1
|
Nepal S, Shi N, Hoyd R, Spakowicz DJ, Orwoll E, Shikany JM, Napoli N, Tabung FK. Role of insulinemic and inflammatory dietary patterns on gut microbial composition and circulating biomarkers of metabolic health among older American men. Gut Microbes 2025; 17:2497400. [PMID: 40296253 PMCID: PMC12045561 DOI: 10.1080/19490976.2025.2497400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic low-grade inflammation and hyperinsulinemia are linked with metabolic dysfunction and dysbiosis. This study investigated the role of dietary inflammatory and insulinemic potential on gut microbiome and circulating health biomarkers in older men. Data from the Osteoporotic Fractures in Men (MrOS) study were analyzed. Reversed Empirical Dietary Inflammatory Pattern (rEDIP), Empirical Dietary Index for Hyperinsulinemia (rEDIH), and Healthy Eating Index (HEI)-2020 scores were computed from food frequency questionnaire data. Stool samples were profiled using 16S rRNA sequencing. Elastic net regression identified diet-associated microbial profiles and multivariable-adjusted linear regression assessed diet-biomarker associations. Higher rEDIP, rEDIH, and HEI-2020 scores were positively associated with gut microbiota alpha diversity. Specific genera, including Intestinibacter and Lachnospira, associated positively, while Dielma, Peptococcus, Feacalitalea, and Negativibaccilus associated inversely with healthier dietary patterns. When evaluating changes in dietary patterns between baseline and visit 4 ( ~ 14 years), these genera tended to define rEDIP, rEDIH more than HEI-2020. In addition, higher dietary quality was linked to better biomarker profiles, including lower creatinine, sodium, triglycerides, and insulin resistance. Beneficial effects of higher dietary quality on health may be mediated by the ability of diet to regulate gut microbial composition and metabolic biomarker profiles.
Collapse
Affiliation(s)
- Sushma Nepal
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ni Shi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel J. Spakowicz
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eric Orwoll
- Department of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - James M. Shikany
- Division of General Internal Medicine and Population Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University, St Louis, MO, USA
| | - Fred K. Tabung
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Cheng YY, Yao Q, Miao Y, Guan W. Metformin as a potential antidepressant: Mechanisms and therapeutic insights in depression. Biochem Pharmacol 2025; 233:116773. [PMID: 39894309 DOI: 10.1016/j.bcp.2025.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Depression is one of the most disabling psychiatric disorders, whose pathophysiology has not been fully understood. Increasing numbers of preclinical studies have highlighted that metformin, as the first-line hypoglycaemic agent, has a potential pleiotropic effect on depression. Moreover, there is emerging evidence that metformin shows antidepressant activity and improves depressive symptoms in rodent models of depression. However, the exact role and underlying mechanism of metformin in depression remain unclear and still need to be investigated. Recent studies suggest that metformin not only improves neuronal damage and structural plasticity in the hippocampus but also enhances the antidepressant effect of antidepressants. Therefore, in this review, we summarize the existing evidence for the use of metformin as a psychopharmaceutical and elaborate on the underlying mechanisms of metformin in mitigating the onset and progression of depression, as well as the associated biochemical signaling pathways and targets involved in the pathogenesis of depression. After reviewing several studies, we conclude that metformin helps reduce depressive symptoms by targeting multiple pathways, including the regulation of neurotransmitters, enhanced neurogenesis, anti-inflammatory effects, and changes in gut microbiota. We aim to gain a deeper understanding of the mechanism of action of metformin and provide new insights into its clinical value in the prevention and therapy of depression.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Department of Pharmacology, Nantong Stomatological Hospital, Nantong 226001 Jiangsu, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001 Jiangsu, China
| | - Yang Miao
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng 224000 Jiangsu, China.
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001 Jiangsu, China.
| |
Collapse
|
3
|
Kittithaworn AA, Dogra P, Saini J, Gruppen EG, Atkinson E, Achenbach S, Yu K, Thangamuthu K, Connelly MA, Dullaart RPF, Bancos I. Enhanced Chronic Inflammation and Increased Branched-Chain Amino Acids in Adrenal Disorders: A Cross-Sectional Study. J Clin Endocrinol Metab 2025; 110:e330-e338. [PMID: 38546526 PMCID: PMC11747673 DOI: 10.1210/clinem/dgae204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 01/22/2025]
Abstract
CONTEXT Patients with adrenal hormone excess demonstrate increased cardiovascular (CV) risk and mortality. OBJECTIVE We aimed to determine the effect of adrenal disorders on the inflammation marker glycoprotein acetylation (GlycA), total branched-chain amino acids (BCAAs), ketone bodies, and the gut microbiome-derived metabolites trimethylamine N-oxide (TMAO) and betaine. METHODS We conducted a single-center cross-sectional study of patients with nonfunctioning adenomas (NFAs), mild autonomous cortisol secretion (MACS), primary aldosteronism (PA), Cushing syndrome (CS), pheochromocytoma/paragangliomas (PPGLs), other benign or malignant adrenal masses, and adrenocortical carcinoma (ACC) between January 2015 and July 2022 (n = 802). Referent individuals included participants in the PREVEND (Prevention of Renal and Vascular End-Stage Disease) study (n = 5241). GlycA, BCAAs, ketone bodies, TMAO, and betaine were measured using nuclear magnetic resonance spectroscopy. Multivariable logistic analyses were adjusted for age, sex, body mass index, smoking, hypertension, diabetes mellitus, and statin therapy. RESULTS In age- and sex-adjusted comparison to referent individuals, increased GlycA was noted in all patient categories, increased BCAAs in NFA, MACS, CS, PA, and ACC, increased TMAO in patients with other malignant adrenal masses, increased betaine in NFA and MACS, and increased ketone bodies in NFA, CS, and ACC. Essentially similar findings were observed in fully adjusted analysis and after exclusion of participants with diabetes and CV disease. CONCLUSION Patients with functioning and nonfunctioning adrenal masses demonstrated increased GlycA and BCAAs, biomarkers associated with adverse cardiometabolic disorders and mortality. Patients with NFA demonstrated an adverse metabolic profile similar to patients with MACS and CS.
Collapse
Affiliation(s)
| | - Prerna Dogra
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin–Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Jasmine Saini
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eke G Gruppen
- Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen 9700 RB, the Netherlands
| | - Elizabeth Atkinson
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sara Achenbach
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kai Yu
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Robin P F Dullaart
- Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen 9700 RB, the Netherlands
| | - Irina Bancos
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Anwardeen NR, Naja K, Elrayess MA. Advancements in precision medicine: multi-omics approach for tailored metformin treatment in type 2 diabetes. Front Pharmacol 2024; 15:1506767. [PMID: 39669200 PMCID: PMC11634602 DOI: 10.3389/fphar.2024.1506767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Metformin has become the frontline treatment in addressing the significant global health challenge of type 2 diabetes due to its proven effectiveness in lowering blood glucose levels. However, the reality is that many patients struggle to achieve their glycemic targets with the medication and the cause behind this variability has not been investigated thoroughly. While genetic factors account for only about a third of this response variability, the potential influence of metabolomics and the gut microbiome on drug efficacy opens new avenues for investigation. This review explores the different molecular signatures to uncover how the complex interplay between genetics, metabolic profiles, and gut microbiota can shape individual responses to metformin. By highlighting the insights from recent studies and identifying knowledge gaps regarding metformin-microbiota interplay, we aim to highlight the path toward more personalized and effective diabetes management strategies and moving beyond the one-size-fits-all approach.
Collapse
Affiliation(s)
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Daniel N, Farinella R, Chatziioannou AC, Jenab M, Mayén AL, Rizzato C, Belluomini F, Canzian F, Tavanti A, Keski-Rahkonen P, Hughes DJ, Campa D. Genetically predicted gut bacteria, circulating bacteria-associated metabolites and pancreatic ductal adenocarcinoma: a Mendelian randomisation study. Sci Rep 2024; 14:25144. [PMID: 39448785 PMCID: PMC11502931 DOI: 10.1038/s41598-024-77431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high mortality and rising incidence rates. Recent data indicate that the gut microbiome and associated metabolites may play a role in the development of PDAC. To complement and inform observational studies, we investigated associations of genetically predicted abundances of individual gut bacteria and genetically predicted circulating concentrations of microbiome-associated metabolites with PDAC using Mendelian randomisation (MR). Gut microbiome-associated metabolites were identified through a comprehensive search of Pubmed, Exposome Explorer and Human Metabolome Database. Single Nucleotide Polymorphisms (SNPs) associated by Genome-Wide Association Studies (GWAS) with circulating levels of 109 of these metabolites were collated from Pubmed and the GWAS catalogue. SNPs for 119 taxonomically defined gut genera were selected from a meta-analysis performed by the MiBioGen consortium. Two-sample MR was conducted using GWAS summary statistics from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including a total of 8,769 cases and 7,055 controls. Inverse variance-weighted MR analyses were performed along with sensitivity analyses to assess potential violations of MR assumptions. Nominally significant associations were noted for genetically predicted circulating concentrations of mannitol (odds ratio per standard deviation [ORSD] = 0.97; 95% confidence interval [CI]: 0.95-0.99, p = 0.006), methionine (ORSD= 0.97; 95%CI: 0.94-1.00, p = 0.031), stearic acid (ORSD= 0.93; 95%CI: 0.87-0.99, p = 0.027), carnitine = (ORSD=1.01; 95% CI: 1.00-1.03, p = 0.027), hippuric acid (ORSD= 1.02; 95%CI: 1.00-1.04, p = 0.038) and 3-methylhistidine (ORSD= 1.05; 95%CI: 1.01-1.10, p = 0.02). Two gut microbiome genera were associated with reduced PDAC risk; Clostridium sensu stricto 1 (OR: 0.88; 95%CI: 0.78-0.99, p = 0.027) and Romboutsia (OR: 0.87; 95%CI: 0.80-0.96, p = 0.004). These results, though based only on genetically predicted gut microbiome characteristics and circulating bacteria-related metabolite concentrations, provide evidence for causal associations with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Koneru HM, Sarwar H, Bandi VV, Sinha M, Tarar P, Bishara R, Malasevskaia I. A Systematic Review of Gut Microbiota Diversity: A Key Player in the Management and Prevention of Diabetes Mellitus. Cureus 2024; 16:e69687. [PMID: 39435211 PMCID: PMC11492350 DOI: 10.7759/cureus.69687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Diabetes mellitus represents a significant global health challenge, characterized by impaired insulin production and action, leading to elevated blood glucose levels. This systematic review investigates the association between gut microbiota composition and diversity, along with the structural and functional characteristics of the gut microbiome, and their implications for the risk, prevention, and management of both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, a comprehensive search across multiple databases yielded 16 studies that met the inclusion criteria. The findings highlight the potential of gut microbiota interventions, such as fecal microbiota transplantation and probiotic supplementation, in improving metabolic parameters and glycemic control. Notably, the review underscores the importance of dietary interventions and the role of specific microbial populations in influencing diabetes outcomes. Despite the promising results, the variability in study designs, sample sizes, and methodologies poses challenges for generalizability and interpretation. This review emphasizes the need for further research to elucidate the mechanisms underlying these associations and to explore personalized microbiome-based therapies in diabetes management. The insights gained could pave the way for innovative therapeutic strategies aimed at harnessing gut health to mitigate the burden of diabetes mellitus.
Collapse
Affiliation(s)
- Hema Manvi Koneru
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Hooria Sarwar
- Psychiatry, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Venkata Varshitha Bandi
- Medical Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Mohit Sinha
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Pakeeza Tarar
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Rafik Bishara
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Iana Malasevskaia
- Obstetrics and Gynecology, Private Clinic 'Yana Alexandr', Sana'a, YEM
- Research and Development, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
7
|
Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A, Bozdag S, Chen DZ, Cowen L, Devkota K, Gitter A, Gosline SJC, Gu P, Guzzi PH, Huang H, Jiang M, Kesimoglu ZN, Koyuturk M, Ma J, Pico AR, Pržulj N, Przytycka TM, Raphael BJ, Ritz A, Sharan R, Shen Y, Singh M, Slonim DK, Tong H, Yang XH, Yoon BJ, Yu H, Milenković T. Current and future directions in network biology. BIOINFORMATICS ADVANCES 2024; 4:vbae099. [PMID: 39143982 PMCID: PMC11321866 DOI: 10.1093/bioadv/vbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Summary Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation Not applicable.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Aydin Wells
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deisy Morselli Gysi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Statistics, Federal University of Paraná, Curitiba, Paraná 81530-015, Brazil
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Wisconsin Institute for Discovery, Madison, WI 53715, United States
| | - Anaïs Baudot
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- Department of Mathematics, University of North Texas, Denton, TX 76203, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Kapil Devkota
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Morgridge Institute for Research, Madison, WI 53715, United States
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, United States
| | - Pengfei Gu
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Heng Huang
- Department of Computer Science, University of Maryland College Park, College Park, MD 20742, United States
| | - Meng Jiang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziynet Nesibe Kesimoglu
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, England
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Hanghang Tong
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Xinan Holly Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, United States
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
8
|
Greene E, Green CL, Hurst J, MacIver NJ. Metformin use associated with lower rate of hospitalization for influenza in individuals with diabetes. Diabetes Obes Metab 2024; 26:3281-3289. [PMID: 38742467 DOI: 10.1111/dom.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
AIM To investigate if patients with diabetes taking metformin have better outcomes versus those not taking metformin following an emergency room visit for influenza. METHODS Using electronic medical records, we performed a retrospective chart review of all adult patients with a diagnosis of diabetes seen in any Duke University Medical Center-affiliated emergency department for influenza over a 6-year period. We documented patient characteristics and comorbidities, and compared outcomes for patients taking metformin versus patients not taking metformin using both univariable and multivariable analyses. Our primary outcome was hospital admission rate. Secondary outcomes were in-hospital length of stay and in-hospital death. RESULTS Our cohort included 1023 adult patients with diabetes, of whom 59.9% were female. The mean age was 62.9 years, 58.4% were African American, 36.1% were White, and 81.9% were obese or overweight. Of these patients, 347 (34%) were taking metformin. Patients with diabetes taking metformin were less likely to be hospitalized following an emergency department visit for influenza than patients with diabetes not taking metformin (56.8% vs. 70.1%; p < 0.001). Of those patients admitted, there was no statistically significant difference in length of stay or death. CONCLUSIONS In patients with diabetes, metformin use is associated with lower rate of hospitalization following an emergency department visit for influenza.
Collapse
Affiliation(s)
- Elizabeth Greene
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cynthia L Green
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jillian Hurst
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nancie J MacIver
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Li X, Guo X, Liu Y, Ren F, Li S, Yang X, Liu J, Zhang Z. Antibiotics affect the pharmacokinetics of n-butylphthalide in vivo by altering the intestinal microbiota. PLoS One 2024; 19:e0297713. [PMID: 38917098 PMCID: PMC11198832 DOI: 10.1371/journal.pone.0297713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE N-butylphthalide (NBP) is a monomeric compound extracted from natural plant celery seeds, whether intestinal microbiota alteration can modify its pharmacokinetics is still unclear. The purpose of this study is to investigate the effect of intestinal microbiota alteration on the pharmacokinetics of NBP and its related mechanisms. METHODS After treatment with antibiotics and probiotics, plasma NBP concentrations in SD rats were determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The effect of intestinal microbiota changes on NBP pharmacokinetics was compared. Intestinal microbiota changes after NBP treatment were analyzed by 16S rRNA sequencing. Expressions of CYP3A1 mRNA and protein in the liver and small intestine tissues under different intestinal flora conditions were determined by qRT-PCR and Western Blot. KEGG analysis was used to analyze the effect of intestinal microbiota changes on metabolic pathways. RESULTS Compared to the control group, the values of Cmax, AUC0-8, AUC0-∞, t1/2 in the antibiotic group increased by 56.1% (P<0.001), 56.4% (P<0.001), 53.2% (P<0.001), and 24.4% (P<0.05), respectively. In contrast, the CL and Tmax values decreased by 57.1% (P<0.001) and 28.6% (P<0.05), respectively. Treatment with antibiotics could reduce the richness and diversity of the intestinal microbiota. CYP3A1 mRNA and protein expressions in the small intestine of the antibiotic group were 61.2% and 66.1% of those of the control group, respectively. CYP3A1 mRNA and protein expressions in the liver were 44.6% and 63.9% of those in the control group, respectively. There was no significant change in the probiotic group. KEGG analysis showed that multiple metabolic pathways were significantly down-regulated in the antibiotic group. Among them, the pathways of drug metabolism, bile acid biosynthesis and decomposition, and fatty acid synthesis and decomposition were related to NBP biological metabolism. CONCLUSION Antibiotic treatment could affect the intestinal microbiota, decrease CYP3A1 mRNA and protein expressions and increase NBP exposure in vivo by inhibiting pathways related to NBP metabolism.
Collapse
Affiliation(s)
- Xiangchen Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiaoli Guo
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yixin Liu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Feifei Ren
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shan Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiuling Yang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jian Liu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhiqing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
10
|
Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals (Basel) 2024; 17:478. [PMID: 38675438 PMCID: PMC11054066 DOI: 10.3390/ph17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus, achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition, metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases, neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However, several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route, using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this review, particular consideration has been paid to literature data from the last 10 years, deepening the study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety observed between the sexes, and the unwanted side effects. For this last objective, metformin safety was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European databases of the reported adverse drug reactions, to assess the extent of metformin side effects in real-life use.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
11
|
Rosell-Díaz M, Fernández-Real JM. Metformin, Cognitive Function, and Changes in the Gut Microbiome. Endocr Rev 2024; 45:210-226. [PMID: 37603460 PMCID: PMC10911951 DOI: 10.1210/endrev/bnad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
The decline in cognitive function and the prevalence of neurodegenerative disorders are among the most serious threats to health in old age. The prevalence of dementia has reached 50 million people worldwide and has become a major public health problem. The causes of age-related cognitive impairment are multiple, complex, and difficult to determine. However, type 2 diabetes (T2D) is linked to an enhanced risk of cognitive impairment and dementia. Human studies have shown that patients with T2D exhibit dysbiosis of the gut microbiota. This dysbiosis may contribute to the development of insulin resistance and increased plasma lipopolysaccharide concentrations. Metformin medication mimics some of the benefits of calorie restriction and physical activity, such as greater insulin sensitivity and decreased cholesterol levels, and hence may also have a positive impact on aging in humans. According to recent human investigations, metformin might partially restore gut dysbiosis related to T2D. Likewise, some studies showed that metformin reduced the risk of dementia and improved cognition, although not all studies are concordant. Therefore, this review focused on those human studies describing the effects of metformin on the gut microbiome (specifically the changes in taxonomy, function, and circulating metabolomics), the changes in cognitive function, and their possible bidirectional implications.
Collapse
Affiliation(s)
- Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
12
|
Garg K, Mohajeri MH. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res Bull 2024; 207:110883. [PMID: 38244807 DOI: 10.1016/j.brainresbull.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
The link between drug-induced dysbiosis and its influence on brain diseases through gut-residing bacteria and their metabolites, named the microbiota-gut-brain axis (MGBA), remains largely unexplored. This review investigates the effects of commonly prescribed drugs (metformin, statins, proton-pump-inhibitors, NSAIDs, and anti-depressants) on the gut microbiota, comparing the findings with altered bacterial populations in major brain diseases (depression, multiple sclerosis, Parkinson's and Alzheimer's). The report aims to explore whether drugs can influence the development and progression of brain diseases via the MGBA. Central findings indicate that all explored drugs induce dysbiosis. These dysbiosis patterns were associated with brain disorders. The influence on brain diseases varied across different bacterial taxa, possibly mediated by direct effects or through bacterial metabolites. Each drug induced both positive and negative changes in the abundance of bacteria, indicating a counterbalancing effect. Moreover, the above-mentioned drugs exhibited similar effects, suggesting that they may counteract or enhance each other's effects on brain diseases when taken together by comorbid patients. In conclusion, the interplay of bacterial species and their abundances may have a greater impact on brain diseases than individual drugs or bacterial strains. Future research is needed to better understand drug-induced dysbiosis and the implications for brain disease pathogenesis, with the potential to develop more effective therapeutic options for patients with brain-related diseases.
Collapse
Affiliation(s)
- Kirti Garg
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M Hasan Mohajeri
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.
| |
Collapse
|
13
|
Horvath A, Zukauskaite K, Hazia O, Balazs I, Stadlbauer V. Human gut microbiome: Therapeutic opportunities for metabolic syndrome-Hype or hope? Endocrinol Diabetes Metab 2024; 7:e436. [PMID: 37771199 PMCID: PMC10781898 DOI: 10.1002/edm2.436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 09/30/2023] Open
Abstract
Shifts in gut microbiome composition and metabolic disorders are associated with one another. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Diet, intake of probiotics or prebiotics and faecal microbiome transplantation (FMT) are methods to alter a person's microbiome composition. Although FMT may allow establishing a proof of concept to use microbiome modulation to treat metabolic disorders, studies show mixed results regarding the effects on metabolic parameters as well as on the composition of the microbiome. This review summarizes the current knowledge on diet, probiotics, prebiotics and FMT to treat metabolic diseases, focusing on studies that also report alterations in microbiome composition. Furthermore, clinical trial results on the effects of common drugs used to treat metabolic diseases are synopsized to highlight the bidirectional relationship between the microbiome and metabolic diseases. In conclusion, there is clear evidence that microbiome modulation has the potential to influence metabolic diseases; however, it is not possible to distinguish which intervention is the most successful. In addition, a clear commitment from all stakeholders is necessary to move forward in the direction of developing targeted interventions for microbiome modulation.
Collapse
Affiliation(s)
- Angela Horvath
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Kristina Zukauskaite
- Medical University of GrazGrazAustria
- Life Sciences CentreVilnius UniversityVilniusLithuania
| | - Olha Hazia
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Irina Balazs
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Vanessa Stadlbauer
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| |
Collapse
|
14
|
Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Viana MVC, Aburjaile F, Barh D, Sabri NA, Azevedo V. Mass Spectrometry Applications to Study Human Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:87-101. [PMID: 38409417 DOI: 10.1007/978-3-031-50624-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Microbiotas are an adaptable component of ecosystems, including human ecology. Microorganisms influence the chemistry of their specialized niche, such as the human gut, as well as the chemistry of distant surroundings, such as other areas of the body. Metabolomics based on mass spectrometry (MS) is one of the primary methods for detecting and identifying small compounds generated by the human microbiota, as well as understanding the functional significance of these microbial metabolites. This book chapter gives basic knowledge on the kinds of untargeted mass spectrometry as well as the data types that may be generated in the context of microbiome study. While data analysis remains a barrier, the emphasis is on data analysis methodologies and integrative analysis, particularly the integration of microbiome sequencing data. Mass spectrometry (MS)-based techniques have resurrected culture methods for studying the human gut microbiota, filling in the gaps left by high-throughput sequencing methods in terms of culturing minor populations.
Collapse
Affiliation(s)
| | | | | | - Amr S Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marcus Vinicius Canário Viana
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Aburjaile
- Preventive Veterinary Medicine Departament, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Kumbhare SV, Pedroso I, Ugalde JA, Márquez-Miranda V, Sinha R, Almonacid DE. Drug and gut microbe relationships: Moving beyond antibiotics. Drug Discov Today 2023; 28:103797. [PMID: 37806386 DOI: 10.1016/j.drudis.2023.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.
Collapse
Affiliation(s)
| | | | - Juan A Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | | |
Collapse
|
16
|
Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol 2023; 19:460-476. [PMID: 37130947 PMCID: PMC10153049 DOI: 10.1038/s41574-023-00833-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/04/2023]
Abstract
Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.
Collapse
Affiliation(s)
- Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| |
Collapse
|
17
|
Naja K, Anwardeen N, Al-Hariri M, Al Thani AA, Elrayess MA. Pharmacometabolomic Approach to Investigate the Response to Metformin in Patients with Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2023; 11:2164. [PMID: 37626661 PMCID: PMC10452592 DOI: 10.3390/biomedicines11082164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin constitutes the foundation therapy in type 2 diabetes (T2D). Despite its multiple beneficial effects and widespread use, there is considerable inter-individual variability in response to metformin. Our objective is to identify metabolic signatures associated with poor and good responses to metformin, which may improve our ability to predict outcomes for metformin treatment. In this cross-sectional study, clinical and metabolic data for 119 patients with type 2 diabetes taking metformin were collected from the Qatar Biobank. Patients were empirically dichotomized according to their HbA1C levels into good and poor responders. Differences in the level of metabolites between these two groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. Good responders showed increased levels of sphingomyelins, acylcholines, and glutathione metabolites. On the other hand, poor responders showed increased levels of metabolites resulting from glucose metabolism and gut microbiota metabolites. The results of this study have the potential to increase our knowledge of patient response variability to metformin and carry significant implications for enabling personalized medicine.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | | | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
18
|
Lee Y, Cho JY, Cho KY. Serum, Urine, and Fecal Metabolome Alterations in the Gut Microbiota in Response to Lifestyle Interventions in Pediatric Obesity: A Non-Randomized Clinical Trial. Nutrients 2023; 15:2184. [PMID: 37432339 DOI: 10.3390/nu15092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Pediatric obesity is associated with alterations in the gut microbiota and its metabolites. However, how they influence obesity and the effect of lifestyle interventions remains unknown.. In this non-randomized clinical trial, we analyzed metabolomes and microbial features to understand the associated metabolic pathways and the effect of lifestyle interventions on pediatric obesity. Anthropometric/biochemical data and fasting serum, urine, and fecal samples were collected at baseline and after an eight-week, weight-reduction lifestyle modification program. Post-intervention, children with obesity were classified into responder and non-responder groups based on changes in total body fat. At baseline, serum L-isoleucine and uric acid levels were significantly higher in children with obesity compared with those in normal-weight children and were positively correlated with obesogenic genera. Taurodeoxycholic and tauromuricholic α + β acid levels decreased significantly with obesity and were negatively correlated with obesogenic genera. Branched-chain amino acid and purine metabolisms were distinguished metabolic pathways in the obese group. Post-intervention, urinary myristic acid levels decreased significantly in the responder group, showing a significant positive correlation with Bacteroides. Fatty acid biosynthesis decreased significantly in the responder group. Thus, lifestyle intervention with weight loss is associated with changes in fatty acid biosynthesis, and myristic acid is a possible therapeutic target for pediatric obesity.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
- CBNUH Cheongju-Osong National Advanced Clinical Trial Center, 77, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Chungcheongbuk-do, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ky Young Cho
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| |
Collapse
|
19
|
Hou J, Xiang J, Li D, Liu X, Pan W. Gut microbial response to host metabolic phenotypes. Front Nutr 2022; 9:1019430. [PMID: 36419554 PMCID: PMC9676441 DOI: 10.3389/fnut.2022.1019430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
A large number of studies have proved that biological metabolic phenotypes exist objectively and are gradually recognized by humans. Gut microbes affect the host's metabolic phenotype. They directly or indirectly participate in host metabolism, physiology and immunity through changes in population structure, metabolite differences, signal transduction and gene expression. Obtaining comprehensive information and specific identification factors associated with gut microbiota and host metabolic phenotypes has become the focus of research in the field of gut microbes, and it has become possible to find new and effective ways to prevent or treat host metabolic diseases. In the future, precise treatment of gut microbes will become one of the new therapeutic strategies. This article reviews the content of gut microbes and carbohydrate, amino acid, lipid and nucleic acid metabolic phenotypes, including metabolic intermediates, mechanisms of action, latest research findings and treatment strategies, which will help to understand the relationship between gut microbes and host metabolic phenotypes and the current research status.
Collapse
Affiliation(s)
- Jinliang Hou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianguo Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Deliang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinhua Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | |
Collapse
|
20
|
Ye J, Wu Z, Zhao Y, Zhang S, Liu W, Su Y. Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: Advanced research-based review. Front Microbiol 2022; 13:1029890. [PMID: 36338058 PMCID: PMC9627042 DOI: 10.3389/fmicb.2022.1029890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota plays an important role in the proper functioning of human organisms, while its dysbiosis is associated with disease in various body organs. Diabetes mellitus (DM) is a set of heterogeneous metabolic diseases characterized by hyperglycemia caused by direct or indirect insulin deficiency. There is growing evidence that gut microbiota dysbiosis is closely linked to the development of DM. Gut microbiota composition changes in type 1 diabetes mullites (T1DM) and type 2 diabetes mullites (T2DM) patients, which may cause gut leakiness and uncontrolled entry of antigens into the circulation system, triggering an immune response that damages the isle β cells or metabolic disorders. This review summarizes gut microbiota composition in healthy individuals and compares it to diabetes mullites patients. The possible pathogenesis by which gut microbiota dysbiosis causes DM, particularly gut leakiness and changes in gut microbiota metabolites is also discussed. It also presents the process of microbial-based therapies of DM.
Collapse
Affiliation(s)
- Junjun Ye
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yifei Zhao
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shuo Zhang
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yu Su
- Center of Teaching Evaluation and Faculty Development, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
21
|
Maternal Treatment with Metformin Persistently Ameliorates High-Fat Diet-Induced Metabolic Symptoms and Modulates Gut Microbiota in Rat Offspring. Nutrients 2022; 14:nu14173612. [PMID: 36079869 PMCID: PMC9460832 DOI: 10.3390/nu14173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
A maternal high-fat (HF) diet has long-term deleterious effect on offspring. This study aims to evaluate whether maternal metformin (MT) treatment ameliorates the adverse effects of maternal HF diet on offspring and the role of gut microbiota in it. Pregnant Sprague-Dawley rats were randomly assigned to a HF diet (60% fat) or a standard chow diet (11.8% fat) group, and part of the HF diet group rats were co-treated with MT via drinking water (300 mg/kg/day), resulting in three groups according to maternal diet and MT treatment during gestation and lactation. All offspring were weaned on a chow diet. A maternal HF diet showed a significant deleterious effect on offspring’s metabolic phenotype and induced colonic inflammation and gut-barrier disruption through the reshaped gut microbiota. The daily oral administration of MT to HF-fed dams during gestation and lactation reversed the dysbiosis of gut microbiota in both dams and adult offspring. The hypothalamic TGR5 expression and plasma bile acids composition in adult male offspring was restored by maternal MT treatment, which could regulate hypothalamic appetite-related peptides expression and alleviate inflammation, thereby improving male offspring’s metabolic phenotype. The present study indicates that targeting the gut–brain axis through the mother may be an effective strategy to control the metabolic phenotype of offspring.
Collapse
|
22
|
Plant-derived tormentic acid alters the gut microbiota of the silkworm (Bombyx mori). Sci Rep 2022; 12:13005. [PMID: 35906393 PMCID: PMC9338012 DOI: 10.1038/s41598-022-17478-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, phytochemicals have started to attract more attention due to their contribution to health and bioactivity. Microorganisms in the intestines of organisms contribute to the processing, function, and biotransformation of these substances. The silkworm (Bombyx mori) is one of the organisms used for the biotransformation of phytochemicals due to its controlled reproduction and liability to microbial manipulation. In this study, a bioactive compound, tormentic acid (TA), extracted from Sarcopoterium spinosum was used in the silkworm diet, and the alterations of intestinal microbiota of the silkworm were assessed. To do this, silkworms were fed on a diet with various tormentic acid content, and 16S metagenomic analysis was performed to determine the alterations in the gut microbiota profile of these organisms. Diet with different TA content did not cause a change in the bacterial diversity of the samples. A more detailed comparison between different feeding groups indicated increased abundance of bacteria associated with health, i.e., Intestinibacter spp., Flavonifractor spp., Senegalimassilia spp., through the utilization of bioactive substances such as flavonoids. In conclusion, it might be said that using TA as a supplementary product might help ameliorate the infected gut, promote the healthy gut, and relieve the undesirable effects of medicines on the gastrointestinal system.
Collapse
|
23
|
Pant A, Maiti TK, Mahajan D, Das B. Human Gut Microbiota and Drug Metabolism. MICROBIAL ECOLOGY 2022:1-15. [PMID: 35869999 PMCID: PMC9308113 DOI: 10.1007/s00248-022-02081-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, Delhi-110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India.
| |
Collapse
|
24
|
Hasanvand A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: a new perspective for treatment and prevention of diseases. Inflammopharmacology 2022; 30:775-788. [PMID: 35419709 PMCID: PMC9007580 DOI: 10.1007/s10787-022-00980-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
25
|
Wang D, Liu J, Zhou L, Zhang Q, Li M, Xiao X. Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Front Endocrinol (Lausanne) 2022; 13:905171. [PMID: 35909556 PMCID: PMC9326154 DOI: 10.3389/fendo.2022.905171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The current research and existing facts indicate that type 2 diabetes mellitus (T2DM) is characterized by gut microbiota dysbiosis and disturbed microbial metabolites. Oral glucose-lowering drugs are reported with pleiotropic beneficial effects, including not only a decrease in glucose level but also weight loss, antihypertension, anti-inflammation, and cardiovascular protection, but the underlying mechanisms are still not clear. Evidence can be found showing that oral glucose-lowering drugs might modify the gut microbiome and thereby alter gastrointestinal metabolites to improve host health. Although the connections among gut microbial communities, microbial metabolites, and T2DM are complex, figuring out how antidiabetic agents shape the gut microbiome is vital for optimizing the treatment, meaningful for the instruction for probiotic therapy and gut microbiota transplantation in T2DM. In this review, we focused on the literatures in gut microbiota and its metabolite profile alterations beneficial from oral antidiabetic drugs, trying to provide implications for future study in the developing field of these drugs, such as combination therapies, pre- and probiotics intervention in T2DM, and subjects with pregestational diabetes and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jieying Liu
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- *Correspondence: Xinhua Xiao,
| |
Collapse
|
26
|
Molina-Vega M, Picón-César MJ, Gutiérrez-Repiso C, Fernández-Valero A, Lima-Rubio F, González-Romero S, Moreno-Indias I, Tinahones FJ. Metformin action over gut microbiota is related to weight and glycemic control in gestational diabetes mellitus: A randomized trial. Biomed Pharmacother 2021; 145:112465. [PMID: 34844107 DOI: 10.1016/j.biopha.2021.112465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Metformin, which is known to produce profound changes in gut microbiota, is being increasingly used in gestational diabetes mellitus (GDM). The aim of this study was to elucidate the differences in gut microbiota composition and function in women with GDM treated with metformin compared to those treated with insulin. METHODS From May to December 2018, 58 women with GDM were randomized to receive insulin (INS; n = 28) or metformin (MET; n = 30) at the University Hospital Virgen de la Victoria, Málaga, Spain. Basal visits, with at least 1 follow-up visit and prepartum visit, were performed. At the basal and prepartum visits, blood and stool samples were collected. The gut microbiota profile was determined through 16S rRNA analysis. RESULTS Compared to INS, women on MET presented a lower mean postprandial glycemia and a lower increase in weight and body mass index (BMI). Firmicutes and Peptostreptococcaceae abundance declined, while Proteobacteria and Enterobacteriaceae abundance increased in the MET group. We found inverse correlations between changes in the abundance of Proteobacteria and mean postprandial glycemia (p = 0.023), as well as between Enterobacteriaceae and a rise in BMI and weight gain (p = 0.031 and p = 0.036, respectively). Regarding the metabolic profile of gut microbiota, predicted metabolic pathways related to propionate degradation and ubiquinol biosynthesis predominated in the MET group. CONCLUSION Metformin in GDM affects the composition and metabolic profile of gut microbiota. These changes could mediate, at least in part, its clinical effects. Studies designed to assess how these changes influence metabolic control during and after pregnancy are necessary.
Collapse
Affiliation(s)
- María Molina-Vega
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | - María J Picón-César
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Carolina Gutiérrez-Repiso
- Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Andrea Fernández-Valero
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Fuensanta Lima-Rubio
- Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | - Stella González-Romero
- Department of Endocrinology and Nutrition, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Isabel Moreno-Indias
- Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain.
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|