1
|
Zargaham MK, Ibrahim A, Ahmed M, Babar MM, Rajadas J. Targeting amyloidogenic proteins through cyclic peptides - A medicinal chemistry perspective. Bioorg Med Chem 2025; 123:118165. [PMID: 40153992 DOI: 10.1016/j.bmc.2025.118165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Alzheimer's Disease (AD) is characterized by the formation of amyloid-β (Aβ) in the extracellular region, neurofibrillary tangles (NFTs) in the intracellular region accompanied with neuroinflammation and decreased neurotransmitters in various regions of brain leading to neuroinflammation and neurodegeneration. Of the various bioactive molecules, Cyclic Peptides (CPs) are small circular chains of amino acids that can alter the structure and function of the proteins they interact with. They can be synthesized using chemical or genetic approach leading to the generation of diverse libraries of CPs that are screened for binding with desired target proteins. In AD, CPs can interfere at various levels, by either imitating the structure or altering the conformation of amyloidogenic proteins. They can also interfere with signal transduction by competing with amyloid proteins for various receptors which are involved in AD pathology. This review highlights the application of CPs as scaffolds for the identification of novel small molecules that can interfere with amyloid aggregation or for the formulation of vaccination against AD. Other proteins involved in the pathophysiological pathways of AD that can potentially be targeted for CP design have also been discussed.
Collapse
Affiliation(s)
- Muhammad Kazim Zargaham
- Department of Pharmaceutical Chemistry, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Ahsan Ibrahim
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Madiha Ahmed
- Department of Pharmaceutical Chemistry, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
2
|
Vollhardt A, Frölich L, Stockbauer AC, Danek A, Schmitz C, Wahl AS. Towards a better diagnosis and treatment of dementia: Identifying common and distinct neuropathological mechanisms in Alzheimer's and vascular dementia. Neurobiol Dis 2025; 208:106845. [PMID: 39999928 DOI: 10.1016/j.nbd.2025.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) together contribute to almost 90 % of all dementia cases leading to major health challenges of our time with a substantial global socioeconomic burden. While in AD, the improved understanding of Amyloid beta (Aß) mismetabolism and tau hyperphosphorylation as pathophysiological hallmarks has led to significant clinical breakthroughs, similar advances in VaD are lacking. After comparing the clinical presentation, including risk factors, disease patterns, course of diseases and further diagnostic parameters for both forms of dementia, we highlight the importance of shared pathomechanisms found in AD and VaD: Endothelial damage, blood brain barrier (BBB) breakdown and hypoperfusion inducing oxidative stress and inflammation and thus trophic uncoupling in the neurovascular unit. A dysfunctional endothelium and BBB lead to the accumulation of neurotoxic molecules and Aß through impaired clearance, which in turn leads to neurodegeneration. In this context we discuss possible neuropathological parameters, which might serve as biomarkers and thus improve diagnostic accuracy or reveal targets for novel therapeutic strategies for both forms of dementia.
Collapse
Affiliation(s)
- Alisa Vollhardt
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336 Munich, Germany
| | - Lutz Frölich
- Central Institute of Mental Health, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Anna Christina Stockbauer
- Department of Neurology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Adrian Danek
- Department of Neurology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Christoph Schmitz
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336 Munich, Germany
| | - Anna-Sophia Wahl
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336 Munich, Germany; Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany.
| |
Collapse
|
3
|
Kuşi M, Becer E, Vatansever HS. Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease. Nutr Neurosci 2025; 28:550-562. [PMID: 39225173 DOI: 10.1080/1028415x.2024.2397136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. This situation imposes a great burden on individuals, both economically and socially. Today, an effective method for treating the disease and protective approach to tau accumulation has not been developed yet. Studies have been conducted on the effects of hesperidin and naringin flavonoids found in citrus fruits on many diseases. METHODS In this review, the pathophysiology of AD is defined, and the effects of hesperidin and naringin on these factors are summarized. RESULTS Studies have shown that both components may potentially affect AD due to their antioxidative and anti-inflammatory properties. Based on these effects of the components, it has been shown that they may have ameliorative effects on Aβ, α-synuclein aggregation, tau pathology, and cognitive functions in the pathophysiology of AD. DISCUSSION There are studies suggesting that hesperidin and naringin may be effective in the prevention/treatment of AD. When these studies are examined, it is seen that more studies should be conducted on the subject.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
4
|
Maheshwari S, Singh A, Verma A. Biomarkers in Alzheimer's disease: new frontiers with olfactory models. Inflammopharmacology 2025:10.1007/s10787-025-01705-1. [PMID: 40312605 DOI: 10.1007/s10787-025-01705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD), the leading cause of dementia worldwide, presents a significant diagnostic challenge, as clinical diagnoses are often made at advanced stages when neurodegenerative damage is already extensive. The study of biomarkers is necessary for improving identification, prognosis, and disease monitoring. Current research has primarily focused on cerebrospinal fluid and imaging biomarkers, including amyloid-β (Aβ1-42), phosphorylated tau, and total tau. However, these methods are invasive, expensive, and not widely accessible. Emerging approaches aim to identify novel, cost-effective, and minimally invasive biomarkers, particularly from blood-based and other peripheral sources. This review explores the role of olfactory neuronal precursors (ONPs) derived from the olfactory neuroepithelium (ONE) as a promising and innovative model for biomarker discovery in AD. ONPs can be non-invasively obtained directly from patients, offering a unique resource to study AD-related pathophysiological mechanisms. These neuronal lineage cells exhibit characteristics that make them a reliable surrogate model for central nervous system studies, enabling the evaluation of established biomarkers and facilitating the identification of novel candidates. Additionally, we discuss the potential of ONPs to enhance clinical practice through their accessibility and suitability for high-throughput biomarker analysis. By integrating the study of ONPs with existing biomarker research, this review highlights new frontiers in the quest to refine diagnostic tools and advance our understanding of Alzheimer's disease, paving the way for innovative strategies in early detection and personalized management.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Aditya Singh
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
5
|
Keske E, Ebrahimi A, Sağlam Uçar Ö. Amyloid-β-Induced Neurotoxicity Modulates miR-98 and miR-200 Expression in SH-SY5Y Cells: A Step Toward Alzheimer's Biomarker Discovery. Mol Neurobiol 2025:10.1007/s12035-025-04895-5. [PMID: 40195218 DOI: 10.1007/s12035-025-04895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by abnormal protein accumulation, with no effective, non-invasive early diagnostic tools currently available. MicroRNAs (miRNAs), essential for neuronal survival and function, have been implicated in AD neuropathology. This study investigates the potential of miRNAs as biomarkers for AD by assessing the expression levels of miRNAs relevant to amyloid toxicity. An AD model was developed in SH-SY5Y human neuroblastoma cells with adequate Aβ42 expression to analyze the involvement of miRNAs in AD diagnosis. ELISA, MTT assays, and Congo red staining were utilized to quantify qualitative and quantitative amyloid formation. The expression of miRNAs and related genes, particularly those targeting APP and β-secretase, was measured using quantitative real-time PCR. Amyloid toxicity was successfully induced, and an increase in amyloid levels and significant changes in Alzheimer's related genes and targeted miRNAs were observed. Specifically, it was observed that miR-200a was upregulated and miR-98 was down-regulated in treated neuroblastoma cells. Notably, the altered expression patterns of these miRNAs showed a strong correlation with the pathological markers of AD, suggesting their potential as diagnostic indicators. Our findings enhance our understanding of AD mechanisms and offer insights into early diagnosis. Detecting AD in preclinical stages may enable earlier symptomatic intervention. In particular, dysregulation of certain miRNAs may play a role in neurodegenerative processes such as amyloid plaque formation in AD. miRNAs that respond to neurotoxic stimuli can be identified using in vitro models and confirmed by in vivo studies. These studies will help us understand both the development of noninvasive diagnostic tests and therapeutic approaches targeting miRNAs.
Collapse
Affiliation(s)
- Ezgi Keske
- İstanbul Medeniyet University, Istanbul, Turkey
| | - Ayyub Ebrahimi
- Molecular Biology and Genetics, Haliç University, Istanbul, Turkey
- Functional Gene Control, Laboratory of Medical Sciences, Medical Research Council, London, UK
| | - Özlem Sağlam Uçar
- Department of Medical Biology, Faculty of Medicine, İstanbul Nişantaşı University, Istanbul, Turkey.
| |
Collapse
|
6
|
Olluri A. Clinical trials targeting tau should be halted. J Clin Neurosci 2025; 134:111101. [PMID: 39908690 DOI: 10.1016/j.jocn.2025.111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Experimental drugs lowering brain tau are heralded as improvements in the treatment of Alzheimer's disease. However, the outcomes in clinical trials testing these agents have consistently failed to improve patient outcomes, i.e. slow down disease or improving cognition. Furthermore, the scientific rationale behind such drugs is rather poor in the first place and has been questioned. Therefore, I argue that trials of anti-tau drugs should be halted.
Collapse
Affiliation(s)
- Andi Olluri
- Independent and unaffiliated student, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Lee Y, Hwang CY, Cho ES, Seo MJ. Water-soluble carotenoid: focused on natural carotenoid crocin. Food Sci Biotechnol 2025; 34:1119-1138. [PMID: 40093551 PMCID: PMC11904046 DOI: 10.1007/s10068-025-01832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Carotenoids are natural isoprenoid compounds with diverse health benefits, widely used in food, cosmetics, and pharmaceuticals. However, low bioavailability and chemical instability limit their effect according to their fat-soluble property. Some strategies such as nanoencapsulation, emulsions, complexation, and glycosylation have been explored to enhance carotenoid bioavailability. In addition, there is growing interest in water-soluble carotenoids in nature. This review focuses on recent advancements in improving the water solubility of carotenoids, with special attention to naturally occurring water-soluble carotenoids like crocin. Research progress on the biosynthetic pathways of crocin derived from natural plants is summarized. In addition, heterologous production using genetic and metabolic engineering in plants and microorganisms is discussed, along with its potential applications in bio-industries. Finally, the promising pharmacological properties of crocin, including antioxidant, anti-inflammatory and anticancer effects, are presented. The sustainable production of water-soluble carotenoids through biological synthesis offers a potential for improved absorption and functionality.
Collapse
Affiliation(s)
- Yosub Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
8
|
Yang L, Li S, Hou C, Wang Z, He W, Zhang W. Recent advances in mRNA-based therapeutics for neurodegenerative diseases and brain tumors. NANOSCALE 2025; 17:3537-3548. [PMID: 39750745 DOI: 10.1039/d4nr04394d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Messenger RNA (mRNA) therapy is an innovative approach that delivers specific protein-coding information. By promoting the ribosomal synthesis of target proteins within cells, it supplements functional or antigenic proteins to treat diseases. Unlike traditional gene therapy, mRNA does not need to enter the cell nucleus, reducing the risks associated with gene integration. Moreover, protein expression levels can be regulated by adjusting the dosage and degradation rates of mRNA. As a new generation gene therapy strategy, mRNA therapy represents the latest advancements and trends in the field. It offers advantages such as precision, safety, and ease of modification. It has been widely used in the prevention of COVID-19. Unlike acute conditions such as cerebral hemorrhage and stroke that often require immediate surgical or interventional treatments, neurodegenerative diseases (NDs) and brain tumors progress relatively slowly and face challenges such as the blood-brain barrier and complex pathogenesis. These characteristics make them particularly suitable for mRNA therapy. With continued research, mRNA-based therapeutics are expected to play a significant role in the prevention and treatment of NDs and brain tumors. This paper reviews the preparation and delivery of mRNA drugs and summarizes the research progress of mRNA gene therapy in treating NDs and brain tumors. It also discusses the current challenges, providing a theoretical basis and reference for future research in this field.
Collapse
Affiliation(s)
- Lizhi Yang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Shuo Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Chao Hou
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Vrechi TAM, Guarache GC, Oliveira RB, Guedes EDC, Erustes AG, Leão AHFF, Abílio VC, Zuardi AW, Hallak JEC, Crippa JA, Bincoletto C, Ureshino RP, Smaili SS, Pereira GJS. Cannabidiol-Induced Autophagy Ameliorates Tau Protein Clearance. Neurotox Res 2025; 43:8. [PMID: 39900844 PMCID: PMC11790692 DOI: 10.1007/s12640-025-00729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
Tau is a neuronal protein that confers stability to microtubules; however, its hyperphosphorylation and accumulation can lead to an impairment of protein degradation pathways, such as autophagy. Autophagy is a lysosomal catabolic process responsible for degrading cytosolic components, being essential for cellular homeostasis and survival. In this context, autophagy modulation has been postulated as a possible therapeutic target for the treatment of neurodegenerative diseases. Studies point to the modulatory and neuroprotective role of the cannabinoid system in neurodegenerative models and here it was investigated the effects of cannabidiol (CBD) on autophagy in a human neuroblastoma strain (SH-SY5Y) that overexpresses the EGFP-Tau WT (Wild Type) protein in an inducible Tet-On system way. The results demonstrated that CBD (100 nM and 10 µM) decreased the expression of AT8 and total tau proteins, activating autophagy, evidenced by increased expression of light chain 3-II (LC3-II) protein and formation of autophagosomes. Furthermore, the cannabinoid compounds CBD, ACEA (CB1 agonist) and GW-405,833 (CB2 agonist) decreased the fluorescence intensity of EGFP-Tau WT; and when chloroquine, an autophagic blocker, was used, there was a reversal in the fluorescence intensity of EGFP-Tau WT with CBD (1 and 10 µM) and GW-405,833 (2 µM), demonstrating the possible participation of autophagy in these groups. Thus, it was possible to conclude that CBD induced autophagy in EGFP-Tau WT cells which increased tau degradation, showing its possible neuroprotective role. Hence, this study may contribute to a better understanding of how cannabinoids can modulate autophagy and present a potential therapeutic target in a neurodegeneration model.
Collapse
Affiliation(s)
- Talita A M Vrechi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Gabriel C Guarache
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Rafaela Brito Oliveira
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema Campus, Diadema, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Adolfo G Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Antonio W Zuardi
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Rodrigo P Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema Campus, Diadema, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil.
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
10
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Durgawale TP, Arjun UVNV, Shanmugarajan TS, Kannan SP, Prasad PD, Usman MRM, Reddy KTK, Sultana R, Alshehri MA, Rab SO, Suliman M, Emran TB. Cellular stress response and neuroprotection of flavonoids in neurodegenerative diseases: Clinical insights into targeted therapy and molecular signaling pathways. Brain Res 2025; 1847:149310. [PMID: 39537124 DOI: 10.1016/j.brainres.2024.149310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases (NDs) are caused by the gradual decline of neuronal structure and function, which presents significant challenges in treatment. Cellular stress responses significantly impact the pathophysiology of these disorders, often exacerbating neuronal damage. Plant-derived flavonoids have demonstrated potential as neuroprotective agents due to their potent anti-inflammatory, anti-apoptotic, and antioxidant properties. This review provides an in-depth analysis of the molecular processes and clinical insights that cause the neuroprotective properties of flavonoids in NDs. By controlling essential signaling pathways such as Nrf2/ARE, MAPK, and PI3K/Akt, flavonoids can lower cellular stress and improve neuronal survival. The study discusses the challenges of implementing these discoveries in clinical practice and emphasizes the therapeutic potential of specific flavonoids and their derivatives. Flavonoids are identified as potential therapeutic agents for NDs, potentially slowing progression by regulating cellular stress and improving neuroprotection despite their potential medicinal uses and clinical challenges. The study designed a strategy to identify literature published in prestigious journals, utilizing search results from PubMed, Scopus, and WOS. We selected and investigated original studies, review articles, and research reports published until 2024. It suggests future research and therapeutic approaches to effectively utilize the neuroprotective properties of flavonoids.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, KVV's Krishna Institute of Pharmacy, Karad, Maharashtra, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Shruthi Paramasivam Kannan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, Andhra Pradesh 517102, India
| | - Md Rageeb Md Usman
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Maharashtra, India
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana 500007, India
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College and Research Centre, Yenepoya (deemed to be University), Mangalore, Karnataka, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
11
|
Huang S, Nunez J, Toresco DL, Wen C, Slotabec L, Wang H, Zhang H, Rouhi N, Adenawoola MI, Li J. Alterations in the inflammatory homeostasis of aging-related cardiac dysfunction and Alzheimer's diseases. FASEB J 2025; 39:e70303. [PMID: 39758048 DOI: 10.1096/fj.202402725rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is well known among the elderly and has a profound impact on both patients and their families. Increasing research indicates that AD is a systemic disease, with a strong connection to cardiovascular disease. They share common genetic factors, such as mutations in the presenilin (PS1 and PS2) and the apolipoprotein E (APOE) genes. Cardiovascular conditions can lead to reduced cerebral blood flow and increased oxidative stress. These factors contribute to the accumulation of Aβ plaques and the formation of abnormal tau protein tangles, which are both key pathological features of AD. Additionally, Aβ deposits and abnormal protein responses have been observed in cardiomyocytes as well as in peripheral tissues. The toxic Aβ deposition intensifies damage to the microvascular structure associated with blood-brain barrier disruption and the initiation of neuroinflammation, which may accelerate the onset of neurocognitive deficits and cardiovascular dysfunction. Thus, we discuss the main mechanisms linking AD and cardiac dysfunction to enhance our understanding of these conditions. Ultimately, insights into the brain-heart axis may help us develop effective treatment strategies in the future.
Collapse
Affiliation(s)
- Shuli Huang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeremiah Nunez
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Dai Lan Toresco
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haibei Zhang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
12
|
Mayer J, Baum D, Ambellan F, von Tycowicz C. Shape-based disease grading via functional maps and graph convolutional networks with application to Alzheimer's disease. BMC Med Imaging 2024; 24:342. [PMID: 39696064 DOI: 10.1186/s12880-024-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Shape analysis provides methods for understanding anatomical structures extracted from medical images. However, the underlying notions of shape spaces that are frequently employed come with strict assumptions prohibiting the analysis of incomplete and/or topologically varying shapes. This work aims to alleviate these limitations by adapting the concept of functional maps. Further, we present a graph-based learning approach for morphometric classification of disease states that uses novel shape descriptors based on this concept. We demonstrate the performance of the derived classifier on the open-access ADNI database differentiating normal controls and subjects with Alzheimer's disease. Notably, the experiments show that our approach can improve over state-of-the-art from geometric deep learning.
Collapse
Affiliation(s)
- Julius Mayer
- Visual and Data-centric Computing, Zuse Institute Berlin, Takustraße 7, Berlin, 14195, Berlin, Germany.
| | - Daniel Baum
- Visual and Data-centric Computing, Zuse Institute Berlin, Takustraße 7, Berlin, 14195, Berlin, Germany
| | - Felix Ambellan
- Visual and Data-centric Computing, Zuse Institute Berlin, Takustraße 7, Berlin, 14195, Berlin, Germany
| | - Christoph von Tycowicz
- Visual and Data-centric Computing, Zuse Institute Berlin, Takustraße 7, Berlin, 14195, Berlin, Germany
| |
Collapse
|
13
|
Sánchez Reyna AG, Mendoza-Gonzalez R, Luna-García H, Celaya Padilla JM, Morgan Benita JA, Espino-Salinas CH, Galván-Tejada JI, Rondon D, Villalba-Condori K. Synthetic data analysis for early detection of Alzheimer progression through machine learning algorithms. PeerJ Comput Sci 2024; 10:e2437. [PMID: 39896407 PMCID: PMC11784714 DOI: 10.7717/peerj-cs.2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/28/2024] [Indexed: 02/04/2025]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disorder that causes incurable and irreversible neuronal loss and synaptic dysfunction. The progress of this disease is gradual and depending on the stage of its detection, only its progression can be treated, reducing the most aggressive symptoms and the speed of its neurodegenerative progress. This article proposes an early detection model for the diagnosis of AD by performing analyses in Alzheimer's progression patient datasets, provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI), including only neuropsychological assessments and making use of feature selection techniques and machine learning models. The focus of this research is to build an ensemble machine learning model capable of early detection of a patient with Alzheimer's or a cognitive state that leads to it, based on their results in neuropsychological assessments identified as highly relevant for the detection of Alzheimer's. The proposed approach for the detection of AD is presented with the inclusion of the feature selection technique recursive feature elimination (RFE) and the Akaike Information Criterion (AIC), the ensemble model consists of logistic regression (LR), artificial neural networks (ANN), support vector machines (SVM), K-nearest neighbors (KNN) and nearest centroid (Nearcent). The datasets downloaded from ADNI were divided into 13 subsets including: cognitively normal (CN) vs subjective memory concern (SMC), CN vs early mild cognitive impairment (EMCI), CN vs late mild cognitive impairment (LMCI), CN vs AD, SMC vs EMCI, SMC vs LMCI, SMC vs AD, EMCI vs LMCI, EMCI vs AD, LMCI vs AD, MCI vs AD, CN vs AD and CN vs MCI. From all the feature results, a custom model was created using RFE, AIC and testing each model. This work presents a customized model for a backend platform to perform one-versus-all analysis and provide a basis for early diagnosis of Alzheimer's at its current stage.
Collapse
Affiliation(s)
- Ana Gabriela Sánchez Reyna
- Systems and Computing Department, TecNM/Technological Institute of Aguascalientes, Aguascalientes, Aguascalientes, Mexico
| | - Ricardo Mendoza-Gonzalez
- Systems and Computing Department, TecNM/Technological Institute of Aguascalientes, Aguascalientes, Aguascalientes, Mexico
| | - Huizilopoztli Luna-García
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - José María Celaya Padilla
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | | | - Carlos H. Espino-Salinas
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Jorge I. Galván-Tejada
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - David Rondon
- Estudios Generales, Universidad Continental, Arequipa, Peru
| | - Klinge Villalba-Condori
- Vicerrectorado de Investigación, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, Dominican Republic
| |
Collapse
|
14
|
Ngai T, Willett J, Waqas M, Fishbein LH, Choi Y, Hahn G, Mullin K, Lange C, Hecker J, Tanzi RE, Prokopenko D. Assessing polyomic risk to predict Alzheimer's disease using a machine learning model. Alzheimers Dement 2024; 20:8700-8714. [PMID: 39511865 DOI: 10.1002/alz.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most common form of dementia in the elderly. Given that AD neuropathology begins decades before symptoms, there is a dire need for effective screening tools for early detection of AD to facilitate early intervention. METHODS Here, we used tree-based and deep learning methods to train polyomic prediction models for AD affection status and age at onset, employing genomic, proteomic, metabolomic, and drug use data from UK Biobank. We used SHAP to determine the feature's importance. RESULTS Our best-performing polyomic model achieved an area under the receiver operating characteristics curve (AUROC) of 0.87. We identified GFAP and CXCL17 proteins to be the strongest predictors of AD, besides apolipoprotein E (APOE) alleles. Increasing the number of cases by including "AD-by-proxy" cases did not improve AD prediction. DISCUSSION Among the four modalities, genomics, and proteomics were the most informative modality based on AUROC (area under the receiver operating characteristic curve). Our data suggest that two blood-based biomarkers (glial fibrillary acidic protein [GFAP] and CXCL17) may be effective for early presymptomatic prediction of AD. HIGHLIGHTS We developed a polyomic model to predict AD and age-at-onset using omics and medication use data from EHR. We identified GFAP and CXCL17 proteins to be the strongest predictors of AD, besides APOE alleles. "AD-by-proxy" cases, if used in training, do not improve AD prediction. Proteomics was the most informative modality overall for affection status and AAO prediction.
Collapse
Affiliation(s)
- Tiffany Ngai
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Julian Willett
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mohammad Waqas
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Lucas H Fishbein
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Younjung Choi
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Georg Hahn
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Mullin
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Christoph Lange
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rudolph E Tanzi
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Dmitry Prokopenko
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
15
|
Jangra J, Bajad NG, Singh R, Kumar A, Singh SK. Identification of novel potential cathepsin-B inhibitors through pharmacophore-based virtual screening, molecular docking, and dynamics simulation studies for the treatment of Alzheimer's disease. Mol Divers 2024; 28:4381-4401. [PMID: 38517648 DOI: 10.1007/s11030-024-10821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/03/2024] [Indexed: 03/24/2024]
Abstract
Cathepsin B is a cysteine protease lysosomal enzyme involved in several physiological functions. Overexpression of the enzyme enhances its proteolytic activity and causes the breakdown of amyloid precursor protein (APP) into neurotoxic amyloid β (Aβ), a characteristic hallmark of Alzheimer's disease (AD). Therefore, inhibition of the enzyme is a crucial therapeutic aspect for treating the disease. Combined structure and ligand-based drug design strategies were employed in the current study to identify the novel potential cathepsin B inhibitors. Five different pharmacophore models were developed and used for the screening of the ZINC-15 database. The obtained hits were analyzed for the presence of duplicates, interfering PAINS moieties, and structural similarities based on Tanimoto's coefficient. The molecular docking study was performed to screen hits with better target binding affinity. The top seven hits were selected and were further evaluated based on their predicted ADME properties. The resulting best hits, ZINC827855702, ZINC123282431, and ZINC95386847, were finally subjected to molecular dynamics simulation studies to determine the stability of the protein-ligand complex during the run. ZINC123282431 was obtained as the virtual lead compound for cathepsin B inhibition and may be a promising novel anti-Alzheimer agent.
Collapse
Affiliation(s)
- Jatin Jangra
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
16
|
Izadi R, Bahramikia S, Akbari V. Green synthesis of nanoparticles using medicinal plants as an eco-friendly and therapeutic potential approach for neurodegenerative diseases: a comprehensive review. Front Neurosci 2024; 18:1453499. [PMID: 39649663 PMCID: PMC11621856 DOI: 10.3389/fnins.2024.1453499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
Central nervous system disorders impact over 1.5 billion individuals globally, with neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases being particularly prominent. These conditions, often associated with aging, present debilitating symptoms including memory loss and movement difficulties. The growing incidence of neurological disorders, alongside a scarcity of effective anti-amyloidogenic therapies, highlights an urgent need for innovative treatment methodologies. Nanoparticles (NPs), derived from medicinal plants and characterized by their favorable pharmacological properties and minimal side effects, offer a promising solution. Their inherent attributes allow for successful traversal of the blood-brain barrier (BBB), enabling targeted delivery to the brain and the modulation of specific molecular pathways involved in neurodegeneration. NPs are crucial in managing oxidative stress, apoptosis, and neuroinflammation in ND. This study reviews the efficacy of green-synthesized nanoparticles in conjunction with various medicinal plants for treating neurodegenerative diseases, advocating for further research to refine these formulations for enhanced clinical applicability and improved patient outcomes.
Collapse
Affiliation(s)
| | - Seifollah Bahramikia
- Faculty of Basic Sciences, Department of Biology, Lorestan University, Khorramabad, Iran
| | | |
Collapse
|
17
|
Can KC, Ozel-Kizil ET, Onar D, Duman B, Kırıcı S, Baştuğ G, Baştuğ M. Exploring the Effect of Single-Session Transcranial Direct Current Stimulation on Attention, Verbal Fluency, and Working Memory in Patients With Alzheimer's Disease-Related Dementia. J ECT 2024:00124509-990000000-00220. [PMID: 39531323 DOI: 10.1097/yct.0000000000001075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a leading cause of morbidity and mortality among the elderly. Transcranial direct current stimulation (tDCS) applies low-intensity currents to the brain, resulting in short-term neurocognitive effects and long-term neuroplasticity enhancement. Limited research reported on the impact of tDCS on cognitive functions in dementia due to AD. This study aims to compare changes in verbal fluency and working memory following a single tDCS application to the left dorsolateral prefrontal cortex (DLPFC) in AD patients. METHODS Patients with mild dementia due to AD underwent cognitive assessment using the Standardized Mini-Mental Test, Clock Drawing Test, Rey Auditory Verbal Learning Test, Functional Activities Questionnaire, Informant Questionnaire on Cognitive Decline in the Elderly, and Montreal Cognitive Assessment Scale. A single-session tDCS was administered by applying anodal tDCS to the left DLPFC for a duration of 30 minutes. Verbal fluency and working memory were evaluated before and after tDCS using the WAIS-R Digit Span Test forward and backward subscales, Trail Making Test (TMT) A and B, and Verbal Fluency Test. RESULTS Regarding cognitive test scores before and after tDCS application, there were statistically significant reductions in the durations of TMT-A and TMT-B. However, there were no significant differences observed for TMT B-A, VFT, DST-forward, and DST-backward performances. CONCLUSIONS The findings indicate that a single anodal tDCS targeting the left DLPFC enhances attention and processing speed in AD patients but has no effect on working memory or verbal fluency.
Collapse
Affiliation(s)
- Kazım Cihan Can
- From the Geriatric Psychiatry Unit, Department of Psychiatry, Ankara University School of Medicine, Ankara, Turkey
| | | | - Deha Onar
- From the Geriatric Psychiatry Unit, Department of Psychiatry, Ankara University School of Medicine, Ankara, Turkey
| | - Berker Duman
- Consultation-Liaison Unit, Department of Psychiatry, Ankara University School of Medicine
| | - Sevinç Kırıcı
- From the Geriatric Psychiatry Unit, Department of Psychiatry, Ankara University School of Medicine, Ankara, Turkey
| | | | - Metin Baştuğ
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Zheng Y, Li G. Association between Atrial Fibrillation and Risk of Alzheimer's Disease and Vascular Dementia: A Systematic Review and Meta-analysis. Ann Indian Acad Neurol 2024; 27:619-628. [PMID: 39652360 PMCID: PMC11745263 DOI: 10.4103/aian.aian_62_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent research suggests that atrial fibrillation (AF) may influence the risk of developing Alzheimer's disease (AD) and vascular dementia (VaD). However, existing studies have provided inconsistent results, with some showing a significant association between AF and the risk of AD and VaD, while others do not. The objective of this study is to conduct a meta-analysis to investigate the association between AF and the risk of AD and VaD. METHODS A comprehensive search was conducted in several databases, including PubMed, Web of Science, Embase, and Google Scholar, covering research published before December 2023. Odds ratios (ORs) or relative risks (RRs) and 95% confidence intervals (CIs) were calculated using Stata 12.0 software to assess the association between AF and the risk of AD or VaD. RESULTS The meta-analysis revealed a significant association between AF and an increased risk of AD, using a random effects model (OR/RR: 1.23, 95% CI: 1.13-1.34, I2 = 81.3%, P < 0.001). Similarly, a significant association was found between AF and an increased risk of VaD, using a random effects model (OR/RR: 1.80, 95% CI: 1.57-2.07, I2 = 82.1%, P < 0.001). CONCLUSION In summary, our comprehensive meta-analysis provides compelling evidence of a significant association between AF and an elevated risk of AD and VaD. The findings are corroborated by robust cross-sectional and longitudinal cohort studies, which further validate the observed link. However, further large-scale prospective studies are necessary to comprehensively investigate the relationship between AF and the risk of AD and VaD.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guangping Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Vicidomini C, Palumbo R, Moccia M, Roviello GN. Oxidative Processes and Xenobiotic Metabolism in Plants: Mechanisms of Defense and Potential Therapeutic Implications. J Xenobiot 2024; 14:1541-1569. [PMID: 39449425 PMCID: PMC11503355 DOI: 10.3390/jox14040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Plants are continuously exposed to environmental challenges, including pollutants, pesticides, and heavy metals, collectively termed xenobiotics. These substances induce oxidative stress by generating reactive oxygen species (ROS), which can damage cellular components such as lipids, proteins, and nucleic acids. To counteract this, plants have evolved complex metabolic pathways to detoxify and process these harmful compounds. Oxidative stress in plants primarily arises from the overproduction of hydrogen peroxide (H2O2), superoxide anions (O2•-), singlet oxygen (1O2), and hydroxyl radicals (•OH), by-products of metabolic activities such as photosynthesis and respiration. The presence of xenobiotics leads to a notable increase in ROS, which can result in cellular damage and metabolic disruption. To combat this, plants have developed a strong antioxidant defense mechanism that includes enzymatic antioxidants that work together to eliminate ROS, thereby reducing their harmful effects. In addition to enzymatic defenses, plants also synthesize various non-enzymatic antioxidants, including flavonoids, phenolic acids, and vitamins. These compounds effectively neutralize ROS and help regenerate other antioxidants, offering extensive protection against oxidative stress. The metabolism of xenobiotic substances in plants occurs in three stages: the first involves modification, which refers to the chemical alteration of xenobiotics to make them less harmful. The second involves conjugation, where the modified xenobiotics are combined with other substances to increase their solubility, facilitating their elimination from the plant. The third stage involves compartmentalization, which is the storage or isolation of conjugated xenobiotics in specific parts of the plant, helping to prevent damage to vital cellular functions. Secondary metabolites found in plants, such as alkaloids, terpenoids, and flavonoids, play a vital role in detoxification and the defense against oxidative stress. Gaining a deeper understanding of the oxidative mechanisms and the pathways of xenobiotic metabolism in plants is essential, as this knowledge can lead to the formulation of plant-derived strategies aimed at alleviating the effects of environmental pollution and enhancing human health by improving detoxification and antioxidant capabilities, as discussed in this review.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Moccia
- Institute of Crystallography, Italian National Council for Research (IC-CNR), Strada Provinciale 35d, 9, Montelibretti, 00010 Rome, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
20
|
Choudhury S, Dasmahapatra AK. Destabilisation of Alzheimer's amyloid-β protofibrils by Baicalein: mechanistic insights from all-atom molecular dynamics simulations. Mol Divers 2024:10.1007/s11030-024-11001-9. [PMID: 39379662 DOI: 10.1007/s11030-024-11001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the fifth leading cause of death globally. Aggregation and deposition of neurotoxic Aβ fibrils in the neural tissues of the brain is a key hallmark in AD pathogenesis. Destabilisation studies of the amyloid-peptide by various natural molecules are highly relevant due to their neuroprotective and therapeutic potential for AD. We performed molecular dynamics (MD) simulation to investigate the destabilisation mechanism of amyloidogenic protofilament intermediate by Baicalein (BCL), a naturally occurring flavonoid. We found that the BCL molecule formed strong hydrophobic contacts with non-polar residues, specifically F19, A21, V24, and I32 of Chain A and B of the pentameric protofibril. Upon binding, it competed with the native hydrophobic contacts of the Aβ protein. BCL loosened the tight packing of the hydrophobic core by disrupting the hydrogen bonds and the prominent D23-K28 inter-chain salt bridges of the protofibril. The decrease in the structural stability of Aβ protofibrils was confirmed by the increased RMSD, radius of gyration, solvent accessible surface area (SASA), and reduced β-sheet content. PCA indicated that the presence of the BCL molecule intensified protofibril motions, particularly affecting residues in Chain A and B regions. Our findings propose that BCL would be a potent destabiliser of Aβ protofilament, and may be considered as a therapeutic agent in treating AD.
Collapse
Affiliation(s)
- Sadika Choudhury
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
21
|
Abuhantash F, Abu Hantash MK, AlShehhi A. Comorbidity-based framework for Alzheimer's disease classification using graph neural networks. Sci Rep 2024; 14:21061. [PMID: 39256497 PMCID: PMC11387500 DOI: 10.1038/s41598-024-72321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, requires early prediction for timely intervention. Current deep learning approaches, particularly those using traditional neural networks, face challenges such as handling high-dimensional data, interpreting complex relationships, and managing data bias. To address these limitations, we propose a framework utilizing graph neural networks (GNNs), which excel in modeling relationships within graph-structured data. Our study employs GNNs on data from the Alzheimer's Disease Neuroimaging Initiative for binary and multi-class classification across the three stages of AD: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD). By incorporating comorbidity data derived from electronic health records, we achieved the most effective multi-classification results. Notably, the GNN model (Chebyshev Convolutional Neural Networks) demonstrated superior performance with a 0.98 accuracy in multi-class classification and 0.99, 0.93, and 0.94 in the AD/CN, AD/MCI, and CN/MCI binary tasks, respectively. The model's robustness was further validated using the Australian Imaging, Biomarker & Lifestyle dataset as an external validation set. This work contributes to the field by offering a robust, accurate, and cost-effective method for early AD prediction (CN vs. MCI), addressing key challenges in existing deep learning approaches.
Collapse
Affiliation(s)
- Ferial Abuhantash
- Department of Biomedical Engineering and Biotechnology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohd Khalil Abu Hantash
- Department of Biomedical Engineering and Biotechnology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Aamna AlShehhi
- Department of Biomedical Engineering and Biotechnology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
22
|
Bellofatto IA, Nikolaou PE, Andreadou I, Canepa M, Carbone F, Ghigo A, Heusch G, Kleinbongard P, Maack C, Podesser BK, Stamatelopoulos K, Stellos K, Vilahur G, Montecucco F, Liberale L. Mechanisms of damage and therapies for cardiac amyloidosis: a role for inflammation? Clin Res Cardiol 2024:10.1007/s00392-024-02522-2. [PMID: 39167195 DOI: 10.1007/s00392-024-02522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The term cardiac amyloidosis (CA) refers to the accumulation of extracellular amyloid deposits in the heart because of different conditions often affecting multiple organs including brain, kidney and liver. Notably, cardiac involvement significantly impacts prognosis of amyloidosis, with cardiac biomarkers playing a pivotal role in prognostic stratification. Therapeutic management poses a challenge due to limited response to conventional heart failure therapies, necessitating targeted approaches aimed at preventing, halting or reversing amyloid deposition. Mechanisms underlying organ damage in CA are multifactorial, involving proteotoxicity, oxidative stress, and mechanical interference. While the role of inflammation in CA remains incompletely understood, emerging evidence suggests its potential contribution to disease progression as well as its utility as a therapeutic target. This review reports on the cardiac involvement in systemic amyloidosis, its prognostic role and how to assess it. Current and emerging therapies will be critically discussed underscoring the need for further efforts aiming at elucidating CA pathophysiology. The emerging evidence suggesting the contribution of inflammation to disease progression and its prognostic role will also be reviewed possibly offering insights into novel therapeutic avenues for CA.
Collapse
Affiliation(s)
- Ilaria Anna Bellofatto
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Marco Canepa
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- Cardiology Unit, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, L.Go R. Benzi 10, 16132, Genoa, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Turin, Italy
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), and Medical Clinic I, University Clinic Würzburg, Würzburg, Germany
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, L.Go R. Benzi 10, 16132, Genoa, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, L.Go R. Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
23
|
Ahn JS, Lee CH, Liu XQ, Hwang KW, Oh MH, Park SY, Whang WK. Neuroprotective Effects of Phenolic Constituents from Drynariae Rhizoma. Pharmaceuticals (Basel) 2024; 17:1061. [PMID: 39204166 PMCID: PMC11358882 DOI: 10.3390/ph17081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to provide scientific data on the anti-Alzheimer's disease (AD) effects of phenolic compounds from Drynariae Rhizoma (DR) extract using a multi-component approach. Screening of DR extracts, fractions, and the ten phenolic compounds isolated from DR against the key AD-related enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and monoamine oxidase-B (MAO-B) confirmed their significant inhibitory activities. The DR extract was confirmed to have BACE1-inhibitory activity, and the ethyl acetate and butanol fractions were found to inhibit all AD-related enzymes, including BACE1, AChE, BChE, and MAO-B. Among the isolated phenolic compounds, compounds (2) caffeic acid 4-O-β-D-glucopyranoside, (6) kaempferol 3-O-rhamnoside 7-O-glucoside, (7) kaempferol 3-o-b-d-glucopyranoside-7-o-a-L-arabinofuranoside, (8) neoeriocitrin, (9) naringin, and (10) hesperidin significantly suppressed AD-related enzymes. Notably, compounds 2 and 8 reduced soluble Amyloid Precursor Protein β (sAPPβ) and β-secretase expression by over 45% at a concentration of 1.0 μM. In the thioflavin T assay, compounds 6 and 7 decreased Aβ aggregation by approximately 40% and 80%, respectively, and degraded preformed Aβ aggregates. This study provides robust evidence regarding the potential of DR as a natural therapeutic agent for AD, highlighting specific compounds that may contribute to its efficacy.
Collapse
Affiliation(s)
- Jin Sung Ahn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; (J.S.A.)
| | - Chung Hyeon Lee
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Xiang-Qian Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kwang Woo Hwang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; (J.S.A.)
| | - Mi Hyune Oh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; (J.S.A.)
| | - So-Young Park
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Wan Kyunn Whang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; (J.S.A.)
| |
Collapse
|
24
|
Singh G, Kumar S, Panda SR, Kumar P, Rai S, Verma H, Singh YP, Kumar S, Srikrishna S, Naidu VGM, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid-Piperazine Derivatives Targeting Pathological Hallmarks of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:2756-2778. [PMID: 39076038 DOI: 10.1021/acschemneuro.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and is characterized by low levels of acetyl and butyrylcholine, increased oxidative stress, inflammation, accumulation of metals, and aggregations of Aβ and tau proteins. Current treatments for AD provide only symptomatic relief without impacting the pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multitarget molecules for AD, through extensive medicinal chemistry efforts, we have developed 13a, harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aβ1-42 aggregation in various AD models. 13a exhibited promising anticholinesterase activity against AChE (IC50 = 0.59 ± 0.19 μM) and BChE (IC50 = 5.02 ± 0.14 μM) with excellent antioxidant properties in DPPH assay (IC50 = 5.88 ± 0.21 μM) over ferulic acid (56.49 ± 0.62 μM). The molecular docking and dynamic simulations further corroborated the enzyme inhibition studies and confirmed the stability of these complexes. Importantly, in the PAMPA-BBB assay, 13a turned out to be a promising molecule that can efficiently cross the blood-brain barrier. Notably, 13a also exhibited iron-chelating properties. Furthermore, 13a effectively inhibited self- and metal-induced Aβ1-42 aggregation. It is worth mentioning that 13a demonstrated no symptom of cytotoxicity up to 30 μM concentration in PC-12 cells. Additionally, 13a inhibited the NLRP3 inflammasome and mitigated mitochondrial-induced reactive oxygen species and mitochondrial membrane potential damage triggered by LPS and ATP in HMC-3 cells. 13a could effectively reduce mitochondrial and cellular reactive oxygen species (ROS) in the Drosophila model of AD. Finally, 13a was found to be efficacious in reversing memory impairment in a scopolamine-induced AD mouse model in the in vivo studies. In ex vivo assessments, 13a notably modulates the levels of superoxide, catalase, and malondialdehyde along with AChE and BChE. These findings revealed that 13a holds promise as a potential candidate for further development in AD management.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Prabhat Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanskriti Rai
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Saroj Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saripella Srikrishna
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| |
Collapse
|
25
|
Moussa AY, Alanzi AR, Riaz M, Fayez S. Could Mushrooms' Secondary Metabolites Ameliorate Alzheimer Disease? A Computational Flexible Docking Investigation. J Med Food 2024; 27:775-796. [PMID: 39121021 DOI: 10.1089/jmf.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Herein, we highlight the significance of molecular modeling approaches prior to in vitro and in vivo studies; particularly, in diseases with no recognized treatments such as neurological abnormalities. Alzheimer disease is a neurodegenerative disorder that causes irreversible cognitive decline. Toxicity and ADMET studies were conducted using the Qikprop platform in Maestro software and Discovery Studio 2.0, respectively, to select the promising skeletons from more than 45 reviewed compounds isolated from mushrooms in the last decade. Using rigid and flexible molecular docking approaches such as induced fit docking (IFD) in the binding sites of β-secretase (BACE1) and acetylcholine esterase (ACHE), promising structures were screened through high precision molecular docking compared with standard drugs donepezil and (2E)-2-imino-3-methyl-5,5-diphenylimidazolidin-4-one (OKK) using Maestro and Cresset Flare platforms. Molecular interactions, binding distances, and RMSD values were measured to reveal key interactions at the binding sites of the two neurodegenerative enzymes. Analysis of IFD results revealed consistent bindings of dictyoquinazol A and gensetin I in the pocket of 4ey7 while inonophenol A, ganomycin, and fornicin fit quite well in 4dju demonstrating binding poses very close to native ligands at ACHE and BACE1. Respective key amino acid contacts manifested the least steric problems according to their Gibbs free binding energies, Glide XP scores, RMSD values, and molecular orientation respect to the key amino acids. Molecular dynamics simulations further confirmed our findings and prospected these compounds to show significant in vitro results in their future pharmacological studies.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Kiran A, Alsaadi M, Dutta AK, Raparthi M, Soni M, Alsubai S, Byeon H, Kulkarni MH, Asenso E. Bio-inspired deep learning-personalized ensemble Alzheimer's diagnosis model for mental well-being. SLAS Technol 2024; 29:100161. [PMID: 38901762 DOI: 10.1016/j.slast.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Most classification models for Alzheimer's Diagnosis (AD) do not have specific strategies for individual input samples, leading to the problem of easily overlooking personalized differences between samples. This research introduces a customized dynamically ensemble convolution neural network (PDECNN), which is able to build a specific integration strategy based on the distinctiveness of the sample. In this paper, we propose a personalized dynamic ensemble alzheimer's Diagnosis classification model. This model will dynamically modify the deteriorated brain areas of interest depending on various samples since it can adjust to variations in the degeneration of sample brain areas. In clinical problems, the PDECNN model has additional diagnostic importance since it can identify sample-specific degraded brain areas based on input samples. This model considers the variability of brain region degeneration levels between input samples, evaluates the degree of degeneration of specific brain regions using an attention mechanism, and selects and integrates brain region features based on the degree of degeneration. Furthermore, by redesigning the classification accuracy performance, we respectively improve it by 4 %, 11 %, and 8 %. Moreover, the degraded brain regions identified by the model show high consistency with the clinical manifestations of AD.
Collapse
Affiliation(s)
- Ajmeera Kiran
- Dept. of Computer Science and Engineering, MLR Institute of Technology, Dundigal, Hyderabad, Telangana, 500043, India
| | - Mahmood Alsaadi
- Department of computer science, Al-Maarif University College, Al Anbar, 31001, Iraq
| | - Ashit Kumar Dutta
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh, 13713, Kingdom of Saudi Arabia
| | - Mohan Raparthi
- Software Engineer, alphabet Life Science, Dallas Texas, 75063, US
| | - Mukesh Soni
- Department of CSE, University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Shtwai Alsubai
- Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia
| | - Haewon Byeon
- Department of AI and Software, Inje University, Gimhae 50834, Republic of Korea
| | | | - Evans Asenso
- Department of Agricultural Engineering, School of Engineering Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
27
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
28
|
Pellegrino M, Paoletti P, Ortame L, Marchionni G, Bunch B, Ekova K, Hopper L, Ilieva I, Smidt RJ, Kennedy S, Krivec D, Selič M, Ben-Soussan TD. The Alzheimer's patients interaction through digital and arts (AIDA) program: A feasibility study to improve wellbeing in people with Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2024; 287:71-89. [PMID: 39097359 DOI: 10.1016/bs.pbr.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Alzheimer's disease (AD) presents a growing global challenge, with an increasing prevalence and significant impact on individuals and public health. Effective pharmacological treatments directly impacting the disease are still lacking, highlighting the importance of programs and interventions aimed at improving the wellbeing of those affected. The present feasibility study aimed to evaluate the effectiveness and feasibility of the Alzheimer's patients Interaction through Digital and Arts (AIDA) program. AIDA's main objective is to enhance perceived wellbeing and quality of life of people with AD and their caregivers through a series of structured activities through museum- and art-based activities over five sessions. Pre- and post-program evaluations were conducted using Visual Analog Scales (VASs) to measure various dimensions of perceived wellbeing such as confidence, happiness, interest, optimism, and wellness. Results showed significant improvements in all considered dimensions for people with AD following AIDA activities, highlighting its potential to enhance overall wellbeing. Caregivers also reported increased perceived wellness post-program, demonstrating some positive effects also in healthy participants. The feasibility of AIDA was supported by positive feedback and engagement of participants. Overall, the AIDA program offers a non-intrusive and engaging approach to improve the perceived wellbeing of people with AD and caregivers while facilitating meaningful experiences (e.g., silence, sharing etc.) in cultural settings.
Collapse
Affiliation(s)
- Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy.
| | - Patrizio Paoletti
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| | - Ludovica Ortame
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| | | | - Bettina Bunch
- Demensenhedens Rådgivings-og aktivitetscenter i Viborg Kommune, Viborg, Denmark
| | | | | | | | | | | | - David Krivec
- Spominčica-Alzheimer Slovenija, Ljubljana, Slovenia
| | - Maja Selič
- Spominčica-Alzheimer Slovenija, Ljubljana, Slovenia
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| |
Collapse
|
29
|
Taheri Soodejani M, Rasoulian Kasrineh M, Tabatabaei SM. Incidence of Alzheimer Disease and Related Dementias in Iran From 2010 to 2019. Alzheimer Dis Assoc Disord 2024; 38:285-287. [PMID: 39099319 DOI: 10.1097/wad.0000000000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
This is the first comprehensive national and subnational epidemiological study reporting the incidence of Alzheimer disease and related dementias (ADRD) in Iran from 2010 to 2019 and predictions for 2024. We extracted age-standardized incidence stratified by sex and provinces from the Institute for Health Measurement and Evaluation (IHME). Arc Map GIS was used to report the geographical distribution, and the Cochran-Armitage test was used for prediction. Predictions showed that the incidence of ADRD would reach 118 (women) and 109 (men) cases per 100,000 population in Iran in 2024. The most increasing incidence from 2010 to 2019 was reported among women in Qom, while Yazd had the most incidences among men and women in 2019. The results showed an increase in the incidence of ADRD in Iran in recent years, and the increase in life expectancy and population aging can be considered as an influential factor.
Collapse
Affiliation(s)
- Moslem Taheri Soodejani
- Department of Biostatistics and Epidemiology, Center for Healthcare Data Modeling, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd
| | - Marjan Rasoulian Kasrineh
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Tabatabaei
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Wójcik P, Jastrzębski MK, Zięba A, Matosiuk D, Kaczor AA. Caspases in Alzheimer's Disease: Mechanism of Activation, Role, and Potential Treatment. Mol Neurobiol 2024; 61:4834-4853. [PMID: 38135855 PMCID: PMC11236938 DOI: 10.1007/s12035-023-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
With the aging of the population, treatment of conditions emerging in old age, such as neurodegenerative disorders, has become a major medical challenge. Of these, Alzheimer's disease, leading to cognitive dysfunction, is of particular interest. Neuronal loss plays an important role in the pathophysiology of this condition, and over the years, a great effort has been made to determine the role of various factors in this process. Unfortunately, until now, the exact pathomechanism of this condition remains unknown. However, the most popular theories associate AD with abnormalities in the Tau and β-amyloid (Aβ) proteins, which lead to their deposition and result in neuronal death. Neurons, like all cells, die in a variety of ways, among which pyroptosis, apoptosis, and necroptosis are associated with the activation of various caspases. It is worth mentioning that Tau and Aβ proteins are considered to be one of the caspase activators, leading to cell death. Moreover, the protease activity of caspases influences both of the previously mentioned proteins, Tau and Aβ, converting them into more toxic derivatives. Due to the variety of ways caspases impact the development of AD, drugs targeting caspases could potentially be useful in the treatment of this condition. Therefore, there is a constant need to search for novel caspase inhibitors and evaluate them in preclinical and clinical trials.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland.
| | - Michał K Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
31
|
Abuhantash F, Abu Hantash MK, Welsch R, Seghier ML, Hadjileontiadis L, Al Shehhi A. Novel Alzheimer's Disease Stating Based on Comorbidities-Informed Graph Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039558 DOI: 10.1109/embc53108.2024.10781747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Alzheimer's Disease (AD), the most prevalent form of dementia, requires early prediction for timely intervention. Leveraging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), our study employs Graph Neural Networks (GNNs) for multi-class AD classification. Initial steps involve creating a patient-clinical graph network considering latent relationships among cognitive normal (CN), mild cognitive impairment (MCI), and AD patients, followed by training several GNN-based techniques for building prediction models. Incorporating comorbidity data from electronic health records into the feature set yielded the most effective classification results. Notably, the GNN model with attention mechanisms outperforms state-of-the-art techniques in multi-class AD classification, achieving an accuracy = 0.92 [0.91,0.94], AUC = 0.96 [0.95,0.96], and F1-score = 0.92 [0.91,0.94]. This work highlights comorbidity data's impact on AD classification and suggests its potential to deepen disease understanding.
Collapse
|
32
|
Shashikumar U, Saraswat A, Deshmukh K, Hussain CM, Chandra P, Tsai PC, Huang PC, Chen YH, Ke LY, Lin YC, Chawla S, Ponnusamy VK. Innovative technologies for the fabrication of 3D/4D smart hydrogels and its biomedical applications - A comprehensive review. Adv Colloid Interface Sci 2024; 328:103163. [PMID: 38749384 DOI: 10.1016/j.cis.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Aditya Saraswat
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India
| | - Kalim Deshmukh
- New Technologies - Research Centre University of West Bohemia Univerzitní 2732/8, 30100, Plzeň, Czech Republic
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| |
Collapse
|
33
|
Chae SE. Trajectories of activities of daily living according to dementia among middle-aged and older people in South Korea: a longitudinal study from 2006 to 2020 (14 years). Front Psychiatry 2024; 15:1356124. [PMID: 38827439 PMCID: PMC11140388 DOI: 10.3389/fpsyt.2024.1356124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/22/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction The aging population in South Korea faces numerous health challenges, one of which is the decline in Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL). This study aims to investigate the patterns of change in ADL and IADL among older adults and examines how these patterns vary between individuals with and without dementia. Methods We conducted an analysis of data collected from the Korea Longitudinal Study of Ageing (KLoSA) between 2006 and 2022. Our cohort consisted of individuals aged 45 and older with non-dementia conditions, including mild cognitive impairment (N=6042), and a smaller group with dementia (N=91). Using Latent Growth Curve Models, we explored the developmental trajectories of ADL and IADL among our sample. Results Our findings indicate a linear decline in both ADL and IADL scores as individuals age. The decline in IADL was more pronounced in the dementia group, suggesting a greater sensitivity to sociocultural factors within this domain. The data revealed that individuals with dementia had consistently lower ADL and IADL scores. Notably, the variance in scores within the dementia group increased with age, signifying a worsening in daily living performance and an increase in individual variation (F=226.630, p<.001). Discussion The results of this study underscore the impact of dementia on both the self-regulation function and the social and cultural aspects of daily living performance, particularly reflected in IADL scores. These findings point to the necessity for comprehensive care strategies that address the multifaceted needs of older adults with dementia, including support for complex daily activities that are influenced by sociocultural factors.
Collapse
Affiliation(s)
- Soo Eun Chae
- Department of Education, Art and Humanities College, Gangneung–Wonju National University, Gangneung-si, Republic of Korea
| |
Collapse
|
34
|
AlMansoori ME, Jemimah S, Abuhantash F, AlShehhi A. Predicting early Alzheimer's with blood biomarkers and clinical features. Sci Rep 2024; 14:6039. [PMID: 38472245 PMCID: PMC10933308 DOI: 10.1038/s41598-024-56489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder that leads to dementia. This study employs explainable machine learning models to detect dementia cases using blood gene expression, single nucleotide polymorphisms (SNPs), and clinical data from Alzheimer's Disease Neuroimaging Initiative (ADNI). Analyzing 623 ADNI participants, we found that the Support Vector Machine classifier with Mutual Information (MI) feature selection, trained on all three data modalities, achieved exceptional performance (accuracy = 0.95, AUC = 0.94). When using gene expression and SNP data separately, we achieved very good performance (AUC = 0.65, AUC = 0.63, respectively). Using SHapley Additive exPlanations (SHAP), we identified significant features, potentially serving as AD biomarkers. Notably, genetic-based biomarkers linked to axon myelination and synaptic vesicle membrane formation could aid early AD detection. In summary, this genetic-based biomarker approach, integrating machine learning and SHAP, shows promise for precise AD diagnosis, biomarker discovery, and offers novel insights for understanding and treating the disease. This approach addresses the challenges of accurate AD diagnosis, which is crucial given the complexities associated with the disease and the need for non-invasive diagnostic methods.
Collapse
Affiliation(s)
- Muaath Ebrahim AlMansoori
- Department of Biomedical Engineering, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Sherlyn Jemimah
- Department of Biomedical Engineering, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Ferial Abuhantash
- Department of Biomedical Engineering, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Aamna AlShehhi
- Department of Biomedical Engineering, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
35
|
Armenta-Castro A, Núñez-Soto MT, Rodriguez-Aguillón KO, Aguayo-Acosta A, Oyervides-Muñoz MA, Snyder SA, Barceló D, Saththasivam J, Lawler J, Sosa-Hernández JE, Parra-Saldívar R. Urine biomarkers for Alzheimer's disease: A new opportunity for wastewater-based epidemiology? ENVIRONMENT INTERNATIONAL 2024; 184:108462. [PMID: 38335627 DOI: 10.1016/j.envint.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid β, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.
Collapse
Affiliation(s)
| | - Mónica T Núñez-Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Kassandra O Rodriguez-Aguillón
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Shane A Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Sustainability Cluster, School of Engineering at the UPES, Dehradun, Uttarakhand, India
| | - Jayaprakash Saththasivam
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Jenny Lawler
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
36
|
Lei T, Yang Z, Jiang C, Wang X, Yang W, Yang X, Xie R, Tong F, Xia X, Huang Q, Du Y, Huang Y, Gao H. Mannose-Integrated Nanoparticle Hitchhike Glucose Transporter 1 Recycling to Overcome Various Barriers of Oral Delivery for Alzheimer's Disease Therapy. ACS NANO 2024; 18:3234-3250. [PMID: 38214975 DOI: 10.1021/acsnano.3c09715] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A brain-targeting nanodelivery system has been a hot topic and has undergone rapid progression. However, due to various obstacles such as the intestinal epithelial barrier (IEB) and the blood-brain barrier (BBB), few nanocarriers can achieve brain-targeting through oral administration. Herein, an intelligent oral brain-targeting nanoparticle (FTY@Man NP) constructed from a PLGA-PEG skeleton loaded with fingolimod (FTY) and externally modified with mannose was designed in combination with a glucose control strategy for the multitarget treatment of Alzheimer's disease (AD). The hydrophilic and electronegative properties of the nanoparticle facilitated its facile penetration through the mucus barrier, while the mannose ligand conferred IEB targeting abilities to the nanoparticle. Subsequently, glycemic control allowed the mannose-integrated nanoparticle to hitchhike the glucose transporter 1 (GLUT1) circulation across the BBB. Finally, the released FTY modulated the polarity of microglia from pro-inflammatory M1 to anti-inflammatory M2 and normalized the activated astrocyte, enhancing the clearance of toxic protein Amyloid-β (Aβ) while alleviating oxidative stress and neuroinflammation. Notably, both in vitro and in vivo results have consistently demonstrated that the oral administration of FTY@Man NP could effectively traverse the multiple barriers, thereby exerting significant therapeutic effects. This breakthrough holds the promise of realizing a highly effective orally administered treatment for AD.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chaoqing Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Xu W, Xu Z, Guo Y, Wu J. Two decades of research on the role of diet in Alzheimer's disease (2003-2023): a bibliometric and visual analysis based on CiteSpace. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:9. [PMID: 38233906 PMCID: PMC10795327 DOI: 10.1186/s41043-024-00503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND In recent years, the impact of diet on Alzheimer's disease (AD) as a modifiable lifestyle has attracted widespread attention. We aimed to elucidate the current research status, frontiers, and research trends regarding the role of diet in AD over the past two decades through CiteSpace. METHODS Studies related to AD and diet that were published from January 1, 2003, to June 30, 2023, were retrieved via the Web of Science Core Collection. We imported the study data into CiteSpace for visual analysis of countries, institutions, co-authors, and co-occurring keywords. RESULTS A total of 922 relevant studies were included in our analysis, which found Nikolaos Scarmeas was the most prolific author (13 studies, 1.41%). The results also indicated that USA and Columbia University were the country and institution with the highest number of publications, with 209 (22.67%) and 23 (2.49%), respectively. The keywords that had a burst in the past four years were neuroinflammation, AD, tau, association, and beta. CONCLUSION Talent exchange and regional cooperation are recommended in this study field. The results indicate that the effectiveness of various dietary patterns and mechanisms of dietary interventions using biomarkers and supplementation with refined nutrients will be the main research trends in the future.
Collapse
Affiliation(s)
- Wanyin Xu
- Department of Nutrition, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhengyanran Xu
- Department of Neurology, Epilepsy Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yi Guo
- Department of Neurology, Epilepsy Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing Wu
- Department of Nutrition, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
38
|
Moura PC, Raposo M, Vassilenko V. Breath biomarkers in Non-Carcinogenic diseases. Clin Chim Acta 2024; 552:117692. [PMID: 38065379 DOI: 10.1016/j.cca.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The analysis of volatile organic compounds (VOCs) from human matrices like breath, perspiration, and urine has received increasing attention from academic and medical researchers worldwide. These biological-borne VOCs molecules have characteristics that can be directly related to physiologic and pathophysiologic metabolic processes. In this work, gathers a total of 292 analytes that have been identified as potential biomarkers for the diagnosis of various non-carcinogenic diseases. Herein we review the advances in VOCs with a focus on breath biomarkers and their potential role as minimally invasive tools to improve diagnosis prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| |
Collapse
|
39
|
Cha H, Farina MP, Chiu CT, Hayward MD. The importance of education for understanding variability of dementia onset in the United States. DEMOGRAPHIC RESEARCH 2024; 50:733-762. [PMID: 38872908 PMCID: PMC11171414 DOI: 10.4054/demres.2024.50.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Greater levels of education are associated with lower risk of dementia, but less is known about how education is also associated with the compression of dementia incidence. OBJECTIVE We extend the literature on morbidity compression by evaluating whether increased levels of education are associated with greater dementia compression. We evaluate these patterns across race and gender groups. METHODS We use the Health and Retirement Study (2000-2016), a nationally representative longitudinal study of older adults in the United States. To evaluate the onset and compression of dementia across education groups, we examine the age-specific distribution of dementia events, identifying the modal age of onset and the standard deviation above the mode (a measure of compression). RESULTS While the modal age of onset is around 85 years among adults with a college degree, the modal age for adults with less than a high school education occurs before age 65 - at least a 20-year difference. The standard deviation of dementia onset is about three times greater for adults with less than a high school education compared to adults with a college degree. Patterns were consistent across race and gender groups. CONCLUSION This research highlights the variability of dementia experiences in the older population by documenting differences in longevity without dementia and compression of dementia onset among more educated adults and less educated adults. CONTRIBUTION We incorporate conceptual insights from the life span variability and compression literature to better understand education-dementia disparities in both the postponement and uncertainty of dementia onset in the US population.
Collapse
Affiliation(s)
- Hyungmin Cha
- Shared authorship. Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | - Mateo P Farina
- Shared authorship. Department of Human Development and Family Sciences, Center on Aging and Population Sciences and Population Research Center, University of Texas at Austin, Austin, USA
| | - Chi-Tsun Chiu
- Institute of European and American Studies, Academia Sinica, Taipei, Taiwan
| | - Mark D Hayward
- Department of Sociology, Center on Aging and Population Sciences and Population Research Center, University of Texas at Austin, Austin, USA
| |
Collapse
|
40
|
Qi H, Zhu X, Ren Y, Zhang X, Tang Q, Zhang C, Lang Q, Wang L. A Study of Assisted Screening for Alzheimer's Disease Based on Handwriting and Gait Analysis. J Alzheimers Dis 2024; 101:75-89. [PMID: 39177597 DOI: 10.3233/jad-240362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease that is not easily detected in the early stage. Handwriting and walking have been shown to be potential indicators of cognitive decline and are often affected by AD. Objective This study proposes an assisted screening framework for AD based on multimodal analysis of handwriting and gait and explores whether using a combination of multiple modalities can improve the accuracy of single modality classification. Methods We recruited 90 participants (38 AD patients and 52 healthy controls). The handwriting data was collected under four handwriting tasks using dot-matrix digital pens, and the gait data was collected using an electronic trail. The two kinds of features were fused as inputs for several different machine learning models (Logistic Regression, SVM, XGBoost, Adaboost, LightGBM), and the model performance was compared. Results The accuracy of each model ranged from 71.95% to 96.17%. Among them, the model constructed by LightGBM had the best performance, with an accuracy of 96.17%, sensitivity of 95.32%, specificity of 96.78%, PPV of 95.94%, NPV of 96.74%, and AUC of 0.991. However, the highest accuracy of a single modality was 93.53%, which was achieved by XGBoost in gait features. Conclusions The research results show that the combination of handwriting features and gait features can achieve better classification results than a single modality. In addition, the assisted screening model proposed in this study can achieve effective classification of AD, which has development and application prospects.
Collapse
Affiliation(s)
- Hengnian Qi
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Xiaorong Zhu
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Yinxia Ren
- School of Medicine and Nursing, Huzhou University, Huzhou, China
| | - Xiaoya Zhang
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Qizhe Tang
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Chu Zhang
- Department of Information Engineering, Huzhou University, Huzhou, China
| | - Qing Lang
- Library, Huzhou University, Huzhou, China
| | - Lina Wang
- School of Medicine and Nursing, Huzhou University, Huzhou, China
| |
Collapse
|
41
|
Bolla G, Berente DB, Andrássy A, Zsuffa JA, Hidasi Z, Csibri E, Csukly G, Kamondi A, Kiss M, Horvath AA. Comparison of the diagnostic accuracy of resting-state fMRI driven machine learning algorithms in the detection of mild cognitive impairment. Sci Rep 2023; 13:22285. [PMID: 38097674 PMCID: PMC10721802 DOI: 10.1038/s41598-023-49461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Mild cognitive impairment (MCI) is a potential therapeutic window in the prevention of dementia; however, automated detection of early cognitive deterioration is an unresolved issue. The aim of our study was to compare various classification approaches to differentiate MCI patients from healthy controls, based on rs-fMRI data, using machine learning (ML) algorithms. Own dataset (from two centers) and ADNI database were used during the analysis. Three fMRI parameters were applied in five feature selection algorithms: local correlation, intrinsic connectivity, and fractional amplitude of low frequency fluctuations. Support vector machine (SVM) and random forest (RF) methods were applied for classification. We achieved a relatively wide range of 78-87% accuracy for the various feature selection methods with SVM combining the three rs-fMRI parameters. In the ADNI datasets case we can also see even 90% accuracy scores. RF provided a more harmonized result among the feature selection algorithms in both datasets with 80-84% accuracy for our local and 74-82% for the ADNI database. Despite some lower performance metrics of some algorithms, most of the results were positive and could be seen in two unrelated datasets which increase the validity of our methods. Our results highlight the potential of ML-based fMRI applications for automated diagnostic techniques to recognize MCI patients.
Collapse
Affiliation(s)
- Gergo Bolla
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Dalida Borbala Berente
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Anita Andrássy
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Janos Andras Zsuffa
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Eva Csibri
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gabor Csukly
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Mate Kiss
- Siemens Healthcare, Budapest, Hungary
| | - Andras Attila Horvath
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
42
|
Chua XY, Torta F, Chong JR, Venketasubramanian N, Hilal S, Wenk MR, Chen CP, Arumugam TV, Herr DR, Lai MKP. Lipidomics profiling reveals distinct patterns of plasma sphingolipid alterations in Alzheimer's disease and vascular dementia. Alzheimers Res Ther 2023; 15:214. [PMID: 38087395 PMCID: PMC10714620 DOI: 10.1186/s13195-023-01359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and vascular dementia (VaD) are two of the commonest causes of dementia in the elderly. Of the myriad biomolecules implicated in dementia pathogenesis, sphingolipids have attracted relatively scant research attention despite their known involvement in multiple pathophysiological processes. The potential utility of peripheral sphingolipids as biomarkers in dementia cohorts with high concomitance of cerebrovascular diseases is also unclear. METHODS Using a lipidomics platform, we performed a case-control study of plasma sphingolipids in a prospectively assessed cohort of 526 participants (non-cognitively impaired, NCI = 93, cognitively impaired = 217, AD = 166, VaD = 50) using a lipidomics platform. RESULTS Distinct patterns of sphingolipid alterations were found in AD and VaD, namely an upregulation of d18:1 species in AD compared to downregulation of d16:1 species in VaD. In particular, GM3 d18:1/16:0 and GM3 d18:1/24:1 showed the strongest positive associations with AD. Furthermore, evaluation of sphingolipids panels showed specific combinations with higher sensitivity and specificity for classification of AD (Cer d16:1/24:0. Cer d18:1/16:0, GM3 d16:1/22:0, GM3 d18:1/16:0, SM d16:1/22:0, HexCer d18:1/18:0) and VAD (Cer d16:1/24:0, Cer d18:1/16:0, Hex2Cer d16:1/16:0, HexCer d18:1/18:0, SM d16:1/16:0, SM d16:1/20:0, SM d18:2/22:0) compared to NCI. CONCLUSIONS AD and VaD are associated with distinct changes of plasma sphingolipids, warranting further studies into underlying pathophysiological mechanisms and assessments of their potential utility as dementia biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | | | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore.
| |
Collapse
|
43
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
44
|
Vicidomini C, Borbone N, Roviello V, Roviello GN, Oliviero G. Summary of the Current Status of DNA Vaccination for Alzheimer Disease. Vaccines (Basel) 2023; 11:1706. [PMID: 38006038 PMCID: PMC10674988 DOI: 10.3390/vaccines11111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer disease (AD) is one of the most common and disabling neuropathies in the ever-growing aged population around the world, that especially affects Western countries. We are in urgent need of finding an effective therapy but also a valid prophylactic means of preventing AD. There is a growing attention currently paid to DNA vaccination, a technology particularly used during the COVID-19 era, which can be used also to potentially prevent or modify the course of neurological diseases, including AD. This paper aims to discuss the main features and hurdles encountered in the immunization and therapy against AD using DNA vaccine technology. Ultimately, this work aims to effectively promote the efforts in research for the development of safe and effective DNA and RNA vaccines for AD.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Valentina Roviello
- Center for Life Sciences and Technologies (CESTEV), University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
45
|
Drieu A, Du S, Kipnis M, Bosch ME, Herz J, Lee C, Jiang H, Manis M, Ulrich JD, Kipnis J, Holtzman DM, Gratuze M. Parenchymal border macrophages regulate tau pathology and tau-mediated neurodegeneration. Life Sci Alliance 2023; 6:e202302087. [PMID: 37562846 PMCID: PMC10415611 DOI: 10.26508/lsa.202302087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Parenchymal border macrophages (PBMs) reside close to the central nervous system parenchyma and regulate CSF flow dynamics. We recently demonstrated that PBMs provide a clearance pathway for amyloid-β peptide, which accumulates in the brain in Alzheimer's disease (AD). Given the emerging role for PBMs in AD, we explored how tau pathology affects the CSF flow and the PBM populations in the PS19 mouse model of tau pathology. We demonstrated a reduction of CSF flow, and an increase in an MHCII+PBM subpopulation in PS19 mice compared with WT littermates. Consequently, we asked whether PBM dysfunction could exacerbate tau pathology and tau-mediated neurodegeneration. Pharmacological depletion of PBMs in PS19 mice led to an increase in tau pathology and tau-dependent neurodegeneration, which was independent of gliosis or aquaporin-4 depolarization, essential for the CSF-ISF exchange. Together, our results identify PBMs as novel cellular regulators of tau pathology and tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- Antoine Drieu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia, Washington University School of Medicine, St. Louis, MO, USA
| | - Siling Du
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia, Washington University School of Medicine, St. Louis, MO, USA
| | - Michal Kipnis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan E Bosch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmin Herz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia, Washington University School of Medicine, St. Louis, MO, USA
| | - Choonghee Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa Manis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason D Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Maud Gratuze
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Institute of Neurophysiopathology (INP UMR7051), Aix-Marseille University, Marseille, France
| |
Collapse
|
46
|
Doroszkiewicz J, Farhan JA, Mroczko J, Winkel I, Perkowski M, Mroczko B. Common and Trace Metals in Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2023; 24:15721. [PMID: 37958705 PMCID: PMC10649239 DOI: 10.3390/ijms242115721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Trace elements and metals play critical roles in the normal functioning of the central nervous system (CNS), and their dysregulation has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In a healthy CNS, zinc, copper, iron, and manganese play vital roles as enzyme cofactors, supporting neurotransmission, cellular metabolism, and antioxidant defense. Imbalances in these trace elements can lead to oxidative stress, protein aggregation, and mitochondrial dysfunction, thereby contributing to neurodegeneration. In AD, copper and zinc imbalances are associated with amyloid-beta and tau pathology, impacting cognitive function. PD involves the disruption of iron and manganese levels, leading to oxidative damage and neuronal loss. Toxic metals, like lead and cadmium, impair synaptic transmission and exacerbate neuroinflammation, impacting CNS health. The role of aluminum in AD neurofibrillary tangle formation has also been noted. Understanding the roles of these elements in CNS health and disease might offer potential therapeutic targets for neurodegenerative disorders. The Codex Alimentarius standards concerning the mentioned metals in foods may be one of the key legal contributions to safeguarding public health. Further research is needed to fully comprehend these complex mechanisms and develop effective interventions.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Maciej Perkowski
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
47
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
48
|
Abed S, Mourad M, Abdelkreem MM, Ashraf M, Talaat Y, Elashmawi WH. AD Classification and Detection Using Neuroimaging Data. 2023 INTERNATIONAL MOBILE, INTELLIGENT, AND UBIQUITOUS COMPUTING CONFERENCE (MIUCC) 2023:1-8. [DOI: 10.1109/miucc58832.2023.10278346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Salma Abed
- Misr International University) Computer Science,Cairo,Egypt
| | - Mohamed Mourad
- Misr International University) Computer Science,Cairo,Egypt
| | | | - Mostafa Ashraf
- Misr International University) Computer Science,Cairo,Egypt
| | - Youssef Talaat
- Misr International University) Computer Science,Cairo,Egypt
| | | |
Collapse
|
49
|
Ipe RS, Kumar S, Benny F, Jayan J, Manoharan A, Sudevan ST, George G, Gahtori P, Kim H, Mathew B. A Concise Review of the Recent Structural Explorations of Chromones as MAO-B Inhibitors: Update from 2017 to 2023. Pharmaceuticals (Basel) 2023; 16:1310. [PMID: 37765118 PMCID: PMC10534638 DOI: 10.3390/ph16091310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Monoamine oxidases (MAOs) are a family of flavin adenine dinucleotide-dependent enzymes that catalyze the oxidative deamination of a wide range of endogenous and exogenous amines. Multiple neurological conditions, including Parkinson's disease (PD) and Alzheimer's disease (AD), are closely correlated with altered biogenic amine concentrations in the brain caused by MAO. Toxic byproducts of this oxidative breakdown, including hydrogen peroxide, reactive oxygen species, and ammonia, can cause oxidative damage and mitochondrial dysfunction in brain cells. Certain MAO-B blockers have been recognized as effective treatment options for managing neurological conditions, including AD and PD. There is still a pressing need to find potent therapeutic molecules to fight these disorders. However, the focus of neurodegeneration studies has recently increased, and certain compounds are now in clinical trials. Chromones are promising structures for developing therapeutic compounds, especially in neuronal degeneration. This review focuses on the MAO-B inhibitory potential of several synthesized chromones and their structural activity relationships. Concerning the discovery of a novel class of effective chromone-based selective MAO-B-inhibiting agents, this review offers readers a better understanding of the most recent additions to the literature.
Collapse
Affiliation(s)
- Reshma Susan Ipe
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Amritha Manoharan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Sachitra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India;
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| |
Collapse
|
50
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|