1
|
Tayal A, Singh NP, Rai S, Gupta K, Gupta A, Agarwal AN, Saha R, Kaur IR. First study on detection of cryptic resistance to linezolid among clinical isolates of methicillin resistant Staphylococcus aureus from India. Indian J Med Microbiol 2022; 40:384-388. [PMID: 35667921 DOI: 10.1016/j.ijmmb.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Linezolid is an oral antibiotic which is widely used for serious infections caused by Methicillin Resistant Staphylococcus aureus (MRSA). With emergence of vancomycin MIC creep among clinical strains of MRSA, it is essential to know the possible emergence of subclinical resistance against linezolid as well. With this background, we aimed to detect evident (phenotypic) and cryptic (hidden or genotypic) linezolid resistance among MRSA isolates. METHODS 250 clinical isolates of MRSA were collected and their susceptibility patterns were determined. Every third MRSA isolate was subjected to PCR for domain V of the 23S rRNA for the mutation hotspot in the 746bp segment which harbors the classical mutation for linezolid resistance. Restriction Fragment Length Polymorphism was done to confirm presence of the G2576U mutation. RESULTS Six isolates (2.4%) were phenotypically resistant to linezolid. Among these six LRSA isolates, 5 demonstrated the G2576U mutation by PCR - RFLP. Cryptic resistance to Linezolid was identified in two isolates among linezolid susceptible isolates. CONCLUSIONS In the present study, hidden resistance to linezolid was observed in linezolid susceptible clinical isolates. Emergence of resistance against over-the-counter drugs like linezolid is major challenge. Identification of cryptic resistance among patients implies impending resistance to linezolid. Judicious use of antimicrobials, application of strict infection control practices and prescription audit needs to be made mandatory to preserve such drugs.
Collapse
Affiliation(s)
- Ayushi Tayal
- Department of Clinical Microbiology, University College of Medical Sciences, Delhi, India.
| | - Narendra Pal Singh
- Department of Clinical Microbiology, University College of Medical Sciences, Delhi, India.
| | - Sumit Rai
- Department of Clinical Microbiology, University College of Medical Sciences, Delhi, India.
| | - Kavita Gupta
- Department of Clinical Microbiology, University College of Medical Sciences, Delhi, India.
| | - Arun Gupta
- Department of Clinical Microbiology, University College of Medical Sciences, Delhi, India.
| | - Aditya Nath Agarwal
- Department of Clinical Microbiology, University College of Medical Sciences, Delhi, India.
| | - Rituparna Saha
- Department of Clinical Microbiology, University College of Medical Sciences, Delhi, India.
| | - Iqbal Rajinder Kaur
- Department of Clinical Microbiology, University College of Medical Sciences, Delhi, India.
| |
Collapse
|
2
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Delfani S, Rezaei F, Soroush S, Shakib P. The Staphylococcal Cassette Chromosome mec (SCCmec) Analysis and Biofilm Formation of Methicillin-Resistant Staphylococcus cohnii Isolated from Clinical Samples in Tehran, Iran. RECENT PATENTS ON ANTI-INFECTIVE DRUG DISCOVERY 2021; 16:PRI-EPUB-114068. [PMID: 33568036 DOI: 10.2174/1574891x16666210210101912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methicillin-resistant coagulase-negative staphylococci is responsible for hospital and community-acquired infections. OBJECTIVE This study aimed to investigate the antibiotic-resistance patterns, antibiotic-resistance genes, namely, ermA, ermB, ermC, blaZ, msrA, tetK, tetM, mup, and vanA, biofilm formation, and prevalence of different SCCmec types among the Staphylococcus cohniistrains isolated from clinical samples in Tehran, Iran. METHODS In this study,S. cohniiisolates were screened from the clinical samples from March 2012 to February 2013 in Tehran, Iran.Antimicrobial susceptibility test and inducible clindamycin resistance were evaluated by disc diffusion method, andresistance genes were examined using Polymerase Chain Reaction (PCR) assays. Then, biofilm formation assay was analyzed by Microtiter-plate test to detect the icaA and icaDgenes. The SCCmec and the Arginine Catabolite Mobile Element (ACME) typing were performed using the PCRmethod. RESULTS FromtwentyS. cohnii, all isolates were resistant to cefoxitin. 95% of the S. cohnii was defined as multidrug resistance (MDR)strains. The ermB, ermC, and vanA genes were not detected in any isolates; however, the blaZ gene had the highest frequency.95% of the S. cohnii isolates produced biofilm. Also, 4 SCCmec types, including V, IV, III+ (C2), VIII+ (AB1), were identified. Therefore, the majority of SCCmec were untypable. Based on the ACME typing, arcA and opp3 genes were positive in 13 (65%) and 1 (5%) isolates, respectively. CONCLUSION Due to the high antimicrobial resistance and the spread of untypableSCCmecamong the isolates studied, the control and treatment of methicillin-resistantS. cohnii in hospitals and public health centers is a significant concern.
Collapse
Affiliation(s)
- Somaye Delfani
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khoramabad. Iran
| | - Faranak Rezaei
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khoramabad. Iran
| | - Setareh Soroush
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khoramabad. Iran
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad. Iran
| |
Collapse
|
4
|
Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome-targeting antibacterial agents: Advances, challenges, and opportunities. Med Res Rev 2021; 41:1855-1889. [PMID: 33501747 DOI: 10.1002/med.21780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Ribosomes, which synthesize proteins, are critical organelles for the survival and growth of bacteria. About 60% of approved antibiotics discovered so far combat pathogenic bacteria by targeting ribosomes. However, several issues, such as drug resistance and toxicity, have impeded the clinical use of ribosome-targeting antibiotics. Moreover, the complexity of the bacteria ribosome structure has retarded the discovery of new ribosome-targeting agents that are considered as the key to the drug-resistance and toxicity. To deal with these challenges, efforts such as medicinal chemistry optimization, combination treatment, and new drug delivery system have been developed. But not enough, the development of structural biology and new screening methods bring powerful tools, such as cryo-electron microscopy technology, advanced computer-aided drug design, and cell-free in vitro transcription/translation systems, for the discovery of novel ribosome-targeting antibiotics. Thus, in this paper, we overview the research on different aspects of bacterial ribosomes, especially focus on discussing the challenges in the discovery of ribosome-targeting antibacterial drugs and advances made to address issues such as drug-resistance and selectivity, which, we believe, provide perspectives for the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shihua Ruan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Human Diseases and Immunotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Shariati A, Dadashi M, Chegini Z, van Belkum A, Mirzaii M, Khoramrooz SS, Darban-Sarokhalil D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9:56. [PMID: 32321574 PMCID: PMC7178749 DOI: 10.1186/s13756-020-00714-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (MRCoNS) are among the main causes of nosocomial infections, which have caused major problems in recent years due to continuously increasing spread of various antibiotic resistance features. Apparently, vancomycin is still an effective antibiotic for treatment of infections caused by these bacteria but in recent years, additional resistance phenotypes have led to the accelerated introduction of newer agents such as linezolid, tigecycline, daptomycin, and quinupristin/dalfopristin (Q/D). Due to limited data availability on the global rate of resistance to these antibiotics, in the present study, the resistance rates of S. aureus, Methicillin-resistant S. aureus (MRSA), and CoNS to these antibiotics were collected. METHOD Several databases including web of science, EMBASE, and Medline (via PubMed), were searched (September 2018) to identify those studies that address MRSA, and CONS resistance to linezolid, tigecycline, daptomycin, and Q/D around the world. RESULT Most studies that reported resistant staphylococci were from the United States, Canada, and the European continent, while African and Asian countries reported the least resistance to these antibiotics. Our results showed that linezolid had the best inhibitory effect on S. aureus. Although resistances to this antibiotic have been reported from different countries, however, due to the high volume of the samples and the low number of resistance, in terms of statistical analyzes, the resistance to this antibiotic is zero. Moreover, linezolid, daptomycin and tigecycline effectively (99.9%) inhibit MRSA. Studies have shown that CoNS with 0.3% show the lowest resistance to linezolid and daptomycin, while analyzes introduced tigecycline with 1.6% resistance as the least effective antibiotic for these bacteria. Finally, MRSA and CoNS had a greater resistance to Q/D with 0.7 and 0.6%, respectively and due to its significant side effects and drug-drug interactions; it appears that its use is subject to limitations. CONCLUSION The present study shows that resistance to new agents is low in staphylococci and these antibiotics can still be used for treatment of staphylococcal infections in the world.
Collapse
Affiliation(s)
- Aref Shariati
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chegini
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Sajjad Khoramrooz
- Cellular and Molecular Research Center and Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist 2017; 13:11-19. [PMID: 29101082 DOI: 10.1016/j.jgar.2017.10.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
Enterococcus is a significant pathogen in numerous infections, particularly in nosocomial infections, and is thus a great challenge to clinicians. Linezolid (LNZ), an oxazolidinone antibiotic, is an important therapeutic option for infections caused by Gram-positive bacterial pathogens, especially vancomycin-resistant enterococci. A systematic review was performed of the available literature on LNZ-resistant enterococci (LRE) to characterise these infections with respect to epidemiological, microbiological and clinical features. The results validated the potency of LNZ against enterococcal infections, with a sustained susceptibility rate of 99.8% in ZAAPS and 99.2% in LEADER surveillance programmes. Patients with LRE had been predominantly exposed to LNZ prior to isolation of LRE, with a mean treatment duration of 29.8±48.8days for Enterococcus faecalis and 23.1±21.4days for Enterococcus faecium. Paradoxically, LRE could also develop in patients without prior LNZ exposure. LNZ resistance was attributed to 23S rRNA (G2576T) mutations (51.2% of E. faecalis and 80.5% of E. faecium) as well as presence of the cfr gene (4.7% and 4.8%, respectively), which could transfer horizontally among the strains. In addition to the cfr gene, 32 cases of optrA-positive LRE were identified. Further study is required to determine the prevalence of novel resistance genes. The emergence of LRE thus hampers the treatment of such infections, which warrants worldwide surveillance.
Collapse
Affiliation(s)
- Ruru Bi
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Tingting Qin
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenting Fan
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Ping Ma
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
7
|
In Vitro and In Vivo Activities of a Bi-Aryl Oxazolidinone, RBx 11760, against Gram-Positive Bacteria. Antimicrob Agents Chemother 2016; 60:7134-7145. [PMID: 27645240 DOI: 10.1128/aac.00453-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
RBx 11760, a bi-aryl oxazolidinone, was investigated for antibacterial activity against Gram-positive bacteria. The MIC90s of RBx 11760 and linezolid against Staphylococcus aureus were 2 and 4 mg/liter, against Staphylococcus epidermidis were 0.5 and 2 mg/liter, and against Enterococcus were 1 and 4 mg/liter, respectively. Similarly, against Streptococcus pneumoniae the MIC90s of RBx 11760 and linezolid were 0.5 and 2 mg/liter, respectively. In time-kill studies, RBx 11760, tedizolid, and linezolid exhibited bacteriostatic effect against all tested strains except S. pneumoniae RBx 11760 showed 2-log10 kill at 4× MIC while tedizolid and linezolid showed 2-log10 and 1.4-log10 kill at 16× MIC, respectively, against methicillin-resistant S. aureus (MRSA) H-29. Against S. pneumoniae 5051, RBx 11760 showed bactericidal activity, with 4.6-log10 kill at 4× MIC compared to 2.42-log10 and 1.95-log10 kill for tedizolid and linezolid, respectively, at 16× MIC. RBx 11760 showed postantibiotic effects (PAE) at 3 h at 4 mg/liter against MRSA H-29, and linezolid showed the same effect at 16 mg/liter. RBx 11760 inhibited biofilm production against methicillin-resistant S. epidermidis (MRSE) ATCC 35984 in a concentration-dependent manner. In a foreign-body model, linezolid and rifampin resulted in no advantage over stasis, while the same dose of RBx 11760 demonstrated a significant killing compared to the initial control against S. aureus (P < 0.05) and MRSE (P < 0.01). The difference in killing was statistically significant for the lower dose of RBx 11760 (P < 0.05) versus the higher dose of linezolid (P > 0.05 [not significant]) in a groin abscess model. In neutropenic mouse thigh infection, RBx 11760 showed stasis at 20 mg/kg of body weight, whereas tedizolid showed the same effect at 40 mg/kg. These data support RBx 11760 as a promising investigational candidate.
Collapse
|
8
|
Guzman Prieto AM, van Schaik W, Rogers MRC, Coque TM, Baquero F, Corander J, Willems RJL. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front Microbiol 2016; 7:788. [PMID: 27303380 PMCID: PMC4880559 DOI: 10.3389/fmicb.2016.00788] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus, Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E. faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital-associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host-adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E. faecalis.
Collapse
Affiliation(s)
- Ana M Guzman Prieto
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Teresa M Coque
- Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; CIBER Epidemiología y Salud PúblicaMadrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Fernando Baquero
- Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; CIBER Epidemiología y Salud PúblicaMadrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki Helsinki, Finland
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
9
|
Linezolid Surveillance Results for the United States (LEADER Surveillance Program 2014). Antimicrob Agents Chemother 2016; 60:2273-80. [PMID: 26833165 DOI: 10.1128/aac.02803-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 11/20/2022] Open
Abstract
Thelinezolidexperience andaccuratedetermination ofresistance (LEADER) surveillance program has monitored linezolid activity, spectrum, and resistance since 2004. In 2014, a total of 6,865 Gram-positive pathogens from 60 medical centers from 36 states were submitted. The organism groups evaluated wereStaphylococcus aureus(3,106), coagulase-negative staphylococci (CoNS; 797), enterococci (855),Streptococcus pneumoniae(874), viridans group streptococci (359), and beta-hemolytic streptococci (874). Susceptibility testing was performed by reference broth microdilution at the monitoring laboratory. Linezolid-resistant isolates were confirmed by repeat testing. PCR and sequencing were performed to detect mutations in 23S rRNA, L3, L4, and L22 proteins and acquired genes (cfrandoptrA). The MIC50/90forStaphylococcus aureuswas 1/1 μg/ml, with 47.2% of isolates being methicillin-resistantStaphylococcus aureus Linezolid was active against allStreptococcus pneumoniaestrains and beta-hemolytic streptococci with a MIC50/90of 1/1 μg/ml and against viridans group streptococci with a MIC50/90of 0.5/1 μg/ml. Among the linezolid-nonsusceptible MRSA strains, one strain harboredcfronly (MIC, 4 μg/ml), one harbored G2576T (MIC, 8 μg/ml), and one containedcfrand G2576T with L3 changes (MIC, ≥8 μg/ml). Among CoNS, 0.75% (six isolates) of all strains demonstrated linezolid MIC results of ≥4 μg/ml. Five of these were identified asStaphylococcus epidermidis, four of which containedcfrin addition to the presence of mutations in the ribosomal proteins L3 and L4, alone or in combination with 23S rRNA (G2576T) mutations. Six enterococci (0.7%) were linezolid nonsusceptible (≥4 μg/ml; five with G2576T mutations, including one with an additionalcfrgene, and one strain withoptrAonly). Linezolid demonstrated excellent activity and a sustained susceptibility rate of 99.78% overall.
Collapse
|
10
|
Karimzadeh I, Mirzaee M, Sadeghimanesh N, Sagheb MM. Antimicrobial resistance pattern of Gram-positive bacteria during three consecutive years at the nephrology ward of a tertiary referral hospital in Shiraz, Southwest Iran. J Res Pharm Pract 2016; 5:238-247. [PMID: 27843959 PMCID: PMC5084480 DOI: 10.4103/2279-042x.192460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: The aim of the present study was to determine the pattern of antimicrobial resistance of Gram-positive bacteria during three consecutive years at the nephrology ward of Namazi Hospital in Shiraz, Southwest of Iran. Methods: During a 3-year period from 2013 to 2015, data of all biological samples of hospitalized patients at the adult nephrology ward of Namazi Hospital were sent to the central laboratory for identification of Gram-positive microorganisms and subsequently, their antimicrobial susceptibility testing by Kirby–Bauer disc diffusion method were analyzed in a retrospective manner. Findings: Coagulase-negative Staphylococci (CONS) (38.5%), Staphylococcus aureus (25.4%), and Enterococcus spp. (23.8%) were the most common isolated Gram-positive bacteria from all biological samples. All Enterococcus spp. isolates within the 3 years were resistant to oxacillin. The rate of vancomycin-resistant enterococci (VRE) increased from 40.63% in 2013 to 72.73% in 2015. Enterococcus spp. resistance rates to aminoglycosides during 3 years were above 85%. The frequencies of oxacillin-resistant S. aureus (ORSA) in 2013, 2014, and 2015 were 95.24%, 80.95%, and 36.36%, respectively. Two out of 11 (6.67%) S. aureus isolates were resistant to vancomycin. More than 90% of CONS were sensitive to vancomycin within the study period. The frequency of gentamicin-resistant CONS ranged from 40% to 57.14%. Conclusion: The rates of ORSA, VRE, and aminoglycoside-resistant CONS as well as Enterococcus spp. in our clinical setting were considerably high and concerning. These may be due to the failure or lack of infection control activities and antimicrobial selection pressure.
Collapse
Affiliation(s)
- Iman Karimzadeh
- Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Mirzaee
- Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Mahdi Sagheb
- Department of Internal Medicine, Nephrology-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Flamm RK, Mendes RE, Hogan PA, Ross JE, Farrell DJ, Jones RN. In vitro activity of linezolid as assessed through the 2013 LEADER surveillance program. Diagn Microbiol Infect Dis 2015; 81:283-9. [DOI: 10.1016/j.diagmicrobio.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 11/29/2022]
|
12
|
Tamma PD, Robinson GL, Gerber JS, Newland JG, DeLisle CM, Zaoutis TE, Milstone AM. Pediatric Antimicrobial Susceptibility Trends across the United States. Infect Control Hosp Epidemiol 2015; 34:1244-51. [DOI: 10.1086/673974] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objective.Antimicrobial susceptibility patterns across US pediatric healthcare institutions are unknown. A national pooled pediatric antibiogram (1) identifies nationwide trends in antimicrobial resistance, (2) allows across-hospital benchmarking, and (3) provides guidance for empirical antimicrobial regimens for institutions unable to generate pediatric antibiograms.Methods.In January 2012, a request for submission of pediatric antibiograms between 2005 and 2011 was sent to 233 US hospitals. A summary antibiogram was compiled from participating institutions to generate proportions of antimicrobial susceptibility. Temporal and regional comparisons were evaluated using χ² tests and logistic regression, respectively.Results.Of 200 institutions (85%) responding to our survey, 78 (39%) reported generating pediatric antibiograms, and 55 (71%) submitted antibiograms. Carbapenems had the highest activity against the majority of gram-negative organisms tested, but no antibiotic had more than 90% activity against Pseudomonas aeruginosa. Approximately 50% of all Staphylococcus aureus isolates were methicillin resistant. Western hospitals had significantly lower proportions of S. aureus that were methicillin resistant compared with all other regions tested. Overall, 21% of S. aureus isolates had resistance to clindamycin. Among Enterococcus faecium isolates, the prevalence of susceptibility to ampicillin (25%) and vancomycin (45%) was low but improved over time (P < .01), and 8% of E. faecium isolates were resistant to linezolid. Southern hospitals reported significantly higher prevalence of E. faecium with susceptibilities to ampicillin, vancomycin, and linezolid compared with the other 3 regions (P < .01).Conclusions.A pooled, pediatric antibiogram can identify nationwide antimicrobial resistance patterns for common pathogens and might serve as a useful tool for benchmarking resistance and informing national prescribing guidelines for children.
Collapse
|
13
|
Mechanisms of linezolid resistance among coagulase-negative staphylococci determined by whole-genome sequencing. mBio 2014; 5:e00894-14. [PMID: 24915435 PMCID: PMC4030478 DOI: 10.1128/mbio.00894-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, ≥8 µg/ml). We performed whole-genome sequencing (WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were identified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 riboproteins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half (48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Isolates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting independent acquisition of linezolid resistance in each isolate. Linezolid is one of a limited number of antimicrobials available to treat drug-resistant Gram-positive bacteria, but resistance has begun to emerge. We evaluated the genomes of 28 linezolid-resistant staphylococci isolated from patients. Multiple mutations in the rRNA and associated proteins previously associated with linezolid resistance were found in the isolates investigated, underscoring the multifocal nature of resistance to linezolid in Staphylococcus. Importantly, almost half the S. epidermidis isolates studied harbored a plasmid-borne cfr RNA methylase gene, suggesting that the incidence of cfr may be higher in the United States than previously documented. This finding has important implications for infection control practices in the United States. Further, cfr is commonly detected in bacteria isolated from livestock, where the use of phenicols, lincosamides, and pleuromutilins in veterinary medicine may provide selective pressure and lead to maintenance of this gene in animal bacteria.
Collapse
|
14
|
Mendes RE, Deshpande LM, Jones RN. Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat 2014; 17:1-12. [PMID: 24880801 DOI: 10.1016/j.drup.2014.04.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Linezolid, approved for clinical use since 2000, has become an important addition to the anti-Gram-positive infection armamentarium. This oxazolidinone drug has in vitro and in vivo activity against essentially all Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The in vitro activity of linezolid was well documented prior to its clinical application, and several ongoing surveillance studies demonstrated consistent and potent results during the subsequent years of clinical use. Emergence of resistance has been limited and associated with invasive procedures, deep organ involvement, presence of foreign material and mainly prolonged therapy. Non-susceptible organisms usually demonstrate alterations in the 23S rRNA target, which remain the main resistance mechanism observed in enterococci; although a few reports have described the detection of cfr-mediated resistance in Enterococcus faecalis. S. aureus isolates non-susceptible to linezolid remain rare in large surveillance studies. Most isolates harbour 23S rRNA mutations; however, cfr-carrying MRSA isolates have been observed in the United States and elsewhere. It is still uncertain whether the occurrences of such isolates are becoming more prevalent. Coagulase-negative isolates (CoNS) resistant to linezolid were uncommon following clinical approval. Surveillance data have indicated that CoNS isolates, mainly Staphylococcus epidermidis, currently account for the majority of Gram-positive organisms displaying elevated MIC results to linezolid. In addition, these isolates frequently demonstrate complex and numerous resistance mechanisms, such as alterations in the ribosomal proteins L3 and/or L4 and/or presence of cfr and/or modifications in 23S rRNA. The knowledge acquired during the past decades on this initially used oxazolidinone has been utilized for developing new candidate agents, such as tedizolid and radezolid, and as linezolid patents soon begin to expire, generic brands will certainly become available. These events will likely establish a new chapter for this successful class of antimicrobial agents.
Collapse
Affiliation(s)
| | | | - Ronald N Jones
- JMI Laboratories, North Liberty, IA 52317, USA; Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
15
|
Mutations within the rplD Gene of Linezolid-Nonsusceptible Streptococcus pneumoniae Strains Isolated in the United States. Antimicrob Agents Chemother 2014; 58:2459-62. [PMID: 24492357 DOI: 10.1128/aac.02630-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three invasive Streptococcus pneumoniae strains nonsusceptible to linezolid were isolated in the United States between 2001 and 2012 from the CDC's Active Bacterial Core surveillance. Linezolid binds ribosomal proteins where structural changes within its target site may confer resistance. Our study identified mutations and deletions near the linezolid binding pocket of two of these strains within the rplD gene, which encodes ribosomal protein L4. Mutations in the 23S rRNA alleles or the rplV gene were not detected.
Collapse
|
16
|
Ohlsen K. Novel antibiotics for the treatment ofStaphylococcus aureus. Expert Rev Clin Pharmacol 2014; 2:661-72. [DOI: 10.1586/ecp.09.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Cattoir V, Giard JC. Antibiotic resistance inEnterococcus faeciumclinical isolates. Expert Rev Anti Infect Ther 2014; 12:239-48. [DOI: 10.1586/14787210.2014.870886] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Abstract
Staphylococcus epidermidis is the most common cause of primary bacteremia and infections of indwelling medical devices. The ability to cause disease is linked to its natural niche on human skin and ability to attach and form biofilm on foreign bodies. This review focuses on the S. epidermidis clinical syndromes most commonly encountered by clinicians and future potential treatment modalities.
Collapse
Affiliation(s)
- Mark E Rupp
- Division of Infectious Disease, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Summary of linezolid activity and resistance mechanisms detected during the 2012 LEADER surveillance program for the United States. Antimicrob Agents Chemother 2013; 58:1243-7. [PMID: 24323470 DOI: 10.1128/aac.02112-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study summarizes the linezolid susceptibility testing results for 7,429 Gram-positive pathogens from 60 U.S. sites collected during the 2012 sampling year for the LEADER Program. Linezolid showed potent activity when tested against 2,980 Staphylococcus aureus isolates, inhibiting all but 3 at ≤2 μg/ml. Similarly, linezolid showed coverage against 99.5% of enterococci, as well as for all streptococci tested. These results confirm a long record of linezolid activity against U.S. Gram-positive isolates since regulatory approval in 2000.
Collapse
|
20
|
Flamm RK, Farrell DJ, Mendes RE, Ross JE, Sader HS, Jones RN. ZAAPS Program results for 2010: an activity and spectrum analysis of linezolid using clinical isolates from 75 medical centres in 24 countries. J Chemother 2013; 24:328-37. [DOI: 10.1179/1973947812y.0000000039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Sader H, Moet G, Jones R. Antimicrobial Resistance among Gram-Positive Bacteria Isolated in Latin American Hospitals. J Chemother 2013; 21:611-20. [DOI: 10.1179/joc.2009.21.6.611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Flamm RK, Mendes RE, Ross JE, Sader HS, Jones RN. An international activity and spectrum analysis of linezolid: ZAAPS Program results for 2011. Diagn Microbiol Infect Dis 2013; 76:206-13. [DOI: 10.1016/j.diagmicrobio.2013.01.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
|
23
|
Moran GJ, Abrahamian FM, LoVecchio F, Talan DA. Acute Bacterial Skin Infections: Developments Since the 2005 Infectious Diseases Society of America (IDSA) Guidelines. J Emerg Med 2013; 44:e397-412. [DOI: 10.1016/j.jemermed.2012.11.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/02/2012] [Indexed: 01/22/2023]
|
24
|
Zhou H, Du H, Zhang H, Shen H, Yan R, He Y, Wang M, Zhu X. EsxA might as a virulence factor induce antibodies in patients with Staphylococcus aureus infection. Braz J Microbiol 2013; 44:267-71. [PMID: 24159314 PMCID: PMC3804208 DOI: 10.1590/s1517-83822013005000019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 07/02/2012] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen, which commonly causes the acquired infectious diseases in the hospital and community. Effective and simple antibiotic treatment against S. aureus-related disease becomes increasingly difficult. Developing a safe and effective vaccine against S. aureus has become one of the world’s hot spots once again. The key issue of developing the vaccine of S. aureus is how to find an ideal key pathogenic gene of S. aureus. It was previously suggested that EsxA might be a very important factor in S. aureus abscess formation in mice, but clinical experimental evidence was lacking. We therefore expressed EsxA protein through prokaryotic expression system and purified EsxA protein by Ni-affinity chromatography. ELISA was used to detect the anti-EsxA antibodies in sera of 78 patients with S. aureus infection and results showed that the anti-EsxA antibodies were positive in the sera of 19 patients. We further analyzed the EsxA positive antibodies related strains by antimicrobial susceptibility assay and found that all of the corresponding strains were multi-drug resistant. Among those multi-drug resistant strains, 73.7% were resistant to MRSA. The results indicated EsxA is very important in the pathogenesis of S. aureus. We suggested that the EsxA is very valuable as vaccine candidate target antigens for prevention and control of S. aureus infection.
Collapse
Affiliation(s)
- Huiqin Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Shen J, Wang Y, Schwarz S. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 2013; 68:1697-706. [DOI: 10.1093/jac/dkt092] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Sierra JM, Camoez M, Tubau F, Gasch O, Pujol M, Martin R, Domínguez MA. Low prevalence of Cfr-mediated linezolid resistance among methicillin-resistant Staphylococcus aureus in a Spanish hospital: case report on linezolid resistance acquired during linezolid therapy. PLoS One 2013; 8:e59215. [PMID: 23554998 PMCID: PMC3598648 DOI: 10.1371/journal.pone.0059215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/12/2013] [Indexed: 11/18/2022] Open
Abstract
Linezolid is an effective antimicrobial agent to treat methicillin-resistant Staphylococcus aureus (MRSA). Resistance to linezolid due to the cfr gene is described worldwide. The present study aimed to analyze the prevalence of the cfr–mediated linezolid resistance among MRSA clinical isolates in our area. A very low prevalence of cfr mediated linezolid resistance was found: only one bacteremic isolate out of 2 215 screened isolates. The only linezolid resistant isolate arose in a patient, previously colonized by MRSA, following linezolid therapy. Despite the low rate of resistance in our area, ongoing surveillance is advisable to avoid the spread of linezolid resistance.
Collapse
Affiliation(s)
- Josep M. Sierra
- Department of Microbiology, Hospital Universitari de Bellvitge. IDIBELL, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - Mariana Camoez
- Department of Microbiology, Hospital Universitari de Bellvitge. IDIBELL, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - Fe Tubau
- Department of Microbiology, Hospital Universitari de Bellvitge. IDIBELL, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - Oriol Gasch
- Department of Infectious Diseases, Hospital Universitari de Bellvitge. IDIBELL, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - Miquel Pujol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge. IDIBELL, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - Rogelio Martin
- Department of Microbiology, Hospital Universitari de Bellvitge. IDIBELL, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - M. Angeles Domínguez
- Department of Microbiology, Hospital Universitari de Bellvitge. IDIBELL, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
27
|
Antimicrobial resistance surveillance systems: Are potential biases taken into account? CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2013. [PMID: 23205029 DOI: 10.1155/2011/276017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The validity of surveillance systems has rarely been a topic of investigation. OBJECTIVE To assess potential biases that may influence the validity of contemporary antimicrobial-resistant (AMR) pathogen surveillance systems. METHODS In 2008, reports of laboratory-based AMR surveillance systems were identified by searching Medline. Surveillance systems were appraised for six different types of bias. Scores were assigned as '2' (good), '1' (fair) and '0' (poor) for each bias. RESULTS A total of 22 surveillance systems were included. All studies used appropriate denominator data and case definitions (score of 2). Most (n=18) studies adequately protected against case ascertainment bias (score = 2), with three studies and one study scoring 1 and 0, respectively. Only four studies were deemed to be free of significant sampling bias (score = 2), with 17 studies classified as fair, and one as poor. Eight studies had explicitly removed duplicates (score = 2). Seven studies removed duplicates, but lacked adequate definitions (score = 1). Seven studies did not report duplicate removal (score = 0). Eighteen of the studies were considered to have good laboratory methodology, three had some concerns (score = 1), and one was considered to be poor (score = 0). CONCLUSION Contemporary AMR surveillance systems commonly have methodological limitations with respect to sampling and multiple counting and, to a lesser degree, case ascertainment and laboratory practices. The potential for bias should be considered in the interpretation of surveillance data.
Collapse
|
28
|
Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 2013; 68:4-11. [PMID: 22949625 PMCID: PMC8445637 DOI: 10.1093/jac/dks354] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The oxazolidinone antibiotic linezolid has demonstrated potent antimicrobial activity against Gram-positive bacterial pathogens, including methicillin-resistant staphylococci. This article systematically reviews the published literature for reports of linezolid-resistant Staphylococcus (LRS) infections to identify epidemiological, microbiological and clinical features for these infections. Linezolid remains active against >98% of Staphylococcus, with resistance identified in 0.05% of Staphylococcus aureus and 1.4% of coagulase-negative Staphylococcus (CoNS). In all reported cases, patients were treated with linezolid prior to isolation of LRS, with mean times of 20.0 ± 47.0 months for S. aureus and 11.0 ± 8.0 days for CoNS. The most common mechanisms for linezolid resistance were mutation (G2576T) to the 23S rRNA (63.5% of LRSA and 60.2% of LRCoNS) or the presence of a transmissible cfr ribosomal methyltransferase (54.5% of LRSA and 15.9% of LRCoNS). The emergence of linezolid resistance in Staphylococcus poses significant challenges to the clinical treatment of infections caused by these organisms, and in particular CoNS.
Collapse
Affiliation(s)
- Bing Gu
- Department of Laboratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Theodoros Kelesidis
- UCLA David Geffen School of Medicine, Division of Infectious Diseases, Los Angeles, California, USA
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| | - Janet Hindler
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Romney M. Humphries
- UCLA David Geffen School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| |
Collapse
|
29
|
Linezolid surveillance results for the United States: LEADER surveillance program 2011. Antimicrob Agents Chemother 2012; 57:1077-81. [PMID: 23254424 DOI: 10.1128/aac.02112-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LEADER surveillance program monitors the in vitro activity of linezolid and comparator agents against Gram-positive bacteria in the United States. In its eighth consecutive year (2011), a total of 60 medical centers from the United States, including seven medical centers specializing in children's health care contributed a total of 7,303 Gram-positive pathogens. The MIC(90) value for Staphylococcus aureus was 2 μg/ml, and for coagulase-negative staphylococci, enterococci, Streptococcus pneumoniae, β-hemolytic streptococci, and viridans group streptococci, the MIC(90) was 1 μg/ml. The "all organism" linezolid-resistant and nonsusceptible rate was only 0.19%.
Collapse
|
30
|
Flamm RK, Farrell DJ, Mendes RE, Ross JE, Sader HS, Jones RN. LEADER surveillance program results for 2010: an activity and spectrum analysis of linezolid using 6801 clinical isolates from the United States (61 medical centers). Diagn Microbiol Infect Dis 2012; 74:54-61. [PMID: 22704791 DOI: 10.1016/j.diagmicrobio.2012.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/11/2012] [Indexed: 11/16/2022]
Abstract
The LEADER program monitors the in vitro activity of linezolid and comparator agents across the United States using reference broth microdilution and supportive molecular susceptibility-based investigations. This report summarizes the data from the 2010 program, the seventh consecutive year. A total of 61 medical centers from the USA including 7 medical centers specializing in children's healthcare provided a total of 6801 Gram-positive pathogens. The medical centers represented all 9 US Bureau of Census geographic regions. The organisms tested by reference broth microdilution were 3105 Staphylococcus aureus, 944 coagulase-negative staphylococci (CoNS), 934 Enterococci, 803 Streptococcus pneumoniae, 604 β-haemolytic streptococci, and 411 viridans group and other streptococci. The MIC(90) value for each of the above 6 targeted groups of organisms was 1 μg/mL. The "all organism" linezolid-resistant and nonsusceptible rate was 0.38%, which has been constant at 0.34% (2009) to 0.45% (2006) for the last 4 years. For Staphylococcus aureus, only 0.06% of the isolates were linezolid-resistant (MIC, ≥8 μg/mL); however, 2 additional methicillin-resistant Staphylococcus aureus had a cfr and a MIC of only 4 μg/mL. Resistance to linezolid was detected in 7 enterococci (0.75%) and 14 CoNS isolates (1.48%). This also represents a stable rate of resistance noted since the 2006 LEADER program report. Of note, for the first time in the 7 years of the Leader Program a linezolid-resistant Streptococcus pneumoniae was encountered. Overall, the results of the LEADER program demonstrate that linezolid maintains excellent in vitro activity against target Gram-positive pathogens across the USA. The LEADER program continues to provide valuable reference and molecular-level monitoring of linezolid activity.
Collapse
|
31
|
Locke JB, Rahawi S, Lamarre J, Mankin AS, Shaw KJ. Genetic environment and stability of cfr in methicillin-resistant Staphylococcus aureus CM05. Antimicrob Agents Chemother 2012; 56:332-40. [PMID: 22024827 PMCID: PMC3256036 DOI: 10.1128/aac.05420-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/17/2011] [Indexed: 11/20/2022] Open
Abstract
The Cfr methyltransferase confers resistance to many 50S ribosomal subunit-targeted antibiotics, including linezolid (LZD), via methylation of the 23S rRNA base A2503 in the peptidyl transferase center. Methicillin-resistant Staphylococcus aureus strain CM05 is the first clinical isolate documented to carry cfr. While cfr is typically plasmid borne, in CM05 it is located on the chromosome and is coexpressed with ermB as part of the mlr operon. Here we evaluated the chromosomal locus, association with mobile genetic elements, and stability of the cfr insertion region in CM05. The cfr-containing mlr operon is located within a 15.5-kb plasmid-like insertion into 23S rRNA allele 4. The region surrounding the cfr gene has a high degree of sequence similarity to the broad-host-range toxin/antitoxin multidrug resistance plasmid pSM19035, including a second ermB gene downstream of the mlr locus and istAS-istBS. Analysis of several individual CM05 colonies revealed two distinct populations for which LZD MICs were either 8 or 2 μg/ml. In the LZD(s) colonies (designated CM05Δ), a recombination event involving the two ermB genes had occurred, resulting in the deletion of cfr and the 3' flanking region (cfr-istAS-istBS-ermB). The fitness advantage of CM05Δ over CM05 (though not likely due to the cfr deletion itself) results in the predominance of CM05Δ in the absence of selective pressure. Minicircles resulting from the ermB recombination event and the novel association of cfr with the pSM19035 plasmid system support the potential for the continued dissemination of cfr.
Collapse
|
32
|
Gould IM, Cauda R, Esposito S, Gudiol F, Mazzei T, Garau J. Management of serious meticillin-resistant Staphylococcus aureus infections: what are the limits? Int J Antimicrob Agents 2011; 37:202-9. [PMID: 21300528 DOI: 10.1016/j.ijantimicag.2010.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 01/16/2023]
Abstract
Severe (life-threatening) meticillin-resistant Staphylococcus aureus (MRSA) infection continues to be treated with vancomycin despite accumulating evidence of poor outcome, increasing resistance and unachievable pharmacokinetic/pharmacodynamic (PK/PD) targets. The minimum inhibitory concentration (MIC) susceptibility breakpoint for vancomycin was recently reduced to 2 mg/L. Whilst the great majority of clinical isolates are thus still classified as susceptible, the available clinical evidence argues for a method-dependent breakpoint of 0.5 mg/L (broth dilution) or 1.0 mg/L (Etest), which would classify many strains as resistant, or at best intermediate. However, automated susceptibility testing systems are not currently capable of performing accurately at this low level, and such low breakpoints are unsatisfactory because the poor reproducibility of tests (plus or minus one doubling dilution) results in a critical non-reproducibility around the modal MIC of 1 mg/L described in most published data. Therefore, vancomycin should be used with caution in severe (life-threatening) staphylococcal disease and the MIC should always be reported by method. Daptomycin is generally preferred for bacteraemia/endocarditis and linezolid for pneumonia. Better outcome data for vancomycin, based on achievable PK/PD targets and using robust MIC tests, are urgently required.
Collapse
Affiliation(s)
- Ian M Gould
- Department of Medical Microbiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB252ZN, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
There is a clear and urgent need for novel antibacterial agents that can address the concerns of growing resistance. This article details recent patent activity within the antibiotic field based on the emerging strategy of a multivalent approach to drug discovery. A range of heterodimer antibiotics are discussed, which consist of two antibacterial chemical classes covalently linked to afford compounds with the potential to engage multiple mechanisms of action. The possible benefits of such compounds include activity against drug-resistant bacteria, enhanced efficacy and duration, an expanded spectrum of activity and reduced potential for generating bacterial resistance. This exciting approach towards novel heterodimer antibiotics holds significant promise, but must overcome a range of challenges before yielding a successful medicine. Progress to date is encouraging and has resulted in three compounds entering clinical trials.
Collapse
|
34
|
LEADER Program results for 2009: an activity and spectrum analysis of linezolid using 6,414 clinical isolates from 56 medical centers in the United States. Antimicrob Agents Chemother 2011; 55:3684-90. [PMID: 21670176 DOI: 10.1128/aac.01729-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LEADER Program monitors the in vitro activity of linezolid in sampled U.S. medical centers using reference broth microdilution methods with supporting molecular investigations in a central laboratory design. This report summarizes data obtained in 2009, the 6th consecutive year of this longitudinal study. A total of 6,414 isolates from 56 medical centers in all nine Census regions across the United States participated in 2009. For the six leading species/groups, the following linezolid MIC(90) values were observed: Staphylococcus aureus, 2 μg/ml; coagulase-negative staphylococci (CoNS), 1 μg/ml; Enterococcus spp., 2 μg/ml; Streptococcus pneumoniae, 1 μg/ml; viridans group streptococci, 1 μg/ml; and beta-hemolytic streptococci, 1 μg/ml. Linezolid resistance was only 0.34% overall, with no evidence of significant increase in the LEADER Program since 2006. The predominant linezolid resistant mechanism found was a G2576T mutation in the 23S rRNA. L3/L4 riboprotein mutations were also found. The mobile multidrug-resistant cfr gene was found in four strains (two S. aureus strains and one strain each of S. epidermidis and S. capitis) from four different states, suggesting persistence but a lack of dissemination. Linezolid continues to exhibit excellent activity and spectrum, and this study documents the need for continued monitoring of emerging mechanisms of resistance over a wide geographic area.
Collapse
|
35
|
Leach KL, Brickner SJ, Noe MC, Miller PF. Linezolid, the first oxazolidinone antibacterial agent. Ann N Y Acad Sci 2011; 1222:49-54. [PMID: 21434942 DOI: 10.1111/j.1749-6632.2011.05962.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Linezolid (Zyvox) is the first member of an entirely new class of antibiotics to reach the market in over 35 years; it was approved for use in 2000. A member of the oxazolidinone class of antibiotics, linezolid is highly effective for the treatment of serious Gram-positive infections and has activity that compares favorably with vancomycin for most clinically relevant pathogens. Zyvox is approved for use against serious Gram-positive infections, including those caused by Streptococcus pneumoniae, and the very challenging methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium organisms. Zyvox inhibits bacterial protein synthesis by binding to 23S rRNA in the catalytic site of the 50S ribosome. It can be administered both orally and intravenously and has good tissue distribution. Recent results have demonstrated that oxazolidinone analogs related to linezolid are effective in treating pulmonary tuberculosis caused by resistant Mycobacterium tuberculosis in animal infection models and suggest additional new therapeutic applications for these antibiotics.
Collapse
Affiliation(s)
- Karen L Leach
- Pfizer Global Research and Development, Groton, Connecticut 06340, USA.
| | | | | | | |
Collapse
|
36
|
Thwaites GE, Edgeworth JD, Gkrania-Klotsas E, Kirby A, Tilley R, Török ME, Walker S, Wertheim HF, Wilson P, Llewelyn MJ. Clinical management of Staphylococcus aureus bacteraemia. THE LANCET. INFECTIOUS DISEASES 2011; 11:208-22. [PMID: 21371655 DOI: 10.1016/s1473-3099(10)70285-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus bacteraemia is one of the most common serious bacterial infections worldwide. In the UK alone, around 12,500 cases each year are reported, with an associated mortality of about 30%, yet the evidence guiding optimum management is poor. To date, fewer than 1500 patients with S aureus bacteraemia have been recruited to 16 controlled trials of antimicrobial therapy. Consequently, clinical practice is driven by the results of observational studies and anecdote. Here, we propose and review ten unanswered clinical questions commonly posed by those managing S aureus bacteraemia. Our findings define the major areas of uncertainty in the management of S aureus bacteraemia and highlight just two key principles. First, all infective foci must be identified and removed as soon as possible. Second, long-term antimicrobial therapy is required for those with persistent bacteraemia or a deep, irremovable focus. Beyond this, the best drugs, dose, mode of delivery, and duration of therapy are uncertain, a situation compounded by emerging S aureus strains that are resistant to old and new antibiotics. We discuss the consequences on clinical practice, and how these findings define the agenda for future clinical research.
Collapse
Affiliation(s)
- Guy E Thwaites
- Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Viaggi B, Paolo AD, Danesi R, Polillo M, Ciofi L, Tacca MD, Malacarne P. Linezolid in the central nervous system: Comparison between cerebrospinal fluid and plasma pharmacokinetics. ACTA ACUST UNITED AC 2011; 43:721-7. [DOI: 10.3109/00365548.2011.582140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Emergence of linezolid-resistant Staphylococcus aureus after prolonged treatment of cystic fibrosis patients in Cleveland, Ohio. Antimicrob Agents Chemother 2011; 55:1684-92. [PMID: 21263048 DOI: 10.1128/aac.01308-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linezolid (LZD)-resistant Staphylococcus aureus (LRSA) isolates were monitored from 2000 to 2009 in Cleveland, OH. LRSA first emerged in 2004 only in cystic fibrosis (CF) patients, with 11 LRSA-infected CF patients being identified by 2009. LRSA was isolated from 8 of 77 CF patients with S. aureus respiratory tract infection treated with LZD from 2000 to 2006. Analysis of clinical data showed that the 8 CF patients with LRSA received more LZD courses (18.8 versus 5.9; P = 0.001) for a longer duration (546.5 versus 211.9 days; P < 0.001) and had extended periods of exposure to LZD (83.1 versus 30.1 days/year; P < 0.001) than the 69 with LZD-susceptible isolates. Five LRSA isolates included in the clinical analysis (2000 to 2006) and three collected in 2009 were available for molecular studies. Genotyping by repetitive extrapalindromic PCR and pulsed-field gel electrophoresis revealed that seven of these eight LRSA strains from unique patients were genetically similar. By multilocus sequence typing, all LRSA isolates were included in clonal complex 5 (seven of sequence type 5 [ST5] and one of ST1788, a new single-locus variant of ST5). However, seven different variants were identified by spa typing. According to the Escherichia coli numbering system, seven LRSA isolates contained a G2576T mutation (G2603T, S. aureus numbering) in one to four of the five copies of domain V of the 23S rRNA genes. One strain also contained a mutation (C2461T, E. coli numbering) not previously reported. Two strains, including one without domain V mutations, possessed single amino acid substitutions (Gly152Asp or Gly139Arg) in the ribosomal protein L3 of the peptidyltransferase center, substitutions not previously reported in clinical isolates. Emergence of LRSA is a serious concern for CF patients who undergo prolonged courses of LZD therapy.
Collapse
|
39
|
Management of Gram-Positive Bacterial Disease: Staphylococcus aureus, Streptococcal, Pneumococcal and Enterococcal Infections. PRINCIPLES AND PRACTICE OF CANCER INFECTIOUS DISEASES 2011. [PMCID: PMC7120901 DOI: 10.1007/978-1-60761-644-3_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Mendoza N, Tyring SK. Emerging drugs for complicated skin and skin-structure infections. Expert Opin Emerg Drugs 2010; 15:509-20. [PMID: 20557269 DOI: 10.1517/14728214.2010.497486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED IMPORTANCE OF THE FILED: With the worldwide surge of MRSA, skin and skin-structure infection (SSTI) treatment has become a challenge for physicians. Cultures and antibiotic susceptibility tests for SSTIs are the rule due to the implication in morbidity and mortality rates associated with MRSA infections. The need for new antibiotics is evident and the effort to decrease antibiotic resistance is a world priority. AREAS COVERED IN THIS REVIEW This manuscript accesses the actual treatments and the developing of antibiotics for MRSA SSTIs. WHAT THE READER WILL GAIN This is a review of the data on the available and emerging treatments for MRSA SSTIs. TAKE HOME MESSAGE There is an unmet medical need for new antibiotics in the new millennium. As physicians, we must assure all appropriate procedures are completed in order to reduce the bacterial resistance, especially for MRSA.
Collapse
Affiliation(s)
- Natalia Mendoza
- Center for Clinical Studies, 6655 Travis Suite 120, Houston, TX 77030, USA.
| | | |
Collapse
|
41
|
Abstract
An increasing proportion of Staphylococcus aureus infections are caused by methicillin-resistant S aureus. Treatment of infections caused by this organism is challenging, especially because therapy with vancomycin, the traditional antibiotic of choice for methicillin-resistant S aureus infections, is associated with an increasing frequency of treatment failure, and vancomycin insensitive and vancomycin-resistant strains have emerged. In addition, Enterococcus sp. isolated from human infections are increasingly resistant to multiple antimicrobial agents. Newer drugs available for treatment of resistant Gram-positive bacterial infections in the United States include linezolid, daptomycin, tigecycline and telavancin. The precise role for these newer agents is still evolving. Organisms resistant to each of these antimicrobials have emerged. New drugs in development include cephalosporins and carbapenems with MRSA activity.
Collapse
|
42
|
Bongiorno D, Campanile F, Mongelli G, Baldi MT, Provenzani R, Reali S, Lo Russo C, Santagati M, Stefani S. DNA methylase modifications and other linezolid resistance mutations in coagulase-negative staphylococci in Italy. J Antimicrob Chemother 2010; 65:2336-40. [DOI: 10.1093/jac/dkq344] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Stein GE, Wells EM. The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus: vancomycin and linezolid. Curr Med Res Opin 2010; 26:571-88. [PMID: 20055750 DOI: 10.1185/03007990903512057] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The rising prevalence of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) and the recent emergence of community-associated MRSA are major clinical, public health, and economic challenges. MRSA is a leading cause of nosocomial pneumonia and complicated skin and soft-tissue infections (cSSTI). Vancomycin and linezolid are two commonly used antimicrobial agents with activity against Gram-positive pathogens, particularly MRSA, that are used to treat both nosocomial pneumonia and cSSTI. Recently, the therapeutic efficacy of vancomycin in the treatment of hospitalized patients with MRSA infections has been questioned due to the emergence of MRSA strains with reduced susceptibility to vancomycin together with concerns related to inadequate dosing and poor tissue penetration of the drug. SCOPE A literature review was conducted to investigate the pharmacokinetics and pulmonary and tissue penetration of vancomycin and linezolid. Using MEDLINE and EMBASE, the most relevant articles in English published over the past 25 years (up to October 2008) were identified and summarized. Studies in human volunteers and adult patients that measured concentrations of antibiotic in serum, epithelial lining fluid (ELF), and tissue were selected for further review. FINDINGS For both drugs, pharmacokinetic studies were conducted in diverse patient populations and employed varying techniques to measure tissue concentrations. Vancomycin concentrations in ELF ranged from 5 to 25% of simultaneous plasma levels, while concentrations in whole homogenized lung tissue were slightly higher (24-41%). Distribution of vancomycin into soft tissue was variable. For linezolid, overall mean concentrations in ELF and in soft tissue were generally similar or higher than simultaneous plasma levels, although variability in tissue penetration across studies in healthy volunteers and patients was seen. LIMITATIONS The studies included in this review vary greatly in their designs and patient populations; this, together with methodologic difficulties, limits the interpretation of the data. CONCLUSIONS In the absence of clinical data correlating ELF concentrations and clinical outcome, the clinical significance of differences in pulmonary penetration of vancomycin and linezolid is unknown. Higher vancomycin serum concentrations may be necessary to achieve appropriate lung concentrations to optimize treatment outcomes. Linezolid demonstrates adequate penetration into lung and other soft issues with sustained concentrations above the minimum inhibitory concentrations for susceptible pathogens, including MRSA, for the majority of the dosing interval. Examination of the pharmacokinetic data adds insights not provided by the clinical trial data and together provides clinicians with a more comprehensive basis for selecting appropriate antimicrobial therapy for the treatment of serious MRSA infections.
Collapse
Affiliation(s)
- Gary E Stein
- Department of Medicine, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
44
|
Abstract
This article familiarizes the clinician with the principles of bacterial susceptibility testing and reporting to facilitate communication with the clinical microbiology laboratory. As resistance continues to emerge among a wide range of clinically relevant bacteria, the complexity of this communication increases. This updated version provides an overview of the important susceptibility concerns for most commonly isolated bacterial pathogens.
Collapse
|
45
|
Miranda J, Tunkel AR. Strategies and new developments in the management of bacterial meningitis. Infect Dis Clin North Am 2010; 23:925-43, viii-ix. [PMID: 19909891 DOI: 10.1016/j.idc.2009.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The principles of antimicrobial therapy for acute bacterial meningitis include use of agents that penetrate well into cerebrospinal fluid and attain appropriate cerebrospinal fluid concentrations, are active in purulent cerebrospinal fluid, and are bactericidal against the infecting pathogen. Recommendations for treatment of bacterial meningitis have undergone significant evolution in recent years, given the emergence of pneumococcal strains that are resistant to penicillin. Clinical experience with use of newer agents is limited to case reports, but these agents may be necessary to consider in patients who are failing standard therapy.
Collapse
Affiliation(s)
- Justine Miranda
- Department of Internal Medicine, Division of Infectious Diseases, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | | |
Collapse
|
46
|
Farrell DJ, Mendes RE, Ross JE, Jones RN. Linezolid surveillance program results for 2008 (LEADER Program for 2008). Diagn Microbiol Infect Dis 2010; 65:392-403. [PMID: 19913682 DOI: 10.1016/j.diagmicrobio.2009.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
The LEADER Program was initiated in 2004 and monitors emerging linezolid resistance in sampled US medical centers. This report summarizes the data obtained in 2008, the 5th consecutive year. A total of 57 institutions participated in 2008 representing all 9 US census regions with 100 target organisms per site (6113 isolates, 101.9% compliance to protocol design). The organisms tested by reference broth microdilution methods were Staphylococcus aureus (3156), coagulase-negative staphylococci (CoNS; 856), enterococci (901), Streptococcus pneumoniae (619), and viridans group (223) or beta-hemolytic streptococci (358); also, D-test was used to determine inducible clindamycin resistance in Staphylococcus aureus. Linezolid remained very potent against all sampled species with MIC(90) results ranging from 1 microg/mL (streptococci and CoNS) to 2 microg/mL (Staphylococcus aureus and enterococci). Only 0.36% of sampled strains were nonsusceptible to linezolid, a slight decrease from 0.45% and 0.44% in 2006 and 2007, respectively. The nonsusceptible strains (22) were Staphylococcus aureus (3), CoNS (14), and Enterococcus faecium (5) each with defined target mutations (G2576T in 19 strains; T2504A in 1 strain), mobile cfr element (1 strain Staphylococcus epidermidis with an identical pulsed-field gel electrophoresis pattern to a cfr-positive Staphylococcus epidermidis isolated from the same center in LEADER 2007), or an unknown (1 strain) mechanism. The mobile cfr resistance found in a Staphylococcus aureus strain in 2007 was not observed in 2008. In conclusion, linezolid activity sampled by the 5th year of this LEADER Program showed sustained potency and spectrum (99.64% susceptibility levels). The nonsusceptible strain isolation rates remained stable and the plasmid-mediated ribosomal-based resistance mechanism that emerged in Staphylococcus aureus and Staphylococcus epidermidis strains in 2007 showed no evidence of dissemination or increased prevalence. However, there was evidence of cfr persistence with the S. epidermidis strain. The LEADER Program continues to be an effective and sensitive surveillance tool to detect and monitor novel oxazolidinone resistance phenotypes and genotypes.
Collapse
|
47
|
Jones RN, Ross JE, Bell JM, Utsuki U, Fumiaki I, Kobayashi I, Turnidge JD. Zyvox® Annual Appraisal of Potency and Spectrum program: linezolid surveillance program results for 2008. Diagn Microbiol Infect Dis 2009; 65:404-13. [DOI: 10.1016/j.diagmicrobio.2009.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/04/2009] [Indexed: 10/20/2022]
|
48
|
Daptomycin Activity Tested Against Linezolid-Nonsusceptible Gram-Positive Clinical Isolates. Microb Drug Resist 2009; 15:245-9. [DOI: 10.1089/mdr.2009.0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Polyphyletic emergence of linezolid-resistant staphylococci in the United States. Antimicrob Agents Chemother 2009; 54:742-8. [PMID: 19933808 DOI: 10.1128/aac.00621-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the year 2000, linezolid has been used in the United States to treat infections caused by antimicrobial-resistant Gram-positive cocci. At present, linezolid-resistant (Linr) Staphylococcus aureus and Staphylococcus epidermidis strains are rare and the diversity of their genetic backgrounds is unknown. We performed sequence-based strain typing and resistance gene characterization of 46 Linr isolates that were collected from local and national sources between the years 2004 and 2007. Resistance was found to occur in at least three clonal complexes (CCs; lineages) of S. aureus and in at least four subclusters of a predominant, phylogenetically unstable CC of S. epidermidis. New candidate resistance mutations in 23S rRNA and the L4 riboprotein were identified among the S. epidermidis isolates. These findings suggest that linezolid resistance has emerged independently in multiple clones of S. aureus and with a variety of ribosomal mutations in multiple clones of S. epidermidis.
Collapse
|
50
|
Dandache P, Moise PA, Orsini J, Montecalvo M, Sakoulas G. Reduced biofilm production associated with increasing linezolid MICs among linezolid-resistant staphylococci. J Antimicrob Chemother 2009; 64:1114-5. [PMID: 19734169 DOI: 10.1093/jac/dkp324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|