1
|
Richards CJ, Wierenga AT, Brouwers-Vos AZ, Kyrloglou E, Dillingh LS, Mulder PP, Palasantzas G, Schuringa JJ, Roos WH. Elastic properties of leukemic cells linked to maturation stage and integrin activation. iScience 2025; 28:112150. [PMID: 40201128 PMCID: PMC11978321 DOI: 10.1016/j.isci.2025.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Acute myeloid leukemia (AML) remains challenging to cure. In addition to mutations that alter cell functioning, biophysical properties are modulated by external cues. In particular, membrane proteins that interact with the bone marrow niche can induce cellular changes. Here, we develop an atomic force microscopy (AFM) approach to measure non-adherent AML cell mechanical properties. The Young's modulus of the AML cell line, THP-1, increased in response to retronectin, whereas knock-out of the adhesion protein ITGB1 resulted in no response to retronectin. Confocal microscopy revealed different actin cytoskeleton morphologies for wild-type and ITGB1 knock-out cells exposed to retronectin. These results indicate that ITGB1 mediates stimuli-induced cellular mechanoresponses through cytoskeletal changes. We next used AFM to investigate the elastic properties of primary AML cells and found that more committed cells had lower Young's moduli than immature AMLs. Overall, this provides a platform for investigating the molecular mechanisms involved in leukemic cell mechanoresponse.
Collapse
Affiliation(s)
- Ceri J. Richards
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| | - Albertus T.J. Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Annet Z. Brouwers-Vos
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Emmanouil Kyrloglou
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Laura S. Dillingh
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Patty P.M.F.A. Mulder
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Georgios Palasantzas
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
2
|
Zhou Y, Guo Y, Zhang M, Quan S, Li J. The role of RAP2 in regulation of cell volume on bone marrow mesenchymal stem cell fate determination. J Mol Histol 2025; 56:79. [PMID: 39903386 DOI: 10.1007/s10735-025-10362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
The extracellular matrix guides cell behavior through mechanical properties, which plays a role in determining cell function and can even influence stem cell fate. Compared with adherent culture, the three-dimensional culture environment is closer to the growth conditions in vivo, but is limited by standardization of material properties and observation and measurement methods. Therefore, it is necessary to study the relationship among the three-dimensional morphological characteristics of cells, cytoskeleton, and stem cell differentiation under adherent culture conditions. Here, we control the cell volume by adjusting the cell density, microfilament cytoskeleton tension, and osmotic pressure of the culture environment, and analyze the cell morphological features and differentiation to the osteoblastic and adipogenic lineages. Based on the in vitro and in vivo results, we identify cell volume as the true reflection of the cytoskeleton tension under stress stimuli compared with cell spreading area. By adjusting cell volume, cytoskeletal tension and cell differentiation can be regulated without affecting cell spreading area. Further study shows that the Ras-related small GTPase RAP2 inhibits the activity of mechanical transducers Lamin A/C and YAP1, playing an important role in cell volume regulation of cell differentiation. In summary, our results support the close relationship between cell volume and cytoskeleton tension. The regulatory role of cell volume on cell differentiation is modulated, at least in part, by RAP2-related mechanosensitive pathways. Our insights into how cell volume regulates cell differentiation may build a bridge between two-dimensional and three-dimensional mechanical studies in cell biology.
Collapse
Affiliation(s)
- Yimei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Yutong Guo
- Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, 100081, PR China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Shuqi Quan
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
3
|
Yan S, Lu Y, An C, Hu W, Chen Y, Li Z, Wei W, Chen Z, Zeng X, Xu W, Lv Z, Pan F, Gao W, Wu Y. Biomechanical research using advanced micro-nano devices: In-Vitro cell Characterization focus. J Adv Res 2024:S2090-1232(24)00602-7. [PMID: 39701378 DOI: 10.1016/j.jare.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cells in the body reside in a dynamic microenvironment subjected to various physical stimuli, where mechanical stimulation plays a crucial role in regulating cellular physiological behaviors and functions. AIM OF REVIEW Investigating the mechanisms and interactions of mechanical transmission is essential for understanding the physiological and functional interplay between cells and physical stimuli. Therefore, establishing an in vitro biomechanical stimulation cell culture system holds significant importance for research related to cellular biomechanics. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily focused on various biomechanically relevant cell culture systems and highlighted the advancements and prospects in their preparation processes. Firstly, we discussed the types and characteristics of biomechanics present in the microenvironment within the human body. Subsequently, we introduced the research progress, working principles, preparation processes, potential advantages, applications, and challenges of various biomechanically relevant in vitro cell culture systems. Additionally, we summarized and categorized currently commercialized biomechanically relevant cell culture systems, offering a comprehensive reference for researchers in related fields.
Collapse
Affiliation(s)
- Shiqiang Yan
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yaofeng Chen
- Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ziwen Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenbo Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Xianhai Zeng
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China.
| | - Fan Pan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Wei Gao
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China.
| | - Yongyan Wu
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
4
|
Tiberio F, Coda ARD, Tosi DD, Luzi D, Polito L, Liso A, Lattanzi W. Mechanobiology and Primary Cilium in the Pathophysiology of Bone Marrow Myeloproliferative Diseases. Int J Mol Sci 2024; 25:8860. [PMID: 39201546 PMCID: PMC11354938 DOI: 10.3390/ijms25168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Federica Tiberio
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Domiziano Dario Tosi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Debora Luzi
- S.C. Oncoematologia, Azienda Ospedaliera di Terni, 05100 Terni, Italy;
| | - Luca Polito
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Arcangelo Liso
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Reed CR, Williams T, Taritsa I, Wu K, Chnari E, O'Connor MJ, Melnick BA, Ho KC, Long M, Huffman KN, Galiano RD. Exploring the Efficacy of Selected Allografts in Chronic Wound Healing: Evidence from Murine Models and Clinical Data for a Proposed Treatment Algorithm. Adv Wound Care (New Rochelle) 2024. [PMID: 38753722 DOI: 10.1089/wound.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Significance: Chronic wounds can lead to poor outcomes for patients, with risks, including amputation and death. In the United States, chronic wounds affect 2.5% of the population and cost up to $28 billion per year in primary health care costs. Recent Advances: Allograft tissues (dermal, amnion, and amnion/chorion) have shown efficacy in improving healing of chronic, recalcitrant wounds in human patients, as evidenced by multiple clinical trials. Their mechanisms of actions have been relatively understudied, until recently. Research in murine models has shown that dermal allografts promote reepithelialization, amnion allografts promote granulation tissue formation and angiogenesis, and amnion/chorion allografts support all stages of wound healing. These findings confirm their effectiveness and illuminate their therapeutic mechanisms. Critical Issues: Despite the promise of allografts in chronic wound care, a gap exists in understanding which allografts are most effective during each wound healing stage. The variable efficacy among each type of allograft suggests a mechanistic approach toward a proposed clinical treatment algorithm, based on wound characteristics and patient's needs, may be beneficial. Future Directions: Recent advances in allografts provide a framework for further investigations into patient-specific allograft selection. This requires additional research to identify which allografts support the best outcomes during each stage of wound healing and in which wound types. Longitudinal human studies investigating the long-term impacts of allografts, particularly in the remodeling phase, are also essential to developing a deeper understanding of their role in sustained wound repair and recovery.
Collapse
Affiliation(s)
- Charlotte R Reed
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tokoya Williams
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Iulianna Taritsa
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kevin Wu
- Research and Development, MTF Biologics, Edison, New Jersey, USA
| | - Evangelia Chnari
- Research and Development, MTF Biologics, Edison, New Jersey, USA
| | - Madeline J O'Connor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley A Melnick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | - Kelly C Ho
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marc Long
- Research and Development, MTF Biologics, Edison, New Jersey, USA
| | - Kristin N Huffman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Galiano
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Tissot FS, Gonzalez-Anton S, Lo Celso C. Intravital Microscopy to Study the Effect of Matrix Metalloproteinase Inhibition on Acute Myeloid Leukemia Cell Migration in the Bone Marrow. Methods Mol Biol 2024; 2747:211-227. [PMID: 38038943 DOI: 10.1007/978-1-0716-3589-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hematopoiesis is the process through which all mature blood cells are formed and takes place in the bone marrow (BM). Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. AML progression causes drastic remodeling of the BM microenvironment, making it no longer supportive of healthy hematopoiesis and leading to clinical cytopenia in patients. Understanding the mechanisms by which AML cells shape the BM to their benefit would lead to the development of new therapeutic strategies. While the role of extracellular matrix (ECM) in solid cancer has been extensively studied during decades, its role in the BM and in leukemia progression has only begun to be acknowledged. In this context, intravital microscopy (IVM) gives the unique insight of direct in vivo observation of AML cell behavior in their environment during disease progression and/or upon drug treatments. Here we describe our protocol for visualizing and analyzing MLL-AF9 AML cell dynamics upon systemic inhibition of matrix metalloproteinases (MMP), combining confocal and two-photon microscopy and focusing on cell migration.
Collapse
Affiliation(s)
- Floriane S Tissot
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Sara Gonzalez-Anton
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
7
|
Yang J, Wu J, Guo Z, Zhang G, Zhang H. Iron Oxide Nanoparticles Combined with Static Magnetic Fields in Bone Remodeling. Cells 2022; 11:cells11203298. [PMID: 36291164 PMCID: PMC9600888 DOI: 10.3390/cells11203298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) are extensively used in bone-related studies as biomaterials due to their unique magnetic properties and good biocompatibility. Through endocytosis, IONPs enter the cell where they promote osteogenic differentiation and inhibit osteoclastogenesis. Static magnetic fields (SMFs) were also found to enhance osteoblast differentiation and hinder osteoclastic differentiation. Once IONPs are exposed to an SMF, they become rapidly magnetized. IONPs and SMFs work together to synergistically enhance the effectiveness of their individual effects on the differentiation and function of osteoblasts and osteoclasts. This article reviewed the individual and combined effects of different types of IONPs and different intensities of SMFs on bone remodeling. We also discussed the mechanism underlying the synergistic effects of IONPs and SMFs on bone remodeling.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiawen Wu
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Zengfeng Guo
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Gejing Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hao Zhang
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
- Correspondence: ; Tel.: +86-13823352822
| |
Collapse
|
8
|
Chen J, Song D, Xu Y, Wu L, Tang L, Su Y, Xie X, Zhao J, Xu J, Liu Q. Anti-Osteoclast Effect of Exportin-1 Inhibitor Eltanexor on Osteoporosis Depends on Nuclear Accumulation of IκBα–NF-κB p65 Complex. Front Pharmacol 2022; 13:896108. [PMID: 36110547 PMCID: PMC9468713 DOI: 10.3389/fphar.2022.896108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis affects around 200 million people globally, with menopausal women accounting for the bulk of cases. In the occurrence and development of osteoporosis, a key role is played by osteoclasts. Excessive osteoclast-mediated bone resorption activity reduces bone mass and increases bone fragility, resulting in osteoporosis. Thus, considerable demand exists for designing effective osteoporosis treatments based on targeting osteoclasts. Eltanexor (Elt; KPT-8602) is a selective nuclear-export inhibitor that covalently binds to and blocks the function of the nuclear-export protein exportin-1 (XPO1), which controls the nucleus-to-cytoplasm transfer of certain critical proteins related to growth regulation and tumor suppression, such as p53, IκBα [nuclear factor-κB (NF-κB) inhibitor α] and FOXO1; among these proteins, IκBα, a critical component of the NF-κB signaling pathway that primarily governs NF-κB activation and transcription. How Elt treatment affects osteoclasts remains poorly elucidated. Elt inhibited the growth and activity of RANKL-induced osteoclasts in vitro in a dose-dependent manner, and Elt exerted no cell-killing effect within the effective inhibitory concentration. Mechanistically, Elt was found to trap IκBα in the nucleus and thus protect IκBα from proteasome degradation, which resulted in the blocking of the translocation of IκBα and NF-κB p65 and the consequent inhibition of NF-κB activity. The suppression of NF-κB activity, in turn, inhibited the activity of two transcription factors (NFATc1 and c-Fos) essential for osteoclast formation and led to the downregulation of genes and proteins related to bone resorption. Our study thus provides a newly identified mechanism for targeting in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Junchun Chen
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Dezhi Song
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Yang Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Liwei Wu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - YuanGang Su
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoxiao Xie
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Qian Liu, ; Jiake Xu,
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Qian Liu, ; Jiake Xu,
| |
Collapse
|
9
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
10
|
Da Ros F, Persano L, Bizzotto D, Michieli M, Braghetta P, Mazzucato M, Bonaldo P. Emilin-2 is a component of bone marrow extracellular matrix regulating mesenchymal stem cell differentiation and hematopoietic progenitors. Stem Cell Res Ther 2022; 13:2. [PMID: 35012633 PMCID: PMC8744352 DOI: 10.1186/s13287-021-02674-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Dissection of mechanisms involved in the regulation of bone marrow microenvironment through cell–cell and cell–matrix contacts is essential for the detailed understanding of processes underlying bone marrow activities both under physiological conditions and in hematologic malignancies. Here we describe Emilin-2 as an abundant extracellular matrix component of bone marrow stroma. Methods Immunodetection of Emilin-2 was performed in bone marrow sections of mice from 30 days to 6 months of age. Emilin-2 expression was monitored in vitro in primary and mesenchymal stem cell lines under undifferentiated and adipogenic conditions. Hematopoietic stem cells and progenitors in bone marrow of 3- to 10-month-old wild-type and Emilin-2 null mice were analyzed by flow cytometry. Results Emilin-2 is deposited in bone marrow extracellular matrix in an age-dependent manner, forming a meshwork that extends from compact bone boundaries to the central trabecular regions. Emilin-2 is expressed and secreted by both primary and immortalized bone marrow mesenchymal stem cells, exerting an inhibitory action in adipogenic differentiation. In vivo Emilin-2 deficiency impairs the frequency of hematopoietic stem/progenitor cells in bone marrow during aging. Conclusion Our data provide new insights in the contribution of bone marrow extracellular matrix microenvironment in the regulation of stem cell niches and hematopoietic progenitor differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02674-2.
Collapse
Affiliation(s)
- Francesco Da Ros
- SOSd Cell Stem Unit, Department of Translational Research, National Cancer Center CRO-IRCSS, 33081, Aviano, Italy.,Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, 35131, Padova, Italy.,IRP - Pediatric Research Institute, 35131, Padova, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mariagrazia Michieli
- SOSd Cell Therapy and High Dose Chemotherapy, National Cancer Center CRO- IRCCS, 33081, Aviano, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mario Mazzucato
- SOSd Cell Stem Unit, Department of Translational Research, National Cancer Center CRO-IRCSS, 33081, Aviano, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,CRIBI Biotechnology Center, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
11
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
12
|
Record J, Saeed MB, Venit T, Percipalle P, Westerberg LS. Journey to the Center of the Cell: Cytoplasmic and Nuclear Actin in Immune Cell Functions. Front Cell Dev Biol 2021; 9:682294. [PMID: 34422807 PMCID: PMC8375500 DOI: 10.3389/fcell.2021.682294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.
Collapse
Affiliation(s)
- Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mezida B. Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
14
|
Khoeini R, Nosrati H, Akbarzadeh A, Eftekhari A, Kavetskyy T, Khalilov R, Ahmadian E, Nasibova A, Datta P, Roshangar L, Deluca DC, Davaran S, Cucchiarini M, Ozbolat IT. Natural and Synthetic Bioinks for 3D Bioprinting. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Roghayeh Khoeini
- Department of Medicinal Chemistry Faculty of Pharmacy Tabriz University of Medical Sciences P.O. Box: 51664-14766 Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
| | - Hamed Nosrati
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
| | - Abolfazl Akbarzadeh
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Medical Nanotechnology Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences P.O. Box: 516615731 Tabriz Iran
| | - Aziz Eftekhari
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Russian Institute for Advanced Study Moscow State Pedagogical University 1/1, Malaya Pirogovskaya Street Moscow 119991 Russian Federation
- Pharmacology and Toxicology Department Maragheh University of Medical Sciences 78151-55158 Maragheh Iran
- Department of Synthesis and Characterization of Polymers Polymer Institute Slovak Academy of Sciences (SAS) Dúbravská cesta 9 845 41 Bratislava Slovakia
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Biology and Chemistry Drohobych Ivan Franko State Pedagogical University 24, I. Franko Str. 82100 Drohobych Ukraine
- Department of Surface Engineering The John Paul II Catholic University of Lublin 20-950 Lublin Poland
| | - Rovshan Khalilov
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Russian Institute for Advanced Study Moscow State Pedagogical University 1/1, Malaya Pirogovskaya Street Moscow 119991 Russian Federation
- Department of Biophysics and Biochemistry Faculty of Biology Baku State University Baku AZ 1143 Azerbaijan
- Institute of Radiation Problems National Academy of Sciences of Azerbaijan Baku AZ 1143 Azerbaijan
| | - Elham Ahmadian
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Kidney Research Center Tabriz University of Medical Sciences P.O. Box: 5166/15731 Tabriz Iran
| | - Aygun Nasibova
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Institute of Radiation Problems National Academy of Sciences of Azerbaijan Baku AZ 1143 Azerbaijan
| | - Pallab Datta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research Kolkata West Bengal 700054 India
| | - Leila Roshangar
- Stem Cell Research Center Tabriz University of Medical Sciences P.O. Box: 5166/15731 Tabriz Iran
| | - Dante C. Deluca
- Agricultural and Biological Engineering Department Penn State University University Park 16802 PA USA
| | - Soodabeh Davaran
- Department of Medicinal Chemistry Faculty of Pharmacy Tabriz University of Medical Sciences P.O. Box: 51664-14766 Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Medical Nanotechnology Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences P.O. Box: 516615731 Tabriz Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics Saarland University Medical Center Kirrbergerstr. Bldg 37 D-66421 Homburg/Saar Germany
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department Penn State University University Park 16802 PA USA
- The Huck Institutes of the Life Sciences Penn State University University Park 16802 PA USA
- Biomedical Engineering Department Penn State University University Park 16802 PA USA
- Materials Research Institute Penn State University University Park 16802 PA USA
- Department of Neurosurgery Penn State University Hershey 17033 PA USA
| |
Collapse
|
15
|
Xu X, Nie Y, Wang W, Ma N, Lendlein A. Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells. MRS COMMUNICATIONS 2021; 11:425-431. [PMID: 34258101 PMCID: PMC8265727 DOI: 10.1557/s43579-021-00049-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACT Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs. GRAPHIC ABSTRACT Periodic thermal and synchronous mechanical stimuli provided by polymer sheet actuators selectively promoted the expression of SARS-CoV-2-associated TLRs 4 and 7 in adipose-derived MSCs and recruited TLR4 to Endoplasmic reticulum region where TLR7 was located via controlling myosin-mediated F-actin cytoskeleton assembly.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
16
|
Vogel S, Ullm F, Müller CD, Pompe T, Hempel U. Impact of binding mode of low-sulfated hyaluronan to 3D collagen matrices on its osteoinductive effect for human bone marrow stromal cells. Biol Chem 2021; 402:1465-1478. [PMID: 34085493 DOI: 10.1515/hsz-2021-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Synthetically sulfated hyaluronan derivatives were shown to facilitate osteogenic differentiation of human bone marrow stromal cells (hBMSC) by application in solution or incorporated in thin collagen-based coatings. In the presented study, using a biomimetic three-dimensional (3D) cell culture model based on fibrillary collagen I (3D Col matrix), we asked on the impact of binding mode of low sulfated hyaluronan (sHA) in terms of adsorptive and covalent binding on osteogenic differentiation of hBMSC. Both binding modes of sHA induced osteogenic differentiation. Although for adsorptive binding of sHA a strong intracellular uptake of sHA was observed, implicating an intracellular mode of action, covalent binding of sHA to the 3D matrix induced also intense osteoinductive effects pointing towards an extracellular mode of action of sHA in osteogenic differentiation. In summary, the results emphasize the relevance of fibrillary 3D Col matrices as a model to study hBMSC differentiation in vitro in a physiological-like environment and that sHA can display dose-dependent osteoinductive effects in dependence on presentation mode in cell culture scaffolds.
Collapse
Affiliation(s)
- Sarah Vogel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| | - Franziska Ullm
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Johannisallee 21-23, D-04103Leipzig, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Johannisallee 21-23, D-04103Leipzig, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| |
Collapse
|
17
|
Klatte-Schulz F, Bormann N, Voss I, Melzer J, Schmock A, Bucher CH, Thiele K, Moroder P, Haffner-Luntzer M, Ignatius A, Duda GN, Wildemann B. Bursa-Derived Cells Show a Distinct Mechano-Response to Physiological and Pathological Loading in vitro. Front Cell Dev Biol 2021; 9:657166. [PMID: 34136480 PMCID: PMC8201779 DOI: 10.3389/fcell.2021.657166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The mechano-response of highly loaded tissues such as bones or tendons is well investigated, but knowledge regarding the mechano-responsiveness of adjacent tissues such as the subacromial bursa is missing. For a better understanding of the physiological role of the bursa as a friction-reducing structure in the joint, the study aimed to analyze whether and how bursa-derived cells respond to physiological and pathological mechanical loading. This might help to overcome some of the controversies in the field regarding the role of the bursa in the development and healing of shoulder pathologies. Cells of six donors seeded on collagen-coated silicon dishes were stimulated over 3 days for 1 or 4 h with 1, 5, or 10% strain. Orientation of the actin cytoskeleton, YAP nuclear translocation, and activation of non-muscle myosin II (NMM-II) were evaluated for 4 h stimulations to get a deeper insight into mechano-transduction processes. To investigate the potential of bursa-derived cells to adapt their matrix formation and remodeling according to mechanical loading, outcome measures included cell viability, gene expression of extracellular matrix and remodeling markers, and protein secretions. The orientation angle of the actin cytoskeleton increased toward a more perpendicular direction with increased loading and lowest variations for the 5% loading group. With 10% tension load, cells were visibly stressed, indicated by loss in actin density and slightly reduced cell viability. A significantly increased YAP nuclear translocation occurred for the 1% loading group with a similar trend for the 5% group. NMM-II activation was weak for all stimulation conditions. On the gene expression level, only the expression of TIMP2 was down-regulated in the 1 h group compared to control. On the protein level, collagen type I and MMP2 increased with higher/longer straining, respectively, whereas TIMP1 secretion was reduced, resulting in an MMP/TIMP imbalance. In conclusion, this study documents for the first time a clear mechano-responsiveness in bursa-derived cells with activation of mechano-transduction pathways and thus hint to a physiological function of mechanical loading in bursa-derived cells. This study represents the basis for further investigations, which might lead to improved treatment options of subacromial bursa-related pathologies in the future.
Collapse
Affiliation(s)
- Franka Klatte-Schulz
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nicole Bormann
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabel Voss
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Josephine Melzer
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aysha Schmock
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathi Thiele
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Moroder
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britt Wildemann
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental Trauma Surgery, Department of Trauma-, Hand- and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
18
|
Sun Y, Yuan Y, Wu W, Lei L, Zhang L. The effects of locomotion on bone marrow mesenchymal stem cell fate: insight into mechanical regulation and bone formation. Cell Biosci 2021; 11:88. [PMID: 34001272 PMCID: PMC8130302 DOI: 10.1186/s13578-021-00601-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) refer to a heterogeneous population of cells with the capacity for self-renewal. BMSCs have multi-directional differentiation potential and can differentiate into chondrocytes, osteoblasts, and adipocytes under specific microenvironment or mechanical regulation. The activities of BMSCs are closely related to bone quality. Previous studies have shown that BMSCs and their lineage-differentiated progeny (for example, osteoblasts), and osteocytes are mechanosensitive in bone. Thus, a goal of this review is to discuss how these ubiquious signals arising from mechanical stimulation are perceived by BMSCs and then how the cells respond to them. Studies in recent years reported a significant effect of locomotion on the migration, proliferation and differentiation of BMSCs, thus, contributing to our bone mass. This regulation is realized by the various intersecting signaling pathways including RhoA/Rock, IFG, BMP and Wnt signalling. The mechanoresponse of BMSCs also provides guidance for maintaining bone health by taking appropriate exercises. This review will summarize the regulatory effects of locomotion/mechanical loading on BMSCs activities. Besides, a number of signalling pathways govern MSC fate towards osteogenic or adipocytic differentiation will be discussed. The understanding of mechanoresponse of BMSCs makes the foundation for translational medicine.
Collapse
Affiliation(s)
- Yuanxiu Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Yuan
- School of Sport and Health, Guangzhou Sport University, Guangzhou, 510500, Guangdong, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Le Lei
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Lingli Zhang
- School of Physical Education & Sports Science, South China Normal University, 55 Zhongshan Road West, Tianhe District, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
19
|
Curtis KJ, Mai C, Martin H, Oberman AG, Alderfer L, Romero-Moreno R, Walsh M, Mitros SF, Thomas SG, Dynako JA, Zimmer DI, McNamara LM, Littlepage LE, Niebur GL. The effect of marrow secretome and culture environment on the rate of metastatic breast cancer cell migration in two and three dimensions. Mol Biol Cell 2021; 32:1009-1019. [PMID: 33689396 PMCID: PMC8101488 DOI: 10.1091/mbc.e19-12-0682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023] Open
Abstract
Metastasis is responsible for over 90% of cancer-related deaths, and bone is the most common site for breast cancer metastasis. Metastatic breast cancer cells home to trabecular bone, which contains hematopoietic and stromal lineage cells in the marrow. As such, it is crucial to understand whether bone or marrow cells enhance breast cancer cell migration toward the tissue. To this end, we quantified the migration of MDA-MB-231 cells toward human bone in two- and three-dimensional (3D) environments. First, we found that the cancer cells cultured on tissue culture plastic migrated toward intact trabecular bone explants at a higher rate than toward marrow-deficient bone or devitalized bone. Leptin was more abundant in conditioned media from the cocultures with intact explants, while higher levels of IL-1β, IL-6, and TNFα were detected in cultures with both intact bone and cancer cells. We further verified that the cancer cells migrated into bone marrow using a bioreactor culture system. Finally, we studied migration toward bone in 3D gelatin. Migration speed did not depend on stiffness of this homogeneous gel, but many more dendritic-shaped cancer cells oriented and migrated toward bone in stiffer gels than softer gels, suggesting a coupling between matrix mechanics and chemotactic signals.
Collapse
Affiliation(s)
- Kimberly J. Curtis
- Bioengineering Graduate Program, University of Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, IN 46556
| | - Christine Mai
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556
| | - Hannah Martin
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556
| | - Alyssa G. Oberman
- Bioengineering Graduate Program, University of Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, IN 46556
| | - Laura Alderfer
- Bioengineering Graduate Program, University of Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, IN 46556
| | - Ricardo Romero-Moreno
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, IN 46556
| | - Mark Walsh
- Indiana University School of Medicine, South Bend Campus, Notre Dame, IN 46556
- Beacon Medical Group, Trauma and Surgical Services, South Bend, IN, 46601
| | - Stephen F. Mitros
- Beacon Medical Group, Trauma and Surgical Services, South Bend, IN, 46601
| | - Scott G. Thomas
- Indiana University School of Medicine, South Bend Campus, Notre Dame, IN 46556
| | - Joseph A. Dynako
- Indiana University School of Medicine, South Bend Campus, Notre Dame, IN 46556
| | - David I. Zimmer
- Indiana University School of Medicine, South Bend Campus, Notre Dame, IN 46556
| | - Laoise M. McNamara
- Mechanobiology and Medical Devices Research Group, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland H91 CF50
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, IN 46556
| | - Glen L. Niebur
- Bioengineering Graduate Program, University of Notre Dame, IN 46556
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, IN 46556
| |
Collapse
|
20
|
Zhang L, Yuan Y, Wu W, Sun Z, Lei L, Fan J, Gao B, Zou J. Medium-Intensity Treadmill Exercise Exerts Beneficial Effects on Bone Modeling Through Bone Marrow Mesenchymal Stromal Cells. Front Cell Dev Biol 2020; 8:600639. [PMID: 33330492 PMCID: PMC7732523 DOI: 10.3389/fcell.2020.600639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
As a type of multipotential cells, bone marrow mesenchymal stromal cells (BMMSCs) can differentiate into chondrocytes, osteoblasts, and adipocytes under different loading condition or specific microenvironment. Previous studies have shown that BMMSCs and their lineage-differentiated progeny (for example, osteoblasts), and osteocytes are mechanosensitive in bone. The appropriate physical activity and exercise could help attenuate bone loss, effectively stimulate bone formation, increase bone mineral density (BMD), prevent the progression of osteoporosis, and reduce the risk of bone fractures. Bone morphogenetic protein (BMP) is originally discovered as a protein with heterotopic bone-inducing activity in the bone matrix that exerts a critical role in multiple stages of bone metabolism. In the present study, the medium-intensity treadmill exercise enhanced bone formation and increased osteocalcin (OCN) and osteopontin (OPN) mRNA expression as well as activation of the BMP-Smad signaling pathway in vivo. In order to investigate the effect of a BMP-Smad signaling pathway, we injected mice with activated enzyme inhibitors (LDN-193189HCL) and subjected the mice to treadmill exercise intervention. LDN-193189HCL attenuated the BMD and bone mass mediated by medium-intensity exercise and BMP-Smad signaling pathway.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhongguang Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Le Lei
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
21
|
Biedzinski S, Agsu G, Vianay B, Delord M, Blanchoin L, Larghero J, Faivre L, Théry M, Brunet S. Microtubules control nuclear shape and gene expression during early stages of hematopoietic differentiation. EMBO J 2020; 39:e103957. [PMID: 33089509 DOI: 10.15252/embj.2019103957] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) can differentiate into all hematopoietic lineages to support hematopoiesis. Cells from the myeloid and lymphoid lineages fulfill distinct functions with specific shapes and intra-cellular architectures. The role of cytokines in the regulation of HSPC differentiation has been intensively studied but our understanding of the potential contribution of inner cell architecture is relatively poor. Here, we show that large invaginations are generated by microtubule constraints on the swelling nucleus of human HSPC during early commitment toward the myeloid lineage. These invaginations are associated with a local reduction of lamin B density, local loss of heterochromatin H3K9me3 and H3K27me3 marks, and changes in expression of specific hematopoietic genes. This establishes the role of microtubules in defining the unique lobulated nuclear shape observed in myeloid progenitor cells and suggests that this shape is important to establish the gene expression profile specific to this hematopoietic lineage. It opens new perspectives on the implications of microtubule-generated forces, in the early commitment to the myeloid lineage.
Collapse
Affiliation(s)
- Stefan Biedzinski
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Gökçe Agsu
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Benoit Vianay
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Marc Delord
- Recherche Clinique et Investigation, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Laurent Blanchoin
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Jerome Larghero
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Lionel Faivre
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Manuel Théry
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Stéphane Brunet
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| |
Collapse
|
22
|
Vogel S, Ullm F, Damaris Müller C, Pompe T, Hempel U. Remodeling of Three-Dimensional Collagen I Matrices by Human Bone Marrow Stromal Cells during Osteogenic Differentiation In Vitro. ACS APPLIED BIO MATERIALS 2020; 3:6967-6978. [DOI: 10.1021/acsabm.0c00856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sarah Vogel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstrasse 42, Dresden 01307, Germany
| | - Franziska Ullm
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Johannisallee 21-23, Leipzig 04103, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstrasse 42, Dresden 01307, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Johannisallee 21-23, Leipzig 04103, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstrasse 42, Dresden 01307, Germany
| |
Collapse
|
23
|
Targeting Actomyosin Contractility Suppresses Malignant Phenotypes of Acute Myeloid Leukemia Cells. Int J Mol Sci 2020; 21:ijms21103460. [PMID: 32422910 PMCID: PMC7279019 DOI: 10.3390/ijms21103460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Actomyosin-mediated contractility is required for the majority of force-driven cellular events such as cell division, adhesion, and migration. Under pathological conditions, the role of actomyosin contractility in malignant phenotypes of various solid tumors has been extensively discussed, but the pathophysiological relevance in hematopoietic malignancies has yet to be elucidated. In this study, we found enhanced actomyosin contractility in diverse acute myeloid leukemia (AML) cell lines represented by highly expressed non-muscle myosin heavy chain A (NMIIA) and increased phosphorylation of the myosin regulatory light chain. Genetic and pharmacological inhibition of actomyosin contractility induced multivalent malignancy- suppressive effects in AML cells. In this context, perturbed actomyosin contractility enhances AML cell apoptosis through cytokinesis failure and aryl hydrocarbon receptor activation. Moreover, leukemic oncogenes were downregulated by the YAP/TAZ-mediated mechanotransduction pathway. Our results provide a theoretical background for targeting actomyosin contractility to suppress the malignancy of AML cells.
Collapse
|
24
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:5386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
25
|
Curtis KJ, Oberman AG, Niebur GL. Effects of mechanobiological signaling in bone marrow on skeletal health. Ann N Y Acad Sci 2019; 1460:11-24. [PMID: 31508828 DOI: 10.1111/nyas.14232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023]
Abstract
Bone marrow is a cellular tissue that forms within the pore space and hollow diaphysis of bones. As a tissue, its primary function is to support the hematopoietic progenitor cells that maintain the populations of both erythroid and myeloid lineage cells in the bone marrow, making it an essential element of normal mammalian physiology. However, bone's primary function is load bearing, and deformations induced by external forces are transmitted to the encapsulated marrow. Understanding the effects of these mechanical inputs on marrow function and adaptation requires knowledge of the material behavior of the marrow at multiple scales, the loads that are applied, and the mechanobiology of the cells. This paper reviews the current state of knowledge of each of these factors. Characterization of the marrow mechanical environment and its role in skeletal health and other marrow functions remains incomplete, but research on the topic is increasing, driven by interest in skeletal adaptation and the mechanobiology of cancer metastasis.
Collapse
Affiliation(s)
- Kimberly J Curtis
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
26
|
Wang L, Nakamura F. Identification of Filamin A Mechanobinding Partner I: Smoothelin Specifically Interacts with the Filamin A Mechanosensitive Domain 21. Biochemistry 2019; 58:4726-4736. [PMID: 30990690 DOI: 10.1021/acs.biochem.9b00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Filamin A (FLNA) is a ubiquitously expressed actin cross-linking protein and a scaffold of numerous binding partners to regulate cell proliferation, migration, and survival. FLNA is a homodimer, and each subunit has an N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats (R). FLNA mediates mechanotransduction by force-induced conformational changes of its cryptic integrin-binding site on R21. Here, we identified two novel FLNA-binding partners, smoothelins (SMTN A and B) and leucine zipper protein 1 (LUZP1), using stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics followed by an in silico screening for proteins having a consensus FLNA-binding domain. We found that, although SMTN does not interact with full-length FLNA, it binds to FLNA variant 1 (FLNAvar-1) that exposes the cryptic CD cleft of R21. Point mutations on the C strand that disrupt the integrin binding also block the SMTN interaction. We identified FLNA-binding domains on SMTN using mutagenesis and used the mutant SMTN to investigate the role of the FLNA-SMTN interaction on the dynamics and localization of SMTN in living cells. Fluorescence recovery after photobleaching (FRAP) of GFP-labeled SMTN in living cells demonstrated that the non-FLNA-binding mutant SMTN diffuses faster than wild-type SMTN. Moreover, inhibition of Rho-kinase using Y27632 also increases the diffusion. These data demonstrated that SMTN specifically interacts with FLNAvar-1 and mechanically activated FLNA in cells. The companion report (Wang and Nakamura, 2019) describes the interactions of FLNA with the transcript of the LUZP1 gene.
Collapse
Affiliation(s)
- Lina Wang
- School of Pharmaceutical Science and Technology, Life Science Platform , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Life Science Platform , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , China
| |
Collapse
|
27
|
Liu L, Luo Q, Sun J, Song G. Cytoskeletal control of nuclear morphology and stiffness are required for OPN-induced bone-marrow-derived mesenchymal stem cell migration. Biochem Cell Biol 2019; 97:463-470. [PMID: 30608867 DOI: 10.1139/bcb-2018-0263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During cell migration, the movement of the nucleus must be coordinated with the cytoskeletal dynamics that influence the efficiency of cell migration. Our previous study demonstrated that osteopontin (OPN) significantly promotes the migration of bone-marrow-derived mesenchymal stem cells (BMSCs). However, the mechanism that regulates nuclear mechanics of the cytoskeleton during OPN-promoted BMSC migration remains unclear. In this study, we investigated how the actin cytoskeleton influences nuclear mechanics in BMSCs. We assessed the morphology and mechanics of the nuclei in the OPN-treated BMSCs subjected to disruption or polymerization of the actin cytoskeleton. We found that disruption of actin organization by cytochalasin D (Cyto D) resulted in a decrease in the nuclear projected area and nuclear stiffness. Stabilizing the actin assembly with jasplakinolide (JASP) resulted in an increase in the nuclear projected area and nuclear stiffness. SUN1 (Sad-1/UNC-84 1) is a component of the LINC (linker of nucleoskeleton and cytoskeleton) complex involved in the connections between the nucleus and the cytoskeleton. We found that SUN1 depletion by RNAi decreased the nuclear stiffness and OPN-promoted BMSC migration. Thus, the F-actin cytoskeleton plays an important role in determining the morphology and mechanical properties of the nucleus. We suggest that the cytoskeletal-nuclear interconnectivity through SUN1 proteins plays an important role in OPN-promoted BMSC migration.
Collapse
Affiliation(s)
- Lingling Liu
- a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.,b School of Medical Laboratory Science, Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Qing Luo
- a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jinghui Sun
- a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.,b School of Medical Laboratory Science, Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Guanbin Song
- a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
28
|
The Mechanobiology of the Actin Cytoskeleton in Stem Cells during Differentiation and Interaction with Biomaterials. Stem Cells Int 2018; 2018:2891957. [PMID: 30402108 PMCID: PMC6196919 DOI: 10.1155/2018/2891957] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
An understanding of the cytoskeleton's importance in stem cells is essential for their manipulation and further clinical application. The cytoskeleton is crucial in stem cell biology and depends on physical and chemicals signals to define its structure. Additionally, cell culture conditions will be important in the proper maintenance of stemness, lineage commitment, and differentiation. This review focuses on the following areas: the role of the actin cytoskeleton of stem cells during differentiation, the significance of cellular morphology, signaling pathways involved in cytoskeletal rearrangement in stem cells, and the mechanobiology and mechanotransduction processes implicated in the interactions of stem cells with different surfaces of biomaterials, such as nanotopography, which is a physical cue influencing the differentiation of stem cells. Also, cancer stem cells are included since it is necessary to understand the role of their mechanical properties to develop new strategies to treat cancer. In this context, to study the stem cells requires integrated disciplines, including molecular and cellular biology, chemistry, physics, and immunology, as well as mechanobiology. Finally, since one of the purposes of studying stem cells is for their application in regenerative medicine, the deepest understanding is necessary in order to establish safety protocols and effective cell-based therapies.
Collapse
|
29
|
Shin T, Lim D, Kim YS, Kim SC, Jo WL, Lim YW. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018; 7:357-361. [PMID: 29922456 PMCID: PMC5987684 DOI: 10.1302/2046-3758.75.bjr-2017-0222.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1.
Collapse
Affiliation(s)
- T Shin
- Department of Mechanical Engineering, Sejoing University; Corentec, Central R&D Center, Seoul, South Korea
| | - D Lim
- Department of Mechanical Engineering, Sejoing University, Seoul, South Korea
| | - Y S Kim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - S C Kim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - W L Jo
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Y W Lim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
30
|
Mohammadrezaei D, Golzar H, Rezai Rad M, Omidi M, Rashedi H, Yazdian F, Khojasteh A, Tayebi L. In vitroeffect of graphene structures as an osteoinductive factor in bone tissue engineering: A systematic review. J Biomed Mater Res A 2018; 106:2284-2343. [DOI: 10.1002/jbm.a.36422] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Dorsa Mohammadrezaei
- School of Chemical Engineering, College of Engineering; University of Tehran; Tehran Iran
| | - Hossein Golzar
- School of Chemical Engineering, College of Engineering; University of Tehran; Tehran Iran
| | - Maryam Rezai Rad
- Department of Tissue Engineering, School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Meisam Omidi
- Protein Research Center, Shahid Beheshti University, GC, Velenjak; Tehran Iran
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering; University of Tehran; Tehran Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering; Faculty of New Science and Technologies, University of Tehran; Tehran Iran
| | - Arash Khojasteh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Oral and Maxillofacial Surgery; Shahid Beheshti University of Medical Sciences, Tehran; Tehran Iran
| | - Lobat Tayebi
- Biomaterials and Advanced Drug Delivery Laboratory, School of Medicine; Stanford University; Palo Alto California
- Marquette University School of Dentistry; Milwaukee Wisconsin
| |
Collapse
|
31
|
Gaio N, Martino A, Toth Z, Watson JT, Nicolaou D, McBride-Gagyi S. Masquelet technique: The effect of altering implant material and topography on membrane matrix composition, mechanical and barrier properties in a rat defect model. J Biomech 2018; 72:53-62. [PMID: 29510858 PMCID: PMC5895482 DOI: 10.1016/j.jbiomech.2018.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 12/26/2022]
Abstract
The Masquelet technique is a surgical procedure to regenerate segmental bone defects. The two-phase treatment relies on the production of a vascularized foreign-body membrane to support bone grafts over three times larger than the traditional maximum. Historically, the procedure has always utilized a bone cement spacer to evoke membrane production. However, membrane formation can easily be effected by implant surface properties such as material and topology. This study sought to determine if the membrane's mechanical or barrier properties are affected by changing the spacer material to titanium or roughening the surface finish. Ten-week-old, male Sprague Dawley rats were given an externally stabilized, 6 mm femur defect which was filled with a pre-made spacer of bone cement (PMMA) or titanium (TI) with a smooth (∼1 μm) or roughened (∼8 μm) finish. After 4 weeks of implantation, the membranes were harvested, and the matrix composition, tensile mechanics, shrinkage, and barrier function was assessed. Roughening the spacers resulted in significantly more compliant membranes. TI spacers created membranes that inhibited solute transport more. There were no differences between groups in collagen or elastin distribution. This suggests that different membrane characteristics can be created by altering the spacer surface properties. Surgeons may unknowingly effecting membrane formation via bone cement preparation techniques.
Collapse
Affiliation(s)
- Natalie Gaio
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - Alice Martino
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - Zacharie Toth
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - J Tracy Watson
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - Daemeon Nicolaou
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - Sarah McBride-Gagyi
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA.
| |
Collapse
|
32
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
33
|
Costa MHG, de Soure AM, Cabral JMS, Ferreira FC, da Silva CL. Hematopoietic Niche - Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells. Biotechnol J 2017; 13. [PMID: 29178199 DOI: 10.1002/biot.201700088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/27/2017] [Indexed: 12/19/2022]
Abstract
The adult bone marrow (BM) niche is a complex entity where a homeostatic hematopoietic system is maintained through a dynamic crosstalk between different cellular and non-cellular players. Signaling mechanisms triggered by cell-cell, cell-extracellular matrix (ECM), cell-cytokine interactions, and local microenvironment parameters are involved in controlling quiescence, self-renewal, differentiation, and migration of hematopoietic stem/progenitor cells (HSPC). A promising strategy to more efficiently expand HSPC numbers and tune their properties ex vivo is to mimic the hematopoietic niche through integration of adjuvant stromal cells, soluble cues, and/or biomaterial-based approaches in HSPC culture systems. Particularly, mesenchymal stem/stromal cells (MSC), through their paracrine activity or direct contact with HSPC, are thought to be a relevant niche player, positioning HSPC-MSC co-culture as a valuable platform to support the ex vivo expansion of hematopoietic progenitors. To improve the clinical outcome of hematopoietic cell transplantation (HCT), namely when the available HSPC are present in a limited number such is the case of HSPC collected from umbilical cord blood (UCB), ex vivo expansion of HSPC is required without eliminating the long-term repopulating capacity of more primitive HSC. Here, we will focus on depicting the characteristics of co-culture systems, as well as other bioengineering approaches to improve the functionality of HSPC ex vivo.
Collapse
Affiliation(s)
- Marta H G Costa
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
34
|
A molecular signature of dormancy in CD34 +CD38 - acute myeloid leukaemia cells. Oncotarget 2017; 8:111405-111418. [PMID: 29340063 PMCID: PMC5762331 DOI: 10.18632/oncotarget.22808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023] Open
Abstract
Dormant leukaemia initiating cells in the bone marrow niche are a crucial therapeutic target for total eradication of acute myeloid leukaemia. To study this cellular subset we created and validated an in vitro model employing the cell line TF-1a, treated with Transforming Growth Factor β1 (TGFβ1) and a mammalian target of rapamycin inhibitor. The treated cells showed decreases in total RNA, Ki-67 and CD71, increased aldehyde dehydrogenase activity, forkhead box 03A (FOX03A) nuclear translocation and growth inhibition, with no evidence of apoptosis or differentiation. Using human genome gene expression profiling we identified a signature enriched for genes involved in adhesion, stemness/inhibition of differentiation and tumour suppression as well as canonical cell cycle regulation. The most upregulated gene was the osteopontin-coding gene SPP1. Dormant cells also demonstrated significantly upregulated beta 3 integrin (ITGB3) and CD44, as well as increased adhesion to their ligands vitronectin and hyaluronic acid as well as to bone marrow stromal cells. Immunocytochemistry of bone marrow biopsies of AML patients confirmed the positive expression of osteopontin in blasts near the para-trabecular bone marrow, whereas osteopontin was rarely detected in mononuclear cell isolates. Unsupervised hierarchical clustering of the dormancy gene signature in primary acute myeloid leukaemia samples from the Cancer Genome Atlas identified a cluster enriched for dormancy genes associated with poor overall survival.
Collapse
|
35
|
Goetzke R, Franzen J, Ostrowska A, Vogt M, Blaeser A, Klein G, Rath B, Fischer H, Zenke M, Wagner W. Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels. Biomaterials 2017; 156:147-158. [PMID: 29197223 DOI: 10.1016/j.biomaterials.2017.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/22/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated toward mesenchymal stromal cells (MSCs), but this transition remains incomplete. It has been suggested that matrix elasticity directs cell-fate decisions. Therefore, we followed the hypothesis that differentiation of primary MSCs and generation of iPSC-derived MSCs (iMSCs) is supported by a soft matrix of human platelet lysate (hPL-gel). We demonstrate that this fibrin-based hydrogel supports growth of primary MSCs with pronounced deposition of extracellular matrix, albeit it hardly impacts on gene expression profiles or in vitro differentiation of MSCs. Furthermore, iPSCs can be effectively differentiated toward MSC-like cells on the hydrogel. Unexpectedly, this complex differentiation process is not affected by the substrate: iMSCs generated on tissue culture plastic (TCP) or hPL-gel have the same morphology, immunophenotype, differentiation potential, and gene expression profiles. Moreover, global DNA methylation patterns are essentially identical in iMSCs generated on TCP or hPL-gel, indicating that they are epigenetically alike. Taken together, hPL-gel provides a powerful matrix that supports growth and differentiation of primary MSCs and iMSCs - but this soft hydrogel does not impact on lineage-specific differentiation.
Collapse
Affiliation(s)
- Roman Goetzke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Julia Franzen
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Alina Ostrowska
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Michael Vogt
- Interdisciplinary Center for Clinical Research IZKF Aachen, RWTH Aachen, University Medical School, Aachen, Germany
| | - Andreas Blaeser
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Gerd Klein
- Center for Medical Research, Department of Medicine II, University of Tübingen, Tübingen, Germany
| | - Björn Rath
- Department of Orthopedics, RWTH Aachen University Medical School, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Zenke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany; Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany; Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
36
|
Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng 2017; 8:2041731417725464. [PMID: 28890779 PMCID: PMC5574483 DOI: 10.1177/2041731417725464] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.
Collapse
Affiliation(s)
- Patricia A Redondo
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Marina Pavlou
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Umber Cheema
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| |
Collapse
|
37
|
Klinker MW, Marklein RA, Lo Surdo JL, Wei CH, Bauer SR. Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc Natl Acad Sci U S A 2017; 114:E2598-E2607. [PMID: 28283659 PMCID: PMC5380055 DOI: 10.1073/pnas.1617933114] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ-enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function.
Collapse
Affiliation(s)
- Matthew W Klinker
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993
| | - Ross A Marklein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993
| | - Jessica L Lo Surdo
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993
| | - Cheng-Hong Wei
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993
| |
Collapse
|
38
|
Choi JS, Harley BAC. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. SCIENCE ADVANCES 2017; 3:e1600455. [PMID: 28070554 PMCID: PMC5218514 DOI: 10.1126/sciadv.1600455] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 11/22/2016] [Indexed: 05/02/2023]
Abstract
Hematopoiesis is the physiological process where hematopoietic stem cells (HSCs) continuously generate the body's complement of blood and immune cells within unique regions of the bone marrow termed niches. Although previous investigations have revealed gradients in cellular and extracellular matrix (ECM) content across the marrow, and matrix elasticity and ligand type are believed to be strong regulators of stem cell fate, the impact of biophysical signals on HSC response is poorly understood. Using marrow-inspired ECM ligand-coated polyacrylamide substrates that present defined stiffness and matrix ligand cues, we demonstrate that the interplay between integrin engagement and myosin II activation processes affects the morphology, proliferation, and myeloid lineage specification of primary murine HSCs within 24 hours ex vivo. Notably, the impact of discrete biophysical signals on HSC fate decisions appears to be correlated to known microenvironmental transitions across the marrow. The combination of fibronectin and marrow matrix-associated stiffness was sufficient to maintain hematopoietic progenitor populations, whereas collagen and laminin enhanced proliferation and myeloid differentiation, respectively. Inhibiting myosin II-mediated contraction or adhesion to fibronectin via specific integrins (α5β1 and ανβ3) selectively abrogated the impact of the matrix environment on HSC fate decisions. Together, these findings indicate that adhesive interactions and matrix biophysical properties are critical design considerations in the development of biomaterials to direct HSC behavior in vitro.
Collapse
Affiliation(s)
- Ji Sun Choi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Corresponding author.
| |
Collapse
|
39
|
A high throughput approach for analysis of cell nuclear deformability at single cell level. Sci Rep 2016; 6:36917. [PMID: 27841297 PMCID: PMC5107983 DOI: 10.1038/srep36917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
Various physiological and pathological processes, such as cell differentiation, migration, attachment, and metastasis are highly dependent on nuclear elasticity. Nuclear morphology directly reflects the elasticity of the nucleus. We propose that quantification of changes in nuclear morphology on surfaces with defined topography will enable us to assess nuclear elasticity and deformability. Here, we used soft lithography techniques to produce 3 dimensional (3-D) cell culture substrates decorated with micron sized pillar structures of variable aspect ratios and dimensions to induce changes in cellular and nuclear morphology. We developed a high content image analysis algorithm to quantify changes in nuclear morphology at the single-cell level in response to physical cues from the 3-D culture substrate. We present that nuclear stiffness can be used as a physical parameter to evaluate cancer cells based on their lineage and in comparison to non-cancerous cells originating from the same tissue type. This methodology can be exploited for systematic study of mechanical characteristics of large cell populations complementing conventional tools such as atomic force microscopy and nanoindentation.
Collapse
|
40
|
Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation. Blood 2016; 128:2022-2032. [PMID: 27503502 DOI: 10.1182/blood-2016-02-699959] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
Megakaryocyte (MK) differentiation occurs within the bone marrow (BM), a complex 3-dimensional (3D) environment of low stiffness exerting local external constraints. To evaluate the influence of the 3D mechanical constraints that MKs may encounter in vivo, we differentiated mouse BM progenitors in methylcellulose (MC) hydrogels tuned to mimic BM stiffness. We found that MKs grown in a medium of 30- to 60-Pa stiffness more closely resembled those in the BM in terms of demarcation membrane system (DMS) morphological aspect and exhibited higher ploidy levels, as compared with MKs in liquid culture. Following resuspension in a liquid medium, MC-grown MKs displayed twice as much proplatelet formation as cells grown in liquid culture. Thus, the MC gel, by mimicking external constraints, appeared to positively influence MK differentiation. To determine whether MKs adapt to extracellular stiffness through mechanotransduction involving actomyosin-based modulation of the intracellular tension, myosin-deficient (Myh9-/-) progenitors were grown in MC gels. Absence of myosin resulted in abnormal cell deformation and strongly decreased proplatelet formation, similarly to features observed for Myh9-/- MKs differentiated in situ but not in vitro. Moreover, megakaryoblastic leukemia 1 (MKL1), a well-known actor in mechanotransduction, was found to be preferentially relocated within the nucleus of MC-differentiated MKs, whereas its inhibition prevented MC-mediated increased proplatelet formation. Altogether, these data show that a 3D medium mimicking BM stiffness contributes, through the myosin IIA and MKL1 pathways, to a more favorable in vitro environment for MK differentiation, which ultimately translates into increased proplatelet production.
Collapse
|
41
|
Phosphoproteomic profiling of mouse primary HSPCs reveals new regulators of HSPC mobilization. Blood 2016; 128:1465-74. [PMID: 27365422 DOI: 10.1182/blood-2016-05-711424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022] Open
Abstract
Protein phosphorylation is a central mechanism of signal transduction that both positively and negatively regulates protein function. Large-scale studies of the dynamic phosphorylation states of cell signaling systems have been applied extensively in cell lines and whole tissues to reveal critical regulatory networks, and candidate-based evaluations of phosphorylation in rare cell populations have also been informative. However, application of comprehensive profiling technologies to adult stem cell and progenitor populations has been challenging, due in large part to the scarcity of such cells in adult tissues. Here, we combine multicolor flow cytometry with highly efficient 3-dimensional high performance liquid chromatography/mass spectrometry to enable quantitative phosphoproteomic analysis from 200 000 highly purified primary mouse hematopoietic stem and progenitor cells (HSPCs). Using this platform, we identify ARHGAP25 as a novel regulator of HSPC mobilization and demonstrate that ARHGAP25 phosphorylation at serine 363 is an important modulator of its function. Our approach provides a robust platform for large-scale phosphoproteomic analyses performed with limited numbers of rare progenitor cells. Data from our study comprises a new resource for understanding the molecular signaling networks that underlie hematopoietic stem cell mobilization.
Collapse
|
42
|
Metzger TA, Kreipke TC, Vaughan TJ, McNamara LM, Niebur GL. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng 2015; 137:1926231. [PMID: 25363343 DOI: 10.1115/1.4028985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022]
Abstract
Bone adapts to habitual loading through mechanobiological signaling. Osteocytes are the primary mechanical sensors in bone, upregulating osteogenic factors and downregulating osteoinhibitors, and recruiting osteoclasts to resorb bone in response to microdamage accumulation. However, most of the cell populations of the bone marrow niche,which are intimately involved with bone remodeling as the source of bone osteoblast and osteoclast progenitors, are also mechanosensitive. We hypothesized that the deformation of trabecular bone would impart mechanical stress within the entrapped bone marrow consistent with mechanostimulation of the constituent cells. Detailed fluid-structure interaction models of porcine femoral trabecular bone and bone marrow were created using tetrahedral finite element meshes. The marrow was allowed to flow freely within the bone pores, while the bone was compressed to 2000 or 3000 microstrain at the apparent level.Marrow properties were parametrically varied from a constant 400 mPas to a power law rule exceeding 85 Pas. Deformation generated almost no shear stress or pressure in the marrow for the low viscosity fluid, but exceeded 5 Pa when the higher viscosity models were used. The shear stress was higher when the strain rate increased and in higher volume fraction bone. The results demonstrate that cells within the trabecular bone marrow could be mechanically stimulated by bone deformation, depending on deformation rate, bone porosity, and bone marrow properties. Since the marrow contains many mechanosensitive cells, changes in the stimulatory levels may explain the alterations in bone marrow morphology with aging and disease, which may in turn affect the trabecular bone mechanobiology and adaptation.
Collapse
|
43
|
Krause M, Wolf K. Cancer cell migration in 3D tissue: negotiating space by proteolysis and nuclear deformability. Cell Adh Migr 2015; 9:357-66. [PMID: 26301444 DOI: 10.1080/19336918.2015.1061173] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Efficient tumor cell invasion into the surrounding desmoplastic stroma is a hallmark of cancer progression and involves the navigation through available small tissue spaces existent within the dense stromal network. Such navigation includes the reciprocal adaptation of the moving tumor cell, including the nucleus as largest and stiffest organelle, to pre-existent or de-novo generated extracellular matrix (ECM) gaps, pores and trails within stromal compartments. Within the context of migration, we briefly summarize physiological and tumor-related changes in ECM geometries as well as tissue proteolysis. We then focus on mechanisms that ensure the successful translocation of a nucleus through a confining pore by cytoskeleton-mediated coupling, as well as regulators of cell and nuclear deformability such as chromatin organization and nuclear lamina expression. In summary, understanding dynamic nuclear mechanics during migration in response to confined space will add to a better conceptual appreciation of cancer invasion and progression.
Collapse
Affiliation(s)
- Marina Krause
- a Department of Cell Biology ; Radboud University Medical Center ; Nijmegen , The Netherlands
| | - Katarina Wolf
- a Department of Cell Biology ; Radboud University Medical Center ; Nijmegen , The Netherlands
| |
Collapse
|
44
|
Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int 2015; 2015:167025. [PMID: 26351461 PMCID: PMC4553184 DOI: 10.1155/2015/167025] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/07/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.
Collapse
Affiliation(s)
| | - Egor Osidak
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow 123098, Russia
| | - Sergey Domogatsky
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Russian Cardiology Research and Production Center Federal State Budgetary Institution, Ministry of Health of the Russian Federation, 3 Cherepkovskaya 15, Moscow 21552, Russia
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
45
|
Mahadik BP, Pedron Haba S, Skertich LJ, Harley BAC. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials 2015; 67:297-307. [PMID: 26232879 DOI: 10.1016/j.biomaterials.2015.07.042] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body's full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory.
Collapse
Affiliation(s)
- Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sara Pedron Haba
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Luke J Skertich
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
46
|
Liu C, Fan Y, Zhou L, Zhu HY, Song YC, Hu L, Wang Y, Li QP. Pretreatment of mesenchymal stem cells with angiotensin II enhances paracrine effects, angiogenesis, gap junction formation and therapeutic efficacy for myocardial infarction. Int J Cardiol 2015; 188:22-32. [PMID: 25880576 DOI: 10.1016/j.ijcard.2015.03.425] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Pretreatment of mesenchymal stem cells (MSCs) with growth factors is reported to be an effective route for improving cell-based therapy of myocardial infarction (MI). Angiotensin II (Ang II) triggers vascular endothelial growth factor (VEGF) synthesis in MSCs. This study aimed to investigate the effects and mechanisms of Ang II pretreatment in enhancing the therapeutic efficacy of MSCs in MI. METHODS MSCs and endothelial cells (ECs) were isolated from Sprague-Dawley rats. After pretreated with or without 100 nM of Ang II for 24 h, the MSCs were directly injected into the border zones of the ischemic heart. Cardiac function, fibrosis, infarct size, VEGF expression, angiogenesis, and cell differentiation in the infarcted myocardium were determined after 30 days. The cell apoptosis of MSCs post hypoxia was assessed using flow cytometry. The angiogenic activity of MSCs was analyzed using tube formation assay. The gap junction protein connexin-43 (Cx43) expression was detected. RESULTS Compared with the MSC group, pretreatment of MSCs with Ang II resulted in better cardiac function, less cardiac fibrosis, smaller infarct size, and higher expression of VEGF and Von Willebrand Factor in ischemic myocardium, but no promotion of cardiomyocyte-like differentiation of MSCs. Ang II pretreatment enhanced the survival of MSCs and the H9c2 cells surrounding MSCs, and augmented the tube formation of ECs and MSCs. Ang II pretreatment up-regulated the Cx43 expression. CONCLUSIONS The pretreatment of MSCs with Ang II improved the outcome of MSC-based therapy for MI via the mechanisms of enhancing the paracrine production of VEGF, angiogenesis, and gap junction formation.
Collapse
Affiliation(s)
- Chao Liu
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | - Yue Fan
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | - Lu Zhou
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | - Hong-Yi Zhu
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | - Yi-Chen Song
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | - Liang Hu
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | - Yu Wang
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | - Qing-Ping Li
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
47
|
Guo Q, Liu C, Li J, Zhu C, Yang H, Li B. Gene expression modulation in TGF-β3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness. J Cell Mol Med 2015; 19:1582-92. [PMID: 25752910 PMCID: PMC4511356 DOI: 10.1111/jcmm.12533] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/19/2014] [Indexed: 01/07/2023] Open
Abstract
Tissue engineering has recently evolved into a promising approach for annulus fibrosus (AF) regeneration. However, selection of an ideal cell source, which can be readily differentiated into AF cells of various regions, remains challenging because of the heterogeneity of AF tissue. In this study, we set out to explore the feasibility of using transforming growth factor-β3-mediated bone marrow stem cells (tBMSCs) for AF tissue engineering. Since the differentiation of stem cells significantly relies on the stiffness of substrate, we fabricated nanofibrous scaffolds from a series of biodegradable poly(ether carbonate urethane)-urea (PECUU) materials whose elastic modulus approximated that of native AF tissue. We cultured tBMSCs on PECUU scaffolds and compared their gene expression profile to AF-derived stem cells (AFSCs), the newly identified AF tissue-specific stem cells. As predicted, the expression of collagen-I in both tBMSCs and AFSCs increased with scaffold stiffness, whereas the expression of collagen-II and aggrecan genes showed an opposite trend. Interestingly, the expression of collagen-I, collagen-II and aggrecan genes in tBMSCs on PECUU scaffolds were consistently higher than those in AFSCs regardless of scaffold stiffness. In addition, the cell traction forces (CTFs) of both tBMSCs and AFSCs gradually decreased with scaffold stiffness, which is similar to the CTF change of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that tBMSCs had strong tendency to differentiate into various types of AF cells and presented gene expression profiles similar to AFSCs, thereby establishing a rationale for the use of tBMSCs in AF tissue engineering.
Collapse
Affiliation(s)
- Qianping Guo
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Chen Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
48
|
Cambier T, Honegger T, Vanneaux V, Berthier J, Peyrade D, Blanchoin L, Larghero J, Théry M. Design of a 2D no-flow chamber to monitor hematopoietic stem cells. LAB ON A CHIP 2015; 15:77-85. [PMID: 25338534 DOI: 10.1039/c4lc00807c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hematopoietic stem cells (HSCs) are the most commonly used cell type in cell-based therapy. However, the investigation of their behavior in vitro has been limited by the difficulty of monitoring these non-adherent cells under classical culture conditions. Indeed, fluid flow moves cells away from the video-recording position and prevents single cell tracking over long periods of time. Here we describe a large array of 2D no-flow chambers allowing the monitoring of single HSCs for several days. The chamber design has been optimized to facilitate manufacturing and routine use. The chip contains a single inlet and 800 chambers. The chamber medium can be renewed by diffusion within a few minutes. This allowed us to stain live human HSCs with fluorescent primary antibodies in order to reveal their stage in the hematopoiesis differentiation pathway. Thus we were able to correlate human HSCs' growth rate, polarization and migration to their differentiation stage.
Collapse
Affiliation(s)
- Théo Cambier
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA, INRA, CNRS, Université Grenoble-Alpes, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bersani F, Lee J, Yu M, Morris R, Desai R, Ramaswamy S, Toner M, Haber DA, Parekkadan B. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res 2014; 74:7229-38. [PMID: 25339351 DOI: 10.1158/0008-5472.can-14-1809] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modeling the hematogenous spread of cancer cells to distant organs poses one of the greatest challenges in the study of human metastasis. Both tumor cell-intrinsic properties as well as interactions with reactive stromal cells contribute to this process, but identification of relevant stromal signals has been hampered by the lack of models allowing characterization of the metastatic niche. Here, we describe an implantable bioengineered scaffold, amenable to in vivo imaging, ex vivo manipulation, and serial transplantation for the continuous study of human metastasis in mice. Orthotopic or systemic inoculation of tagged human cancer cells into the mouse leads to the release of circulating tumor cells into the vasculature, which seed the scaffold, initiating a metastatic tumor focus. Mouse stromal cells can be readily recovered and profiled, revealing differential expression of cytokines, such as IL1β, from tumor-bearing versus unseeded scaffolds. Finally, this platform can be used to test the effect of drugs on suppressing initiation of metastatic lesions. This generalizable model to study cancer metastasis may thus identify key stromal-derived factors with important implications for basic and translational cancer research.
Collapse
Affiliation(s)
- Francesca Bersani
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Jungwoo Lee
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, Massachusetts
| | - Min Yu
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Robert Morris
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Rushil Desai
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Sridhar Ramaswamy
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, Massachusetts
| | - Daniel A Haber
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland.
| | - Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, Massachusetts. Harvard Stem Cell Institute, Boston, Massachusetts.
| |
Collapse
|
50
|
Tatavarty R, Ding H, Lu G, Taylor RJ, Bi X. Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide-calcium phosphate nanocomposites. Chem Commun (Camb) 2014; 50:8484-7. [PMID: 24891127 PMCID: PMC4090284 DOI: 10.1039/c4cc02442g] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanocomposites consisting of oblong ultrathin plate shaped calcium phosphate nanoparticles and graphene oxide microflakes were synthesized and have demonstrated markedly synergistic effect in accelerating stem cell differentiation to osteoblasts.
Collapse
Affiliation(s)
- Rameshwar Tatavarty
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX 77054, USA.
| | | | | | | | | |
Collapse
|