1
|
Fan C, Yang Y, You M, Chen Z, Jiang J. Mefunidone Inhibits Inflammation, Oxidative Stress, and Epithelial-Mesenchymal Transition in Lens Epithelial Cells. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 39652067 PMCID: PMC11629908 DOI: 10.1167/iovs.65.14.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Inflammation, oxidative stress, and epithelial-mesenchymal transition (EMT) play crucial roles in forming posterior capsular opacification (PCO), particularly in fibrotic PCO. Here we investigated the protective effects of mefunidone (MFD), a novel compound with potent antifibrotic properties, which could be useful in preventing PCO. Methods We utilized an extracapsular lens extraction (ECLE) surgery in mice to simulate the development of PCO in vivo. Treatment was performed immediately postsurgery through the intracameral injection of MFD solution. Expression levels of EMT and inflammatory markers were analyzed using Western blot, qRT-PCR, immunofluorescence, and hematoxylin and eosin staining. Additionally, the oxidative stress indicator malondialdehyde and glutathione expression were monitored to assess the oxidative stress response. In vitro experiments, TGF-β2, and H2O2 were used to treat lens epithelial cells to induce EMT and oxidative stress models, respectively. These models were employed to explore the effects of MFD and investigate its underlying mechanisms. Results Compared to the model group, the group treated with anterior chamber MFD injection effectively suppressed inflammation, oxidative stress, and fibrotic responses within the capsular bag after ECLE and partially inhibited the downregulation of the epithelial marker E-cadherin. To further elucidate the underlying mechanisms, we discovered that MFD treatment in vitro remarkably reduced inflammation, decreased the production of reactive oxygen species, and suppressed the phosphorylation of TGF-β/SMAD as well as MAPK/ERK, thereby inhibiting the occurrence of EMT. Conclusions Our findings substantiate the efficacy of MFD in treating PCO and provide insights into its potential mechanisms of action.
Collapse
Affiliation(s)
- Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Fan C, Wang C, Wang Y, Jiang J. Transcriptome exploration of ferroptosis-related genes in TGFβ- induced lens epithelial to mesenchymal transition during posterior capsular opacification development. BMC Genomics 2024; 25:352. [PMID: 38594623 PMCID: PMC11003017 DOI: 10.1186/s12864-024-10244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Posterior capsular opacification (PCO) is the main reason affecting the long-term postoperative result of cataract patient, and it is well accepted that fibrotic PCO is driven by transforming growth factor beta (TGFβ) signaling. Ferroptosis, closely related to various ocular diseases, but has not been explored in PCO. METHODS RNA sequencing (RNA-seq) was performed on both TGF-β2 treated and untreated primary lens epithelial cells (pLECs). Differentially expressed genes (DEGs) associated with ferroptosis were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to investigate their biological function. Additionally, protein-to-protein interactions among selected ferroptosis-related genes by PPI network and the top 10 genes with the highest score (MCC algorithm) were selected as the hub genes. The top 20 genes with significant fold change values were validated using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our analysis revealed 1253 DEGs between TGF-β2 treated and untreated pLECs, uncovering 38 ferroptosis-related genes between two groups. Among these 38 ferroptosis-related genes,the most prominent GO enrichment analysis process involved in the response to oxidative stress (BPs), apical part of cell (CCs),antioxidant activity (MFs). KEGG were mainly concentrated in fluid shear stress and atherosclerosis, IL-17 and TNF signaling pathways, and validation of top 20 genes with significant fold change value were consistent with RNA-seq. CONCLUSIONS Our RNA-Seq data identified 38 ferroptosis-related genes in TGF-β2 treated and untreated pLECs, which is the first observation of ferroptosis related genes in primary human lens epithelial cells under TGF-β2 stimulation.
Collapse
Affiliation(s)
- Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, USA
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
DeDreu J, Basta MD, Walker JL, Menko AS. Immune Responses Induced at One Hour Post Cataract Surgery Wounding of the Chick Lens. Biomolecules 2023; 13:1615. [PMID: 38002297 PMCID: PMC10668984 DOI: 10.3390/biom13111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
While the lens is an avascular tissue with an immune-privileged status, studies have now revealed that there are immune responses specifically linked to the lens. The response to lens injury, such as following cataract surgery, has been shown to involve the activation of the resident immune cell population of the lens and the induction of immunomodulatory factors by the wounded epithelium. However, there has been limited investigation into the immediate response of the lens to wounding, particularly those induced factors that are intrinsic to the lens and its associated resident immune cells. Using an established chick embryo ex vivo cataract surgery model has made it possible to determine the early immune responses of this tissue to injury, including its resident immune cells, through a transcriptome analysis. RNA-seq studies were performed to determine the gene expression profile at 1 h post wounding compared to time 0. The results provided evidence that, as occurs in other tissues, the resident immune cells of the lens rapidly acquired a molecular signature consistent with their activation. These studies also identified the expression of many inflammatory factors by the injured lens that are associated with both the induction and regulation of the immune response.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
| | - Morgan D. Basta
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
The Immediate Early Response of Lens Epithelial Cells to Lens Injury. Cells 2022; 11:cells11213456. [PMID: 36359852 PMCID: PMC9654717 DOI: 10.3390/cells11213456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Cataracts are treated by lens fiber cell removal followed by intraocular lens (IOL) implantation into the lens capsule. While effective, this procedure leaves behind numerous lens epithelial cells (LECs) which undergo a wound healing response that frequently leads to posterior capsular opacification (PCO). In order to elucidate the acute response of LECs to lens fiber cell removal which models cataract surgery (post cataract surgery, PCS), RNA-seq was conducted on LECs derived from wild type mice at 0 and 6 h PCS. This analysis found that LECs upregulate the expression of numerous proinflammatory cytokines and profibrotic regulators by 6 h PCS suggesting rapid priming of pathways leading to inflammation and fibrosis PCS. LECs also highly upregulate the expression of numerous immediate early transcription factors (IETFs) by 6 h PCS and immunolocalization found elevated levels of these proteins by 3 h PCS, and this was preceded by the phosphorylation of ERK1/2 in injured LECs. Egr1 and FosB were among the highest expressed of these factors and qRT-PCR revealed that they also upregulate in explanted mouse lens epithelia suggesting potential roles in the LEC injury response. Analysis of lenses lacking either Egr1 or FosB revealed that both genes may regulate a portion of the acute LEC injury response, although neither gene was essential for expression of either proinflammatory or fibrotic markers at later times PCS suggesting that IETFs may work in concert to mediate the LEC injury response following cataract surgery.
Collapse
|
6
|
Kaliyamoorthy V, Jacop JP, Thirugnanasambantham K, Ibrahim HIM, Kandhasamy S. The synergic impact of lignin and Lactobacillus plantarum on DSS-induced colitis model via regulating CD44 and miR 199a alliance. World J Microbiol Biotechnol 2022; 38:233. [PMID: 36222901 DOI: 10.1007/s11274-022-03424-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Chronic or recurrent immune system activation and inflammation inside the gastrointestinal tract is characterized by inflammatory bowel disease (IBD). Due to the lack of safety and efficacy of traditional medications, the use of food supplements for IBD management is on the rise. Numerous studies reported that, certain food supplements have a variety of therapeutic benefits for IBD. In the present study, a mouse model of IBD was used to the anti-colitis effects of lignin supplementation with Lactobacillus plantarum (L. plantarum) on intestinal inflammation. The animal model was treated with dextran sodium sulphate (DSS), the illness index increased, and colon length and body weight declined, but these effects were reversed when lignin and L. plantarum treated groups. In addition, lignin and L. plantarum supplementation inhibited the DSS induced increase in levels of cytokines TNF-α (250 pg/mL), INF-γ (180 pg/mL), IL-1β (70 pg/mL) and TGF- β (72 pg/mL). Gene and protein expression study revealed that Lignin and L. plantarum supplementation restored the expression of E-cad and suppressed the expression of STAT3 in DSS induced colitis model. Lignin and L. plantarum supplementation also suppressed CD44 expression (1.2 fold) by up regulating the expression of miR199a (1 fold) over DSS induced colitis. Our study suggests that Lactobacillus, lignin, and their synergistic treatments have protective roles against inflammatory bowel disease through changes in inflammatory cytokines, and miR 199a expression in DSS-induced colitis.
Collapse
Affiliation(s)
- Venugopal Kaliyamoorthy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Padalam, Chengalpattu, Tamilnadu, 603308, India
| | - Justin Packia Jacop
- Department of Biotechnology, St. Josephs' College of Engineering, Sholinganallur, Chennai, Tamilnadu, 600119, India
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, 605004, India.,Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Hairul Islam Mohamed Ibrahim
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, 605004, India.,Biology Department, College of Science, King Faisal University, Hofouf, Al Ahsa, Saudi Arabia
| | - Sivakumar Kandhasamy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Padalam, Chengalpattu, Tamilnadu, 603308, India.
| |
Collapse
|
7
|
Babst N, Isbell LK, Rommel F, Tura A, Ranjbar M, Grisanti S, Tschuch C, Schueler J, Doostkam S, Reinacher PC, Duyster J, Kakkassery V, von Bubnoff N. CXCR4, CXCR5 and CD44 May Be Involved in Homing of Lymphoma Cells into the Eye in a Patient Derived Xenograft Homing Mouse Model for Primary Vitreoretinal Lymphoma. Int J Mol Sci 2022; 23:11757. [PMID: 36233057 PMCID: PMC9569795 DOI: 10.3390/ijms231911757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Primary vitreoretinal lymphoma (PVRL), a rare malignancy of the eye, is strongly related to primary central nervous system lymphoma (PCNSL). We hypothesized that lymphoma cells disseminate to the CNS and eye tissue via distinct homing receptors. The objective of this study was to test expression of CXCR4, CXCR5, CXCR7 and CD44 homing receptors on CD20 positive B-lymphoma cells on enucleated eyes using a PCNSL xenograft mouse model. Methods: We used indirect immunofluorescence double staining for CD20/CXCR4, CD20/CXCR5, CD20/CXCR7 and CD20/CD44 on enucleated eyes of a PCNSL xenograft mouse model with PVRL phenotype (PCNSL group) in comparison to a secondary CNS lymphoma xenograft mouse model (SCNSL group). Lymphoma infiltration was evaluated with an immunoreactive score (IRS). Results: 11/13 paired eyes of the PCNSL but none of the SCNSL group were infiltrated by CD20-positive cells. Particularly the choroid and to a lesser extent the retina of the PCNSL group were infiltrated by CD20+/CXCR4+, CD20+/CXCR5+, few CD20+/CD44+ but no CD20+/CXCR7+ cells. Expression of CXCR4 (p = 0.0205), CXCR5 (p = 0.0004) and CD44 (p < 0.0001) was significantly increased in the PCNSL compared to the SCNSL group. Conclusions: CD20+ PCNSL lymphoma cells infiltrating the eye co-express distinct homing receptors such as CXCR4 and CXCR5 in a PVRL homing mouse model. These receptors may be involved in PVRL homing into the eye.
Collapse
Affiliation(s)
- Neele Babst
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Lisa K. Isbell
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Felix Rommel
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Aysegul Tura
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Cordula Tschuch
- Charles River Discovery Research Services GmbH, 79108 Freiburg, Germany
| | - Julia Schueler
- Charles River Discovery Research Services GmbH, 79108 Freiburg, Germany
| | - Soroush Doostkam
- Institute for Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Vinodh Kakkassery
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
8
|
Menko AS, Romisher A, Walker JL. The Pro-fibrotic Response of Mesenchymal Leader Cells to Lens Wounding Involves Hyaluronic Acid, Its Receptor RHAMM, and Vimentin. Front Cell Dev Biol 2022; 10:862423. [PMID: 35386200 PMCID: PMC8977891 DOI: 10.3389/fcell.2022.862423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Hyaluronic Acid/Hyaluronan (HA) is a major component of the provisional matrix deposited by cells post-wounding with roles both in regulating cell migration to repair a wound and in promoting a fibrotic outcome to wounding. Both are mediated through its receptors CD44 and RHAMM. We now showed that HA is present in the provisional matrix assembled on the substrate surface in a lens post-cataract surgery explant wound model in which mesenchymal leader cells populate the wound edges to direct migration of the lens epithelium across the adjacent culture substrate onto which this matrix is assembled. Inhibiting HA expression with 4-MU blocked assembly of FN-EDA and collagen I by the wound-responsive mesenchymal leader cells and their migration. These cells express both the HA receptors CD44 and RHAMM. CD44 co-localized with HA at their cell-cell interfaces. RHAMM was predominant in the lamellipodial protrusions extended by the mesenchymal cells at the leading edge, and along HA fibrils organized on the substrate surface. Within a few days post-lens wounding the leader cells are induced to transition to αSMA+ myofibroblasts. Since HA/RHAMM is implicated in both cell migration and inducing fibrosis we examined the impact of blocking HA synthesis on myofibroblast emergence and discovered that it was dependent on HA. While RHAMM has not been previously linked to the intermediate filament protein vimentin, our studies with these explant cultures have shown that vimentin in the cells’ lamellipodial protrusions regulate their transition to myofibroblast. PLA studies now revealed that RHAMM was complexed with both HA and vimentin in the lamellipodial protrusions of leader cells, implicating this HA/RHAMM/vimentin complex in the regulation of leader cell function post-wounding, both in promoting cell migration and in the transition of these cells to myofibroblasts. These results increase our understanding of how the post-wounding matrix environment interacts with receptor/cytoskeletal complexes to determine whether injury outcomes are regenerative or fibrotic.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alison Romisher
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The effect of sex on the mouse lens transcriptome. Exp Eye Res 2021; 209:108676. [PMID: 34146586 DOI: 10.1016/j.exer.2021.108676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The transcriptome of mammalian tissues differs between males and females, and these differences can change across the lifespan, likely regulating known sexual dimorphisms in disease prevalence and severity. Cataract, the most prevalent disease of the ocular lens, occurs at similar rates in young individuals, but its incidence is elevated in older women compared to men of the same age. However, the influence of sex on the lens transcriptome was unknown. RNAseq based transcriptomic profiling of young adult C57BL/6J mouse lens epithelial and fiber cells revealed that few genes are differentially expressed between the sexes. In contrast, lens cells from aged (24 month old) male and female C57BL/6J mice differentially expressed many genes, including several whose expression is lens preferred. Like cataracts, posterior capsular opacification (PCO), a major sequela of cataract surgery, may also be more prevalent in women. Lens epithelial cells isolated from mouse eyes 24 h after lens fiber cell removal exhibited numerous transcriptomic differences between the sexes, including genes implicated in complement cascades and extracellular matrix regulation, and these differences are much more pronounced in aged mice than in young mice. These results provide an unbiased basis for future studies on how sex affects the lens response to aging, cataract development, and cataract surgery.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The aging mouse lens transcriptome. Exp Eye Res 2021; 209:108663. [PMID: 34119483 DOI: 10.1016/j.exer.2021.108663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Age is a major risk factor for cataract (ARC). However, the influence of aging on the lens transcriptome is under studied. Lens epithelial (LEC) and fiber cells (LFC) were isolated from young (3 month old) and aged (24 month old) C57BL/6J mice, and the transcriptome elucidated via RNAseq. EdgeR estimated differential gene expression in pairwise contrasts, and Advaita's Ipathway guide and custom R scripts were used to evaluate the potential biological significance of differentially expressed genes (DEGs). This analysis revealed age-dependent decreases in lens differentiation marker expression in both LECs and LFCs, with gamma crystallin transcripts downregulating nearly 50 fold in aged LFCs. The expression of the transcription factors Hsf4 and Maf, which are known to activate lens fiber cell preferred genes, are downregulated, while FoxE3, which represses gamma crystallin expression, is upregulated in aged fibers. Aged LECs upregulate genes controlling the immune response, complement pathways, and cellular stress responses, including glutathione peroxidase 3 (Gpx3). Aged LFCs exhibit broad changes in the expression of genes regulating cell communication, and upregulate genes involved in antigen processing/presentation and cholesterol metabolism, while changes in the expression of mitochondrial respiratory chain genes are consistent with mitochondrial stress, including upregulation of NDufa4l2, which encodes an alternate electron transport chain protein. However, age did not profoundly affect the response of LECs to injury as both young and aged LECs upregulate inflammatory gene signatures at 24 h post injury to similar extents. These RNAseq profiles provide a rich data set that can be mined to understand the genetic regulation of lens aging and how this impinges on the pathophysiology of age related cataract.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA.
| |
Collapse
|
11
|
Shihan MH, Kanwar M, Wang Y, Jackson EE, Faranda AP, Duncan MK. Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biol 2020; 90:79-108. [PMID: 32173580 DOI: 10.1016/j.matbio.2020.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Fibrotic posterior capsular opacification (PCO), one of the major complications of cataract surgery, occurs when lens epithelial cells (LCs) left behind post cataract surgery (PCS) undergo epithelial to mesenchymal transition, migrate into the optical axis and produce opaque scar tissue. LCs left behind PCS robustly produce fibronectin, although its roles in fibrotic PCO are not known. In order to determine the function of fibronectin in PCO pathogenesis, we created mice lacking the fibronectin gene (FN conditional knock out -FNcKO) from the lens. While animals from this line have normal lenses, upon lens fiber cell removal which models cataract surgery, FNcKO LCs exhibit a greatly attenuated fibrotic response from 3 days PCS onward as assessed by a reduction in surgery-induced cell proliferation, and fibrotic extracellular matrix (ECM) production and deposition. This is correlated with less upregulation of Transforming Growth Factor β (TGFβ) and integrin signaling in FNcKO LCs PCS concomitant with sustained Bone Morphogenetic Protein (BMP) signaling and elevation of the epithelial cell marker E cadherin. Although the initial fibrotic response of FNcKO LCs was qualitatively normal at 48 h PCS as measured by the upregulation of fibrotic marker protein αSMA, RNA sequencing revealed that the fibrotic response was already quantitatively attenuated at this time, as measured by the upregulation of mRNAs encoding molecules that control, and are controlled by, TGFβ signaling, including many known markers of fibrosis. Most notably, gremlin-1, a known regulator of TGFβ superfamily signaling, was upregulated sharply in WT LCs PCS, while this response was attenuated in FNcKO LCs. As exogenous administration of either active TGFβ1 or gremlin-1 to FNcKO lens capsular bags rescued the attenuated fibrotic response of fibronectin null LCs PCS including the loss of SMAD2/3 phosphorylation, this suggests that fibronectin plays multifunctional roles in fibrotic PCO development.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mallika Kanwar
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin E Jackson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
12
|
Jiang J, Shihan MH, Wang Y, Duncan MK. Lens Epithelial Cells Initiate an Inflammatory Response Following Cataract Surgery. Invest Ophthalmol Vis Sci 2019; 59:4986-4997. [PMID: 30326070 PMCID: PMC6188467 DOI: 10.1167/iovs.18-25067] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Lens epithelial cell (LEC) conversion to myofibroblast is responsible for fibrotic cataract surgery complications including posterior capsular opacification. While transforming growth factor beta (TGFβ) signaling is important, the mechanisms by which the TGFβ pathway is activated post cataract surgery (PCS) are not well understood. Methods RNA-seq was performed on LECs obtained from a mouse cataract surgery model at the time of surgery and 24 hours later. Bioinformatic analysis was performed with iPathwayGuide. Expression dynamics were determined by immunofluorescence. Results The LEC transcriptome is massively altered by 24 hours PCS. The differentially expressed genes included those important for lens biology, and fibrotic markers. However, the most dramatic changes were in the expression of genes regulating the innate immune response, with the top three altered genes exhibiting greater than 1000-fold upregulation. Immunolocalization revealed that CXCL1, S100a9, CSF3, COX-2, CCL2, LCN2, and HMOX1 protein levels upregulate in LECs between 1 hour and 6 hours PCS and peak at 24 hours PCS, while their levels sharply attenuate by 3 days PCS. This massive upregulation of known inflammatory mediators precedes the infiltration of neutrophils into the eye at 18 hours PCS, the upregulation of canonical TGFβ signaling at 48 hours PCS, and the infiltration of macrophages at 3 days PCS. Conclusions These data demonstrate that LECs produce proinflammatory cytokines immediately following lens injury that could drive postsurgical flare, and suggest that inflammation may be a major player in the onset of lens-associated fibrotic disease PCS.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
13
|
Aldose reductase inhibition enhances lens regeneration in mice. Chem Biol Interact 2019; 307:58-62. [PMID: 31026421 DOI: 10.1016/j.cbi.2019.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/23/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
After cataract surgery, epithelial cells lining the anterior lens capsule can transition to one of two divergent pathways, including fibrosis which leads to posterior capsular opacification (PCO), or lens fiber cell differentiation which leads to regeneration of lens material. We previously showed that the PCO response can be suppressed with aldose reductase (AR) inhibitors. In this present study we show that AR inhibition, both genetic and pharmacologic with Sorbinil, can augment the process of lens regeneration. Extracapsular lens extraction (ECLE) was carried out in C57BL/6 (WT), AR overexpression (AR-Tg), and AR knockout (ARKO) mice, and in some cases in mice treated with the AR inhibitor sorbinil. Whole eyes were harvested approximately 8 weeks after ECLE and evaluated by histological analysis and immunostaining for the fiber cell marker γ-crystallin. All eyes examined for lens regeneration were paraffin embedded for serial sectioning to produce three-dimensional reconstructed models of lens morphology and size. We observed that AR-null mice respond to ECLE by regenerating a lens-like structure with a circular shape and array of cell nuclei reminiscent of the lens bow region typical of the native mammalian lens. Although WT and AR-Tg eyes also produced some regenerated lens material after ECLE, their structures were consistently smaller than ARKO regenerated lenses. WT mice treated with sorbinil showed higher levels of lens regeneration after ECLE compared to WT mice, as assessed by size and three-dimensional morphology. Altogether, this study adds evidence for a critical role for AR in the response of lens epithelial cells to cataract extraction and lens regeneration.
Collapse
|
14
|
Zukin LM, Pedler MG, Groman-Lupa S, Pantcheva M, Ammar DA, Petrash JM. Aldose Reductase Inhibition Prevents Development of Posterior Capsular Opacification in an In Vivo Model of Cataract Surgery. Invest Ophthalmol Vis Sci 2019; 59:3591-3598. [PMID: 30025084 PMCID: PMC6049986 DOI: 10.1167/iovs.18-23935] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Cataract surgery is a procedure by which the lens fiber cell mass is removed from its capsular bag and replaced with a synthetic intraocular lens. Postoperatively, remnant lens epithelial cells can undergo an aberrant wound healing response characterized by an epithelial-to-mesenchymal transition (EMT), leading to posterior capsular opacification (PCO). Aldose reductase (AR) inhibition has been shown to decrease EMT markers in cell culture models. In this study, we aim to demonstrate that AR inhibition can attenuate induction of EMT markers in an in vivo model of cataract surgery. Methods A modified extracapsular lens extraction (ECLE) was performed on C57BL/6 wildtype, AR overexpression (AR-Tg), and AR knockout mice. Immunofluorescent staining for the myofibroblast marker α-smooth muscle actin (α-SMA), epithelial marker E-cadherin, and lens fiber cell markers αA-crystallin and Aquaporin 0 was used to characterize postoperative PCO. Quantitative reverse transcription PCR (qRT-PCR) was employed to quantify postoperative changes in α-SMA, vimentin, fibronectin, and E-cadherin. In a separate experiment, the AR inhibitor Sorbinil was applied postoperatively and qRT-PCR was used to assess changes in EMT markers. Results Genetic AR knockout reduced ECLE-induced upregulation of α-SMA and downregulation of E-cadherin. These immunofluorescent changes were mirrored quantitatively in changes in mRNA levels. Similarly, Sorbinil blocked characteristic postoperative EMT changes in AR-Tg mice. Interestingly, genetic AR knockout did not prevent postoperative induction of the lens fiber cell markers αA-crystallin and Aquaporin 0. Conclusions AR inhibition prevents the postoperative changes in EMT markers characteristic of PCO yet preserves the postoperative induction of lens fiber cell markers.
Collapse
Affiliation(s)
- Leonid M Zukin
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michelle G Pedler
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sergio Groman-Lupa
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States.,Asociación para Evitar la Ceguera en México, Mexico City, Mexico
| | - Mina Pantcheva
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - David A Ammar
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
15
|
Wang Y, Mahesh P, Wang Y, Novo SG, Shihan MH, Hayward-Piatkovskyi B, Duncan MK. Spatiotemporal dynamics of canonical Wnt signaling during embryonic eye development and posterior capsular opacification (PCO). Exp Eye Res 2018; 175:148-158. [PMID: 29932883 DOI: 10.1016/j.exer.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
The appropriate spatial and temporal regulation of canonical Wnt signaling is vital for eye development. However, the literature often conflicts on the distribution of canonical Wnt signaling in the eye. Here, using a sensitive mouse transgenic reporter line, we report a detailed re-evaluation of the spatiotemporal dynamics of canonical Wnt signaling in the developing eye. Canonical Wnt activity was dynamic in the optic vesicle and later in the retina, while it was absent from the ectodermal precursors of the lens and corneal epithelium. However, later in corneal development, canonical Wnt reporter activity was detected in corneal stroma and endothelium precursors as they form from the neural crest, although this was lost around birth. Interestingly, while no canonical Wnt signaling was detected in the corneal limbus or basal cells at any developmental stage, it was robust in adult corneal wing and squamous epithelial cells. While canonical Wnt reporter activity was also absent from the postnatal lens, upon lens injury intended to model cataract surgery, it upregulated within 12 h in remnant lens epithelial cells, and co-localized with alpha smooth muscle actin in fibrotic lens epithelial cells from 48 h post-surgery onward. This pattern correlated with downregulation of the inhibitor of canonical Wnt signaling, Dkk3. These data demonstrate that canonical Wnt signaling is dynamic within the developing eye and upregulates in lens epithelial cells in response to lens injury. As canonical Wnt signaling can collaborate with TGFβ to drive fibrosis in other systems, these data offer the first evidence in a lens-injury model that canonical Wnt may synergize with TGFβ signaling to drive fibrotic posterior capsular opacification (PCO).
Collapse
Affiliation(s)
- Yichen Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Priyha Mahesh
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Samuel G Novo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | | | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
16
|
Logan CM, Bowen CJ, Menko AS. Induction of Immune Surveillance of the Dysmorphogenic Lens. Sci Rep 2017; 7:16235. [PMID: 29176738 PMCID: PMC5701161 DOI: 10.1038/s41598-017-16456-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/12/2017] [Indexed: 01/10/2023] Open
Abstract
The lens has been considered to be an immune privileged site not susceptible to the immune processes normally associated with tissue injury and wound repair. However, as greater insight into the immune surveillance process is gained, we have reevaluated the concept of immune privilege. Our studies using an N-cadherin lens-specific conditional knockout mouse, N-cadΔlens, show that loss of this cell-cell junctional protein leads to lens degeneration, necrosis and fibrotic change, postnatally. The degeneration of this tissue induces an immune response resulting in immune cells populating the lens that contribute to the development of fibrosis. Additionally, we demonstrate that the lens is connected to the lymphatic system, with LYVE(+) labeling reaching the lens along the suspensory ligaments that connect the lens to the ciliary body, providing a potential mechanism for the immune circulation. Importantly, we observe that degeneration of the lens activates an immune response throughout the eye, including cornea, vitreous humor, and retina, suggesting a coordinated protective response in the visual system to defects of a component tissue. These studies demonstrate that lens degeneration induces an immune response that can contribute to the fibrosis that often accompanies lens dysgenesis, a consideration for understanding organ system response to injury.
Collapse
Affiliation(s)
- Caitlin M Logan
- Thomas Jefferson University, Department of Pathology, Anatomy and Cell Biology, Philadelphia, Pennsylvania, 19107, United States
| | - Caitlin J Bowen
- Thomas Jefferson University, Department of Pathology, Anatomy and Cell Biology, Philadelphia, Pennsylvania, 19107, United States
| | - A Sue Menko
- Thomas Jefferson University, Department of Pathology, Anatomy and Cell Biology, Philadelphia, Pennsylvania, 19107, United States.
| |
Collapse
|
17
|
Nagymihály R, Veréb Z, Albert R, Sidney L, Dua H, Hopkinson A, Petrovski G. Cultivation and characterisation of the surface markers and carbohydrate profile of human corneal endothelial cells. Clin Exp Ophthalmol 2017; 45:509-519. [PMID: 28032398 DOI: 10.1111/ceo.12903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/16/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The study aims to characterise human corneal endothelial cell (HCEnC) cultures generated by the peel-and-digest method based on their surface protein/carbohydrate expression pattern. METHODS Quantitative polymerase chain reaction was used to compare expression of vimentin, CD90, Cytokeratin-19, ZO-1 and Claudin 14 in cultured HCEnC and cell line B4G12 versus stromal cells. Fluorescence-activated cell sorting was used to assess surface protein distribution of cultured and uncultured HCEnC. Distribution of surface proteins/carbohydrates was visualised by immunofluorescent and lectin staining. RESULTS Human corneal endothelial cell and B4G12 showed lower expression level for vimentin, CD90, Cytokeratin-19 compared with stromal cells; while ZO-1 was expressed in endothelial cells, Claudin 14 was detected in B4G12 only. Fluorescence-activated cell sorting analyses revealed CD166, CD47, CD44, CD54, CD73, CD90, CD105, CD106, CD112, CD146 and CD325 to be present, with CD34 to be absent from cultured HCEnC. Freshly isolated, non-cultivated HCEnCs were CD90, CD73, CD146 and CD325 positive. Carbohydrates were detected by lectins LCA, PHA E, PHA L, PSA, sWGA, Con A, RCA 120 and WGA, but cultured HCEnC showed negative for GSL I, SBA, DBA, PNA and UEA I. CONCLUSION Cultures established by the peel-and-digest method are probably not prone to stromal contamination, but the cells are likely to undergo endothelial-to mesenchymal transition as suggested by apparent morphological changes.
Collapse
Affiliation(s)
- Richárd Nagymihály
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Réka Albert
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Laura Sidney
- Academic Department of Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Harminder Dua
- Academic Department of Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Andrew Hopkinson
- Academic Department of Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Guter M, Breunig M. Hyaluronan as a promising excipient for ocular drug delivery. Eur J Pharm Biopharm 2016; 113:34-49. [PMID: 27914235 DOI: 10.1016/j.ejpb.2016.11.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 01/11/2023]
Abstract
Hyaluronan (HA) is a naturally occurring polysaccharide and well known for its exceptional properties such as high biocompatibility and biodegradability, along with a low immunogenicity. Besides its use for various biomedical applications it recently came into focus as a favorable excipient for the formulation of various ocular therapeutics. This review article summarizes the ocular distribution of HA and its most heavily investigated binding protein "cluster of differentiation 44" (CD44) which is the rationale for the clinical use of HA, primarily as an additive in ocular applications ranging from eye drops to contact lenses. Moreover, examples will be given for using HA in various pre-clinical approaches to generate entirely new therapeutics, most notably in the field of nanotechnology.
Collapse
Affiliation(s)
- Michaela Guter
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93049 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93049 Regensburg, Germany.
| |
Collapse
|
19
|
Koopmans SA, Terwee T, Hanssen A, Martin H, Langner S, Stachs O, van Kooten TG. Prevention of capsule opacification after accommodating lens refilling: pilot study of strategies evaluated in a monkey model. J Cataract Refract Surg 2015; 40:1521-35. [PMID: 25135545 DOI: 10.1016/j.jcrs.2014.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 11/16/2022]
Abstract
PURPOSE To test 2 strategies to prevent capsule opacification after accommodating lens refilling in a rhesus monkey model. SETTING Animal laboratory and laboratory of European university medical centers. DESIGN Experimental study. METHODS Six rhesus monkeys had refilling of the lens capsular bag. In the first strategy, before it was filled with a silicone polymer, the capsular bag was treated with noncommercial sodium hyaluronate 1.0% containing cytotoxic substances. In the second strategy, the capsular bag was filled with clinically used sodium hyaluronate 1.0% (Healon) after treatment with actinomycin-D. Slitlamp inspection was performed during a follow-up of 40 to 50 weeks. After enucleation, magnetic resonance images were obtained and confocal fluorescence imaging was performed. RESULTS Using the first strategy, capsule opacification developed in all eyes. Using the second strategy, 1 monkey did not develop capsule opacification after a 9-month follow-up. In a second monkey, the lens capsule remained clear for 3 months, after which the hyaluronate refill material was exchanged with a silicone polymer and capsule opacification developed. Combining these results with those in a previous study, the difference in opacification between silicone and sodium hyaluronate as refilling materials was statistically significant (P<.01). CONCLUSIONS That no capsular bag fibrosis occurred in the presence of hyaluronate suggests that the properties of hyaluronate are the reason that remaining lens epithelial cells do not develop into fibrotic cells. The choice of a suitable lens-refilling material prevents the development of capsule opacification. FINANCIAL DISCLOSURE Mr. Terwee was an employee of Abbott Medical Optics B.V. during the study period. No other author has a financial or proprietary interest in any material or method mentioned.
Collapse
Affiliation(s)
- Steven A Koopmans
- From the Animal Laboratory of the University of Nijmegen (Hanssen), Nijmegen, and the Department of Ophthalmology (Koopmans) and the Department of Biomaterials (van Kooten), University of Groningen, Abbott Medical Optics b.v. (Terwee), Groningen, the Netherlands; the Department of Radiology (Langner), University of Greifswald, Greifswald, the Department of Biomedical Engineering (Martin), and the Department of Ophthalmology (Stachs), University of Rostock, Rostock, Germany.
| | - Thom Terwee
- From the Animal Laboratory of the University of Nijmegen (Hanssen), Nijmegen, and the Department of Ophthalmology (Koopmans) and the Department of Biomaterials (van Kooten), University of Groningen, Abbott Medical Optics b.v. (Terwee), Groningen, the Netherlands; the Department of Radiology (Langner), University of Greifswald, Greifswald, the Department of Biomedical Engineering (Martin), and the Department of Ophthalmology (Stachs), University of Rostock, Rostock, Germany
| | - Alex Hanssen
- From the Animal Laboratory of the University of Nijmegen (Hanssen), Nijmegen, and the Department of Ophthalmology (Koopmans) and the Department of Biomaterials (van Kooten), University of Groningen, Abbott Medical Optics b.v. (Terwee), Groningen, the Netherlands; the Department of Radiology (Langner), University of Greifswald, Greifswald, the Department of Biomedical Engineering (Martin), and the Department of Ophthalmology (Stachs), University of Rostock, Rostock, Germany
| | - Heiner Martin
- From the Animal Laboratory of the University of Nijmegen (Hanssen), Nijmegen, and the Department of Ophthalmology (Koopmans) and the Department of Biomaterials (van Kooten), University of Groningen, Abbott Medical Optics b.v. (Terwee), Groningen, the Netherlands; the Department of Radiology (Langner), University of Greifswald, Greifswald, the Department of Biomedical Engineering (Martin), and the Department of Ophthalmology (Stachs), University of Rostock, Rostock, Germany
| | - Soenke Langner
- From the Animal Laboratory of the University of Nijmegen (Hanssen), Nijmegen, and the Department of Ophthalmology (Koopmans) and the Department of Biomaterials (van Kooten), University of Groningen, Abbott Medical Optics b.v. (Terwee), Groningen, the Netherlands; the Department of Radiology (Langner), University of Greifswald, Greifswald, the Department of Biomedical Engineering (Martin), and the Department of Ophthalmology (Stachs), University of Rostock, Rostock, Germany
| | - Oliver Stachs
- From the Animal Laboratory of the University of Nijmegen (Hanssen), Nijmegen, and the Department of Ophthalmology (Koopmans) and the Department of Biomaterials (van Kooten), University of Groningen, Abbott Medical Optics b.v. (Terwee), Groningen, the Netherlands; the Department of Radiology (Langner), University of Greifswald, Greifswald, the Department of Biomedical Engineering (Martin), and the Department of Ophthalmology (Stachs), University of Rostock, Rostock, Germany
| | - Theo G van Kooten
- From the Animal Laboratory of the University of Nijmegen (Hanssen), Nijmegen, and the Department of Ophthalmology (Koopmans) and the Department of Biomaterials (van Kooten), University of Groningen, Abbott Medical Optics b.v. (Terwee), Groningen, the Netherlands; the Department of Radiology (Langner), University of Greifswald, Greifswald, the Department of Biomedical Engineering (Martin), and the Department of Ophthalmology (Stachs), University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
The effects of acacia honey on in vitro corneal abrasion wound healing model. BMC Cell Biol 2015; 16:2. [PMID: 25887200 PMCID: PMC4340287 DOI: 10.1186/s12860-015-0053-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/06/2015] [Indexed: 11/23/2022] Open
Abstract
Background Acacia honey (AH) has been proven to improve skin wound healing, but its therapeutic effects on corneal epithelium has not been elucidated to date. This study aimed to investigate the effects of AH on cultured corneal epithelial cells (CEC) on in vitro corneal abrasion wound healing model. Six New Zealand white rabbits’ CEC were isolated and cultured until passage 1. Circular wound area was created onto a confluent monolayer CEC using a corneal trephine which mimicked corneal abrasion and treated with 0.025% AH supplemented in basal medium (BM) and complete cornea medium (CCM). Wound healing was measured as the percentage of wound closure by the migration of CEC on day 0, day 3 and day 6, post wound creation. The morphological changes of CEC were assessed via phase contrast microscopy. Gene and protein expressions of cytokeratin (CK3), fibronectin and cluster of differentiation 44 (CD44) in AH treated groups and control groups were determined by real-time PCR and immunocytochemistry, respectively. Results Cultured CEC exhibited similar morphology of polygonal shaped cells in all culture media. CEC cultured in AH-supplemented media showed higher percentage of wound closure compared to the controls. Gene expression of CK3 increased in AH-supplemented groups throughout the study. Fibronectin expression was increased at the initial stage while CD44 expression was increased at day 3, post wound creation. The protein expression of CEC cultured in all media was in accordance to their respective gene expressions. Conclusion Supplementation of AH in BM and CCM media accelerates CEC wound closure of the in vitro corneal abrasion model by increasing the expression of genes and proteins associated with CEC wound healing.
Collapse
|
21
|
Manthey AL, Terrell AM, Wang Y, Taube JR, Yallowitz AR, Duncan MK. The Zeb proteins δEF1 and Sip1 may have distinct functions in lens cells following cataract surgery. Invest Ophthalmol Vis Sci 2014; 55:5445-55. [PMID: 25082886 DOI: 10.1167/iovs.14-14845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Posterior capsular opacification (PCO), the most prevalent side effect of cataract surgery, occurs when residual lens epithelial cells (LECs) undergo fiber cell differentiation or epithelial-to-mesenchymal transition (EMT). Here, we used a murine cataract surgery model to investigate the role of the Zeb proteins, Smad interacting protein 1 (Sip1) and δ-crystallin enhancer-binding factor 1 (δEF1), during PCO. METHODS Extracapsular extraction of lens fiber cells was performed on wild-type and Sip1 knockout mice. Protein expression patterns were assessed at multiple time points after surgery using confocal immunofluorescence. βB1-Crystallin mRNA levels were measured using quantitative RT-PCR. We used Transfac searches to identify δEF1 binding sites in the βB1-crystallin promoter and transfection analysis to test the ability of δEF1 to regulate βB1-crystallin expression. RESULTS δEF1, which, in other systems, can activate fibrotic genes (e.g., α-smooth muscle actin) and repress epithelial genes, upregulates by 48 hours after fiber cell removal. In culture, δEF1 repressed βB1-crystallin promoter activity, suggesting that it may also turn off lens gene expression following surgery, contributing to "fibrotic PCO" development. Sip1 also upregulates in LECs by 48 hours, but analysis of Sip1 knockout lenses demonstrated that Sip1 does not play a major role in EMT or fiber cell differentiation after surgery. However, Sip1 knockout LECs do express the ectodermal marker keratin 8, suggesting that Sip1 may limit the reprogramming of residual LECs to an embryonic state. CONCLUSIONS Zeb transcription factors likely play important, but distinct roles in PCO development after cataract surgery.
Collapse
Affiliation(s)
- Abby L Manthey
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Anne M Terrell
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Jennifer R Taube
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Alisha R Yallowitz
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
22
|
Mamuya FA, Wang Y, Roop VH, Scheiblin DA, Zajac JC, Duncan MK. The roles of αV integrins in lens EMT and posterior capsular opacification. J Cell Mol Med 2014; 18:656-70. [PMID: 24495224 PMCID: PMC4000117 DOI: 10.1111/jcmm.12213] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022] Open
Abstract
Posterior capsular opacification (PCO) is the major complication arising after cataract treatment. PCO occurs when the lens epithelial cells remaining following surgery (LCs) undergo a wound healing response producing a mixture of α-smooth muscle actin (α-SMA)-expressing myofibroblasts and lens fibre cells, which impair vision. Prior investigations have proposed that integrins play a central role in PCO and we found that, in a mouse fibre cell removal model of cataract surgery, expression of αV integrin and its interacting β-subunits β1, β5, β6, β8 are up-regulated concomitant with α-SMA in LCs following surgery. To test the hypothesis that αV integrins are functionally important in PCO pathogenesis, we created mice lacking the αV integrin subunit in all lens cells. Adult lenses lacking αV integrins are transparent and show no apparent morphological abnormalities when compared with control lenses. However, following surgical fibre cell removal, the LCs in control eyes increased cell proliferation, and up-regulated the expression of α-SMA, β1-integrin, fibronectin, tenascin-C and transforming growth factor beta (TGF-β)-induced protein within 48 hrs, while LCs lacking αV integrins exhibited much less cell proliferation and little to no up-regulation of any of the fibrotic markers tested. This effect appears to result from the known roles of αV integrins in latent TGF-β activation as αV integrin null lenses do not exhibit detectable SMAD-3 phosphorylation after surgery, while this occurs robustly in control lenses, consistent with the known roles for TGF-β in fibrotic PCO. These data suggest that therapeutics antagonizing αV integrin function could be used to prevent fibrotic PCO following cataract surgery.
Collapse
Affiliation(s)
- Fahmy A Mamuya
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zarembinski TI, Doty NJ, Erickson IE, Srinivas R, Wirostko BM, Tew WP. Thiolated hyaluronan-based hydrogels crosslinked using oxidized glutathione: an injectable matrix designed for ophthalmic applications. Acta Biomater 2014; 10:94-103. [PMID: 24096152 DOI: 10.1016/j.actbio.2013.09.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/10/2013] [Accepted: 09/23/2013] [Indexed: 02/08/2023]
Abstract
Future ophthalmic therapeutics will require the sustained delivery of bioactive proteins and nucleic acid-based macromolecules and/or provide a suitable microenvironment for the localization and sustenance of reparative progenitor cells after transplantation into or onto the eye. Water-rich hydrogels are ideal vehicles for such cargo, but few have all the qualities desired for novel ophthalmic use, namely in situ gelation speed, cytocompatibility, biocompatibility and capacity to functionalize. We describe here the development of an ophthalmic-compatible crosslinking system using oxidized glutathione (GSSG), a physiologically relevant molecule with a history of safe use in humans. When GSSG is used in conjunction with an existing hyaluronate-based, in situ crosslinkable hydrogel platform, gels form in less than 5 min using the thiol-disulfide exchange reaction. This GSSG hydrogel supports the 3-D culture of adipose-derived stem cells in vitro and shows biocompatibility in preliminary intracutaneous and subconjunctival experiments in vivo. In addition, the thiol-disulfide exchange reaction can also be used in conjunction with other thiol-compatible chemistries to covalently link peptides for more complex formulations. These data suggest that this hydrogel could be well suited for local ocular delivery, focusing initially on front of the eye therapies. Subsequent uses of the hydrogel include delivery of back of the eye treatments and eventually into other soft, hyaluronan-rich tissues such as those from the liver and brain.
Collapse
|
24
|
Mengarelli I, Barberi T. Derivation of multiple cranial tissues and isolation of lens epithelium-like cells from human embryonic stem cells. Stem Cells Transl Med 2013; 2:94-106. [PMID: 23341438 DOI: 10.5966/sctm.2012-0100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human embryonic stem cells (hESCs) provide a powerful tool to investigate early events occurring during human embryonic development. In the present study, we induced differentiation of hESCs in conditions that allowed formation of neural and non-neural ectoderm and to a lesser extent mesoderm. These tissues are required for correct specification of the neural plate border, an early embryonic transient structure from which neural crest cells (NCs) and cranial placodes (CPs) originate. Although isolation of CP derivatives from hESCs has not been previously reported, isolation of hESC-derived NC-like cells has been already described. We performed a more detailed analysis of fluorescence-activated cell sorting (FACS)-purified cell populations using the surface antigens previously used to select hESC-derived NC-like cells, p75 and HNK-1, and uncovered their heterogeneous nature. In addition to the NC component, we identified a neural component within these populations using known surface markers, such as CD15 and FORSE1. We have further exploited this information to facilitate the isolation and purification by FACS of a CP derivative, the lens, from differentiating hESCs. Two surface markers expressed on lens cells, c-Met/HGFR and CD44, were used for positive selection of multiple populations with a simultaneous subtraction of the neural/NC component mediated by p75, HNK-1, and CD15. In particular, the c-Met/HGFR allowed early isolation of proliferative lens epithelium-like cells capable of forming lentoid bodies. Isolation of hESC-derived lens cells represents an important step toward the understanding of human lens development and regeneration and the devising of future therapeutic applications.
Collapse
Affiliation(s)
- Isabella Mengarelli
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
25
|
Bassnett S, Wilmarth PA, David LL. The membrane proteome of the mouse lens fiber cell. Mol Vis 2009; 15:2448-63. [PMID: 19956408 PMCID: PMC2786885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/18/2009] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Fiber cells of the ocular lens are bounded by a highly specialized plasma membrane. Despite the pivotal role that membrane proteins play in the physiology and pathophysiology of the lens, our knowledge of the structure and composition of the fiber cell plasma membrane remains fragmentary. In the current study, we utilized mass spectrometry-based shotgun proteomics to provide a comprehensive survey of the mouse lens fiber cell membrane proteome. METHODS Membranes were purified from young mouse lenses and subjected to MudPIT (Multidimensional protein identification technology) analysis. The resulting proteomic data were analyzed further by reference to publically available microarray databases. RESULTS More than 200 membrane proteins were identified by MudPIT, including Type I, Type II, Type III (multi-pass), lipid-anchored, and GPI-anchored membrane proteins, in addition to membrane-associated cytoskeletal elements and extracellular matrix components. The membrane proteins of highest apparent abundance included Mip, Lim2, and the lens-specific connexin proteins Gja3, Gja8, and Gje1. Significantly, many proteins previously unsuspected in the lens were also detected, including proteins with roles in cell adhesion, solute transport, and cell signaling. CONCLUSIONS The MudPIT technique constitutes a powerful technique for the analysis of the lens membrane proteome and provides valuable insights into the composition of the lens fiber cell unit membrane.
Collapse
Affiliation(s)
- Steven Bassnett
- Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Phillip A. Wilmarth
- Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR
| | - Larry L. David
- Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|