1
|
Zhang B, Jian X, An Z, Yang X, Chen H, Lu C, Li M, Guo LH. A colorimetric and photocurrent-polarity-switching photoelectrochemical dual-mode biosensor for the ultrasensitive detection of DNA damage biomarker and rapid screening of genotoxic chemicals. Biosens Bioelectron 2025; 279:117396. [PMID: 40127580 DOI: 10.1016/j.bios.2025.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Phosphorylated histone H2AX (γH2AX), an early sensitive biomarker for DNA damage and a key indicator of genotoxicity, has been reliably used to screen for genotoxic chemicals. However, developing a sensitive and visual method for detecting γH2AX in cells, especially through a switchable dual-mode detection system using a multifunctional sensing material, remains a significant challenge. Herein, a dual-mode sensing platform was constructed for γH2AX detection, utilizing a novel multifunctional Bi-doped Bi2MoO6 (Bi/Bi2MoO6)-powered colorimetric (CL) and photocurrent-polarity-switching photoelectrochemical (PEC) system. Thanks to Bi doping, Bi/Bi2MoO6 exhibited excellent peroxidase-like activity and photocatalytic properties, allowing it to simultaneously satisfy H2O2-mediated CL-PEC dual-mode sensing. Based on the γH2AX-associated sandwich immunoreaction and glucose oxidase catalysis reaction in the microplates, the signaling factor H2O2 was obtained. Afterward, H2O2 was transferred to the catalytic system containing Bi/Bi2MoO6 and TMB to obtain visual γH2AX detection, with a low detection limit of 70.8 fg/mL. Meanwhile, H2O2 effectively switched the photocurrent polarity of the ITO/Bi/Bi2MoO6 from anode to cathode due to their well-matched potentials, thus leading to the highly sensitive and selective PEC assay of γH2AX, with an ultralow detection limit of 0.32 fg/mL. This is 20,000 times lower than the reported best detection performance (6.78 pg/mL), significantly ensuring the ultrasensitive detection of low-abundance γH2AX and accurate chemical toxicity screening. Additionally, this sensor showed good practicability in cells exposed to known genotoxic chemicals. Finally, using our constructed sensor, four emerging pollutants, including PFOA, PFOS, OBS, and PFAN, were quickly screened to identify potential genotoxicity. Surprisingly, PFOA exhibited the strongest toxic effects, which is a significant finding that enables us to anchor PFOA for further toxicity mechanism studies. In short, this work provides a convenient, rapid, reliable and accurate genotoxicity screening tool for chemicals.
Collapse
Affiliation(s)
- Bihong Zhang
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China.
| | - Xiaoyu Jian
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Zhiquan An
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Xiaotian Yang
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Hongjie Chen
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Chenze Lu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Minjie Li
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, PR China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, PR China.
| |
Collapse
|
2
|
Bournique E, Sanchez A, Oh S, Ghazarian D, Mahieu AL, Manjunath L, Ednacot E, Ortega P, Masri S, Marazzi I, Buisson R. ATM and IRAK1 orchestrate two distinct mechanisms of NF-κB activation in response to DNA damage. Nat Struct Mol Biol 2025; 32:740-755. [PMID: 39753776 PMCID: PMC11997730 DOI: 10.1038/s41594-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/02/2024] [Indexed: 01/25/2025]
Abstract
DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases. ATM stimulates NF-κB in cells with DNA double-strand breaks. By contrast, IRAK1-induced NF-κB signaling occurs in neighboring cells through IL-1α secretion from transcriptionally stressed cells caused by DNA lesions blocking RNA polymerases. Subsequently, both pathways stimulate TRAF6 and the IKK complex to promote NF-κB-mediated inflammatory gene expression. These findings provide an alternative mechanism for damaged cells with impaired transcription to initiate an inflammatory response without relying on their own gene expression, a necessary step that injured cells depend on during canonical innate immune responses.
Collapse
Affiliation(s)
- Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Daniel Ghazarian
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Eirene Ednacot
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Alghamdi MA, El Nashar EM, Elalfy M, Al-Zahrani NS, Alshehri MA, El-Nablaway M, Al-Khater KM, Aldahhan RA, El-Hadidy EG, Sleem F, Aljazzar A, Borlak J, Elhadidy M. Differentially expressed and alternately spliced genes as a novel tool for genotoxicity: a computerized study in ATT-myc transgenic mice for the recognition of genotoxic and non-genotoxic chemical. Front Genet 2025; 16:1505379. [PMID: 40225267 PMCID: PMC11986717 DOI: 10.3389/fgene.2025.1505379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Background Transgenic mice and gene expression in analyses were employed to evaluate hazardous chemicals. Methods Mice received weekly doses of NDEA (75 mg/kg) for six weeks and twice-weekly doses of BHT (300 mg/kg) for eight weeks. Gene expression and splicing alterations in the livers of six transgenic mice for each treatment of NDEA and BHT were examined using the MouseExon10ST array. Results Six hybridizations revealed 645 genes with significant expression changes, and 181 genes showed both expression and splicing alterations (p < 0.01). Furthermore, 2021 genes demonstrated significant exon-group interactions, indicating potential alternative splicing. Pathway analysis identified enriched groups in GOMolFn, GOProcess, GOCellLoc, and Pathway classes, with a higher representation of alternatively spliced and expressed genes (p < 0.01). Discussion Among the top expressed genes was TAT, which encodes the mitochondrial enzyme tyrosine aminotransferase, involved in tyrosine metabolism and recognized as a novel tumor suppressor gene linked to hepatocellular carcinoma (HCC). Additionally, HNF-4, a transcription factor, plays a crucial role in TAT expression. Conclusions This method can be used to identify genotoxic compounds in the att-myc model for short-term toxicity.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | - Eman M. El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud Elalfy
- Clinical Science Department, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
- Forensic and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Norah S. Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Alshehri
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khulood M. Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rashid A. Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Eman G. El-Hadidy
- Mathematics and Bioinformatics Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Fathy Sleem
- Forensic and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Aljazzar
- Pathology Department, College of Veterinary medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover, Germany
| | - Mona Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
| |
Collapse
|
4
|
Wang Z, Pu T, Miao W, Gao Y, Gao J, Zhang X. Olaparib increases chemosensitivity by upregulating miR-125a-3p in ovarian cancer cells. Discov Oncol 2025; 16:291. [PMID: 40064834 PMCID: PMC11893969 DOI: 10.1007/s12672-025-02048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE Ovarian cancer is associated with the highest mortality rate among all malignant gynecological tumors. PolyADP-ribose polymerase (PARP) inhibitor maintenance therapy is the standard treatment strategy for this type of cancer, and olaparib is a widely used oral PARP inhibitor for tumors with BRCA mutations. The present study aimed to investigate the effects of olaparib in non-BRCA-mutated ovarian cancer and the potential mechanisms involved. METHODS The antitumor effect of cisplatin alone or in combination with olaparib was analyzed in an ovarian cancer subcutaneous transplantation tumor model in nude mice. Furthermore, the differences in microRNA (miRNA) expression levels were analyzed using miRNA arrays. In addition, the effects of miR-125a-3p on the proliferation of non-BRCA-mutated (A2780 and OVCAR-3) ovarian cancer cells were detected using A Cell Counting Kit-8 and changes in the cell cycle were detected using flow cytometry. Furthermore, SPiDER-βGal was used to detect expression changes in cellular senescence, and the expression of DNA damage repair proteins was detected using western blot analysis. RESULTS The results revealed that cisplatin plus olaparib significantly reduced tumor volume in mice subjected to subcutaneous tumor transplantation, and the expression of miR-125a-3p significantly increased with this treatment combination. The overexpression of miR-125a-3p could inhibit cell migration, invasion and induces cell cycle arrest. CONCLUSION On the whole, the present study demonstrates that the increased expression of miR-125a-3p induces DNA damage and senescence in ovarian cancer cells, which enhances the therapeutic sensitivity.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Tao Pu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Weiwei Miao
- College of Pharmacy, Shanghai University of Medicine and Health Science, Shanghai, 201318, China
| | - Yi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, No.1111, Huchenghuan Road, Pudong New Area, Shanghai, 201306, China.
| | - Xinyan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| |
Collapse
|
5
|
Gong P, Guo Z, Wang S, Gao S, Cao Q. Histone Phosphorylation in DNA Damage Response. Int J Mol Sci 2025; 26:2405. [PMID: 40141048 PMCID: PMC11941871 DOI: 10.3390/ijms26062405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The DNA damage response (DDR) is crucial for maintaining genomic stability and preventing the accumulation of mutations that can lead to various diseases, including cancer. The DDR is a complex cellular regulatory network that involves DNA damage sensing, signal transduction, repair, and cell cycle arrest. Modifications in histone phosphorylation play important roles in these processes, facilitating DNA repair factor recruitment, damage signal transduction, chromatin remodeling, and cell cycle regulation. The precise regulation of histone phosphorylation is critical for the effective repair of DNA damage, genomic integrity maintenance, and the prevention of diseases such as cancer, where DNA repair mechanisms are often compromised. Thus, understanding histone phosphorylation in the DDR provides insights into DDR mechanisms and offers potential therapeutic targets for diseases associated with genomic instability, including cancers.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shufeng Gao
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Qinhong Cao
- College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| |
Collapse
|
6
|
Yuan F, Xu J, Xuan L, Deng C, Wang W, Yang R. USP14 inhibition by degrasyn induces YAP1 degradation and suppresses the progression of radioresistant esophageal cancer. Neoplasia 2025; 60:101101. [PMID: 39675091 PMCID: PMC11699344 DOI: 10.1016/j.neo.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Radiotherapy is a major modality for esophageal cancer (ESCA) treatment, yet radioresistance severely hampers its therapeutic efficacy. Ubiquitin-specific peptidase 14 (USP14) is a novel deubiquitinase and can mediate cancer cells' response to irradiation, although the underlying mechanism remains unclear, including in ESCA. METHODS To evaluate the expression of USP14 in ESCA tissues or cells, we used RNA-Seq, immunoblotting, co-immunoprecipitation (Co-IP), ubiquitination, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence assays in this investigation. Additionally, we used CCK8, cloning, and migration tests to examine the proliferation and migration of ESCA cells. We also used transplantation tumor mouse model to investigate the course of the cancer cell growth. Finally, we looked into the biological processes linked to USP14 using gene set enrichment analysis (GSEA), which was later verified. RESULTS We observed a significant upregulation of USP14 in human ESCA tissues and cell lines, especially in those with radioresistance. Moreover, USP14 knockdown significantly restrained the proliferation and inhibited the radiation tolerance of ESCC cells. Here, we identified a potential inhibitor of USP14, Degrasyn (DGS), and investigated its regulatory effects on ESCA radioresistance and progression. We found that DGS had marked antiproliferative effects in radiosensitive ESCA cell lines. Notably, a low dose of DGS significantly enhanced the sensitivity of radioresistant ESCA cells to irradiation, as shown by the significantly reduced cell proliferation, migration, and invasion. Furthermore, the combination of DGS and X-ray irradiation strongly induced DNA damage in radioresistant ESCA cell lines by increasing the phosphorylation levels of H2AX (γ-H2AX) and checkpoint kinase 1/ataxia-telangiectasia-mutated-and-Rad3-related kinase (CHK1/ATR) signaling. Animal experiments confirmed the effective role of the DGS and X-ray combined treatment in reducing tumor growth and irradiation tolerance of ESCA in vivo with undetectable toxicity. Importantly, the promotive and malignant biological behaviors of ESCA cells suppressed by the DGS/X-ray combination treatment were almost eliminated by USP14 overexpression, along with the abolished DNA damage process. Mechanistically, we found that USP14 could interact with Yes-associated protein 1 (YAP1) and induce its deubiquitination in radioresistant ESCA cells. Interestingly, we discovered that DGS/X-ray co-therapy significantly reduced the stability of YAP1 and induced its ubiquitination in radioresistant ESCA cells. More importantly, the proliferation, epithelial-mesenchymal tansition (EMT) process, and DNA damage regulated by DGS/X-ray and USP14 knockdown were significantly eliminated when YAP1 was overexpressed in radioresistant ESCA cells. CONCLUSIONS These data revealed the potential role of DGS/X-ray co-therapy in controlling ESCA resistance to radiotherapy by inhibiting the USP14/YAP1 axis, providing a candidate strategy for ESCA treatment.
Collapse
Affiliation(s)
- Fang Yuan
- Departments of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Juan Xu
- Departments of Head and Neck Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingmei Xuan
- Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chan Deng
- Departments of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Wang
- Departments of Head and Neck Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rong Yang
- Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
7
|
Chen Y, Yang X, Li Q. PDLIM1 Inhibits Chemoresistance by Blocking DNA Damage Repair in Gastric Cancer. Recent Pat Anticancer Drug Discov 2025; 20:260-273. [PMID: 38779728 DOI: 10.2174/0115748928307544240502064448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Current cisplatin (CDDP) resistance remains a major challenge in the treatment of advanced gastric cancer. To address the issue of drug resistance, we explored the regulatory functions of PDZ and LIM structural domain protein 1 (PDLIM1) in CDDP chemotherapy for gastric cancer. METHODS In this study, we analyzed PDLIM1 expression and prognosis using bioinformatics on publicly available data. PDLIM1 expression in a gastric mucosal epithelial cell line (GSE-1), CDDP- sensitive (SGC7901, BGC823) and CDDP-resistant gastric cancer cells was detected by RTqPCR and Western blotting. Cell proliferative capacity was assessed by knockdown of PDLIM1 and overexpression of PDLIM1 in cells administered in combination with cisplatin, and apoptotic levels were measured by CCK-8 and colony formation assay and by flow cytometry. Expression of breast cancer susceptibility gene 1 (BRCA1) and γH2AX was determined by Western blotting or immunofluorescence staining. RESULTS Downregulation of PDLIM1 was found in tumor tissues and cells, which was associated with poor clinical outcomes. Knockdown of PDLIM1 enhanced proliferation and attenuated apoptosis in gastric cancer cells. In addition, the therapeutic effects of CDDP on proliferation, apoptosis, and DNA damage repair were attenuated by PDLIM1 deletion.PDLIM1 expression was downregulated in CDDP-resistant tumor cells. Overexpression of PDLIM1 overcomes CDDP resistance in tumor cells as BRCA1 expression decreases and γH2AX expression increases. CONCLUSION Our findings demonstrate that PDLIM1 enables to alleviate gastric cancer progression and resistance to cisplatin via impeding DNA damage repair.
Collapse
Affiliation(s)
- Yuli Chen
- Health Management Center, The Third People's Hospital of Chengdu, Sichuan, Chengdu, 610014, China
| | - Xin Yang
- School of Clinical Medicine, Chengdu Medical College, Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Qiang Li
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
8
|
Habil MR, Salazar-González RA, Doll MA, Hein DW. Bioactivation, Mutagenicity, DNA Damage, and Oxidative Stress Induced by 3,4-Dimethylaniline. Biomolecules 2024; 14:1562. [PMID: 39766269 PMCID: PMC11674834 DOI: 10.3390/biom14121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
3,4-Dimethylaniline (3,4-DMA) is present in cigarette smoke and widely used as an intermediate in dyes, drugs, and pesticides. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human CYP1A2 and N-acetyltransferase 1 (NAT1) alleles: NAT1*4 (reference allele) or NAT1*14B (the most common variant allele) were utilized to assess 3,4-DMA N-acetylation and hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks and reactive oxygen species (ROS). CHO cells expressing NAT1*4 exhibited significantly (p < 0.001) higher 3,4-DMA N-acetylation rates than CHO cells expressing NAT1*14B both in vitro and in situ. In CHO cells expressing CYP1A2 and NAT1, 3,4-DMA caused concentration-dependent increases in reactive oxygen species (ROS), double-stranded DNA damage, and HPRT mutations. CHO cells expressing NAT1*4 and NAT1*14B exhibited concentration-dependent increases in ROS following treatment with 3,4-DMA (linear trend p < 0.001 and p < 0.0001 for NAT1*4 and NAT1*14B, respectively) that were lower than in CHO cells expressing CYP1A2 alone. DNA damage and oxidative stress induced by 3,4-DMA did not differ significantly (p >0.05) between CHO cells expressing NAT1*4 and NAT1*14B. CHO cells expressing NAT1*14B showed higher HPRT mutants (p < 0.05) than CHO cells expressing NAT1*4. These findings confirm 3,4-DMA genotoxicity consistent with potential carcinogenicity.
Collapse
Affiliation(s)
| | | | | | - David W. Hein
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.R.H.); (R.A.S.-G.); (M.A.D.)
| |
Collapse
|
9
|
Hazuková R, Zadák Z, Pleskot M, Zdráhal P, Pumprla M, Táborský M. Oxidative DNA Damage and Arterial Hypertension in Light of Current ESC Guidelines. Int J Mol Sci 2024; 25:12557. [PMID: 39684269 DOI: 10.3390/ijms252312557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
A new insight into oxidative stress is based on oxidative deoxyribonucleic acid (DNA) damage. DNA is the pivotal biopolymer for life and health. Arterial hypertension (HT) is a globally common disease and a major risk factor for numerous cardiovascular (CV) conditions and non-cardiac complications, making it a significant health and socio-economic problem. The aetiology of HT is multifactorial. Oxidative stress is the main driver. Oxidative DNA damage (oxidised guanosine (8OHdG), strand breaks (SSBs, DSBs)) seems to be the crucial and initiating causal molecular mechanism leading to HT, acting through oxidative stress and the resulting consequences (inflammation, fibrosis, vascular remodelling, stiffness, thickness, and endothelial dysfunction). In light of the current European Society of Cardiology (ESC) guidelines with defined gaps in the evidence, this manuscript, for the first time, (1) summarizes evidence for oxidative DNA damage in HT and other CV risk factors, (2) incorporates them into the context of known mechanisms in HT genesis, (3) proposes the existing concept of HT genesis innovatively supplemented with oxidative DNA damage, and (4) mentions consequences such as promising new targets for the treatment of HT (DNA damage response (DDR) pathways).
Collapse
Affiliation(s)
- Radka Hazuková
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
- Department of Cardiology and Internal Medicine, Profi-Kardio, s.r.o., 50801 Hořice, Czech Republic
| | - Zdeněk Zadák
- IIIrd Department of Internal Medicine-Gerontology and Metabolism, Medical Faculty in Hradec Králové, University Hospital Hradec Králové, Charles University Prague, 50003 Hradec Králové, Czech Republic
| | - Miloslav Pleskot
- Department of Cardiology and Internal Medicine, Profi-Kardio, s.r.o., 50801 Hořice, Czech Republic
| | - Petr Zdráhal
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Martin Pumprla
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
10
|
Zhu Y, Zhao X, Li X, Hu C, Zhang Y, Yin H. Epigallocatechin gallate improves oleic acid-induced hepatic steatosis in laying hen hepatocytes via the MAPK pathway. Poult Sci 2024; 103:104204. [PMID: 39190994 PMCID: PMC11396070 DOI: 10.1016/j.psj.2024.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fatty liver disease in laying hens, characterized by excessive lipid accumulation in hepatocytes, poses significant challenges to poultry health and production efficiency. In this study, we investigated the therapeutic potential of epigallocatechin gallate (EGCG), a bioactive compound found in green tea, in mitigating oleic acid (OA)-induced hepatic steatosis in primary chicken hepatocytes. Treatment with EGCG effectively attenuated lipid deposition by downregulating lipid synthesis-related genes. Moreover, EGCG mitigated oxidative stress, inflammation, DNA damage, and apoptosis induced by OA, thereby preserving hepatocyte viability. Mechanistically, EGCG exerted its protective effects by modulating the p38 MAPK signaling pathway. Our findings suggest that EGCG holds promise as a therapeutic agent for managing fatty liver disease in poultry, offering insights into novel strategies for improving poultry health and production outcomes.
Collapse
Affiliation(s)
- Yifeng Zhu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xinyan Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Chengfang Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
11
|
Liu BM, Hayes AW. Mechanisms and Assessment of Genotoxicity of Metallic Engineered Nanomaterials in the Human Environment. Biomedicines 2024; 12:2401. [PMID: 39457713 PMCID: PMC11504605 DOI: 10.3390/biomedicines12102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered nanomaterials (ENMs) have a broad array of applications in agriculture, engineering, manufacturing, and medicine. Decades of toxicology research have demonstrated that ENMs can cause genotoxic effects on bacteria, mammalian cells, and animals. Some metallic ENMs (MENMs), e.g., metal or metal oxide nanoparticles TiO2 and CuO, induce genotoxicity via direct DNA damage and/or reactive oxygen species-mediated indirect DNA damage. There are various physical features of MENMs that may play an important role in promoting their genotoxicity, for example, size and chemical composition. For a valid genotoxicity assessment of MENMs, general considerations should be given to various factors, including, but not limited to, NM characterization, sample preparation, dosing selection, NM cellular uptake, and metabolic activation. The recommended in vitro genotoxicity assays of MENMs include hprt gene mutation assay, chromosomal aberration assay, and micronucleus assay. However, there are still knowledge gaps in understanding the mechanisms underlying the genotoxicity of MENMs. There are also a variety of challenges in the utilization and interpretation of the genotoxicity assessment assays of MENMs. In this review article, we provide mechanistic insights into the genotoxicity of MENMs in the human environment. We review advances in applying new endpoints, biomarkers, and methods to the genotoxicity assessments of MENMs. The guidance of the United States, the United Kingdom, and the European Union on the genotoxicity assessments of MENMs is also discussed.
Collapse
Affiliation(s)
- Benjamin M. Liu
- Division of Pathology and Laboratory Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| | - A. Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL 33612, USA
- Institute for Integrated Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Elwakiel A, Gupta D, Rana R, Manoharan J, Al-Dabet MM, Ambreen S, Fatima S, Zimmermann S, Mathew A, Li Z, Singh K, Gupta A, Pal S, Sulaj A, Kopf S, Schwab C, Baber R, Geffers R, Götze T, Alo B, Lamers C, Kluge P, Kuenze G, Kohli S, Renné T, Shahzad K, Isermann B. Factor XII signaling via uPAR-integrin β1 axis promotes tubular senescence in diabetic kidney disease. Nat Commun 2024; 15:7963. [PMID: 39261453 PMCID: PMC11390906 DOI: 10.1038/s41467-024-52214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin β1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin β1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin β1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medical Laboratory Sciences, School of Science, University of Jordan, Amman, Jordan
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Zhiyang Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Surinder Pal
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Constantin Schwab
- Institute of pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tom Götze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Bekas Alo
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christina Lamers
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Paul Kluge
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
13
|
Talibova G, Bilmez Y, Tire B, Ozturk S. The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages. J Assist Reprod Genet 2024; 41:2419-2439. [PMID: 39023827 PMCID: PMC11405603 DOI: 10.1007/s10815-024-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (β-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT β-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
14
|
Kazensky L, Matković K, Gerić M, Žegura B, Pehnec G, Gajski G. Impact of indoor air pollution on DNA damage and chromosome stability: a systematic review. Arch Toxicol 2024; 98:2817-2841. [PMID: 38805047 DOI: 10.1007/s00204-024-03785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Indoor air pollution is becoming a rising public health problem and is largely resulting from the burning of solid fuels and heating in households. Burning these fuels produces harmful compounds, such as particulate matter regarded as a major health risk, particularly affecting the onset and exacerbation of respiratory diseases. As exposure to polluted indoor air can cause DNA damage including DNA sd breaks as well as chromosomal damage, in this paper, we aim to provide an overview of the impact of indoor air pollution on DNA damage and genome stability by reviewing the scientific papers that have used the comet, micronucleus, and γ-H2AX assays. These methods are valuable tools in human biomonitoring and for studying the mechanisms of action of various pollutants, and are readily used for the assessment of primary DNA damage and genome instability induced by air pollutants by measuring different aspects of DNA and chromosomal damage. Based on our search, in selected studies (in vitro, animal models, and human biomonitoring), we found generally higher levels of DNA strand breaks and chromosomal damage due to indoor air pollutants compared to matched control or unexposed groups. In summary, our systematic review reveals the importance of the comet, micronucleus, and γ-H2AX assays as sensitive tools for the evaluation of DNA and genome damaging potential of different indoor air pollutants. Additionally, research in this particular direction is warranted since little is still known about the level of indoor air pollution in households or public buildings and its impact on genetic material. Future studies should focus on research investigating the possible impact of indoor air pollutants in complex mixtures on the genome and relate pollutants to possible health outcomes.
Collapse
Affiliation(s)
- Luka Kazensky
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Katarina Matković
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000, Ljubljana, Slovenia
| | - Gordana Pehnec
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia.
| |
Collapse
|
15
|
Rossmanith R, Sauerwein K, Geier CB, Leiss-Piller A, Stemberger RF, Sharapova S, Gruber RW, Bergler H, Verbsky JW, Csomos K, Walter JE, Wolf HM. Impaired B-cell function in ERCC2 deficiency. Front Immunol 2024; 15:1423141. [PMID: 39055713 PMCID: PMC11269123 DOI: 10.3389/fimmu.2024.1423141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Trichothiodystrophy-1 (TTD1) is an autosomal-recessive disease and caused by mutations in ERCC2, a gene coding for a subunit of the TFIIH transcription and nucleotide-excision repair (NER) factor. In almost half of these patients infectious susceptibility has been reported but the underlying molecular mechanism leading to immunodeficiency is largely unknown. Objective The aim of this study was to perform extended molecular and immunological phenotyping in patients suffering from TTD1. Methods Cellular immune phenotype was investigated using multicolor flow cytometry. DNA repair efficiency was evaluated in UV-irradiation assays. Furthermore, early BCR activation events and proliferation of TTD1 lymphocytes following DNA damage induction was tested. In addition, we performed differential gene expression analysis in peripheral lymphocytes of TTD1 patients. Results We investigated three unrelated TTD1 patients who presented with recurrent infections early in life of whom two harbored novel ERCC2 mutations and the third patient is a carrier of previously described pathogenic ERCC2 mutations. Hypogammaglobulinemia and decreased antibody responses following vaccination were found. TTD1 B-cells showed accumulation of γ-H2AX levels, decreased proliferation activity and reduced cell viability following UV-irradiation. mRNA sequencing analysis revealed significantly downregulated genes needed for B-cell development and activation. Analysis of B-cell subpopulations showed low numbers of naïve and transitional B-cells in TTD1 patients, indicating abnormal B-cell differentiation in vivo. Conclusion In summary, our analyses confirmed the pathogenicity of novel ERCC2 mutations and show that ERCC2 deficiency is associated with antibody deficiency most likely due to altered B-cell differentiation resulting from impaired BCR-mediated B-cell activation and activation-induced gene transcription.
Collapse
Affiliation(s)
- Raphael Rossmanith
- Immunology Outpatient Clinic, Vienna, Austria
- Doctoral School Molecular Biology and Biochemistry, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Institute for Medical-Chemical Laboratory Diagnostics, Mistelbach-Gänserndorf State Clinic, Mistelbach, Austria
| | - Kai Sauerwein
- Immunology Outpatient Clinic, Vienna, Austria
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
| | - Christoph B. Geier
- Immunology Outpatient Clinic, Vienna, Austria
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Svetlana Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Robert W. Gruber
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Bergler
- Doctoral School Molecular Biology and Biochemistry, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - James W. Verbsky
- Departments of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Krisztian Csomos
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Hermann M. Wolf
- Immunology Outpatient Clinic, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
16
|
Gao P, Li Z, Gong M, Ma B, Xu H, Wang L, Xie J. Sensitive Detection of Genotoxic Substances in Complex Food Matrices by Multiparametric High-Content Analysis. Molecules 2024; 29:3257. [PMID: 39064836 PMCID: PMC11279142 DOI: 10.3390/molecules29143257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Genotoxic substances widely exist in the environment and the food supply, posing serious health risks due to their potential to induce DNA damage and cancer. Traditional genotoxicity assays, while valuable, are limited by insufficient sensitivity, specificity, and efficiency, particularly when applied to complex food matrices. This study introduces a multiparametric high-content analysis (HCA) for the detection of genotoxic substances in complex food matrices. The developed assay measures three genotoxic biomarkers, including γ-H2AX, p-H3, and RAD51, which enhances the sensitivity and accuracy of genotoxicity screening. Moreover, the assay effectively distinguishes genotoxic compounds with different modes of action, which not only offers a more comprehensive assessment of DNA damage and the cellular response to genotoxic stress but also provides new insights into the exploration of genotoxicity mechanisms. Notably, the five tested food matrices, including coffee, tea, pak choi, spinach, and tomato, were found not to interfere with the detection of these biomarkers under proper dilution ratios, validating the robustness and reliability of the assay for the screening of genotoxic compounds in the food industry. The integration of multiple biomarkers with HCA provides an efficient method for detecting and assessing genotoxic substances in the food supply, with potential applications in toxicology research and food safety.
Collapse
Affiliation(s)
- Pengxia Gao
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
- School of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhi Li
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Mengqiang Gong
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bo Ma
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hua Xu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lili Wang
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
17
|
Wise JTF, Hein DW. N-acetyltransferase metabolism and DNA damage following exposure to 4,4'-oxydianiline in human bronchial epithelial cells. Toxicol Lett 2024; 398:65-68. [PMID: 38906436 PMCID: PMC11299505 DOI: 10.1016/j.toxlet.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Waterpipe smoking is increasingly popular and understanding how chemicals found in hookah smoke may be harmful to human bronchial epithelial cells is of great importance. 4,4'-Oxydianiline (ODA), is an aromatic amine which is present at comparatively high levels in hookah smoke. The metabolism and the subsequent toxicity of ODA in human bronchial epithelial cells remains unknown. Given that ODA is an aromatic amine, we hypothesized that ODA is N-acetylated and induces DNA damage following exposure to immortalized human bronchial epithelial cells (BEP2D cells). We measured the N-acetylation of ODA to mono-acetyl-ODA and the N-acetylation of mono-acetyl-ODA to diacetyl-ODA by BEP2D cells following separation and quantitation by high performance liquid chromatography. For ODA, the apparent KM in cells was 12.4 ± 3.7 µM with a Vmax of 0.69 ± 0.03 nmol/min/106 cells, while for mono-acetyl-ODA, the apparent KM was 111.2 ± 48.3 µM with a Vmax of 17.8 ± 5.7 nmol/min/106 cells ODA exposure for 24 h resulted in DNA damage to BEP2D cells following concentrations as low as 0.1 µM as measured by yH2Ax protein expression These results demonstrate that ODA, the most prevalent aromatic amine identified in hookah smoke, is N-acetylated and induces DNA damage in human bronchial epithelial cells.
Collapse
Affiliation(s)
- James T F Wise
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
18
|
Teixeira De Oliveira J, Brito Tecchio K, Silva Lopes M, Nunes Andrade S, Iara Maciel De Azambuja Ribeiro R, Varotti FDP, Barbosa De Oliveira R, Henrique Ribeiro Viana G, J Da Silva Vieira Dos Santos V, Vieira Dos Santos F. In vitro evaluation of the selective cytotoxicity and genotoxicity of three synthetic ortho-nitrobenzyl derivatives in human cancer cell lines, with and without metabolic activation. Drug Chem Toxicol 2024; 47:404-415. [PMID: 38949608 DOI: 10.1080/01480545.2023.2184478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/18/2023] [Indexed: 03/11/2023]
Abstract
Although the presence of nitro groups in chemicals can be recognized as structural alerts for mutagenicity and carcinogenicity, nitroaromatic compounds have attracted considerable interest as a class of agents that can serve as source of potential new anticancer agents. In the present study, the in vitro cytotoxicity, genotoxicity, and mutagenicity of three synthetic ortho-nitrobenzyl derivatives (named ON-1, ON-2 and ON-3) were evaluated by employing human breast and ovarian cancer cell lines. A series of biological assays was carried out with and without metabolic activation. Complementarily, computational predictions of the pharmacokinetic properties and druglikeness of the compounds were performed in the Swiss ADME platform. The MTT assay showed that the compounds selectively affected selectively the cell viability of cancer cells in comparison with a nontumoral cell line. Additionally, the metabolic activation enhanced cytotoxicity, and the compounds affected cell survival, as demonstrated by the clonogenic assay. The comet assay, the cytokinesis-block micronucleus assay, and the immunofluorescence of the γ-H2AX foci formation assay have that the compounds caused chromosomal damage to the cancer cells, with and without metabolic activation. The results obtained in the present study showed that the compounds assessed were genotoxic and mutagenic, inducing double-strand breaks in the DNA structure. The high selectivity indices observed for the compounds ON-2 and ON-3, especially after metabolic activation with the S9 fraction, must be highlighted. These experimental biological results, as well as the theoretical properties predicted for the compounds have shown that they are promising anticancer candidates to be exploited in additional studies.
Collapse
Affiliation(s)
- Júlia Teixeira De Oliveira
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| | - Kimberly Brito Tecchio
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| | - Marcela Silva Lopes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silmara Nunes Andrade
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| | | | - Fernando De Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| | - Renata Barbosa De Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Fabio Vieira Dos Santos
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, Brazil
| |
Collapse
|
19
|
Qu M, Chen J, Xu B, Shi Q, Zhao S, Wang Z, Li Z, Ma B, Xu H, Ye Q, Xie J. Assessing genotoxic effects of chemotherapy agents by a robust in vitro assay based on mass spectrometric quantification of γ-H2AX in HepG2 cells. Front Pharmacol 2024; 15:1356753. [PMID: 38962306 PMCID: PMC11219945 DOI: 10.3389/fphar.2024.1356753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Chemotherapy has already proven widely effective in treating cancer. Chemotherapeutic agents usually include DNA damaging agents and non-DNA damaging agents. Assessing genotoxic effect is significant during chemotherapy drug development, since the ability to attack DNA is the major concern for DNA damaging agents which relates to the therapeutic effect, meanwhile genotoxicity should also be evaluated for chemotherapy agents' safety especially for non-DNA damaging agents. However, currently applicability of in vitro genotoxicity assays is hampered by the fact that genotoxicity results have comparatively high false positive rates. γ-H2AX has been shown to be a bifunctional biomarker reflecting both DNA damage response and repair. Previously, we developed an in vitro genotoxicity assay based on γ-H2AX quantification using mass spectrometry. Here, we employed the assay to quantitatively assess the genotoxic effects of 34 classic chemotherapy agents in HepG2 cells. Results demonstrated that the evaluation of cellular γ-H2AX could be an effective approach to screen and distinguish types of action of different classes of chemotherapy agents. In addition, two crucial indexes of DNA repair kinetic curve, i.e., k (speed of γ-H2AX descending) and t50 (time required for γ-H2AX to drop to half of the maximum value) estimated by our developed online tools were employed to further evaluate nine representative chemotherapy agents, which showed a close association with therapeutic index or carcinogenic level. The present study demonstrated that mass spectrometric quantification of γ-H2AX may be an appropriate tool to preliminarily evaluate genotoxic effects of chemotherapy agents.
Collapse
Affiliation(s)
- Minmin Qu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jia Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bin Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qinyun Shi
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shujing Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhaoxia Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bo Ma
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hua Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Jianwei Xie
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
20
|
Dyshlovoy SA, Mansour WY, Ramm NA, Hauschild J, Zhidkov ME, Kriegs M, Zielinski A, Hoffer K, Busenbender T, Glumakova KA, Spirin PV, Prassolov VS, Tilki D, Graefen M, Bokemeyer C, von Amsberg G. Synthesis and new DNA targeting activity of 6- and 7-tert-butylfascaplysins. Sci Rep 2024; 14:11788. [PMID: 38783016 PMCID: PMC11116464 DOI: 10.1038/s41598-024-62358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Wael Y Mansour
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Natalia A Ramm
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, 690922, Vladivostok, Russky Island, Russian Federation
| | - Jessica Hauschild
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Maxim E Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, 690922, Vladivostok, Russky Island, Russian Federation
| | - Malte Kriegs
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexandra Zielinski
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Busenbender
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ksenia A Glumakova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Derya Tilki
- Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Urology, Koc University Hospital, 34010, Istanbul, Turkey
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
21
|
Li Sucholeiki R, Propst CL, Hong DS, George GC. Intermittent fasting and its impact on toxicities, symptoms and quality of life in patients on active cancer treatment. Cancer Treat Rev 2024; 126:102725. [PMID: 38574507 PMCID: PMC11614448 DOI: 10.1016/j.ctrv.2024.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Intermittent fasting is a dietary intervention that is increasingly being tested for positive outcomes in patients receiving cancer treatment. In this review, we examine the impact of intermittent fasting on symptoms, toxicities, and quality of life in patients undergoing cancer therapy and highlight unmet investigative areas to prompt future research. While current evidence is preliminary and conclusions mixed, some promising clinical studies suggest that intermittent fasting interventions may improve fatigue and reduce gastrointestinal toxicities in certain patients with cancer. Emerging clinical evidence also demonstrates that intermittent fasting may reduce off-target DNA damage, and induce favorable cellular-level immune remodeling. Furthermore, intermittent fasting has the potential to lower hyperglycemia and the ratio of fat to lean body mass, which may benefit patients at risk of hyperglycemia and weight-related adverse effects of some common pharmacological cancer treatments. Larger controlled studies are necessary to evaluate intermittent fasting in relation to these endpoints and determine the effectiveness of intermittent fasting as an adjunct intervention during cancer care. Future cancer trials should evaluate intermittent fasting diets in the context of multimodal diet, exercise, and nutrition strategies, and also evaluate the impact of intermittent fasting on other important areas such as the circadian system and the gut microbiome.
Collapse
Affiliation(s)
- Robert Li Sucholeiki
- University of Chicago, M. D. Anderson Cancer Center, United States; The University of Texas M. D. Anderson Cancer Center, United States
| | - Casey L Propst
- University of Chicago, M. D. Anderson Cancer Center, United States; The University of Texas M. D. Anderson Cancer Center, United States
| | - David S Hong
- The University of Texas M. D. Anderson Cancer Center, United States
| | - Goldy C George
- The University of Texas M. D. Anderson Cancer Center, United States.
| |
Collapse
|
22
|
Liu N, Niu M, Luo S, Lv L, Quan X, Wang C, Meng Z, Yuan J, Xu Q, Liu Y. Rosamultin ameliorates radiation injury via promoting DNA injury repair and suppressing oxidative stress in vitro and in vivo. Chem Biol Interact 2024; 393:110938. [PMID: 38484825 DOI: 10.1016/j.cbi.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Radiotherapy remains the preferred treatment option for cancer patients with the advantages of broad indications and significant therapeutic effects. However, ionizing radiation can also damage normal tissues. Unfortunately, there are few anti-radiation damage drugs available on the market for radiotherapy patients. Our previous study showed that rosamultin had antioxidant and hepatoprotective activities. However, its anti-radiation activity has not been evaluated. Irradiating small intestinal epithelial cells and mice with whole-body X-rays radiation were used to evaluate the in vitro and in vivo effects of rosamultin, respectively. Intragastric administration of rosamultin improved survival, limited leukocyte depletion, and reduced damage to the spleen and small intestine in irradiated mice. Rosamultin reversed the downregulation of the apoptotic protein BCL-2 and the upregulation of BAX in irradiated mouse small intestine tissue and in irradiation-induced small intestinal epithelial cells. DNA-PKcs antagonists reversed the promoting DNA repair effects of rosamulin. Detailed mechanistic studies revealed that rosamultin promoted Translin-associated protein X (TRAX) into the nucleus. Knockdown of TRAX reduced the protective effect of rosamultin against DNA damage. In addition, rosamultin reduced irradiation-induced oxidative stress through promoting Nrf2/HO-1 signaling pathway. To sum up, in vitro and in vivo experiments using genetic knockdown and pharmacological activation demonstrated that rosamultin exerts radioprotection via the TRAX/NHEJ and Nrf2/HO pathways.
Collapse
Affiliation(s)
- Ning Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengxin Niu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Saiyan Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lijuan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoxiao Quan
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, 100850, China
| | - Jingquan Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
23
|
Shen X, Peng Y, Yang Z, Li R, Zhou H, Ye X, Han Z, Shi X. A monofunctional Pt(II) complex combats triple negative breast cancer by triggering lysosome-dependent cell death. Dalton Trans 2024; 53:3808-3817. [PMID: 38305380 DOI: 10.1039/d3dt03598k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Monofunctional Pt(II) complexes with potent efficacy to overcome the drawbacks of current platinum drugs represent a promising therapeutic approach for triple negative breast cancer (TNBC). A heterocyclic-ligated monofunctional Pt(II) complex PtL with a unique action of mode was designed and investigated. PtL induced DNA single-strand breaks and caused genomic instability in TNBC cells. Mechanism studies demonstrated that PtL disrupted lysosomal acidity and function, which in turn triggered lysosome-dependent cell death. Furthermore, PtL showed convincing suppression in the tube forming and cell migratory abilities against the metastatic potential of TNBC cells. The synthesis and investigation of PtL revealed its potential value as an anti-TNBC drug and extended the family of monofunctional Pt(II) complexes.
Collapse
Affiliation(s)
- Xiaomin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China.
| | - Yue Peng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China.
| | - Zidong Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China.
| | - Renhao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China.
| | - Haixia Zhou
- The Key Laboratory of Pediatric Hematology and oncology Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, P. R. China
| | - Xiaoxia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China.
| | - Zhong Han
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China.
| | - Xiangchao Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China.
| |
Collapse
|
24
|
Libalova H, Zavodna T, Margaryan H, Elzeinova F, Milcova A, Vrbova K, Barosova H, Cervena T, Topinka J, Rössner P. Differential DNA damage response and cell fate in human lung cells after exposure to genotoxic compounds. Toxicol In Vitro 2024; 94:105710. [PMID: 37838151 DOI: 10.1016/j.tiv.2023.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
DNA damage can impair normal cellular functions and result in various pathophysiological processes including cardiovascular diseases and cancer. We compared the genotoxic potential of diverse DNA damaging agents, and focused on their effects on the DNA damage response (DDR) and cell fate in human lung cells BEAS-2B. Polycyclic aromatic hydrocarbons [PAHs; benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP)] induced DNA strand breaks and oxidative damage to DNA; anticancer drugs doxorubicin (DOX) and 5-bromo-2'-deoxyuridine (BrdU) were less effective. DOX triggered the most robust p53 signaling indicating activation of DDR, followed by cell cycle arrest in the G2/M phase, induction of apoptosis and senescence, possibly due to the severe and irreparable DNA lesions. BrdU not only activated p53, but also increased the percentage of G1-phased cells and caused a massive accumulation of senescent cells. In contrast, regardless the activation of p53, both PAHs did not substantially affect the cell cycle distribution or senescence. Finally, a small fraction of cells accumulated only in the G2/M phase and exhibited increased cell death after the prolonged incubation with B[a]P. Overall, we characterized differential responses to diverse DNA damaging agents resulting in specific cell fate and highlighted the key role of DNA lesion type and the p53 signaling persistence.
Collapse
Affiliation(s)
- H Libalova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - T Zavodna
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - H Margaryan
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - F Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - A Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - K Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - H Barosova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - T Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic; Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - J Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - P Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic.
| |
Collapse
|
25
|
Zhou M, Boulos JC, Klauck SM, Efferth T. The cardiac glycoside ZINC253504760 induces parthanatos-type cell death and G2/M arrest via downregulation of MEK1/2 phosphorylation in leukemia cells. Cell Biol Toxicol 2023; 39:2971-2997. [PMID: 37322258 PMCID: PMC10693532 DOI: 10.1007/s10565-023-09813-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Overcoming multidrug resistance (MDR) represents a major obstacle in cancer chemotherapy. Cardiac glycosides (CGs) are efficient in the treatment of heart failure and recently emerged in a new role in the treatment of cancer. ZINC253504760, a synthetic cardenolide that is structurally similar to well-known GCs, digitoxin and digoxin, has not been investigated yet. This study aims to investigate the cytotoxicity of ZINC253504760 on MDR cell lines and its molecular mode of action for cancer treatment. Four drug-resistant cell lines (P-glycoprotein-, ABCB5-, and EGFR-overexpressing cells, and TP53-knockout cells) did not show cross-resistance to ZINC253504760 except BCRP-overexpressing cells. Transcriptomic profiling indicated that cell death and survival as well as cell cycle (G2/M damage) were the top cellular functions affected by ZINC253504760 in CCRF-CEM cells, while CDK1 was linked with the downregulation of MEK and ERK. With flow cytometry, ZINC253504760 induced G2/M phase arrest. Interestingly, ZINC253504760 induced a novel state-of-the-art mode of cell death (parthanatos) through PARP and PAR overexpression as shown by western blotting, apoptosis-inducing factor (AIF) translocation by immunofluorescence, DNA damage by comet assay, and mitochondrial membrane potential collapse by flow cytometry. These results were ROS-independent. Furthermore, ZINC253504760 is an ATP-competitive MEK inhibitor evidenced by its interaction with the MEK phosphorylation site as shown by molecular docking in silico and binding to recombinant MEK by microscale thermophoresis in vitro. To the best of our knowledge, this is the first time to describe a cardenolide that induces parthanatos in leukemia cells, which may help to improve efforts to overcome drug resistance in cancer. A cardiac glycoside compound ZINC253504760 displayed cytotoxicity against different multidrug-resistant cell lines. ZINC253504760 exhibited cytotoxicity in CCRF-CEM leukemia cells by predominantly inducing a new mode of cell death (parthanatos). ZINC253504760 downregulated MEK1/2 phosphorylation and further affected ERK activation, which induced G2/M phase arrest.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Disease (NCT), 69120, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
26
|
Bi X, Zhang M, Zhou J, Yan X, Cheng L, Luo L, Huang C, Yin Z. Phosphorylated Hsp27 promotes adriamycin resistance in breast cancer cells through regulating dual phosphorylation of c-Myc. Cell Signal 2023; 112:110913. [PMID: 37797796 DOI: 10.1016/j.cellsig.2023.110913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Chemotherapy resistance of breast cancer cells is one of the major factors affecting patient survival rate. Heat shock protein 27 (Hsp27) is a member of the small heat shock protein family that has been reported to be associated with chemotherapy resistance in tumor cells, but the exact mechanism is not fully understood. Here, we explored the regulation of Hsp27 in adriamycin-resistant pathological conditions of breast cancer in vitro and in vivo. We found that overexpression of Hsp27 in MCF-7 breast cancer cells reversed DNA damage induced by adriamycin, and thereby reduced subsequent cell apoptosis. Non-phosphorylated Hsp27 accelerated ubiquitin-mediated degradation of c-Myc under normal physiological conditions. After stimulation with adriamycin, Hsp27 was phosphorylated and translocated from the cytoplasm into the nucleus, where phosphorylated Hsp27 upregulated c-Myc and Nijmegen breakage syndrome 1 (NBS1) protein levels thus leading to ATM activation. We further showed that phosphorylated Hsp27 promoted c-Myc nuclear import and stabilization by regulating T58/S62 phosphorylation of c-Myc through a protein phosphatase 2A (PP2A)-dependent mechanism. Collectively, the data presented in this study demonstrate that Hsp27, in its phosphorylation state, plays a critical role in adriamycin-resistant pathological conditions of breast cancer cells.
Collapse
Affiliation(s)
- Xiaowen Bi
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lixia Cheng
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Chunhong Huang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
27
|
Hu M, Zhang Y, Zhang X, Zhang X, Huang X, Lu Y, Li Y, Brännström M, Sferruzzi-Perri AN, Shao LR, Billig H. Defective Uterine Spiral Artery Remodeling and Placental Senescence in a Pregnant Rat Model of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1916-1935. [PMID: 37689383 DOI: 10.1016/j.ajpath.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling. We verified previous work in which exposure to 5-dihydrotestosterone (DHT) and insulin (INS) in rats during pregnancy resulted in hyperandrogenism, insulin intolerance, and higher fetal mortality. Exposure to DHT and INS dysregulated the expression of angiogenesis-related genes in the uterus and placenta and also decreased expression of endothelial nitric oxide synthase and matrix metallopeptidases 2 and 9, increased fibrotic collagen deposits in the uterus, and reduced expression of marker genes for SpA-associated trophoblast giant cells. These changes were related to a greater proportion of unremodeled uterine SpAs and a smaller proportion of highly remodeled arteries in DHT + INS-exposed rats. Placentas from DHT + INS-exposed rats exhibited decreased basal and labyrinth zone regions, reduced maternal blood spaces, diminished labyrinth vascularity, and an imbalance in the abundance of vascular and smooth muscle proteins. Furthermore, placentas from DHT + INS-exposed rats showed expression of placental insufficiency markers and a significant increase in cell senescence-associated protein levels. Altogether, this work demonstrates that increased pregnancy complications in polycystic ovary syndrome may be mediated by problems with uterine SpA remodeling, placental functionality, and placental senescence.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - XiuYing Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaxing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yijia Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, Ren Y, Li L, Shi C, Wang J, Huang X, Cai X, Qu D, Zhang H, Mao Z, Liu H, Wang P, Sha W, Yang H, Wang L, Ge B. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe 2023; 31:1820-1836.e10. [PMID: 37848028 DOI: 10.1016/j.chom.2023.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-β (IFN-β) production. UreC-mediated activation of the IFN-β pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Pengfei Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yefei Ren
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China.
| |
Collapse
|
29
|
Ramos L, Truong S, Zhai B, Joshi J, Ghaidi F, Lizardo MM, Shyp T, Kung SH, Rezakhanlou AM, Oo HZ, Adomat H, Le Bihan S, Collins C, Bacha J, Brown D, Langlands J, Shen W, Lallous N, Sorensen PH, Daugaard M. A Bifunctional PARP-HDAC Inhibitor with Activity in Ewing Sarcoma. Clin Cancer Res 2023; 29:3541-3553. [PMID: 37279093 PMCID: PMC10472104 DOI: 10.1158/1078-0432.ccr-22-3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Histone deacetylase (HDAC) inhibition has been shown to induce pharmacologic "BRCAness" in cancer cells with proficient DNA repair activity. This provides a rationale for exploring combination treatments with HDAC and PARP inhibition in cancer types that are insensitive to single-agent PARP inhibitors (PARPi). Here, we report the concept and characterization of a novel bifunctional PARPi (kt-3283) with dual activity toward PARP1/2 and HDAC enzymes in Ewing sarcoma cells. EXPERIMENTAL DESIGN Inhibition of PARP1/2 and HDAC was measured using PARP1/2, HDAC activity, and PAR formation assays. Cytotoxicity was assessed by IncuCyte live cell imaging, CellTiter-Glo, and spheroid assays. Cell-cycle profiles were determined using propidium iodide staining and flow cytometry. DNA damage was examined by γH2AX expression and comet assay. Inhibition of metastatic potential by kt-3283 was evaluated via ex vivo pulmonary metastasis assay (PuMA). RESULTS Compared with FDA-approved PARP (olaparib) and HDAC (vorinostat) inhibitors, kt-3283 displayed enhanced cytotoxicity in Ewing sarcoma models. The kt-3283-induced cytotoxicity was associated with strong S and G2-M cell-cycle arrest in nanomolar concentration range and elevated DNA damage as assessed by γH2AX tracking and comet assays. In three-dimensional spheroid models of Ewing sarcoma, kt-3283 showed efficacy in lower concentrations than olaparib and vorinostat, and kt-3283 inhibited colonization of Ewing sarcoma cells in the ex vivo PuMA model. CONCLUSIONS Our data demonstrate the preclinical justification for studying the benefit of dual PARP and HDAC inhibition in the treatment of Ewing sarcoma in a clinical trial and provides proof-of-concept for a bifunctional single-molecule therapeutic strategy.
Collapse
Affiliation(s)
- Louise Ramos
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah Truong
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | - Beibei Zhai
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | - Jay Joshi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | - Fariba Ghaidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | | | - Taras Shyp
- BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Sonia H.Y. Kung
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Hans Adomat
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Colin Collins
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Jeffrey Bacha
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | - Dennis Brown
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | - John Langlands
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | - Wang Shen
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
| | - Nada Lallous
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Poul H. Sorensen
- BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Rakovina Therapeutics, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Yu Y, Wang T, Meng X, Jiang T, Zhao X. Chitosan Thermosensitive Hydrogel Based on DNA Damage Repair Inhibition and Mild Photothermal Therapy for Enhanced Antitumor Treatment. Biomacromolecules 2023; 24:3755-3766. [PMID: 37506051 DOI: 10.1021/acs.biomac.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The DNA damage repair of tumor cells limits the effect of photothermal therapy (PTT), and high temperatures induced by PTT can damage adjacent normal tissues. To overcome these limitations, we developed a novel composite hydrogel (OLA-Au-Gel) based on chitosan (CS) and β-glycerophosphate (β-GP), which encapsulated olaparib-liposomes (OLA-lips) and CS-capped gold nanoparticles (CS-AuNPs). OLA-Au-Gel achieved the combination of mild PTT (mPTT) by CS-AuNPs and tumor DNA damage repair inhibition by OLA. The hydrogel showed good biocompatibility, injectability, and photothermal response. Under near-infrared laser irradiation, OLA-Au-Gel inhibited the proliferation of tumor cells, induced the generation of reactive oxygen species in vitro, and effectively inhibited the growth of breast tumors in vivo. OLA-Au-Gel shows a promising application prospect for inhibiting tumor development and improving the antitumor effect. Collectively, we propose a novel strategy for enhanced antitumor therapy based on the combination of mPTT and DNA damage repair inhibition.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Meng
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
31
|
Leung E, Taskina D, Schwab N, Hazrati LN. BRCA1 heterozygosity promotes DNA damage-induced senescence in a sex-specific manner following repeated mild traumatic brain injury. Front Neurosci 2023; 17:1225226. [PMID: 37638313 PMCID: PMC10450634 DOI: 10.3389/fnins.2023.1225226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Emerging evidence suggests cellular senescence, as a consequence of excess DNA damage and deficient repair, to be a driver of brain dysfunction following repeated mild traumatic brain injury (rmTBI). This study aimed to further investigate the role of deficient DNA repair, specifically BRCA1-related repair, on DNA damage-induced senescence. BRCA1, a repair protein involved in maintaining genomic integrity with multiple roles in the central nervous system, was previously reported to be significantly downregulated in post-mortem brains with a history of rmTBI. Here we examined the effects of impaired BRCA1-related repair on DNA damage-induced senescence and outcomes 1-week post-rmTBI using mice with a heterozygous knockout for BRCA1 in a sex-segregated manner. Altered BRCA1 repair with rmTBI resulted in altered anxiety-related behaviours in males and females using elevated zero maze and contextual fear conditioning. Evaluating molecular markers associated with DNA damage signalling and senescence-related pathways revealed sex-specific differences attributed to BRCA1, where females exhibited elevated DNA damage, impaired DNA damage signalling, and dampened senescence onset compared to males. Overall, the results from this study highlight sex-specific consequences of aberrant DNA repair on outcomes post-injury, and further support a need to develop sex-specific treatments following rmTBI.
Collapse
Affiliation(s)
- Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daria Taskina
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nicole Schwab
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
32
|
Sun YM, Zhang YM, Shi HL, Yang S, Zhao YL, Liu HJ, Li C, Liu HL, Yang JP, Song J, Sun GZ, Yang JK. Enhancer-driven transcription of MCM8 by E2F4 promotes ATR pathway activation and glioma stem cell characteristics. Hereditas 2023; 160:29. [PMID: 37349788 DOI: 10.1186/s41065-023-00292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) are responsible for glioma recurrence and drug resistance, yet the mechanisms underlying their maintenance remains unclear. This study aimed to identify enhancer-controlled genes involved in GSCs maintenance and elucidate the mechanisms underlying their regulation. METHODS We analyzed RNA-seq data and H3K27ac ChIP-seq data from GSE119776 to identify differentially expressed genes and enhancers, respectively. Gene Ontology analysis was performed for functional enrichment. Transcription factors were predicted using the Toolkit for Cistrome Data Browser. Prognostic analysis and gene expression correlation was conducted using the Chinese Glioma Genome Atlas (CGGA) data. Two GSC cell lines, GSC-A172 and GSC-U138MG, were isolated from A172 and U138MG cell lines. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to detect H3K27ac of enhancers, and binding of E2F4 to target gene enhancers. Western blot was used to analyze protein levels of p-ATR and γH2AX. Sphere formation, limiting dilution and cell growth assays were used to analyze GSCs growth and self-renewal. RESULTS We found that upregulated genes in GSCs were associated with ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) pathway activation, and that seven enhancer-controlled genes related to ATR pathway activation (LIN9, MCM8, CEP72, POLA1, DBF4, NDE1, and CDKN2C) were identified. Expression of these genes corresponded to poor prognosis in glioma patients. E2F4 was identified as a transcription factor that regulates enhancer-controlled genes related to the ATR pathway activation, with MCM8 having the highest hazard ratio among genes positively correlated with E2F4 expression. E2F4 bound to MCM8 enhancers to promote its transcription. Overexpression of MCM8 partially restored the inhibition of GSCs self-renewal, cell growth, and the ATR pathway activation caused by E2F4 knockdown. CONCLUSION Our study demonstrated that E2F4-mediated enhancer activation of MCM8 promotes the ATR pathway activation and GSCs characteristics. These findings offer promising targets for the development of new therapies for gliomas.
Collapse
Affiliation(s)
- Yu-Meng Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yi-Meng Zhang
- Medical Department, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hai-Liang Shi
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Song Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yin-Long Zhao
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hong-Jiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hong-Lei Liu
- Department of Neurosurgery, Shijiazhuang Third Hospital, Shijiazhuang, 050011, Hebei, China
| | - Ji-Peng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Guo-Zhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
33
|
Šimoničová K, Janotka L, Kavcova H, Sulova Z, Messingerova L, Breier A. Resistance of Leukemia Cells to 5-Azacytidine: Different Responses to the Same Induction Protocol. Cancers (Basel) 2023; 15:cancers15113063. [PMID: 37297025 DOI: 10.3390/cancers15113063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Three AML cell variants (M/A, M/A* from MOLM-13 and S/A from SKM-1) were established for resistance by the same protocol using 5-azacytidine (AZA) as a selection agent. These AZA-resistant variants differ in their responses to other cytosine nucleoside analogs, including 5-aza-2'-deoxycytidine (DAC), as well as in some molecular features. Differences in global DNA methylation, protein levels of DNA methyltransferases, and phosphorylation of histone H2AX were observed in response to AZA and DAC treatment in these cell variants. This could be due to changes in the expression of uridine-cytidine kinases 1 and 2 (UCK1 and UCK2) demonstrated in our cell variants. In the M/A variant that retained sensitivity to DAC, we detected a homozygous point mutation in UCK2 resulting in an amino acid substitution (L220R) that is likely responsible for AZA resistance. Cells administered AZA treatment can switch to de novo synthesis of pyrimidine nucleotides, which could be blocked by inhibition of dihydroorotate dehydrogenase by teriflunomide (TFN). This is shown by the synergistic effect of AZA and TFN in those variants that were cross-resistant to DAC and did not have a mutation in UCK2.
Collapse
Affiliation(s)
- Kristína Šimoničová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
| | - Lubos Janotka
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| | - Helena Kavcova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
| | - Lucia Messingerova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
34
|
Lu M, Zhang QC, Zhu ZY, Peng F, Li Z, Wang Y, Li XY, Wang ZW, Zhang XJ, Zhou L, Gui JF. An efficient approach to synthesize sterile allopolyploids through the combined reproduction mode of ameiotic oogenesis and sperm-egg fusion in the polyploid Carassius complex. Sci Bull (Beijing) 2023; 68:1038-1050. [PMID: 37173259 DOI: 10.1016/j.scib.2023.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
The association between polyploidy and reproduction transition, which is an intriguing issue in evolutionary genetics, can also be exploited as an approach for genetic improvement in agriculture. Recently, we generated novel amphitriploids (NA3n) by integrating the genomes of the gynogenetic Carassius gibelio and sexual C. auratus, and found gynogenesis was recovered in most NA3n females (NA3n♀I). Here, we discovered a unique reproduction mode, termed ameio-fusiongenesis, which combines the abilities of both ameiotic oogenesis and sperm-egg fusion, in a few NA3n females (NA3n♀II). These females inherited ameiotic oogenesis to produce unreduced eggs from gynogenetic C. gibelio and sperm-egg fusion from sexual C. auratus. Subsequently, we utilized this unique reproduction mode to generate a group of synthetic alloheptaploids by crossing NA3n♀II with Megalobrama amblycephala. They contained all chromosomes of maternal NA3n♀II and a chromosomal set of paternal M. amblycephala. Intergenomic chromosome translocations between NA3n♀II and M. amblycephala were also observed in a few somatic cells. Primary oocytes of the alloheptaploid underwent severe apoptosis owing to incomplete double-strand break repair at prophase I. Although spermatocytes displayed similar chromosome behavior at prophase I, they underwent apoptosis due to chromosome separation failure at metaphase I. Therefore, the alloheptaploid females and males were all sterile. Finally, we established a sustainable clone for the large-scale production of NA3n♀II and developed an efficient approach to synthesize diverse allopolyploids containing genomes of different cyprinid species. These findings not only broaden our understanding of reproduction transition but also offer a practical strategy for polyploidy breeding and heterosis fixing.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin-Can Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Szumera-Ciećkiewicz A, Bobak K, Spałek MJ, Sokół K, Wągrodzki M, Owczarek D, Kawecka M, Puton B, Koseła-Paterczyk H, Rutkowski P, Czarnecka AM. Predictive Biomarkers of Pathological Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15112960. [PMID: 37296922 DOI: 10.3390/cancers15112960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Marginally resectable and unresectable soft tissue sarcomas (STS) remain a therapy challenge due to the lack of highly active treatment. The aim of the study was to identify a biomarker to predict the pathological response (PR) to preplanned treatment of these STSs. METHODS In the phase II clinical trial (NCT03651375), locally advanced STS patients received preoperative treatment with a combination of doxorubicin-ifosfamide chemotherapy and 5 × 5 Gy radiotherapy. PR to the treatment was classified using the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group recommendations. We have chosen HIF-1α, CD163, CD68, CD34, CD105, and γH2AFX proteins, rendering different biological phenomena, for biomarker study. RESULTS Nineteen patients were enrolled and in four cases a good PR was reported. The high expression of HIF-1α before surgery showed a negative correlation with PR, which means a poor response to therapy. Furthermore, the samples after surgery had decreased expression of HIF-1α, which confirmed the correlation with PR. However, high expression of γH2AFX positively correlated with PR, which provides better PR. The high number of positive-staining TAMs and the high IMVD did not correlate with PR. CONCLUSIONS HIF1α and γH2AFX could be potential biomarkers for PR prediction after neoadjuvant treatment in STS.
Collapse
Affiliation(s)
- Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Klaudia Bobak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Mateusz J Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- 1st Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Kamil Sokół
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Michał Wągrodzki
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Daria Owczarek
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Monika Kawecka
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Beata Puton
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02106 Warsaw, Poland
| |
Collapse
|
36
|
Osipov A, Chigasova A, Yashkina E, Ignatov M, Fedotov Y, Molodtsova D, Vorobyeva N, Osipov AN. Residual Foci of DNA Damage Response Proteins in Relation to Cellular Senescence and Autophagy in X-Ray Irradiated Fibroblasts. Cells 2023; 12:cells12081209. [PMID: 37190118 DOI: 10.3390/cells12081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
DNA repair (DNA damage) foci observed 24 h and later after irradiation are called "residual" in the literature. They are believed to be the repair sites for complex, potentially lethal DNA double strand breaks. However, the features of their post-radiation dose-dependent quantitative changes and their role in the processes of cell death and senescence are still insufficiently studied. For the first time in one work, a simultaneous study of the association of changes in the number of residual foci of key DNA damage response (DDR) proteins (γH2AX, pATM, 53BP1, p-p53), the proportion of caspase-3 positive, LC-3 II autophagic and SA-β-gal senescent cells was carried out 24-72 h after fibroblast irradiation with X-rays at doses of 1-10 Gy. It was shown that with an increase in time after irradiation from 24 h to 72 h, the number of residual foci and the proportion of caspase-3 positive cells decrease, while the proportion of senescent cells, on the contrary, increases. The highest number of autophagic cells was noted 48 h after irradiation. In general, the results obtained provide important information for understanding the dynamics of the development of a dose-dependent cellular response in populations of irradiated fibroblasts.
Collapse
Affiliation(s)
- Andrey Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Chigasova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta Yashkina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Maxim Ignatov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Yuriy Fedotov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Daria Molodtsova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Natalia Vorobyeva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| |
Collapse
|
37
|
Křížkovská B, Schätz M, Lipov J, Viktorová J, Jablonská E. In Vitro High-Throughput Genotoxicity Testing Using γH2AX Biomarker, Microscopy and Reproducible Automatic Image Analysis in ImageJ—A Pilot Study with Valinomycin. Toxins (Basel) 2023; 15:toxins15040263. [PMID: 37104201 PMCID: PMC10146355 DOI: 10.3390/toxins15040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
(1) Background: The detection of DNA double-strand breaks in vitro using the phosphorylated histone biomarker (γH2AX) is an increasingly popular method of measuring in vitro genotoxicity, as it is sensitive, specific and suitable for high-throughput analysis. The γH2AX response is either detected by flow cytometry or microscopy, the latter being more accessible. However, authors sparsely publish details, data, and workflows from overall fluorescence intensity quantification, which hinders the reproducibility. (2) Methods: We used valinomycin as a model genotoxin, two cell lines (HeLa and CHO-K1) and a commercial kit for γH2AX immunofluorescence detection. Bioimage analysis was performed using the open-source software ImageJ. Mean fluorescent values were measured using segmented nuclei from the DAPI channel and the results were expressed as the area-scaled relative fold change in γH2AX fluorescence over the control. Cytotoxicity is expressed as the relative area of the nuclei. We present the workflows, data, and scripts on GitHub. (3) Results: The outputs obtained by an introduced method are in accordance with expected results, i.e., valinomycin was genotoxic and cytotoxic to both cell lines used after 24 h of incubation. (4) Conclusions: The overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to be a promising alternative to flow cytometry. Workflow, data, and script sharing are crucial for further improvement of the bioimage analysis methods.
Collapse
Affiliation(s)
- Bára Křížkovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Schätz
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Eva Jablonská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
38
|
Han L, Zhou Y, Tan Z, Zhu H, Hu Y, Ma X, Zheng F, Feng F, Wang C, Liu W. Confined Target-Triggered Hot Spots for In Situ SERS Analysis of Intranuclear Genotoxic Markers. Anal Chem 2023; 95:6312-6322. [PMID: 37000898 DOI: 10.1021/acs.analchem.2c05147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The γH2AX is a type of confined target in nuclei which is highly expressed around the damaged DNA during genotoxicity and has therefore been identified as a marker of genotoxicity. Convenient and intuitive in situ real-time detection of γH2AX is crucial for an accurate assessment of genotoxicity. Selective and nondestructive surface-enhanced Raman spectroscopy (SERS) is suitable to achieve this goal. However, the detection of substances in the nucleus by SERS is still limited due to the contradiction of probes between the nuclei entry efficiency and signal enhancement. This study utilized the characteristics of γH2AX as a confined target and constructed a γH2AX immunosensor based on gold nanoprobes with a small size (15 nm), which was modified with the TAT nuclear targeting peptide to ensure high nuclei entry efficiency. Once DNA damage was induced, the local overexpression of γH2AX further recruited the probe through immune recognition, so that hot spots could be assembled in situ to generate strong Raman signals, which were applied to evaluate the genotoxicity of drug impurities. This study proposed a novel SERS detection strategy, characterized by confined target-induced size conversion and hot spot formation, for in situ real-time analysis of intranuclear targets at the single-living-cell level, which intelligently simplified the structure of SERS probes and the operation process.
Collapse
|
39
|
Zhang B, Li F, Shen L, Chen L, Xia Z, Ding J, Li M, Guo LH. A cathodic photoelectrochemical immunoassay with dual signal amplification for the ultrasensitive detection of DNA damage biomarkers. Biosens Bioelectron 2023; 224:115052. [PMID: 36603285 DOI: 10.1016/j.bios.2022.115052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Toxicity screening and risk assessment of an overwhelmingly large and ever-increasing number of chemicals are vitally essential for ecological safety and human health. Genotoxicity is particularly important because of its association with mutagenicity, carcinogenicity and cancer. Phosphorylated histone H2AX (γH2AX) is an early sensitive genotoxic biomarker. It is therefore highly desirable to develop analytical methods for the detection of trace γH2AX to enable screening and assessment of genotoxicity. Here, we developed a novel cathodic photoelectrochemical (PEC) immunoassay with dual signal amplification for the rapid and ultrasensitive detection of γH2AX in cell lysates. A sandwich immuno-reaction targeting γH2AX was first carried out on a 96-well plate, using a secondary antibody/gold nanoparticle/glucose oxidase conjugate as the labeled detection antibody. The conjugate increased the production of H2O2 and thus provided the first mechanism of signal amplification. The immuno-reaction product containing H2O2 was then detected on a photocathode prepared from Bi2+xWO6 rich in oxygen vacancies, with H2O2 acting as electron acceptor. The oxygen vacancies acted as both adsorption and activation sites of H2O2 and thus enhanced the photocurrent, which provided another mechanism of signal amplification. As a result, an ultrasensitive immunoassay for γH2AX determination was established with a limit of detection of 6.87 pg/mL (S/N = 3) and a wide linear range from 0.01 to 500 ng/mL. The practicability of this assay was verified by detecting γH2AX in cell lysates exposed to known genotoxic chemicals. Our work offers a promising tool for the screening of genotoxic chemicals and opening a new avenue toward environmental risk assessment.
Collapse
Affiliation(s)
- Bihong Zhang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Fangfang Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Linyu Shen
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Lu Chen
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Zhiqiang Xia
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Jinjian Ding
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China.
| | - Liang-Hong Guo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China.
| |
Collapse
|
40
|
Liu L, Cui J, Chen S, Zhang X, Wang S, Huang L. Circ_002363 is regulated by the RNA binding protein BCAS2 and inhibits neodymium oxide nanoparticle-induced DNA damage by non-homologous end-joining repair. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160819. [PMID: 36526188 DOI: 10.1016/j.scitotenv.2022.160819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Neodymium oxide nanoparticles (NPs-Nd2O3) are increasingly being used in industry and biomedicine, causing adverse health effects such as lung disease. However, the underlying molecular mechanisms controlling these adverse consequences are unknown at present. In this study, a human bronchial epithelial cell line (16HBE) was exposed to increasing concentrations of NPs-Nd2O3, and Sprague-Dawley rats were treated with NPs-Nd2O3 by intratracheal instillation. We found that NPs-Nd2O3 exposure induced DNA damage and down-regulated levels of circular RNA (circRNA) circ_002363 in 16HBE cells as well as in rat lung tissue. We also observed that circ_002363 levels in the serum of workers employed in the production of NPs-Nd2O3 diminished as the work time progressed, suggesting that circ_002363 may be a potential biomarker of lung injury. Functional experiments showed that circ_002363 significantly inhibited DNA damage induced by NPs-Nd2O3. RNA pull-down and western blot assays found that circ_002363 interacted with proteins PARP1/Ku70/Ku80/Rad50, which are critical participants in non-homologous end-joining (NHEJ) DNA repair. Moreover, we found that formation of circ_002363 was regulated by the RNA binding protein Breast Carcinoma Amplified Sequence 2 (BCAS2). The BCAS2 protein affected circ_002363 expression through interaction with Pre-DNA2, the host gene of circ_002363, in NPs-Nd2O3-exposed 16HBE cells. In conclusion, our findings show first that circ_002363, which is regulated by BCAS2, acts as regulator of DNA damage via the NHEJ pathway. These results enhance our understanding of the regulatory mechanisms controlling the actions of circular RNAs and highlight the relationship between genetics and epigenetics in the development of diseases following exposure to environmental chemicals.
Collapse
Affiliation(s)
- Ling Liu
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Shijie Chen
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Xia Zhang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
41
|
Activation of Nrf2/HO-1 antioxidant signaling correlates with the preventive effect of loganin on oxidative injury in ARPE-19 human retinal pigment epithelial cells. Genes Genomics 2023; 45:271-284. [PMID: 36018494 DOI: 10.1007/s13258-022-01302-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Loganin, a type of iridoid glycoside derived from Corni Fructus, is known to have beneficial effects various chronic diseases. However, studies on mechanisms related to antioxidant efficacy in human retinal pigment epithelial (RPE) cells have not yet been conducted. OBJECTIVES This study was to investigate whether loganin could inhibit oxidative stress-mediated cellular damage caused by hydrogen peroxide (H2O2) in human RPE ARPE-19 cells. METHODS The preventive effect of loganin on H2O2-induced cytotoxicity, reactive oxygen species (ROS) generation, DNA damage and apoptosis was investigated. In addition, immunofluorescence staining and immunoblotting analysis were applied to evaluate the related mechanisms. RESULTS The loss of cell viability and increased ROS accumulation in H2O2-treated ARPE-19 cells were significantly abrogated by loganin pretreatment, which was associated with activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increased expression of heme oxygenase-1 (HO-1). Loganin also markedly attenuated H2O2-induced DNA damage, ultimately ameliorating apoptosis. In addition, H2O2-induced mitochondrial dysfunction was reversed in the presence of loganin as indicated by preservation of mitochondrial integrity, decrease of Bax/Bcl-2 expression ratio, reduction of caspase-3 activity and suppression of cytochrome c release into the cytoplasm. However, zinc protoporphyrin, a selective inhibitor of HO-1, remarkably alleviated the preventive effect offered by loganin against H2O2-mediated ARPE-19 cell injury, suggesting a critical role of Nrf2-mediated activation of HO-1 in the antioxidant activity of loganin. CONCLUSION The results of this study suggest that loganin-induced activation of the Nrf2/HO-1 axis is at least involved in protecting at least ARPE-19 cells from oxidative injury.
Collapse
|
42
|
Motta G, Gualtieri M, Saibene M, Bengalli R, Brigliadori A, Carrière M, Mantecca P. Preliminary Toxicological Analysis in a Safe-by-Design and Adverse Outcome Pathway-Driven Approach on Different Silver Nanoparticles: Assessment of Acute Responses in A549 Cells. TOXICS 2023; 11:toxics11020195. [PMID: 36851069 PMCID: PMC9965967 DOI: 10.3390/toxics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/15/2023]
Abstract
Silver nanoparticles (Ag NPs) are among the most widely used metal-based nanomaterials (NMs) and their applications in different products, also as antibacterial additives, are increasing. In the present manuscript, according to an adverse outcome pathway (AOP) approach, we tested two safe-by-design (SbD) newly developed Ag NPs coated with hydroxyethyl cellulose (HEC), namely AgHEC powder and AgHEC solution. These novel Ag NPs were compared to two reference Ag NPs (naked and coated with polyvinylpyrrolidone-PVP). Cell viability, inflammatory response, reactive oxygen species, oxidative DNA damage, cell cycle, and cell-particle interactions were analyzed in the alveolar in vitro model, A549 cells. The results show a different toxicity pattern of the novel Ag NPs compared to reference NPs and that between the two novel NPs, the AgHEC solution is the one with the lower toxicity and to be further developed within the SbD framework.
Collapse
Affiliation(s)
- Giulia Motta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Maurizio Gualtieri
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
- Correspondence: ; Tel.: +39-026-448-2110
| | - Melissa Saibene
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Rossella Bengalli
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Brigliadori
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics (CNR-ISSMC former CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - Paride Mantecca
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
43
|
Oberdoerffer P, Miller KM. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin Cell Dev Biol 2023; 135:59-72. [PMID: 35331626 PMCID: PMC9489817 DOI: 10.1016/j.semcdb.2022.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
44
|
Park C, Kim DH, Kim TH, Jeong SU, Yoon JH, Moon SK, Kwon CY, Park SH, Hong SH, Shim JH, Kim GY, Choi YH. Improvement of Oxidative Stress-induced Cytotoxicity of Angelica keiskei (Miq.) Koidz. Leaves Extract through Activation of Heme Oxygenase-1 in C2C12 Murine Myoblasts. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Ye Y, Ma Y, Kong M, Wang Z, Sun K, Li F. Effects of Dietary Phytochemicals on DNA Damage in Cancer Cells. Nutr Cancer 2023; 75:761-775. [PMID: 36562548 DOI: 10.1080/01635581.2022.2157024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the increasing incidence of cancer worldwide, the prevention and treatment of cancer have garnered considerable scientific attention. Traditional chemotherapeutic drugs are highly toxic and associated with substantial side effects; therefore, there is an urgent need for developing new therapeutic agents. Dietary phytochemicals are important in tumor prevention and treatment because of their low toxicity and side effects at low concentrations; however, their exact mechanisms of action remain obscure. DNA damage is mainly caused by physical or chemical factors in the environment, such as ultraviolet light, alkylating agents and reactive oxygen species that cause changes in the DNA structure of cells. Several phytochemicals have been shown inhibit the occurrence and development of tumors by inducing DNA damage. This article reviews the advances in phytochemical research; particularly regarding the mechanisms related to DNA damage and provide a theoretical basis for future chemoprophylaxis research.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mei Kong
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhihua Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kang Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
46
|
Sendra M, Štampar M, Fras K, Novoa B, Figueras A, Žegura B. Adverse (geno)toxic effects of bisphenol A and its analogues in hepatic 3D cell model. ENVIRONMENT INTERNATIONAL 2023; 171:107721. [PMID: 36580735 PMCID: PMC9875311 DOI: 10.1016/j.envint.2022.107721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 05/10/2023]
Abstract
Bisphenol A (BPA) is one of the most widely used and versatile chemical compounds in polymer additives and epoxy resins for manufacturing a range of products for human applications. It is known as endocrine disruptor, however, there is growing evidence that it is genotoxic. Because of its adverse effects, the European Union has restricted its use to protect human health and the environment. As a result, the industry has begun developing BPA analogues, but there are not yet sufficient toxicity data to claim that they are safe. We investigated the adverse toxic effects of BPA and its analogues (BPS, BPAP, BPAF, BPFL, and BPC) with emphasis on their cytotoxic and genotoxic activities after short (24-h) and prolonged (96-h) exposure in in vitro hepatic three-dimensional cell model developed from HepG2 cells. The results showed that BPFL and BPC (formed by an additional ring system) were the most cytotoxic analogues that affected cell viability, spheroid surface area and morphology, cell proliferation, and apoptotic cell death. BPA, BPAP, and BPAF induced DNA double-strand break formation (γH2AX assay), whereas BPAF and BPC increased the percentage of p-H3-positive cells, indicating their aneugenic activity. All BPs induced DNA single-strand break formation (comet assay), with BPAP (≥0.1 μM) being the most effective and BPA and BPC the least effective (≥1 μM) under conditions applied. The results indicate that not all of the analogues studied are safer alternatives to BPA and thus more in-depth research is urgently needed to adequately evaluate the risks of BPA analogues and assess their safety for humans.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain; International Research Center in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Martina Štampar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia.
| | - Katarina Fras
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia.
| | - Beatriz Novoa
- Immunology and Genomics Group, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
| | - Antonio Figueras
- Immunology and Genomics Group, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia.
| |
Collapse
|
47
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
48
|
Giannotta C, Castella B, Tripoli E, Grimaldi D, Avonto I, D’Agostino M, Larocca A, Kopecka J, Grasso M, Riganti C, Massaia M. Immune dysfunctions affecting bone marrow Vγ9Vδ2 T cells in multiple myeloma: Role of immune checkpoints and disease status. Front Immunol 2022; 13:1073227. [PMID: 36605214 PMCID: PMC9808386 DOI: 10.3389/fimmu.2022.1073227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Bone marrow (BM) Vγ9Vδ2 T cells are intrinsically predisposed to sense the immune fitness of the tumor microenvironment (TME) in multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS). Methods In this work, we have used BM Vγ9Vδ2 T cells to interrogate the role of the immune checkpoint/immune checkpoint-ligand (ICP/ICP-L) network in the immune suppressive TME of MM patients. Results PD-1+ BM MM Vγ9Vδ2 T cells combine phenotypic, functional, and TCR-associated alterations consistent with chronic exhaustion and immune senescence. When challenged by zoledronic acid (ZA) as a surrogate assay to interrogate the reactivity to their natural ligands, BM MM Vγ9Vδ2 T cells further up-regulate PD-1 and TIM-3 and worsen TCR-associated alterations. BM MM Vγ9Vδ2 T cells up-regulate TIM-3 after stimulation with ZA in combination with αPD-1, whereas PD-1 is not up-regulated after ZA stimulation with αTIM-3, indicating a hierarchical regulation of inducible ICP expression. Dual αPD-1/αTIM-3 blockade improves the immune functions of BM Vγ9Vδ2 T cells in MM at diagnosis (MM-dia), whereas single PD-1 blockade is sufficient to rescue BM Vγ9Vδ2 T cells in MM in remission (MM-rem). By contrast, ZA stimulation induces LAG-3 up-regulation in BM Vγ9Vδ2 T cells from MM in relapse (MM-rel) and dual PD-1/LAG-3 blockade is the most effective combination in this setting. Discussion These data indicate that: 1) inappropriate immune interventions can exacerbate Vγ9Vδ2 T-cell dysfunction 2) ICP blockade should be tailored to the disease status to get the most of its beneficial effect.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Ezio Tripoli
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Daniele Grimaldi
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Ilaria Avonto
- Servizio Interdipartimentale di Immunoematologia e Medicina Trasfusionale, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Mattia D’Agostino
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Alessandra Larocca
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Joanna Kopecka
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy
| | - Mariella Grasso
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy,*Correspondence: Massimo Massaia,
| |
Collapse
|
49
|
Qin J, Li H, Wang X, Zhang Y, Duan Y, Yao Y, Yang H, Sun M. Discovery of a novel piperlongumine analogue as a microtubule polymerization inhibitor with potent anti-angiogenic and anti-metastatic efficacy. Eur J Med Chem 2022; 243:114738. [PMID: 36162214 DOI: 10.1016/j.ejmech.2022.114738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
In an effort to discover anticancer agents with simultaneous effects on tubulin and angiogenesis, we designed and synthesized two series of piperlongumie (PL) derivatives by replacing of phenyl group with a variety of benzoheterocycle (series II) or cyclizing the C7-C8 olefin into an aromatic heterocycle (series I). Most of the new compounds showed better antiproliferative activities against six cancer cell lines than the parent drug PL. Compound II-14b had the best cytotoxic profile of these two series in cancer cells, whilst being relatively low cytotoxicity against normal human cells and high potency against drug-resistant cells. It disrupted cellular microtubule networks and inhibited tubulin assembly with an IC50 value of 5.8 μM. Further studies elucidated that II-14b showed antitumor activities through multiple mechanisms, including the pruduction of abundant ROS, the dissipation of mitochondrial membrane potential, the accumulation of DNA double-strand breaks, and the induction of cell cycle in G2/M phase. More importantly, we have observed that it possesses potential anti-angiogenesis capabilities, including suppression of HUVECs cell migration, invasion, and endothelial tube formation in vitro and in vivo. In vivo assessment indicated that II-14b inhibits the growth and metastasis of MGC-803 xenograft tumour in zebrafish. These findings show that II-14b is a high-efficacy and non-toxic antitumor agent.
Collapse
Affiliation(s)
- Jinling Qin
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongliang Li
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuan Wang
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yongfang Yao
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hua Yang
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Moran Sun
- School of Pharmaceutical Sciences, And Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
50
|
Park C, Cha HJ, Kim MY, Bang E, Moon SK, Yun SJ, Kim WJ, Noh JS, Kim GY, Cho S, Lee H, Choi YH. Phloroglucinol Attenuates DNA Damage and Apoptosis Induced by Oxidative Stress in Human Retinal Pigment Epithelium ARPE-19 Cells by Blocking the Production of Mitochondrial ROS. Antioxidants (Basel) 2022; 11:antiox11122353. [PMID: 36552561 PMCID: PMC9774705 DOI: 10.3390/antiox11122353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19 cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked production of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2 ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase. H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation and cytosolic release of cytochrome c. However, these changes were significantly attenuated by phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy, but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2 contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage, autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| |
Collapse
|