhoon Institute, CMA, Shanghai 200030, China; Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200031, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, Nanjing 210009, China; Pharmaceutical University, Nanjing 210009, China
| | - Liangliang Niu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Maomao Song
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Bo Qin
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China.
| |
Collapse
|
4
|
Celecoxib inhibits mitochondrial O2 consumption, promoting ROS dependent death of murine and human metastatic cancer cells via the apoptotic signalling pathway. Biochem Pharmacol 2018; 154:318-334. [DOI: 10.1016/j.bcp.2018.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/18/2018] [Indexed: 12/27/2022]
|
5
|
Miki A, Ricordi C, Sakuma Y, Yamamoto T, Misawa R, Mita A, Molano RD, Vaziri ND, Pileggi A, Ichii H. Divergent antioxidant capacity of human islet cell subsets: A potential cause of beta-cell vulnerability in diabetes and islet transplantation. PLoS One 2018; 13:e0196570. [PMID: 29723228 PMCID: PMC5933778 DOI: 10.1371/journal.pone.0196570] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Background Type 1 and Type 2 diabetes mellitus (T1DM and T2DM) are caused by beta(β)-cell loss and functional impairment. Identification of mechanisms of β-cell death and therapeutic interventions to enhance β-cell survival are essential for prevention and treatment of diabetes. Oxidative stress is a common feature of both T1DM and T2DM; elevated biomarkers of oxidative stress are detected in blood, urine and tissues including pancreas of patients with DM. Islet transplantation is a promising treatment for diabetes. However, exposure to stress (chemical and mechanical) and ischemia-reperfusion during isolation and transplantation causes islet loss by generation of reactive oxygen species (ROS). Human intracellular antioxidant enzymes and related molecules are essential defenses against ROS. Antioxidant enzyme levels including superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) have been shown to be low in islet cells. However, little is known about the expression and function of antioxidant enzymes within islet cell subsets. We evaluated the expression of the key antioxidant enzymes in β- and alpha(α)-cell and accessed effects of oxidative stress, islet isolation and transplantation on β/α-cell ratio and viability in human islets. Methods Human pancreata from T1DM, T2DM and non-diabetic deceased donors were obtained and analyzed by confocal microscopy. Isolated islets were (I) transplanted in the renal sub-capsular space of streptozotocin-induced diabetic nude mice (in vivo bioassay), or (II) exposed to oxidative (H2O2) and nitrosative (NO donor) stress for 24 hrs in vitro. The ratio, % viability and death of β- and α-cells, and DNA damage (8OHdG) were measured. Results and conclusions Catalase and GPX expression was much lower in β- than α-cells. The β/α-cell ratio fells significantly following islet isolation and transplantation. Exposure to oxidative stress caused a significantly lower survival and viability, with higher DNA damage in β- than α-cells. These findings identified the weakness of β-cell antioxidant capacity as a main cause of vulnerability to oxidative stress. Potential strategies to enhance β-cell antioxidant capacity might be effective in prevention/treatment of diabetes.
Collapse
Affiliation(s)
- Atsushi Miki
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Yasunaru Sakuma
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Toshiyuki Yamamoto
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Ryosuke Misawa
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Atsuyoshi Mita
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Ruth D Molano
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Nosratola D Vaziri
- Department of Medicine, University of California, Irvine, United States of America
| | - Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Hirohito Ichii
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America.,Department of Surgery, University of California, Irvine, United States of America
| |
Collapse
|
6
|
Lemos NE, Brondani LDA, Dieter C, Rheinheimer J, Bouças AP, Leitão CB, Crispim D, Bauer AC. Use of additives, scaffolds and extracellular matrix components for improvement of human pancreatic islet outcomes in vitro: A systematic review. Islets 2017; 9:73-86. [PMID: 28678625 PMCID: PMC5624286 DOI: 10.1080/19382014.2017.1335842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023] Open
Abstract
Pancreatic islet transplantation is an established treatment to restore insulin independence in type 1 diabetic patients. Its success rates have increased lately based on improvements in immunosuppressive therapies and on islet isolation and culture. It is known that the quality and quantity of viable transplanted islets are crucial for the achievement of insulin independence and some studies have shown that a significant number of islets are lost during culture time. Thus, in an effort to improve islet yield during culture period, researchers have tested a variety of additives in culture media as well as alternative culture devices, such as scaffolds. However, due to the use of different categories of additives or devices, it is difficult to draw a conclusion on the benefits of these strategies. Therefore, the aim of this systematic review was to summarize the results of studies that described the use of medium additives, scaffolds or extracellular matrix (ECM) components during human pancreatic islets culture. PubMed and Embase repositories were searched. Of 5083 articles retrieved, a total of 37 articles fulfilled the eligibility criteria and were included in the review. After data extraction, articles were grouped as follows: 1) "antiapoptotic/anti-inflammatory/antioxidant," 2) "hormone," 3) "sulphonylureas," 4) "serum supplements," and 5) "scaffolds or ECM components." The effects of the reviewed additives, ECM or scaffolds on islet viability, apoptosis and function (glucose-stimulated insulin secretion - GSIS) were heterogeneous, making any major conclusion hard to sustain. Overall, some "antiapoptotic/anti-inflammatory/antioxidant" additives decreased apoptosis and improved GSIS. Moreover, islet culture with ECM components or scaffolds increased GSIS. More studies are needed to define the real impact of these strategies in improving islet transplantation outcomes.
Collapse
Affiliation(s)
- Natália Emerim Lemos
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Letícia de Almeida Brondani
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristine Dieter
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jakeline Rheinheimer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Bouças
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Bauermann Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea Carla Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal 2014; 20:2416-36. [PMID: 23964890 PMCID: PMC4005499 DOI: 10.1089/ars.2013.5576] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Half a century of research provided unambiguous proof that superoxide and species derived from it-reactive oxygen species (ROS)-play a central role in many diseases and degenerative processes. This stimulated the search for pharmaceutical agents that are capable of preventing oxidative damage, and methods of assessing their therapeutic potential. RECENT ADVANCES The limitations of superoxide dismutase (SOD) as a therapeutic tool directed attention to small molecules, SOD mimics, that are capable of catalytically scavenging superoxide. Several groups of compounds, based on either metal complexes, including metalloporphyrins, metallocorroles, Mn(II) cyclic polyamines, and Mn(III) salen derivatives, or non-metal based compounds, such as fullerenes, nitrones, and nitroxides, have been developed and studied in vitro and in vivo. Very few entered clinical trials. CRITICAL ISSUES AND FUTURE DIRECTIONS Development of SOD mimics requires in-depth understanding of their mechanisms of biological action. Elucidation of both molecular features, essential for efficient ROS-scavenging in vivo, and factors limiting the potential side effects requires biologically relevant and, at the same time, relatively simple testing systems. This review discuses the advantages and limitations of genetically engineered SOD-deficient unicellular organisms, Escherichia coli and Saccharomyces cerevisiae as tools for investigating the efficacy and mechanisms of biological actions of SOD mimics. These simple systems allow the scrutiny of the minimal requirements for a functional SOD mimic: the association of a high catalytic activity for superoxide dismutation, low toxicity, and an efficient cellular uptake/biodistribution.
Collapse
Affiliation(s)
- Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
8
|
Fukui A, Naito Y, Handa O, Kugai M, Tsuji T, Yoriki H, Qin Y, Adachi S, Higashimura Y, Mizushima K, Kamada K, Katada K, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Yoshikawa T. Acetyl salicylic acid induces damage to intestinal epithelial cells by oxidation-related modifications of ZO-1. Am J Physiol Gastrointest Liver Physiol 2012; 303:G927-36. [PMID: 22917627 DOI: 10.1152/ajpgi.00236.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetyl salicylic acid (ASA) is one of the most frequently prescribed medications for the secondary prevention of cardiovascular and cerebrovascular events. It has recently been reported to cause small intestinal mucosal injury at a considerably higher rate than previously believed. The aim of this study is to investigate the mechanism by which this occurs using an in vitro small intestine model focusing on the role of oxidative stress and cell permeability. Differentiated Caco-2 exhibits a phenotype similar to human small intestinal epithelium. We measured whether ASA induced the increase of differentiated Caco-2 permeability, the decrease of tight junction protein expression, the production of reactive oxygen species (ROS), and the expression of ROS-modified zonula occludens-1 (ZO-1) protein. In some experiments, Mn(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, a superoxide dismutase mimetic) was used. The nontoxic concentration of ASA decreased transepithelial electrical resistance and increased the flux of fluorescein isothiocyanate-conjugated dextran across Caco-2 in a time-dependent manner. The same concentration of ASA significantly decreased ZO-1 expression among TJ proteins as assessed by Western blot and immunocytochemistry and increased ROS production and the expression of oxidative stress-modified ZO-1 protein. However, MnTMPyP suppressed the ASA-induced increased intercellular permeability and the ASA-induced ROS-modified ZO-1 expression. Our findings indicate that ASA-induced ROS production can specifically modify the expression of ZO-1 protein and induce increased cell permeability, which may ultimately cause small intestinal mucosal injury.
Collapse
Affiliation(s)
- Akifumi Fukui
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The importance of K(ATP) channels in stimulus-secretion coupling of β-cells is well established, although they are not indispensable for the maintenance of glycaemic control. This review article depicts a new role for K(ATP) channels by showing that genetic or pharmacological ablation of these channels protects β-cells against oxidative stress. Increased production of oxidants is a crucial factor in the pathogenesis of type 2 diabetes mellitus (T2DM). T2DM develops when β-cells can no longer compensate for the high demand of insulin resulting from excess fuel intake. Instead β-cells start to secrete less insulin and β-cell mass is diminished by apoptosis. Both, reduction of insulin secretion and β-cell mass induced by oxidative stress, are prevented by deletion or inhibition of K(ATP) channels. These findings may open up new insights into the early treatment of T2DM.
Collapse
Affiliation(s)
- G Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
10
|
Zhan HX, Cong L, Zhao YP, Zhang TP, Chen G, Zhou L, Guo JC. Activated mTOR/P70S6K signaling pathway is involved in insulinoma tumorigenesis. J Surg Oncol 2012; 106:972-80. [PMID: 22711648 DOI: 10.1002/jso.23176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/10/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Insulinoma was a rare tumor and its pathogenesis was poorly understood. There had no study that focused on the role of mTOR signaling pathway in insulinoma tumorigenesis. MATERIALS AND METHODS Expression of p-mTOR and its downstream p-P70S6K in insulinoma and normal pancreatic tissue was evaluated by immunohistochemical staining and Western blotting. In vitro study, an insulinoma cell line (INS-1) was treated with inhibitors of mTOR (rapamycin) or dual PI3K/mTOR inhibitor (NVP-BEZ235), RT-PCR, and Western blotting were applied to evaluate their influence on the expression of mTOR and P70S6K. Cell proliferation was evaluated by MTT test, cell cycle and apoptosis were analyzed by flow cytometry, insulin secretion level was evaluated by GSIS method. RESULTS Positive expression of p-mTOR and p-P70S6K was much higher in insulinoma tumor specimens than the normal pancreatic islet (P < 0.05). mTOR inhibitors can induce decreased expression of mTOR and P70S6K, which resulting in inhibiting INS-1 cell proliferation, insulin secretion and inducing apoptosis. NVP-BEZ235 had better influence on inhibiting the cell proliferation and inducing apoptosis than rapamycin. CONCLUSION mTOR/P70S6K signaling pathway is involved in tumorigenesis of insulinoma, NVP-BEZ235 and rapamycin offer a promising role as novel drugs in treatment of insulinoma.
Collapse
Affiliation(s)
- Han-Xiang Zhan
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
11
|
Chandiramani N, Wang X, Margeta M. Molecular basis for vulnerability to mitochondrial and oxidative stress in a neuroendocrine CRI-G1 cell line. PLoS One 2011; 6:e14485. [PMID: 21249230 PMCID: PMC3020905 DOI: 10.1371/journal.pone.0014485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 08/06/2010] [Indexed: 12/19/2022] Open
Abstract
Background Many age-associated disorders (including diabetes, cancer, and
neurodegenerative diseases) are linked to mitochondrial dysfunction, which
leads to impaired cellular bioenergetics and increased oxidative stress.
However, it is not known what genetic and molecular pathways underlie
differential vulnerability to mitochondrial dysfunction observed among
different cell types. Methodology/Principal Findings Starting with an insulinoma cell line as a model for a neuronal/endocrine
cell type, we isolated a novel subclonal line (named CRI-G1-RS) that was
more susceptible to cell death induced by mitochondrial respiratory chain
inhibitors than the parental CRI-G1 line (renamed CRI-G1-RR for clarity).
Compared to parental RR cells, RS cells were also more vulnerable to direct
oxidative stress, but equally vulnerable to mitochondrial uncoupling and
less vulnerable to protein kinase inhibition-induced apoptosis. Thus,
differential vulnerability to mitochondrial toxins between these two cell
types likely reflects differences in their ability to handle metabolically
generated reactive oxygen species rather than differences in ATP
production/utilization or in downstream apoptotic machinery. Genome-wide
gene expression analysis and follow-up biochemical studies revealed that, in
this experimental system, increased vulnerability to mitochondrial and
oxidative stress was associated with (1) inhibition of ARE/Nrf2/Keap1
antioxidant pathway; (2) decreased expression of antioxidant and phase I/II
conjugation enzymes, most of which are Nrf2 transcriptional targets; (3)
increased expression of molecular chaperones, many of which are also
considered Nrf2 transcriptional targets; (4) increased expression of β
cell-specific genes and transcription factors that specify/maintain β
cell fate; and (5) reconstitution of glucose-stimulated insulin
secretion. Conclusions/Significance The molecular profile presented here will enable identification of individual
genes or gene clusters that shape vulnerability to mitochondrial dysfunction
and thus represent potential therapeutic targets for diabetes and
neurodegenerative diseases. In addition, the newly identified CRI-G1-RS cell
line represents a new experimental model for investigating how endogenous
antioxidants affect glucose sensing and insulin release by pancreatic β
cells.
Collapse
Affiliation(s)
- Natasha Chandiramani
- Department of Pathology, University of California San Francisco, San
Francisco, California, United States of America
| | - Xianhong Wang
- Department of Pathology, University of California San Francisco, San
Francisco, California, United States of America
| | - Marta Margeta
- Department of Pathology, University of California San Francisco, San
Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Batinić-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 2010; 13:877-918. [PMID: 20095865 PMCID: PMC2935339 DOI: 10.1089/ars.2009.2876] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia-reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO(3)(*-), peroxyl radical, and less efficiently H(2)O(2). By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
13
|
Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and beta-cell dysfunction. Pflugers Arch 2010; 460:703-18. [PMID: 20652307 DOI: 10.1007/s00424-010-0862-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus type 1 and 2 (T1DM and T2DM) are complex multifactorial diseases. Loss of beta-cell function caused by reduced secretory capacity and enhanced apoptosis is a key event in the pathogenesis of both diabetes types. Oxidative stress induced by reactive oxygen and nitrogen species is critically involved in the impairment of beta-cell function during the development of diabetes. Because of their low antioxidant capacity, beta-cells are extremely sensitive towards oxidative stress. In beta-cells, important targets for an oxidant insult are cell metabolism and K(ATP) channels. The oxidant-evoked alterations of K(ATP) channel activity seem to be critical for oxidant-induced dysfunction because genetic ablation of K(ATP) channels attenuates the effects of oxidative stress on beta-cell function. Besides the effects on metabolism, interference of oxidants with mitochondria induces key events in apoptosis. Consequently, increasing antioxidant defence is a promising strategy to delay beta cell failure in (pre)-diabetic patients or during islet transplantation. Knock-out of K(ATP) channels has beneficial effects on oxidant-induced inhibition of insulin secretion and cell death. Interestingly, these effects can be mimicked by sulfonylureas that have been used in the treatment of T2DM for many years. Loss of functional K(ATP) channels leads to up-regulation of antioxidant enzymes, a process that depends on cytosolic Ca(2+). These observations are of great importance for clinical intervention because they show a possibility to protect beta-cells at an early stage before dramatic changes of the secretory capacity and loss of cell mass become manifest and lead to glucose intolerance or even overt diabetes.
Collapse
Affiliation(s)
- Gisela Drews
- Department of Pharmacology and Clinical Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen, Germany.
| | | | | |
Collapse
|
14
|
Monfared SSMS, Larijani B, Abdollahi M. Islet transplantation and antioxidant management: A comprehensive review. World J Gastroenterol 2009; 15:1153-61. [PMID: 19291814 PMCID: PMC2658860 DOI: 10.3748/wjg.15.1153] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation as a promising treatment for type 1 diabetes has received widespread attention. Oxidative stress plays an essential role in cell injury during islet isolation and transplantation procedures. Antioxidants have been used in various studies to improve islet transplantation procedures. The present study reviews the role of oxidative stress and the benefits of antioxidants in islet transplantation procedures. The bibliographical databases Pubmed and Scopus were searched up to November 2008. All relevant human and animal in-vivo and in-vitro studies, which investigated antioxidants on islets, were included. Almost all the tested antioxidants used in the in-vitro studies enhanced islet viability and insulin secretion. Better control of blood glucose after transplantation was the major outcome of antioxidant therapy in all in-vivo studies. The data also indicated that antioxidants improved islet transplantation procedures. Although there is still insufficient evidence to draw definitive conclusions about the efficacy of individual supplements, the benefits of antioxidants in islet isolation procedures cannot be ignored.
Collapse
|
15
|
Shen W, Liu K, Tian C, Yang L, Li X, Ren J, Packer L, Head E, Sharman E, Liu J. Protective effects of R-alpha-lipoic acid and acetyl-L-carnitine in MIN6 and isolated rat islet cells chronically exposed to oleic acid. J Cell Biochem 2008; 104:1232-43. [PMID: 18260126 DOI: 10.1002/jcb.21701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondrial dysfunction due to oxidative stress and concomitant impaired beta-cell function may play a key role in type 2 diabetes. Preventing and/or ameliorating oxidative mitochondrial dysfunction with mitochondria-specific nutrients may have preventive or therapeutic potential. In the present study, the oxidative mechanism of mitochondrial dysfunction in pancreatic beta-cells exposed to sublethal levels of oleic acid (OA) and the protective effects of mitochondrial nutrients [R-alpha-lipoic acid (LA) and acetyl-L-carnitine (ALC)] were investigated. Chronic exposure (72 h) of insulinoma MIN6 cells to OA (0.2-0.8 mM) increased intracellular oxidant formation, decreased mitochondrial membrane potential (MMP), enhanced uncoupling protein-2 (UCP-2) mRNA and protein expression, and consequently, decreased glucose-induced ATP production and suppressed glucose-stimulated insulin secretion. Pretreatment with LA and/or ALC reduced oxidant formation, increased MMP, regulated UCP-2 mRNA and protein expression, increased glucose-induced ATP production, and restored glucose-stimulated insulin secretion. The key findings on ATP production and insulin secretion were verified with isolated rat islets. These results suggest that mitochondrial dysfunction is involved in OA-induced pancreatic beta-cell dysfunction and that pretreatment with mitochondrial protective nutrients could be an effective strategy to prevent beta-cell dysfunction.
Collapse
Affiliation(s)
- Weili Shen
- Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Numazawa S, Sakaguchi H, Aoki R, Taira T, Yoshida T. Regulation of the susceptibility to oxidative stress by cysteine availability in pancreatic beta-cells. Am J Physiol Cell Physiol 2008; 295:C468-74. [PMID: 18524943 DOI: 10.1152/ajpcell.00203.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreatic beta-cells are susceptible to oxidative stress, which is related closely to the islet dysfunction. In the present study, using the pancreatic cell lines HIT-T15 and RINm5F as known in vitro models of impaired beta-cell function as well as primary rat islet beta-cells, we observed a relationship between intracellular glutathione levels and oxidative stress-mediated cell dysfunction. Hydrogen peroxide and 4-hydroxy-2-nonenal caused cell death in HIT-T15 and RINm5F cells at lower concentrations compared with non-beta-cells, such as HepG2 and NRK-49F cells. The extent of the cytotoxicity caused by the model oxidants was inversely correlated well with intracellular glutathione levels in the cell lines used. Treatment of HIT-T15 and RINm5F cells with l-cysteine or l-cystine significantly augmented the glutathione contents, surpassing the effect of N-acetylcysteine, and abrogated 4-hydroxy-2-nonenal-mediated cytotoxicity almost completely. l-Cysteine increased intracellular glutathione levels in primary beta-cells as well. Supplementation of l-cysteine to the RINm5F cell culture inhibited 4-hydroxy-2-nonenal-mediated cytosolic translocation of PDX-1, a key transcription factor for beta-cell function. Intrinsic transport activities (V(max)/K(m)) of the l-cystine/l-glutamate exchanger in HIT-T15 and RINm5F cells were considerably lower than that in NRK-49F cells, although gene expressions of the exchanger were similar in these cells. Results obtained from the present study suggest that the restricted activity of the l-cystine/l-glutamate exchanger controls the levels of intracellular glutathione, thereby making beta-cells become susceptible to oxidative stress.
Collapse
Affiliation(s)
- Satoshi Numazawa
- Dept. of Biochemical Toxicology, School of Pharmaceutical Sciences, Showa Univ., 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | | | | | | | | |
Collapse
|
17
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|