1
|
Furlan JPR, Ramos MS, Rosa RDS, Dos Santos LDR, Savazzi EA, Stehling EG. Unveiling transposon-mediated multidrug resistance in OXA-23-producing Acinetobacter baumannii ST79/ST233 subclone KL9-OCL10 in Brazil. Gene 2025; 958:149489. [PMID: 40245960 DOI: 10.1016/j.gene.2025.149489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
The global dissemination of antimicrobial resistance (AMR) is a critical public health concern. The persistence of AMR in the environmental sector, exemplified by carbapenem-resistant Acinetobacter baumannii (CRAB), underscores the critical interconnectedness between human activity, environmental contamination, and the global spread of multidrug-resistant bacterial pathogens. In this study, A. baumannii strain EW779 was isolated from a water sample from a stream impacted by anthropogenic activities in São Paulo State, Brazil, exhibited an extensive drug resistance profile, and harbored chromosome-borne blaOXA-23 gene. Genomic analysis revealed that EW779 belongs to the hospital-associated high-risk ST79/ST233 subclone KL9-OCL10. This strain harbored a wide resistome associated with mobile genetic elements such as Tn2008, Tn7::In2-4, and Tn3. Virulence genes mainly related to biofilm formation, immune evasion, and cell invasion were found, evidencing its pathogenicity as putative hypervirulent. Comparative genomic analysis revealed that many AMR and virulence traits were shared among ST79/ST233 subclone KL9-OCL10 circulating in Brazil, indicating the occurrence of a successful and potentially epidemic subclone capable of spreading across different regions. The analysis of single nucleotide polymorphism differences among all ST79/ST233 subclone KL9-OCL10 showed a genetic similarity among strains from the same Brazilian state, indicating geographic separation. These findings highlight the environmental persistence and dissemination of a hospital-associated high-risk CRAB clone, emphasizing their epidemiological importance. Therefore, this study contributes to understanding the genomic dynamics of ST79/ST233 subclone KL9-OCL10 and reinforces the need for monitoring the spread of CRAB strains across clinical and environmental settings.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
2
|
Hossain MA, Fatima NNE, Tushar JH, Mahmud H, Haque FKM. Isolation and characterization of Acinetobacter baumannii from environmental waters in Dhaka City, Bangladesh. BMC Microbiol 2025; 25:314. [PMID: 40399793 PMCID: PMC12096565 DOI: 10.1186/s12866-025-04029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025] Open
Abstract
Acinetobacter baumannii, a gram-negative bacterium commonly associated with nosocomial infections, has been relatively unexplored in the environmental context. The present study was conducted in Dhaka City, Bangladesh, with the primary objective of isolating and characterizing A. baumannii in environmental water sources. Surface water samples were collected from various water reservoirs to detect the presence of A. baumannii. Isolates were confirmed as A. baumannii using culture and PCR. Confirmed isolates were screened for antimicrobial susceptibility, antimicrobial resistance genes, and serum resistance. Results revealed that 32% of the water samples tested positive for A. baumannii. In total, 23 A. baumannii isolates were obtained. All isolates showed resistance to Cefepime. Varying degrees of resistance to other antibiotics were observed, and 56% showed resistance to the bactericidal effect of serum. This study underscored the remarkable adaptability of A. baumannii and its ability to flourish in diverse environmental conditions, highlighting public health concerns of increasing antibiotic resistant bacteria. The study concluded that, given the significance of effective infection control and sanitation and waste management measures, understanding the presence and behavior of A. baumannii in the environment is paramount. This study acts as the first report on environmental A. baumannii in Bangladesh and further research is warranted to elucidate the underlying mechanisms of antibiotic resistance and their implications for human health.
Collapse
Affiliation(s)
- Mohammed Aziz Hossain
- Biotechnology program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Nayara Noor E Fatima
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Jahid H Tushar
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Hasib Mahmud
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Fahim Kabir Monjurul Haque
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh.
| |
Collapse
|
3
|
Somayya R, Ahmad K. Prevalence of Resistance Genes Among Multidrug-Resistant Gram-Negative Bacteria Isolated from Waters of Rivers Swat and Kabul, Pakistan. Foodborne Pathog Dis 2024. [PMID: 39435695 DOI: 10.1089/fpd.2023.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The waters of rivers Swat and Kabul are the main water source for domestic and irrigation purposes in the northwestern part of Pakistan. However, this water has been contaminated due to human activities. This study aimed to analyze the water of these rivers for occurrence of antibiotic resistance genes among Gram-negative bacteria. Samples were collected from 10 different locations of these rivers. The samples were processed for the isolation of Gram-negative bacteria. Isolated bacteria were checked against 12 different antibiotics for susceptibility. The isolates were also analyzed for the presence of seven antibiotic resistance genes. A total of 50 bacterial isolates were recovered that belonged to five different bacterial genera, that is, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena), and Pseudomonas fluorescens. Antibiotic resistance pattern was cefixime 72%, cephalothin 72%, ampicillin 68%, nalidixic acid 68%, kanamycin 54%, streptomycin 42%, sulfamethoxazole-trimethoprim 28%, chloramphenicol 28%, meropenem 8%, gentamicin 8%, amikacin 2%, and tobramycin 2%. The prevalence of bla-TEM gene was 72% (n = 36), aadA gene 34% (n = 17), sul gene 32% (n = 16), bla-CTXM gene 12% (n = 6), int gene 66% (n = 33), and int1 gene 6% (n = 3). This information highlights the need for controlling and monitoring the release of domestic wastes to rivers.
Collapse
Affiliation(s)
- Ramla Somayya
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Kafeel Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
4
|
Męcik M, Stefaniak K, Harnisz M, Korzeniewska E. Hospital and municipal wastewater as a source of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in the environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48813-48838. [PMID: 39052110 PMCID: PMC11310256 DOI: 10.1007/s11356-024-34436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The increase in the prevalence of carbapenem-resistant Gram-negative bacteria, in particular Acinetobacter baumannii (CRAB) and Pseudomonas aeruginosa (CRPA), poses a serious threat for public health worldwide. This article reviews the alarming data on the prevalence of infections caused by CRAB and CRPA pathogens and their presence in hospital and municipal wastewater, and it highlights the environmental impact of antibiotic resistance. The article describes the key role of antibiotic resistance genes (ARGs) in the acquisition of carbapenem resistance and sheds light on bacterial resistance mechanisms. The main emphasis was placed on the transfer of ARGs not only in the clinical setting, but also in the environment, including water, soil, and food. The aim of this review was to expand our understanding of the global health risks associated with CRAB and CRPA in hospital and municipal wastewater and to analyze the spread of these micropollutants in the environment. A review of the literature published in the last decade will direct research on carbapenem-resistant pathogens, support the implementation of effective preventive measures and interventions, and contribute to the development of improved strategies for managing this problem.
Collapse
Affiliation(s)
- Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Kornelia Stefaniak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
5
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Esposito F, Cardoso B, Sellera FP, Sano E, Fuentes-Castillo D, Fontana H, Fuga B, Moura Q, Sato MI, Brandão CJ, Lincopan N. Expansion of healthcare-associated hypervirulent KPC-2-producing Klebsiella pneumoniae ST11/KL64 beyond hospital settings. One Health 2023; 17:100594. [PMID: 37448770 PMCID: PMC10336671 DOI: 10.1016/j.onehlt.2023.100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The spread of carbapenemase-producing Klebsiella pneumoniae beyond hospital settings is a global critical issue within a public health and One Health perspective. Another worrisome concern is the convergence of virulence and resistance in healthcare-associated lineages of K. pneumoniae leading to unfavorable clinical outcomes. During a surveillance study of WHO critical priority pathogens circulating in an impacted urban river in São Paulo, Brazil, we isolate two hypermucoviscous and multidrug-resistant K. pneumoniae strains (PINH-4250 and PINH-4900) from two different locations near to medical centers. Genomic investigation revealed that both strains belonged to the global high-risk sequence type (ST) ST11, carrying the blaKPC-2 carbapenemase gene, besides other medically important antimicrobial resistance determinants. A broad virulome was predicted and associated with hypervirulent behavior in the Galleria mellonella infection model. Comparative phylogenomic analysis of PINH-4250 and PINH-4900 along to an international collection of publicly available genomes of K. pneumoniae ST11 revealed that both environmental strains were closely related to hospital-associated K. pneumoniae strains recovered from clinical samples between 2006 and 2018, in São Paulo city. Our findings support that healthcare-associated KPC-2-positive K. pneumoniae of ST11 clone has successfully expanded beyond hospital settings. In summary, aquatic environments can become potential sources of international clones of K. pneumoniae displaying carbapenem resistance and hypervirulent behaviors, which is a critical issue within a One Health perspective.
Collapse
Affiliation(s)
- Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fábio P. Sellera
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Maria I.Z. Sato
- Environmental Company of São Paulo State (CETESB), São Paulo, Brazil
| | - Carlos J. Brandão
- Environmental Company of São Paulo State (CETESB), São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Pulami D, Kämpfer P, Glaeser SP. High diversity of the emerging pathogen Acinetobacter baumannii and other Acinetobacter spp. in raw manure, biogas plants digestates, and rural and urban wastewater treatment plants with system specific antimicrobial resistance profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160182. [PMID: 36395844 DOI: 10.1016/j.scitotenv.2022.160182] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii causing immense treatment problems in hospitals. There is still a knowledge gap on the abundance and stability of acquired resistances and the diversity of resistant Acinetobacter in the environment. The aim of the study was to investigate the diversity and antimicrobial resistances of Acinetobacter spp. released from livestock and human wastewater into the environment. Raw and digested manure of small scale on farm biogas plants as well as untreated and treated wastewater and sewage sludge of rural and urban wastewater treatment plants (WWTPs) were studied comparatively. A total of 132 Acinetobacter isolates were phylogenetically identified (16S rRNA gene and rpoB sequence analyses) and 14 different phylotypes were detected. Fiftytwo isolates represented A. baumannii which were cultured from raw and digested manure of different biogas plants, and most stages of the rural WWTP (no hospital wastewater receiving) and the two studied urban WWTPs receiving veterinarian and human hospital wastewater. Multi-locus sequence typing (Pasteur_MLST) identified 23 novel and 12 known STs of A. baumannii. Most novel STs (18/23) were cultured from livestock samples and the rural WWTP. A. baumannii isolates from livestock and the rural WWTP were susceptible to carbapenems, colistin, ciprofloxacin, ceftazidime, and piperacillin. In contrast, A. baumannii isolates from the two urban WWTPs showed clinical linkage with respect to MLST and were multi-drug resistant (MDR). The presence of viable A. baumannii in digested manure and sewage sludge confirmed the survival of the strict aerobic bacteria during anoxic conditions. The study indicated the spread of diverse Acinetobacter from anthropogenic sources into the environment with a strong linkage of clinial associated MDR A. baumannii strains to the inflow of hospital wastewater to WWTPs. A more frequent detection of Acinetobacter in sewage sludge than effluent waters indicated that particle-attachment of Acinetobacter must be considered by the risk assessment of these bacteria.
Collapse
Affiliation(s)
- Dipen Pulami
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Peter Kämpfer
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Stefanie P Glaeser
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
8
|
Fortes BN, Scheunemann G, de Azevedo Melo AS, Ishida K. Caspofungin alone or combined with polymyxin B are effective against mixed biofilm of Aspergillus fumigatus and carbapenem-resistant Pseudomonas aeruginosa. Res Microbiol 2023; 174:103993. [PMID: 36184018 DOI: 10.1016/j.resmic.2022.103993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa biofilms are associated to the recalcitrant and persistent infections due to resistance to antimicrobials. Here, we evaluated the effect of antimicrobials on single and mixed biofilms of A. fumigatus and P. aeruginosa (carbapenem-resistant and susceptible strains) determining total biomass by crystal violet, cell viability by colony forming unit count, and microscopy. Polymyxin B (PMB) had the best action on P. aeruginosa biofilms inhibiting the biomass (2-4 μg/mL) and it was efficient reducing the viable bacterial cells. Amphotericin B (AMB) and caspofungin (CAS) were the best antifungal at inhibiting A. fumigatus biofilms and reducing fungal viability at concentration ≥1 and ≥ 16 μg/mL, respectively. In addition, CAS was able to significantly reduce P. aeruginosa viability in mixed biofilms. CAS combined with PMB also significantly reduced the mixed biofilm biomass and fungal and bacterial viability mainly against carbapenem-resistant bacterium. The light and fluorescence microscopy showed alterations on hyphae morphology and confirmed the increase of fungal and bacterial death cells after combined therapy of mixed biofilms. Taken together, our work showed that CAS alone and its combination with PMB showed better potential in reducing mixed biofilm biomass and fungal and bacterial viability, even for the carbapenem-resistant P. aeruginosa strain.
Collapse
Affiliation(s)
- Bruna Nakanishi Fortes
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| | - Gaby Scheunemann
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| | - Analy Salles de Azevedo Melo
- Department of Medicine, Federal University of São Paulo, Botucatu Street, 720 - 04039-032, São Paulo/SP, Brazil.
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| |
Collapse
|
9
|
Havenga B, Reyneke B, Ndlovu T, Khan W. Genotypic and phenotypic comparison of clinical and environmental Acinetobacter baumannii strains. Microb Pathog 2022; 172:105749. [PMID: 36087691 DOI: 10.1016/j.micpath.2022.105749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
The genotypic and phenotypic characteristics and antibiotic resistance (antibiogram) profiles of clinical (n = 13) and environmental (n = 7) Acinetobacter baumannii isolates were compared. Based on the Repetitive Extragenic Palindromic Sequence-based PCR (REP-PCR) analysis, the clinical and environmental A. baumannii isolates shared low genetic relatedness (∼60%). Multilocus sequence typing (MLST, Oxford scheme) indicated that the clinical A. baumannii were assigned to three sequence types (ST231, ST945 and ST848), while the environmental A. baumannii (excluding AB 14) were categorised into the novel ST2520. The majority of the clinical (excluding AB 5, CAB 11, CAC 37) and environmental (excluding AB 14 and AB 16) A. baumannii strains were then capable of phase variation with both the translucent (71.4%; 15/21) and opaque (95.2%; 20/21) colony phenotypes detected. The clinical isolates however, exhibited significantly (p < 0.05) higher biofilm formation capabilities (OD570: 2.094 ± 0.497). Moreover, the clinical isolates exhibited significantly (p < 0.05) higher resistance to first line antibiotics, with 92.3% (12/13) characterised as extensively drug resistant (XDR), whereas environmental A. baumannii exhibited increased antibiotic susceptibility with only 57.1% (4/7) characterised as multidrug resistant (MDR). The environmental isolate AB 14 was however, characterised as XDR. In addition, only five clinical A. baumannii isolates exhibited colistin resistance (38.5%; 5/13). The current study highlighted the differences in the genotypic, phenotypic, and antibiotic resistance profiles of clinical and environmental A. baumannii. Moreover, the environmental strains were assigned to the novel ST2520, which substantiates the existence of this opportunistic pathogen in extra-hospital reservoirs.
Collapse
Affiliation(s)
- Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, 0022, Gaborone, Botswana
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
10
|
Abbassi MS, Badi S, Lengliz S, Mansouri R, Hammami S, Hynds P. Hiding in plain sight - Wildlife as a neglected reservoir and pathway for the spread of antimicrobial resistance: A narrative review. FEMS Microbiol Ecol 2022; 98:6568898. [DOI: 10.1093/femsec/fiac045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Antimicrobial resistance represents a global health problem, with infections due to pathogenic antimicrobial resistant bacteria (ARB) predicted to be the most frequent cause of human mortality by 2050. The phenomenon of antimicrobial resistance has spread to and across all ecological niches, and particularly in livestock used for food production with antimicrobials consumed in high volumes. Similarly, hospitals and other healthcare facilities are recognized as significant “hotspots” of ARB and antimicrobial resistance genes (ARGs); however, over the past decade, new and previously overlooked ecological niches are emerging as hidden reservoirs of ARB/ARGs. Increasingly extensive and intensive industrial activities, degradation of natural environments, burgeoning food requirements, urbanization, and global climatic change have all dramatically affected the evolution and proliferation of ARB/ARGs, which now stand at extremely concerning ecological levels. While antimicrobial resistant bacteria and genes as they originate and emanate from livestock and human hosts have been extensively studied over the past 30 years, numerous ecological niches have received considerably less attention. In the current descriptive review, the authors have sought to highlight the importance of wildlife as sources/reservoirs, pathways and receptors of ARB/ARGs in the environment, thus paving the way for future primary research in these areas.
Collapse
Affiliation(s)
- Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia
| | - Souhir Badi
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Sana Lengliz
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Riadh Mansouri
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Salah Hammami
- Université Manouba, IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Ariana, Tunisia
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Grangegorman, Dublin 7, Dublin, Republic of Ireland
| |
Collapse
|
11
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Anthropogenic Activities and the Problem of Antibiotic Resistance in Latin America: A Water Issue. WATER 2021. [DOI: 10.3390/w13192693] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibiotics revolutionized modern medicine and have been an excellent tool to fight infections. However, their overuse and misuse in different human activities such as health care, food production and agriculture has resulted in a global antimicrobial resistance crisis. Some regions such as Latin America present a more complex scenario because of the lack of resources, systematic studies and legislation to control the use of antimicrobials, thus increasing the spread of antibiotic resistance. This review aims to summarize the state of environmental antibiotic resistance in Latin America, focusing on water resources. Three databases were searched to identify publications on antimicrobial resistance and anthropogenic activities in relation to natural and artificial water ecosystems. We found that antibiotic resistant bacteria, mainly against beta lactam antibiotics, have been reported in several Latin American countries, and that resistant bacteria as well as resistant genes can be isolated from a wide variety of aquatic environments, including drinking, surface, irrigation, sea and wastewater. It is urgent to establish policies and regulations for antibiotic use to prevent the increase of multi-drug resistant microorganisms in the environment.
Collapse
|
13
|
Esposito F, Cardoso B, Fontana H, Fuga B, Cardenas-Arias A, Moura Q, Fuentes-Castillo D, Lincopan N. Genomic Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated From Urban Rivers Confirms Spread of Clone Sequence Type 277 Carrying Broad Resistome and Virulome Beyond the Hospital. Front Microbiol 2021; 12:701921. [PMID: 34539602 PMCID: PMC8446631 DOI: 10.3389/fmicb.2021.701921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The dissemination of antibiotic-resistant priority pathogens beyond hospital settings is both a public health and an environmental problem. In this regard, high-risk clones exhibiting a multidrug-resistant (MDR) or extensively drug-resistant (XDR) phenotype have shown rapid adaptation at the human-animal-environment interface. In this study, we report genomic data and the virulence potential of the carbapenemase, São Paulo metallo-β-lactamase (SPM-1)-producing Pseudomonas aeruginosa strains (Pa19 and Pa151) isolated from polluted urban rivers, in Brazil. Bioinformatic analysis revealed a wide resistome to clinically relevant antibiotics (carbapenems, aminoglycosides, fosfomycin, sulfonamides, phenicols, and fluoroquinolones), biocides (quaternary ammonium compounds) and heavy metals (copper), whereas the presence of exotoxin A, alginate, quorum sensing, types II, III, and IV secretion systems, colicin, and pyocin encoding virulence genes was associated with a highly virulent behavior in the Galleria mellonella infection model. These results confirm the spread of healthcare-associated critical-priority P. aeruginosa belonging to the MDR sequence type 277 (ST277) clone beyond the hospital, highlighting that the presence of these pathogens in environmental water samples can have clinical implications for humans and other animals.
Collapse
Affiliation(s)
- Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Cardenas-Arias
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Diversity and Distribution of Resistance Markers in Pseudomonas aeruginosa International High-Risk Clones. Microorganisms 2021; 9:microorganisms9020359. [PMID: 33673029 PMCID: PMC7918723 DOI: 10.3390/microorganisms9020359] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa high-risk clones are disseminated worldwide and they are common causative agents of hospital-acquired infections. In this review, we will summarize available data of high-risk P. aeruginosa clones from confirmed outbreaks and based on whole-genome sequence data. Common feature of high-risk clones is the production of beta-lactamases and among metallo-beta-lactamases NDM, VIM and IMP types are widely disseminated in different sequence types (STs), by contrast FIM type has been reported in ST235 in Italy, whereas GIM type in ST111 in Germany. In the case of ST277, it is most frequently detected in Brazil and it carries a resistome linked to blaSPM. Colistin resistance develops among P. aeruginosa clones in a lesser extent compared to other resistance mechanisms, as ST235 strains remain mainly susceptible to colistin however, some reports described mcr positive P. aeurigonsa ST235. Transferable quinolone resistance determinants are detected in P. aeruginosa high-risk clones and aac(6′)-Ib-cr variant is the most frequently reported as this determinant is incorporated in integrons. Additionally, qnrVC1 was recently detected in ST773 in Hungary and in ST175 in Spain. Continuous monitoring and surveillance programs are mandatory to track high-risk clones and to analyze emergence of novel clones as well as novel resistance determinants.
Collapse
|
15
|
Fernandes L, Fortes BN, Lincopan N, Ishida K. Caspofungin and Polymyxin B Reduce the Cell Viability and Total Biomass of Mixed Biofilms of Carbapenem-Resistant Pseudomonas aeruginosa and Candida spp. Front Microbiol 2020; 11:573263. [PMID: 33391197 PMCID: PMC7772422 DOI: 10.3389/fmicb.2020.573263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa and Candida spp. are biofilm-forming pathogens commonly found colonizing medical devices, being mainly associated with pneumonia and bloodstream infections. The coinfection by these pathogens presents higher mortality rates when compared to those caused by a single microbial species. This study aimed to evaluate the antibiofilm activity of echinocandins and polymyxin B (PMB) against polymicrobial biofilms of carbapenem-resistant (CR) Pseudomonas aeruginosa and Candida spp. (C. albicans, C. parapsilosis, C. tropicalis, and C. glabrata). In addition, we tested the antimicrobial effect on their planktonic and monomicrobial biofilm counterparties. Interestingly, beyond inhibition of planktonic [minimum inhibitory concentration (MIC) = 0.5 μg/ml] and biofilm [minimum biofilm inhibitory concentration (MBIC)50 ≤ 2–8 μg/ml] growth of P. aeruginosa, PMB was also effective against planktonic cells of C. tropicalis (MIC = 2 μg/ml), and polymicrobial biofilms of CR P. aeruginosa with C. tropicalis (MBIC50 ≤ 2 μg/ml), C. parapsilosis (MBIC50 = 4–16 μg/ml), C. glabrata (MBIC50 = 8–16 μg/ml), or C. albicans (MBIC50 = 8–64 μg/ml). On the other hand, while micafungin (MFG) showed highest inhibitory activity against planktonic (MIC ≤ 0.008–0.5 μg/ml) and biofilm (MBIC50 ≤ 2–16 μg/ml) growth of Candida spp.; caspofungin (CAS) displays inhibitory activity against planktonic cells (MIC = 0.03–0.25 μg/ml) and monomicrobial biofilms (MBIC50 ≤ 2–64 μg/ml) of Candida spp., and notably on planktonic and monomicrobial biofilms of CR P. aeruginosa (MIC or MBIC50 ≥ 64 μg/ml). Particularly, for mixed biofilms, while CAS reduced significantly viable cell counts of CR P. aeruginosa and Candida spp. at ≥32 and ≥ 2 μg/ml, respectively; PMB was effective in reducing viable cells of CR P. aeruginosa at ≥2 μg/ml and Candida spp. at ≥8 μg/ml. Similar reduction of viable cells was observed for CAS (32–64 μg/ml) combined with PMB (2 μg/ml). These findings highlight the potential of PMB and CAS for the treatment of polymicrobial infections caused by Candida spp. and critical priority CR P. aeruginosa.
Collapse
Affiliation(s)
- Luciana Fernandes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Nakanishi Fortes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Narciso AC, Martins WMBS, Almeida LGP, Cayô R, Santos SV, Ramos PL, Lincopan N, Vasconcelos ATR, Gales AC. Healthcare-associated carbapenem-resistant OXA-72-producing Acinetobacter baumannii of the clonal complex CC79 colonizing migratory and captive aquatic birds in a Brazilian Zoo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138232. [PMID: 32304941 DOI: 10.1016/j.scitotenv.2020.138232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Carbapenem resistance in Acinetobacter baumannii is a public health issue globally, mainly due to the production of carbapenem hydrolyzing class D β-lactamases (CHDLs). In Brazil, OXA-23 and OXA-143 CHDLs have been prevalent in A. baumannii from clinical settings, with some OXA-23 reports in the environmental samples, whereas OXA-72 has begun to be increasingly reported. This study aims to perform the genomic and microbiological characterization of carbapenem-resistant A. baumannii isolates recovered from migratory birds and captive birds inhabiting a lake within a Brazilian Zoo. Four hundred and eighty-one gram-negative bacilli were recovered from choanal and cloacal swabs obtained from 50 migratory birds and 37 captive birds present at the zoo's lake between July and August of 2012. Among all GNB, nine OXA-72-producing A. baumannii were detected from the microbiota of four migratory and five captive aquatic birds. The OXA-72-producing A. baumannii isolates were submitted to antimicrobial susceptibility test and PFGE, exhibiting a multidrug-resistant profile and clonal relatedness with OXA-72-positive human isolates circulating for eighteen years in a hospital setting. MLST, plasmid analysis and whole-genome sequencing revealed which all carbapenem-resistant A. baumannii from bird and human hosts belonged to clonal complex 79, and harboured a small plasmid (⁓16.6-kb in size), named pAC1-BRL, which carried blaOXA-72 gene, macrolide resistance genes msrE and mphE, and the toxin-antitoxin system AbkAB. To determine the impact of pAC1-BRL acquisition in the the capacity of a microorganism to survive in a competitive environment (in the following called fitness), the laboratory strain A. baumannii ATCC 19606 was used in the fitness experiments and suggested an increase of its relative fitness after the pAC1-BRL acquisition. In summary, the detection of OXA-72-producing A. baumannii strains belonging to CC79 in aquatic birds is a piece of epidemiological evidence demonstrating that dissemination of high-risk bacteria is extending beyond the hospital.
Collapse
Affiliation(s)
- Ana Clara Narciso
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Willames M B S Martins
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil.
| | - Luiz G P Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica - LNCC, Petrópolis, Brazil
| | - Rodrigo Cayô
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Laboratório de Bacteriologia e Imunologia, Diadema, SP, Brazil
| | - Stéfanie Vanessa Santos
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Patrícia Locosque Ramos
- Departamento de Pesquisas Aplicadas, Fundação Parque Zoológico de São Paulo - FPZSP, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, Brazil
| | - Ana Tereza R Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica - LNCC, Petrópolis, Brazil
| | - Ana Cristina Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| |
Collapse
|
17
|
Leal NC, Campos TL, Rezende AM, Docena C, Mendes-Marques CL, de Sá Cavalcanti FL, Wallau GL, Rocha IV, Cavalcanti CLB, Veras DL, Alves LR, Andrade-Figueiredo M, de Barros MPS, de Almeida AMP, de Morais MMC, Leal-Balbino TC, Xavier DE, de-Melo-Neto OP. Comparative Genomics of Acinetobacter baumannii Clinical Strains From Brazil Reveals Polyclonal Dissemination and Selective Exchange of Mobile Genetic Elements Associated With Resistance Genes. Front Microbiol 2020; 11:1176. [PMID: 32655514 PMCID: PMC7326025 DOI: 10.3389/fmicb.2020.01176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen infecting immunocompromised patients and has gained attention worldwide due to its increased antimicrobial resistance. Here, we report a comparative whole-genome sequencing and analysis coupled with an assessment of antibiotic resistance of 46 Acinetobacter strains (45 A. baumannii plus one Acinetobacter nosocomialis) originated from five hospitals from the city of Recife, Brazil, between 2010 and 2014. An average of 3,809 genes were identified per genome, although only 2,006 genes were single copy orthologs or core genes conserved across all sequenced strains, with an average of 42 new genes found per strain. We evaluated genetic distance through a phylogenetic analysis and MLST as well as the presence of antibiotic resistance genes, virulence markers and mobile genetic elements (MGE). The phylogenetic analysis recovered distinct monophyletic A. baumannii groups corresponding to five known (ST1, ST15, ST25, ST79, and ST113) and one novel ST (ST881, related to ST1). A large number of ST specific genes were found, with the ST79 strains having the largest number of genes in common that were missing from the other STs. Multiple genes associated with resistance to β-lactams, aminoglycosides and other antibiotics were found. Some of those were clearly mapped to defined MGEs and an analysis of those revealed known elements as well as a novel Tn7-Tn3 transposon with a clear ST specific distribution. An association of selected resistance/virulence markers with specific STs was indeed observed, as well as the recent spread of the OXA-253 carbapenemase encoding gene. Virulence genes associated with the synthesis of the capsular antigens were noticeably more variable in the ST113 and ST79 strains. Indeed, several resistance and virulence genes were common to the ST79 and ST113 strains only, despite a greater genetic distance between them, suggesting common means of genetic exchange. Our comparative analysis reveals the spread of multiple STs and the genomic plasticity of A. baumannii from different hospitals in a single metropolitan area. It also highlights differences in the spread of resistance markers and other MGEs between the investigated STs, impacting on the monitoring and treatment of Acinetobacter in the ongoing and future outbreaks.
Collapse
Affiliation(s)
- Nilma C Leal
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Túlio L Campos
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Antonio M Rezende
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Cássia Docena
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | | - Felipe L de Sá Cavalcanti
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil.,Department of Pathology, Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Gabriel L Wallau
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Igor V Rocha
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | | - Dyana L Veras
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Lilian R Alves
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | - Danilo E Xavier
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | |
Collapse
|
18
|
Silveira MC, Rocha-de-Souza CM, Albano RM, de Oliveira Santos IC, Carvalho-Assef APD. Exploring the success of Brazilian endemic clone Pseudomonas aeruginosa ST277 and its association with the CRISPR-Cas system type I-C. BMC Genomics 2020; 21:255. [PMID: 32293244 PMCID: PMC7092672 DOI: 10.1186/s12864-020-6650-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Brazilian endemic clone Pseudomonas aeruginosa ST277 carries important antibiotic resistance determinants, highlighting the gene coding for SPM-1 carbapenemase. However, the resistance and persistence of this clone is apparently restricted to the Brazilian territory. To understand the differences between Brazilian strains from those isolated in other countries, we performed a phylogenetic analysis of 47 P. aeruginosa ST277 genomes as well as analyzed the virulence and resistance gene profiles. Furthermore, we evaluated the distribution of genomic islands and assessed in detail the characteristics of the CRISPR-Cas immunity system in these isolates. RESULTS The Brazilian genomes presented a typical set of resistance and virulence determinants, genomic islands and a high frequency of the CRISPR-Cas system type I-C. Even though the ST277 genomes are closely related, the phylogenetic analysis showed that the Brazilian strains share a great number of exclusively SNPs when compared to other ST277 genomes. We also observed a standard CRISPR spacers content for P. aeruginosa ST277, confirming a strong link between sequence type and spacer acquisition. Most CRISPR spacer targets were phage sequences. CONCLUSIONS Based on our findings, P. aeruginosa ST277 strains circulating in Brazil characteristically acquired In163 and PAGI-25, which can distinguish them from strains that do not accumulate resistance mechanisms and can be found on the Asian, European and North American continents. The distinctive genetic elements accumulated in Brazilian samples can contribute to the resistance, pathogenicity and transmission success that characterize the ST277 in this country.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, andar 4, Vila Isabel, Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil
| | - Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
19
|
Makowska N, Philips A, Dabert M, Nowis K, Trzebny A, Koczura R, Mokracka J. Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome. WATER RESEARCH 2020; 170:115277. [PMID: 31756613 DOI: 10.1016/j.watres.2019.115277] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 05/06/2023]
Abstract
The emergence and spread of resistance to antibiotics among bacteria is the most serious global threat to public health in recent and coming decades. In this study, we characterized qualitatively and quantitatively β-lactamase and carbapenemase genes in the wastewater resistome of Central Wastewater Treatment Plant in Koziegłowy, Poland. The research concerns determination of the frequency of genes conferring resistance to β-lactam and carbapenem antibiotics in the genomes of culturable bacteria, as well as in the wastewater metagenome at three stages of treatment: raw sewage, aeration tank, and final effluent. In the final effluent we found bacteria with genes that pose the greatest threat to public health, including genes of extended spectrum β-lactamases - blaCTX-M, carbapenemases - blaNDM, blaVIM, blaGES, blaOXA-48, and showed that during the wastewater treatment their frequency increased. Moreover, the wastewater treatment process leads to significant increase in the relative abundance of blaTEM and blaGES genes and tend to increase the relative abundance of blaCTX-M, blaSHV and blaOXA-48 genes in the effluent metagenome. The biodiversity of bacterial populations increased during the wastewater treatment and there was a correlation between the change in the composition of bacterial populations and the variation of relative abundance of β-lactamase and carbapenemase genes. PCR-based quantitative metagenomic analysis combined with analyses based on culture methods provided significant information on the routes of ARBs and ARGs spread through WWTP. The limited effectiveness of wastewater treatment processes in the elimination of antibiotic-resistant bacteria and resistance genes impose the need to develop an effective strategy and implement additional methods of wastewater disinfection, in order to limit the increase and the spread of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Nicoletta Makowska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Anna Philips
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mirosława Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Katarzyna Nowis
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.
| |
Collapse
|
20
|
da Silva KE, Maciel WG, Croda J, Cayô R, Ramos AC, de Sales RO, Kurihara MNL, Vasconcelos NG, Gales AC, Simionatto S. A high mortality rate associated with multidrug-resistant Acinetobacter baumannii ST79 and ST25 carrying OXA-23 in a Brazilian intensive care unit. PLoS One 2018; 13:e0209367. [PMID: 30592758 PMCID: PMC6310363 DOI: 10.1371/journal.pone.0209367] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
The global spread of carbapenem-resistant Acinetobacter baumannii (A. baumannii) strains has restricted the therapeutic options available to treat infections due to this pathogen. Understanding the prevalence of such infections and the underlying genetic mechanisms of resistance may help in the implementation of adequate measures to control and prevent acquisition of nosocomial infections, especially in an intensive care unit setting. This study describes the molecular characteristics and risk factors associated with OXA-23-producing A. baumannii infections. A case-control study was undertaken from September/2013 to April/2015. Acquisition of OXA-23-producing A. baumannii was found to be associated with the use of nasogastric tubes, haemodialysis, and the use of cephalosporins. These isolates were only susceptible to amikacin, gentamicin, tigecycline, and colistin, and contained the ISAba1 insertion sequence upstream ofblaOXA-23 and blaOXA-51 genes. Twenty-six OXA-23-producing A. baumannii strains belonged to the ST79 (CC79) clonal group,and patients infected or colonised by these isolates had a higher mortality rate (34.6%). In conclusion, this study showed a dissemination of OXA-23-producing A. baumannii strains that was associated with several healthcare-related risk factors and high mortality rates among intensive care unit patients.
Collapse
Affiliation(s)
- Kesia Esther da Silva
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados—Mato Grosso do Sul, Brazil
| | - Wirlaine Glauce Maciel
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados—Mato Grosso do Sul, Brazil
| | - Julio Croda
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados—Mato Grosso do Sul, Brazil
- Fundação Osvaldo Cruz—FIOCRUZ, Campo Grande—Mato Grosso do Sul, Brazil
- Faculdade de Medicina, Universidade Federal da Grande Dourados—UFGD, Dourados—Mato Grosso do Sul, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo—UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina—EPM, São Paulo—SP, Brazil
| | - Ana Carolina Ramos
- Universidade Federal de São Paulo—UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina—EPM, São Paulo—SP, Brazil
| | - Romário Oliveira de Sales
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados—Mato Grosso do Sul, Brazil
| | - Mariana Neri Lucas Kurihara
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados—Mato Grosso do Sul, Brazil
| | - Nathalie Gaebler Vasconcelos
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados—Mato Grosso do Sul, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo—UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina—EPM, São Paulo—SP, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados—UFGD, Dourados—Mato Grosso do Sul, Brazil
- * E-mail:
| |
Collapse
|
21
|
Distribution and Genotyping of Aquatic Acinetobacter baumannii Strains Isolated from the Puzi River and Its Tributaries Near Areas of Livestock Farming. WATER 2018. [DOI: 10.3390/w10101374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acinetobacter baumannii is an important health care-associated bacterium and a common multidrug-resistant pathogen. The use of antibiotics in the husbandry industry has raised concerns about drug-resistant A. baumannii strains, which may affect humans. This study aimed to investigate the seasonal distribution of A. baumannii in aquatic environments near areas of livestock farming. The geographic distribution, antibiotic resistance characteristic, and DNA fingerprinting genotype of A. baumannii were also studied. The results showed that environmental A. baumannii was prevalent during the summer and autumn. The hotspots for A. baumannii were found at the sampling sites of livestock wastewater channels (21.4%; 3/14) and the tributaries adjacent to livestock farms (15.4%; 2/13). The prevalence of A. baumannii at these locations was significantly higher than those adjacent to the Puzi River. Multidrug-resistant strain of A. baumannii was not found in this study, with only one strain (5%; 1/20) being resistant to tetracycline. Of the isolates that were obtained, 10% (2/20) and 20% (4/20) were found to be intermediately resistant to tetracycline and sulphamethoxazole/trimethoprim, respectively. The genotyping patterns and clustering analysis indicated that enterobacterial repetitive intergenic consensus sequence polymerase chain reaction (ERIC-PCR) differentiated A. baumannii strains effectively. There were two major clusters that could then be subtyped into 20 A. baumannii strains with 15 profiles. The A. baumannii strains that were isolated from upstream of the Puzi River and livestock wastewater channels were composed of Cluster I. Cluster II only contained isolates from downstream of the Puzi River area. Furthermore, isolates from adjacent sites were shown to have identical profiles (100%). These results suggest that A. baumannii may have spread through free-flowing water in this study. Therefore, we propose that livestock wastewater is one of the sources that contribute to A. baumannii pollution in water bodies. In summary, continuous monitoring of antibiotic pollution in livestock wastewater is required.
Collapse
|
22
|
Nascimento T, Cantamessa R, Melo L, Fernandes MR, Fraga E, Dropa M, Sato MIZ, Cerdeira L, Lincopan N. International high-risk clones of Klebsiella pneumoniae KPC-2/CC258 and Escherichia coli CTX-M-15/CC10 in urban lake waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:910-915. [PMID: 28458208 DOI: 10.1016/j.scitotenv.2017.03.207] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The emergence of high-risk clones of multidrug-resistant (MDR) bacteria in aquatic environments has generated an important public health problem, creating an urgent need to strengthen surveillance. This study reports the occurrence of clinically significant MDR Enterobacteriaceae and non-fermentative bacteria carrying carbapenemases (KPC-2), extended-spectrum β-lactamases (CTX-M) and plasmid-mediated quinolone resistance (PMQR) genes in urban lakes and reservoirs, in Southeastern Brazil. In this regard, the detection of hospital-associated lineages of KPC-2-producing Klebsiella pneumoniae belonging to the international clonal complex CC258 (ST11) and CTX-M-15-producing Escherichia coli belonging to the international CC10 (ST617), in an urban lake, is reported for the first time. Whole genome sequencing (WGS) analysis of KPC-2-producing K. pneumoniae ST11 revealed that blaKPC-2 gene was carried by an IncN plasmid on a Tn4401b element. This study support that aquatic environments with public access can act as reservoirs of clinically important MDR bacteria, constituting a potential risk to human and animal health. On the other hand, the detection of high-risk clones highlights the extra-hospital spread of clinically significant bacteria into urban aquatic environments.
Collapse
Affiliation(s)
- Tatiane Nascimento
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Cantamessa
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Luana Melo
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam R Fernandes
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Edmir Fraga
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Milena Dropa
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Maria I Z Sato
- Environmental Company of São Paulo State (CETESB), São Paulo, Brazil
| | - Louise Cerdeira
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Martins WMBS, Narciso AC, Cayô R, Santos SV, Fehlberg LCC, Ramos PL, da Cruz JB, Gales AC. SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from microbiota of migratory birds. Diagn Microbiol Infect Dis 2017; 90:221-227. [PMID: 29224710 DOI: 10.1016/j.diagmicrobio.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
The production of São Paulo metallo-β-lactamase (SPM-1) is the most common carbapenem resistance mechanism detected among multidrug-resistant Pseudomonas aeruginosa clinical isolates in Brazil. Dissemination of SPM-1-producing P. aeruginosa has been restricted to the nosocomial settings, with sporadic reports of environmental isolates due to contamination by hospital sewage. Herein, we described the detection and molecular characterization of SPM-1-producing P. aeruginosa recovered from the microbiota of migratory birds in Brazil. Three hundred gram-negative bacilli were recovered from cloacal and choanal swabs of Dendrocygna viduata during a surveillance study for detection of carbapenem-resistant isolates. All isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. MICs were determined by agar dilution, except for polymyxin B. Antibiotic resistance genes were detected by polymerase chain reaction (PCR) followed by DNA sequencing. Transcriptional levels of oprD and efflux system encoding genes were also carried out by quantitative real-time PCR. Nine imipenem-resistant P. aeruginosa isolates were recovered with 7 of them carrying blaSPM-1. Additional resistance genes (rmtD-1, blaOXA-56,aacA4, and aac(6')-Ib-cr) were also detected in all 9 isolates. The SPM-1-producing isolates showed high MICs for all β-lactams, fluoroquinolones, and aminoglycosides, being susceptible only to polymyxin B. Interestingly, all isolates showed the same PFGE pattern and belonged to ST277. Overexpression of MexXY-OprM and MexAB-OprM was observed in those isolates that did not harbor blaSPM-1. Our results suggest that migratory birds might have played a role in the dissemination of SPM-1-producing P. aeruginosa within the Brazilian territory.
Collapse
Affiliation(s)
- Willames M B S Martins
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil.
| | - Ana Clara Narciso
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Rodrigo Cayô
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Stéfanie Vanessa Santos
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Lorena C C Fehlberg
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Patrícia Locosque Ramos
- Departamento de Pesquisas Aplicadas, Fundação Parque Zoológico de São Paulo, São Paulo, SP, Brazil
| | | | - Ana Cristina Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| |
Collapse
|
24
|
Abboud MI, Hinchliffe P, Brem J, Macsics R, Pfeffer I, Makena A, Umland KD, Rydzik AM, Li GB, Spencer J, Claridge TDW, Schofield CJ. 19
F-NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metallo-β-Lactamase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martine I. Abboud
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine; University of Bristol; Bristol UK
| | - Jürgen Brem
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Robert Macsics
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Inga Pfeffer
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Anne Makena
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Klaus-Daniel Umland
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Anna M. Rydzik
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Guo-Bo Li
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - James Spencer
- School of Cellular and Molecular Medicine; University of Bristol; Bristol UK
| | | | | |
Collapse
|
25
|
Abboud MI, Hinchliffe P, Brem J, Macsics R, Pfeffer I, Makena A, Umland KD, Rydzik AM, Li GB, Spencer J, Claridge TDW, Schofield CJ. 19 F-NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metallo-β-Lactamase. Angew Chem Int Ed Engl 2017; 56:3862-3866. [PMID: 28252254 PMCID: PMC5396265 DOI: 10.1002/anie.201612185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/16/2016] [Indexed: 01/19/2023]
Abstract
Resistance to β‐lactam antibiotics mediated by metallo‐β‐lactamases (MBLs) is a growing problem. We describe the use of protein‐observe 19F‐NMR (PrOF NMR) to study the dynamics of the São Paulo MBL (SPM‐1) from β‐lactam‐resistant Pseudomonas aeruginosa. Cysteinyl variants on the α3 and L3 regions, which flank the di‐ZnII active site, were selectively 19F‐labeled using 3‐bromo‐1,1,1‐trifluoroacetone. The PrOF NMR results reveal roles for the mobile α3 and L3 regions in the binding of both inhibitors and hydrolyzed β‐lactam products to SPM‐1. These results have implications for the mechanisms and inhibition of MBLs by β‐lactams and non‐β‐lactams and illustrate the utility of PrOF NMR for efficiently analyzing metal chelation, identifying new binding modes, and studying protein binding from a mixture of equilibrating isomers.
Collapse
Affiliation(s)
- Martine I Abboud
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Robert Macsics
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Inga Pfeffer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anne Makena
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Klaus-Daniel Umland
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anna M Rydzik
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Guo-Bo Li
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | | |
Collapse
|
26
|
Tn 6350, a Novel Transposon Carrying Pyocin S8 Genes Encoding a Bacteriocin with Activity against Carbapenemase-Producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:AAC.00100-17. [PMID: 28242657 DOI: 10.1128/aac.00100-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 11/20/2022] Open
Abstract
A novel transposon belonging to the Tn3-like family was identified on the chromosome of a commensal strain of Pseudomonas aeruginosa sequence type 2343 (ET02). Tn6350 is 7,367 bp long and harbors eight open reading frames (ORFs), an ATPase (IS481 family), a transposase (DDE catalytic type), a Tn3 resolvase, three hypothetical proteins, and genes encoding the new pyocin S8 with its immunity protein. We show that pyocin S8 displays activity against carbapenemase-producing P. aeruginosa, including IMP-1, SPM-1, VIM-1, GES-5, and KPC-2 producers.
Collapse
|