1
|
Yue W, Chen Q, Liu C, Wang X, Du Z, Wang Y, Peng Z. Sustainable synthesis of quinolines and pyrroles enabled by chromium-catalyzed acceptorless dehydrogenative coupling using a bipyridine ligand. Org Biomol Chem 2025; 23:4434-4440. [PMID: 40207853 DOI: 10.1039/d5ob00150a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A straightforward and atom-economical method for the synthesis of quinolines and pyrroles has been reported. Using Earth-abundant, commercially available CrCl2 salt as a catalyst and the inexpensive, bench-stable 6,6'-dimethyl-2,2'-dipyridyl as a ligand, this chromium-catalyzed acceptorless dehydrogenative coupling provides important heterocycles, quinolines and pyrroles, in synthetically useful yields with good functional group tolerance, releasing water and hydrogen gas as by-products. Notably, the described protocol was also found to be applicable to the sustainable synthesis of highly substituted fused polycyclic quinolines and pyrroles. Moreover, the synthetic value of this operationally simple protocol was demonstrated by gram-scale synthesis of quinolines.
Collapse
Affiliation(s)
- Wantong Yue
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Qing Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Chuanqi Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Xiaoqian Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Zhao Du
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Yilei Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Zhihua Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| |
Collapse
|
2
|
Mekheimer RA, Allam SMR, Al-Sheikh MA, Medrasi HY, Abd-Elmonem M, Sadek KU. Comprehensive methodologies for synthesizing tricyclic fused pyrimidoquinolines of biological relevance: a review. RSC Adv 2025; 15:12494-12527. [PMID: 40264867 PMCID: PMC12012452 DOI: 10.1039/d5ra00779h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Among quinoline-fused heterocycles, tricyclic pyrimidoquinoline nuclei have received considerable attention from synthetic chemists and medicinal and materials scientists over many years because they occur commonly in various biologically important natural products and potent drugs that exhibit anticancer, antibacterial, anti-inflammatory, antilipidemic, antioxidant and antimalarial activities. This study will be beneficial for medicinal chemists in the field of drug discovery to synthesize new fused tricyclic pyrimidoquinolines as potent therapeutic agents. This review provides a comprehensive compilation of the methodologies developed for the synthesis of all six known types of pyrimidoquinolines reported thus far. This article includes synthesis via solvent-free reactions, Vilsmeier-Haack reaction, Lewis and Brønsted acid catalysis, Pictet-Spengler reaction, the use of metal oxide nanoparticles as a green catalyst, multicomponent reactions (MCR), the use of l-proline as an environmentally friendly organocatalyst, aza-Wittig reaction, the use of β-cyclodextrin (β-CD) as a supramolecular catalyst, ultrasound irradiation, microwave-assisted reaction and ultraviolet light (UV365) irradiation. To the best of our knowledge, this is the first review that focuses on the synthesis of all six types of pyrimidoquinolines along with mechanistic aspects. Some medicinal applications are also mentioned.
Collapse
Affiliation(s)
- Ramadan A Mekheimer
- Department of Chemistry, Faculty of Science, Minia University Minia 61519 Egypt
| | | | - Mariam A Al-Sheikh
- Department of Chemistry, Faculty of Science, University of Jeddah AlFaisaliah Jeddah 21493 Saudi Arabia
| | - Hanadi Y Medrasi
- Department of Chemistry, Faculty of Science, University of Jeddah AlFaisaliah Jeddah 21493 Saudi Arabia
| | - Mohamed Abd-Elmonem
- Department of Chemistry, Faculty of Science, Minia University Minia 61519 Egypt
| | - Kamal U Sadek
- Department of Chemistry, Faculty of Science, Minia University Minia 61519 Egypt
| |
Collapse
|
3
|
Pratap A, Maji B. A stepwise dearomatization/nitration/enantioselective homoenolate reaction of quinolines to construct C 3-nitro-substituted tetrahydroquinolines. Org Biomol Chem 2025; 23:3812-3818. [PMID: 40152553 DOI: 10.1039/d5ob00247h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Herein, we describe a stepwise 1,2-reductive dearomatization/selective C3-nitration of quinoline and a subsequent catalytic enantioselective homoenolate addition reaction using a NHC catalyst strategy to construct N-acetyl 3,4-disubstituted tetrahydroquinoline in good yields with remarkably high diastereo- and enantioselectivities (dr >99 : 1, ee up to >99%). An efficient metal- and base-free method for 3-nitroquinoline synthesis from readily accessible quinoline has also been realized.
Collapse
Affiliation(s)
- Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India.
| |
Collapse
|
4
|
Al-Nemi R, Akkawi M, Sawalha K, Kusumastuti SA, Nuralih, Kusumaningrum S, Okselni T, Situmorang VC, Septama AW, Jaremko M, Emwas AH. Comprehensive Metabolomics Profiling and Bioactivity Study of Lycium shawii (Awsaj) Extracts with Particular Emphasis on Potential Anti-Malarial Properties. Metabolites 2025; 15:84. [PMID: 39997709 PMCID: PMC11857410 DOI: 10.3390/metabo15020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Although malaria is one of the oldest known human diseases, it continues to be a major global health challenge. According to UNICEF, the global malaria mortality rate exceeded 600,000 annually in 2022, which includes more than 1000 children dying each day. This study aimed to investigate the comprehensive chemical profile and biological activities, particularly the antimalarial activity, of Lycium shawii (Awsaj), a shrub traditionally used in the Arabian Peninsula, Middle East, India, and Africa to treat a myriad of ailments. Methods: Crude extracts of L. shawii were prepared using water, ethanol, methanol, and acetone. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) were utilized to perform untargeted metabolomics to maximize metabolite detection and tentatively identify bioactive phytochemicals. The total phenolic content (TPC) was measured for each extract, and bioassays were conducted to evaluate their antimalarial, antibacterial, and anti-inflammatory activities, particularly those of the water extract, which is the traditional method of consumption in Arabian folk medicine. Results: A total of 148 metabolites were detected, 45 of which were classified as phytochemicals. The bioassays revealed that the water extract that is traditionally used showed promising antimalarial potential by significantly inhibiting β-hematin formation in vitro at 1 mg/mL (with an absorbance of 0.140 ± 0.027). This is likely due to the rich presence of quinoline in the aqueous extract among several other bioactive phytochemicals, such as phenylpropanoids, alkaloids, flavonoids, and benzenoids. However, their anti-inflammatory and antibacterial activities were found to be weak, with only a minor inhibition of nitric oxide (NO) production in LPS-induced RAW 264.7 cells at a concentration of 500 µg/mL and weak antibacterial effects against pathogens like P. aeruginosa, MRSA, A. baumannii, and K. pneumoniae with an MIC of 500 μg/mL. The results also revealed that the methanolic extract had the highest TPC at 26.265 ± 0.005 mg GAE/g. Conclusions: The findings support the traditional medicinal use of L. shawii and highlight its potential as a source of novel therapeutic compounds, particularly for treating malaria. This study encourages further research to isolate and develop effective plant-based anti-malarial agents.
Collapse
Affiliation(s)
- Ruba Al-Nemi
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mutaz Akkawi
- Life Sciences Department, Faculty of Science & Technology, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (M.A.); (K.S.)
| | - Khalid Sawalha
- Life Sciences Department, Faculty of Science & Technology, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (M.A.); (K.S.)
| | - Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong, Kabupaten Bogor 16911, Indonesia; (S.A.K.); (N.); (S.K.); (T.O.); (V.C.S.); (A.W.S.)
| | - Nuralih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong, Kabupaten Bogor 16911, Indonesia; (S.A.K.); (N.); (S.K.); (T.O.); (V.C.S.); (A.W.S.)
| | - Susi Kusumaningrum
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong, Kabupaten Bogor 16911, Indonesia; (S.A.K.); (N.); (S.K.); (T.O.); (V.C.S.); (A.W.S.)
| | - Tia Okselni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong, Kabupaten Bogor 16911, Indonesia; (S.A.K.); (N.); (S.K.); (T.O.); (V.C.S.); (A.W.S.)
| | - Vania Chlarisa Situmorang
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong, Kabupaten Bogor 16911, Indonesia; (S.A.K.); (N.); (S.K.); (T.O.); (V.C.S.); (A.W.S.)
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong, Kabupaten Bogor 16911, Indonesia; (S.A.K.); (N.); (S.K.); (T.O.); (V.C.S.); (A.W.S.)
| | - Mariusz Jaremko
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- KAUST Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Sripadi HP, Kaur R, Manohar Koli S, Sharma N, Vijaya Sarathi UVR, Babu Nanubolu J, Balaji Andugulapati S, Sistla R. Biochanin-A co-crystal formulation improves bioavailability and ameliorates cerulein-induced pancreatitis by attenuating the inflammation. Int J Pharm 2024; 667:124874. [PMID: 39490549 DOI: 10.1016/j.ijpharm.2024.124874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Co-crystallization of a therapeutic ingredient with an appropriate co-former is a powerful technique to augment the physicochemical and pharmacokinetic properties and the effectiveness of Active Pharmaceutical Ingredients (APIs). Biochanin A (BCA), a flavonoid with medicinal potential, is limited by poor solubility and low oral bioavailability. This study aimed to design and develop a novel BCA-nicotinamide cocrystal as BCC to enhance BCA's oral bioavailability and explore its therapeutic potential for ameliorating cerulein-induced acute pancreatitis (CIAP) by elucidating the target identification utilizing tissue/serum metabolite profiles. The cocrystal was designed by the supramolecular synthon approach and characterized by single-crystal X-ray diffraction that confirms a robust three-dimensional hydrogen-bonded network of BCA and Nicotinamide (NCT) in the crystal. FT-IR and DSC were used to analyze the cocrystal's intermolecular interactions and thermal behavior. BCC exhibited enhanced solubility and drug release compared to BCA alone, resulting in enhanced oral bioavailability and pancreatic tissue concentration. Comparing BCC to BCA in the CIAP model, BCC therapy remarkably reduced cerulein-induced pancreatitis, evidenced by significant reductions in inflammation, acinar cell atrophy, and amylase levels in pancreatic tissues. Further, the cocrystal formulation also down-regulated the oxidative stress markers, inflammatory cytokines and macrophage-related proteins. The study has identified distinct metabolomic signatures linked with AP with the help of Orbitrap Exploris mass spectrometry, which could pave the way for creating focused diagnostic tools for a better prognosis. In conclusion, these results offer new insights into exploring mechanistic pathways associated with specific biomarkers and underscore BCC cocrystal as a promising approach to enhance BCA's therapeutic potential.
Collapse
Affiliation(s)
- Hari Priya Sripadi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Saylee Manohar Koli
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Nidhi Sharma
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - U V R Vijaya Sarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
6
|
Keri RS, Budagumpi S, Adimule V. Quinoline Synthesis: Nanocatalyzed Green Protocols-An Overview. ACS OMEGA 2024; 9:42630-42667. [PMID: 39464456 PMCID: PMC11500387 DOI: 10.1021/acsomega.4c07011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024]
Abstract
Heterocyclic compounds are of great interest in our daily lives. They are widely distributed in nature and are synthesized in laboratories. Heterocycles play an important role in the metabolism of all living cells, including vitamins and coenzyme precursors like thiamine and riboflavin. Furthermore, heterocyclic systems are essential building blocks for creating innovative materials with intriguing electrical, mechanical, and biological properties. Also, more than 85% of all biologically active chemical entities comprise a heterocycle. As a result, heterocycle synthesis piqued researchers' curiosity, and in recent decades, chemists have concentrated more on nitrogen-containing cyclic nuclei in structures. Quinoline and its derivatives exhibit several biological functions, including antimicrobial, anticancer, antimalarial, anti-inflammatory, antihypertensive, and antiasthmatic effects. In addition, over a hundred quinoline-based drugs are available to treat a variety of disorders. Because of its biological importance, researchers developed one-pot synthetic methods employing effective acid/base catalysts (Lewis acids, Brønsted acids, and ionic liquids), reagents, and transition-metal-based catalysts. These methods have some downsides, including longer reaction times, harsher reaction conditions, creation of byproducts, costly catalysts, use of hazardous solvents, an unacceptable economic yield, and catalyst recovery. Researchers' focus has switched to creating environmentally friendly and effective methods for the synthesis of quinoline derivatives as a result of these methodologic shortcomings. Because of its special qualities, the use of nanocatalysts or nanocomposites offers an option for the effective synthesis of quinolines. This review focuses on the published research articles on nanocatalysts to synthesize substituted quinoline derivatives. This review covers all contributions until May 2024, focusing on quinoline ring building and mechanistic issues. With the aid of this review, we anticipate that synthetic chemists will be able to develop more effective methods of synthesizing quinolines.
Collapse
Affiliation(s)
- Rangappa S. Keri
- Centre
for Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Srinivasa Budagumpi
- Centre
for Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Vinayak Adimule
- Angadi
Institute of Technology and Management (AITM), Savagaon Road, Belagavi, Karnataka 5800321, India
| |
Collapse
|
7
|
Bergwik J, Liu J, Padra M, Bhongir RKV, Tanner L, Xiang Y, Lundblad M, Egesten A, Adner M. A novel quinoline with airway relaxant effects and anti-inflammatory properties. Respir Res 2024; 25:146. [PMID: 38555460 PMCID: PMC10981829 DOI: 10.1186/s12931-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND In chronic pulmonary diseases characterized by inflammation and airway obstruction, such as asthma and COPD, there are unmet needs for improved treatment. Quinolines is a group of small heterocyclic compounds that have a broad range of pharmacological properties. Here, we investigated the airway relaxant and anti-inflammatory properties of a novel quinoline (RCD405). METHODS The airway relaxant effect of RCD405 was examined in isolated airways from humans, dogs, rats and mice. Murine models of ovalbumin (OVA)-induced allergic asthma and LPS-induced airway inflammation were used to study the effects in vivo. RCD405 (10 mg/kg) or, for comparisons in selected studies, budesonide (3 mg/kg), were administered intratracheally 1 h prior to each challenge. Airway responsiveness was determined using methacholine provocation. Immune cell recruitment to bronchi was measured using flow cytometry and histological analyses were applied to investigate cell influx and goblet cell hyperplasia of the airways. Furthermore, production of cytokines and chemokines was measured using a multiplex immunoassay. The expression levels of asthma-related genes in murine lung tissue were determined by PCR. The involvement of NF-κB and metabolic activity was measured in the human monocytic cell line THP-1. RESULTS RCD405 demonstrated a relaxant effect on carbachol precontracted airways in all four species investigated (potency ranking: human = rat > dog = mouse). The OVA-specific IgE and airway hyperresponsiveness (AHR) were significantly reduced by intratracheal treatment with RCD405, while no significant changes were observed for budesonide. In addition, administration of RCD405 to mice significantly decreased the expression of proinflammatory cytokines and chemokines as well as recruitment of immune cells to the lungs in both OVA- and LPS-induced airway inflammation, with a similar effect as for budesonide (in the OVA-model). However, the effect on gene expression of Il-4, IL-5 and Il-13 was more pronounced for RCD405 as compared to budesonide. Finally, in vitro, RCD405 reduced the LPS-induced NF-κB activation and by itself reduced cellular metabolism. CONCLUSIONS RCD405 has airway relaxant effects, and it reduces AHR as well as airway inflammation in the models used, suggesting that it could be a clinically relevant compound to treat inflammatory airway diseases. Possible targets of this compound are complexes of mitochondrial oxidative phosphorylation, resulting in decreased metabolic activity of targeted cells as well as through pathways associated to NF-κB. However, further studies are needed to elucidate the mode of action.
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Médea Padra
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K V Bhongir
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lloyd Tanner
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yujiao Xiang
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden
| | | | - Arne Egesten
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden.
| |
Collapse
|
8
|
Mandal A, Khan AT. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org Biomol Chem 2024; 22:2339-2358. [PMID: 38444342 DOI: 10.1039/d4ob00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The synthesis of quinoline derivatives through multicomponent reactions (MCRs) has emerged as an efficient and versatile strategy in organic synthesis. MCRs offer the advantage of constructing complex molecular architectures in a single step, utilising multiple starting materials in a convergent manner. This review provides an overview of recent advancements in the field of quinoline synthesis via MCRs. Various MCRs, such as the Povarov reaction, the Gewald reaction, and the Ugi reaction have been successfully employed for the synthesis of diverse quinoline scaffolds. These methodologies not only showcase high atom economy but also allow the incorporation of structural diversity into the final products. The versatility of MCRs enables the introduction of functional groups and substitution patterns tailored to specific applications. This review highlights the significance of quinoline derivatives in medicinal chemistry, materials science, and other interdisciplinary areas. The continuous innovation and development of novel MCR-based approaches for quinoline synthesis hold great promise for the rapid and efficient generation of valuable compounds with a wide range of biological and physicochemical properties.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
9
|
Dewaker V, Sharma AR, Debnath U, Park ST, Kim HS. Insights from molecular dynamics simulations of TRPV1 channel modulators in pain. Drug Discov Today 2023; 28:103798. [PMID: 37838068 DOI: 10.1016/j.drudis.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
TRPV1 is a nonselective cation channel vital for detecting noxious stimuli (heat, acid, capsaicin). Its role in pain makes it a potential drug target for chronic pain management, migraines, and related disorders. This review updates molecular dynamics (MD) simulation studies on the TRPV1 channel, focusing on its gating mechanism, ligand-binding sites, and implications for drug design. The article also explores challenges in developing modulators, SAR optimization, and clinical trial studies. Efforts have been undertaken to concisely present MD simulation findings, with a focus on their relevance to drug discovery.
Collapse
Affiliation(s)
- Varun Dewaker
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Ashish R Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Utsab Debnath
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007, India
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea.
| |
Collapse
|
10
|
Kryl’skii ED, Razuvaev GA, Popova TN, Medvedeva SM, Shikhaliev KS. 6-Hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline Alleviates Oxidative Stress and NF-κB-Mediated Inflammation in Rats with Experimental Parkinson's Disease. Curr Issues Mol Biol 2023; 45:7653-7667. [PMID: 37754267 PMCID: PMC10528003 DOI: 10.3390/cimb45090483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
A study was conducted to investigate the effects of different doses of 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ) on motor coordination scores, brain tissue morphology, the expression of tyrosine hydroxylase, the severity of oxidative stress parameters, the levels of the p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) factor, and the inflammatory response in rats during the development of rotenone-induced Parkinsonism. The findings indicate that HTHQ, with its antioxidant attributes, reduced the levels of 8-isoprostane, lipid oxidation products, and protein oxidation products. The decrease in oxidative stress due to HTHQ led to a reduction in the mRNA content of proinflammatory cytokines and myeloperoxidase activity, accompanying the drop in the expression of the factor NF-κB. These alterations promoted an improvement in motor coordination scores and increased tyrosine hydroxylase levels, whereas histopathological changes in the brain tissue of the experimental animals were attenuated. HTHQ exhibited greater effectiveness than the comparative drug rasagiline based on the majority of variables.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Grigorii A. Razuvaev
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia
| |
Collapse
|
11
|
Bhuktar H, Shukla S, Kakularam KR, Battu S, Srikanth M, Srivastava S, Medishetti R, Ram P, Jagadish PC, Rasool M, Chakraborty S, Khan N, Reddanna P, Oruganti S, Pal M. Design, synthesis and evaluation of 2-aryl quinoline derivatives against 12R-lipoxygenase (12R-LOX): Discovery of first inhibitor of 12R-LOX. Bioorg Chem 2023; 138:106606. [PMID: 37210826 DOI: 10.1016/j.bioorg.2023.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
The 12R-lipoxygenase (12R-LOX), a (non-heme) iron-containing metalloenzyme belonging to the lipoxygenase (LOX) family catalyzes the conversion of arachidonic acid (AA) to its key metabolites. Studies suggested that 12R-LOX plays a critical role in immune modulation for the maintenance of skin homeostasis and therefore can be considered as a potential drug target for psoriasis and other skin related inflammatory diseases. However, unlike 12-LOX (or 12S-LOX) the enzyme 12R-LOX did not receive much attention till date. In our effort, the 2-aryl quinoline derivatives were designed, synthesized and evaluated for the identification of potential inhibitors of 12R-hLOX. The merit of selection of 2-aryl quinolines was assessed by in silico docking studies of a representative compound (4a) using the homology model of 12R-LOX. Indeed, in addition to participating in H-bonding with THR628 and LEU635 the molecule formed a hydrophobic interaction with VAL631. The desired 2-aryl quinolines were synthesized either via the Claisen-Schmidt condensation followed by one-pot reduction-cyclization or via the AlCl3 induced heteroarylation or via the O-alkylation approach in good to high (82-95%) yield. When screened against human 12R-LOX (12R-hLOX) in vitro four compounds (e.g. 4a, 4d, 4e and 7b) showed encouraging (>45%) inhibition at 100 μM among which 7b and 4a emerged as the initial hits. Both the compounds showed selectivity towards 12R-hLOX over 12S-hLOX, 15-hLOX and 15-hLOXB and concentration dependent inhibition of 12R-hLOX with IC50 = 12.48 ± 2.06 and 28.25 ± 1.63 μM, respectively. The selectivity of 4a and 7b towards 12R-LOX over 12S-LOX was rationalized with the help of molecular dynamics simulations. The SAR (Structure-Activity Relationship) within the present series of compounds suggested the need of a o-hydroxyl group on the C-2 phenyl ring for the activity. The compound 4a and 7b (at 10 and 20 µM) reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes in a concentration dependent manner. Further, both compounds decreased the protein levels of Ki67 and the mRNA expression of IL-17A in the IMQ-induced psoriatic-like keratinocytes. Notably, 4a but not 7b inhibited the production of IL-6 and TNF-α in the keratinocyte cells. In the preliminary toxicity studies (i.e. teratogenicity, hepatotoxicity and heart rate assays) in zebrafish both the compounds showed low safety (<30 µM) margin. Overall, being the first identified inhibitors of 12R-LOX both 4a and 7b deserve further investigations.
Collapse
Affiliation(s)
- Harshavardhan Bhuktar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Sharda Shukla
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Kumar Reddy Kakularam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Srikanth Battu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manupati Srikanth
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Susmita Srivastava
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Pooja Ram
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - P C Jagadish
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandipan Chakraborty
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Srinivas Oruganti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India.
| |
Collapse
|
12
|
Gouda MA, Abu-Hashem AA, Ameen TA, Salem MA. Synthesis of Pyrimido[4, 5-b]quinolones from 6-Aminopyrimidin-4-
(thi)one Derivatives (Part I). MINI-REV ORG CHEM 2023; 20:622-641. [DOI: 10.2174/1570193x20666221104110606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/13/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Abstract:
Quinoline and pyrimidine are well-known moieties, which appear in various natural and synthetic products. Furthermore, quinoline-pyrimidine-inspired hybrids are known to have several biological properties. In addition, many pyrimido[4,5-b]quinolinone ring systems, specifically concerning medicinal chemistry, have been reported over the past decade. This review depicts the synthesis of pyrimido[4, 5-b] quinolones (PyQs4,5-b) through 6-aminopyrimidin-4-(thi)one derivatives. The preparation of PyQs4,5-b was clarified through the following chemical reactions: Vilsmeier-Haack formylation, Hantzsch-like reaction, and one-pot three-component reaction.
Collapse
Affiliation(s)
- Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Taibah University, AlUla, Medina, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ameen A. Abu-Hashem
- Chemistry Departments, Faculty of
Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Tahah A. Ameen
- Chemistry Departments, Faculty of
Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed A. Salem
- Department of Chemistry, Faculty of Science and Arts, King
Khalid University, Abha, Saudia Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, 11284
Nasr City, Cairo, Egypt
| |
Collapse
|
13
|
Malkova K, Bubyrev A, Kalinin S, Dar’in D. Facile access to 3-sulfonylquinolines via Knoevenagel condensation/aza-Wittig reaction cascade involving ortho-azidobenzaldehydes and β-ketosulfonamides and sulfones. Beilstein J Org Chem 2023; 19:800-807. [PMID: 37346493 PMCID: PMC10280061 DOI: 10.3762/bjoc.19.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Quinoline-based sulfonyl derivatives, and especially sulfonamides, are relevant and promising structures for drug design. We have developed a new convenient protocol for the synthesis of 3-sulfonyl-substituted quinolines (sulfonamides and sulfones). The approach is based on a Knoevenagel condensation/aza-Wittig reaction cascade involving o-azidobenzaldehydes and ketosulfonamides or ketosulfones as key building blocks. The protocol is appropriate for both ketosulfonyl reagents and α-sulfonyl-substituted alkyl acetates providing the target quinoline derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Ksenia Malkova
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Andrey Bubyrev
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Dmitry Dar’in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
14
|
El-Malah A, Taher ES, Angeli A, Elbaramawi SS, Mahmoud Z, Moustafa N, Supuran CT, Ibrahim TS. Schiff bases as linker in the development of quinoline-sulfonamide hybrids as selective cancer-associated carbonic anhydrase isoforms IX/XII inhibitors: A new regioisomerism tactic. Bioorg Chem 2023; 131:106309. [PMID: 36502567 DOI: 10.1016/j.bioorg.2022.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
A novel set of quinoline tailored with the sulfonamide as zinc-binding group (ZBG) has been rationalized and synthesized as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Such hybrids were decorated by a novel elongated imine linker with/without ethylene spacer with variable hydrophobic and lipophilic pockets. Therefore, a regioisomeric tactic has been established, most of which act as efficient inhibitors of the tumor-associated CA isoforms IX and XII. Interestingly, one hybrid 10b displayed an appreciable activity in MCF-7 cell line under normoxic condition (IC50 of 8.42 µM) in comparison to the standard staurosporine (IC50 = 5.34 µM) and excellent activity under hypoxic conditions (IC50 = 1.56 µM) in comparison to staurosporine (IC50 = 4.45 µM). Furthermore, hybrids 8a and 10b encouraged MCF-7 and MDA-MB-231 cell apoptosis alongside promising Bax/Bcl expression ratio change. Docking studies were also, performed and agreed with the biological results. Our SAR study suggested that our regiosiomerization tactic for the quinoline based-sulfonamide molecules led to effective inhibition of tumuor-relevant hCAs IX/XII.
Collapse
Affiliation(s)
- Afaf El-Malah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ehab S Taher
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nour Moustafa
- School of Engineering and Information Technology, University of New South Wales at ADFA, Northcott Dr, Campbell, Canberra 2612, Australian Capital Territory, Australia
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
15
|
Rammali S, Hilali L, Dari K, Bencharki B, Rahim A, Timinouni M, Gaboune F, El Aalaoui M, Khattabi A. Antimicrobial and antioxidant activities of Streptomyces species from soils of three different cold sites in the Fez-Meknes region Morocco. Sci Rep 2022; 12:17233. [PMID: 36241756 PMCID: PMC9568536 DOI: 10.1038/s41598-022-21644-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
The increasing demand for new bioactive compounds to combat the evolution of multi-drug resistance (MDR) requires research on microorganisms in different environments in order to identify new potent molecules. In this study, initial screening regarding the antimicrobial activity of 44 Actinomycetes isolates isolated from three soil samples from three different extremely cold sites in Morocco was carried out. Primary and secondary screening were performed against Candida albicans ATCC 60,193, Escherichia coli ATCC 25,922, Staphylococcus aureus ATCC 25,923, Bacillus cereus ATCC 14,579, other clinical MDR bacteria, and thirteen phytopathogenic fungi. Based on the results obtained, 11 active isolates were selected for further study. The 11microbial isolates were identified based on morphological and biochemical characters and their molecular identification was performed using 16S rRNA sequence homology. The UV-visible analysis of dichloromethane extracts of the five Streptomyces sp. Strains that showed high antimicrobial and antioxidant (ABTS 35.8% and DPPH 25.6%) activities revealed the absence of polyene molecules. GC-MS analysis of the dichloromethane extract of E23-4 as the most active strain revealed the presence of 21 volatile compounds including Pyrrolopyrazine (98%) and Benzeneacetic acid (90%). In conclusion, we studied the isolation of new Streptomyces strains to produce new compounds with antimicrobial and antioxidant activities in a cold and microbiologically unexplored region of Morocco. Furthermore, this study has demonstrated a significant (P < 0.0001) positive correlation between total phenolic and flavonoid contents and antioxidant capacity, paving the way for the further characterization of these Streptomyces sp. isolates for their optimal use for anticancer, antioxidant, and antimicrobial purposes.
Collapse
Affiliation(s)
- Said Rammali
- Agri-food and Health Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, Km 3, B.P. : 577 Route de Casablanca, 26000, Settat, Morocco.
| | - Lahoucine Hilali
- Agri-food and Health Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, Km 3, B.P. : 577 Route de Casablanca, 26000, Settat, Morocco
| | - Khadija Dari
- Agri-food and Health Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, Km 3, B.P. : 577 Route de Casablanca, 26000, Settat, Morocco
| | - Bouchaib Bencharki
- Agri-food and Health Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, Km 3, B.P. : 577 Route de Casablanca, 26000, Settat, Morocco
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, Km 3, B.P. : 577 Route de Casablanca, 26000, Settat, Morocco, Settat
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco, Place Louis Pasteur, 20100
| | - Fatima Gaboune
- Biotechnology Unit, National Institute of Agronomic Research of Rabat, Rabat, Morocco, Av. Annasr, Rabat, 10000
| | - Mohamed El Aalaoui
- Department of plant protection, Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km from Settat, 26400, Settat, Morocco, Settat
| | - Abdelkrim Khattabi
- Agri-food and Health Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, Km 3, B.P. : 577 Route de Casablanca, 26000, Settat, Morocco
| |
Collapse
|
16
|
El-Kalyoubi SA, Taher ES, Ibrahim TS, El-Behairy MF, Al-Mahmoudy AMM. Uracil as a Zn-Binding Bioisostere of the Allergic Benzenesulfonamide in the Design of Quinoline-Uracil Hybrids as Anticancer Carbonic Anhydrase Inhibitors. Pharmaceuticals (Basel) 2022; 15:494. [PMID: 35631321 PMCID: PMC9146896 DOI: 10.3390/ph15050494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
A series of quinoline-uracil hybrids (10a-l) has been rationalized and synthesized. The inhibitory activity against hCA isoforms I, II, IX, and XII was explored. Compounds 10a-l demonstrated powerful inhibitory activity against all tested hCA isoforms. Compound 10h displayed the best selectivity profile with good activity. Compound 10d displayed the best activity profile with minimal selectivity. Compound 10l emerged as the best congener considering both activity (IC50 = 140 and 190 nM for hCA IX and hCA XII, respectively) and selectivity (S.I. = 13.20 and 9.75 for II/IX, and II/XII, respectively). The most active hybrids were assayed for antiproliferative and pro-apoptotic activities against MCF-7 and A549. In silico studies, molecular docking, physicochemical parameters, and ADMET analysis were performed to explain the acquired CA inhibitory action of all hybrids. A study of the structure-activity relationship revealed that bulky substituents at uracil N-1 were unfavored for activity while substituted quinoline and thiouracil were effective for selectivity.
Collapse
Affiliation(s)
- Samar A. El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt;
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32897, Egypt;
| | - Amany M. M. Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
17
|
Simonetti SO, Kaufman TS, Larghi EL. Conjugation of Carbohydrates with Quinolines: A Powerful Synthetic Tool. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastián O. Simonetti
- Instituto de Química Rosario: Instituto de Quimica Rosario Química Orgánica Suipacha 531 S2002LRK Rosario ARGENTINA
| | - Teodoro S. Kaufman
- Instituto de Química Rosario: Instituto de Quimica Rosario Química Orgánica Suipacha 531 S2002LRK Rosario ARGENTINA
| | | |
Collapse
|
18
|
Synthesis, Molecular and Supramolecular Structure Aspects, and Antimicrobial Activity of the Centrosymmetric [Ag(5-Nitroquinoline)2]ClO4 Complex. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The new homoleptic [Ag(5-nitroquinoline)2]ClO4 centrosymmetric complex was synthesized and its structure aspects were investigated. It crystallized in the monoclinic space group C2/c with a = 10.0279(2) Å, b = 13.2295(3) Å, c = 14.7552(3) Å and β = 102.1050(10)° while V = 1913.96(7) Å3 and half molecule as asymmetric formula. The Ag(I) is coordinated with two symmetrically related 5-nitroquinoline ligand units via the heterocyclic nitrogen atom with Ag-N distance of 2.146(6) Å and N1-Ag-N1 angle of 173.0(3)°. The two coordinated 5-nitroquinoline have anti configuration to one another and the perchlorate anion is set freely uncoordinated. The only Ag…O interactions are Ag1…O2 (3.110 Å) and Ag1…O1 (3.189 Å) which occur between the Ag(I) in one complex unit and the O-atoms from the NO2 groups in the neighbouring complex units. Hence, Ag(I) has coordination number 2 and its coordination geometry is slightly bent. Hirshfeld analysis indicated that the O…H (51.1%), C…H (11.8%), H…H (10.8%) and C…C (8.9%) contacts are the most common. Exclusively, the O…H, C…O, N…O, O…O and Ag…O contacts are the only shorter contacts than the vdWs radii sum of the interacting atoms. The studied Ag(I) complex showed good antimicrobial activity. It has comparable antibacterial activity against P. vulgaris (MIC = 9.7 μg/mL) and S. aureus (39.1 μg/mL) to Gentamycin (4.8 and 9.7 μg/mL, respectively) while better antifungal activity against A. fumigatus (MIC = 39.1 μg/mL) than Ketoconazole (156.2 μg/mL).
Collapse
|
19
|
Synthesis of New 1,2,3,4-Tetrahydroquinoline Hybrid of Ibuprofen and Its Biological Evaluation. MOLBANK 2022. [DOI: 10.3390/m1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herein we report the obtaining of 1-(3,4-dihydroquinolin-1(2H)-yl)-2- (4-isobutylphenyl)propan-1-one and its characterization. The newly obtained hybrid and its derivatives (hybrids of ibuprofen with 1,2,3,4-tetrahydroisoquinoline, and piperidine) were screened for their in vitro antioxidant, antitryptic, and inhibition of albumin denaturation activity. The lipophilicity was established using both reversed-phase thin layer chromatography and in silico calculations.
Collapse
|
20
|
Zhang D, Cai J, Du J, Wang Q, Yang J, Geng R, Fang Z, Guo K. Electrochemical-Oxidation-Promoted Direct N-ortho-Selective Difluoromethylation of Heterocyclic N-Oxides. Org Lett 2022; 24:1434-1438. [PMID: 35166558 DOI: 10.1021/acs.orglett.1c04241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and green electrochemical N-ortho-selective difluoromethylation method of various quinoline and isoquinoline N-oxides has been developed. In this method, sodium difluoromethanesulfinate (HCF2SO2Na) was used as the source of the difluoromethyl moiety, and various N-ortho-selective difluoromethylation quinoline and isoquinoline N-oxides were obtained in good to excellent yields under a constant current. In addition, the reaction was easy to scale up and maintained a good yield. Preliminary mechanism studies suggested that the reaction undergoes a free-radical addition and hydrogen elimination pathway.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinlin Cai
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinze Du
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Qingdong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| |
Collapse
|
21
|
Diaconu D, Amăriucăi-Mantu D, Mangalagiu V, Antoci V, Zbancioc G, Mangalagiu II. Ultrasound assisted synthesis of hybrid quinoline-imidazole derivatives: a green synthetic approach. RSC Adv 2021; 11:38297-38301. [PMID: 35498117 PMCID: PMC9044051 DOI: 10.1039/d1ra07484a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022] Open
Abstract
A green, straightforward and efficient study for obtaining hybrid quinoline-imidazole derivatives under ultrasound (US) irradiation as well as under conventional thermal heating (TH) has been presented. The reaction pathway involves only two steps: the N-alkylation of imidazole ring and a Huisgen [3 + 2] dipolar cycloaddition reaction of ylides to dimethyl acetylenedicarboxylate (DMAD). For both types of reactions, a green workup procedure under US irradiation has been presented. Under US irradiation, the N-alkylation of nitrogen atoms from the imidazole nucleus has outstanding benefits in terms of reaction time, energy consumption and yields, and can thereby be considered an environmentally friendly method. Forty new hybrid quinoline-imidazole compounds have been synthesized: 18 salts, 8 dihydro-benzopyrrolo imidazolo quinoline, 9 benzopyrrolo-imidazolo quinoline and 5 dihydro-pyrroloquinoxaline quinoline cycloadducts.
Collapse
Affiliation(s)
- Dumitrela Diaconu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences - CERNESIM Center 11 Carol I Bd. 700506 Iasi Romania
| | - Dorina Amăriucăi-Mantu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry 11 Carol I Bd. 700506 Iasi Romania
| | - Violeta Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences - CERNESIM Center 11 Carol I Bd. 700506 Iasi Romania.,Stefan cel Mare University of Suceava, Faculty of Food Engineering Str. Universitatii 13 Suceava Romania
| | - Vasilichia Antoci
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry 11 Carol I Bd. 700506 Iasi Romania
| | - Gheorghita Zbancioc
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry 11 Carol I Bd. 700506 Iasi Romania
| | - Ionel I Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry 11 Carol I Bd. 700506 Iasi Romania .,Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences - CERNESIM Center 11 Carol I Bd. 700506 Iasi Romania
| |
Collapse
|
22
|
Bandyopadhyay D, Thirupathi A, Radhakrishnan D, Panigrahi A, Peruncheralathan S. Triflic acid-mediated N-heteroannulation of β-anilino-β-(methylthio)acrylonitriles: a facile synthesis of 4-amino-2-(methylthio)quinolines. Org Biomol Chem 2021; 19:8544-8553. [PMID: 34550145 DOI: 10.1039/d1ob01151k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various functionalised 4-amino-2-(methylthio)quinolines are synthesised through triflic acid-mediated N-heteroannulation of α-functionalized-β-anilino-β-(methylthio)acrylonitriles for the first time. The N-heteroannulation process is highly chemoselective and has mild reaction conditions. However, this process fails in the absence of the β-methylthio group in the acrylonitriles. In addition, a new double N-heteroannulation process is demonstrated to synthesise indolo[3,2-c]quinolines from non-heterocyclic precursors. Natural product isocryptolepine is synthesised in four steps from an acyclic precursor.
Collapse
Affiliation(s)
- Debashruti Bandyopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Annaram Thirupathi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Divya Radhakrishnan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Adyasha Panigrahi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - S Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| |
Collapse
|
23
|
Thakare P, Shinde A, Dakhane S, Chavan A, Bobade VD, Mhaske PC. Synthesis and biological evaluation of novel 4‐(6‐substituted quinolin‐4‐yl)‐
N
‐aryl thiazol‐2‐amine derivatives as potential antimicrobial agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prashant Thakare
- Department of Chemistry S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Pune India
| | - Abhijit Shinde
- Department of Chemistry S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Pune India
| | - Sagar Dakhane
- Department of Chemistry Abasaheb Garware College (Affiliated to Savitribai Phule Pune University) Pune India
| | - Abhijit Chavan
- Department of Chemistry S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Pune India
| | - Vivek D. Bobade
- Department of Chemistry H. P. T. Arts and R. Y. K. Science College (Affiliated to Savitribai Phule Pune University) Nashik India
| | - Pravin C. Mhaske
- Department of Chemistry S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Pune India
| |
Collapse
|
24
|
Tiglani D, Salahuddin, Mazumder A, Yar MS, Kumar R, Ahsan MJ. Benzimidazole-Quinoline Hybrid Scaffold as Promising Pharmacological Agents: A Review. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1942933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Devleena Tiglani
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research Jamia Hamdard, New Delhi, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Ambabari Circle, Jaipur, Rajasthan, India
| |
Collapse
|
25
|
Alaylar B, Aygün B, Turhan K, Karadayi G, Şakar E, Singh V, Sayyed M, Pelit E, Karabulut A, Güllüce M, Turgut Z, Isaoglu M. Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109471] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Synthesis, Antibacterial, Antioxidant, and Molecular Modeling Studies of Novel [2,3′-Biquinoline]-4-Carboxylic Acid and Quinoline-3-Carbaldehyde Analogs. J CHEM-NY 2021. [DOI: 10.1155/2021/9939506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Currently, it has been common to see people being affected and dying from untreatable infections caused by multidrug-resistant (MDR) germs. To tackle this problem, developing new effective chemotropic agents is urgently needed. Hence, this project aims to design, synthesize, and evaluate their antibacterial and antioxidant activities of new series of [2,3′-biquinoline]-4-carboxylic acid and quinoline-3-carbaldehyde analogs. The molecular docking analysis of the compounds against E. coli DNA gyrase was computed to investigate the binding mode of the compounds within the active site of the enzyme. In this regard, a new series of [2,3′-biquinoline]-4-carboxylic acid and quinoline-3-carbaldehyde analogs were synthesized by utilization of Vilsmeier–Haack, Doebner, nucleophilic substitution, and hydrolysis reactions. The structures of the synthesized compounds were determined using UV-Vis, FT-IR, and NMR. The synthesized compounds were screened for their antibacterial activity against four bacterial strains using disc diffusion methods. The findings of the study revealed that seven of synthetic compounds possess good antibacterial activity compared to ciprofloxacin which was used as a positive control in the experiment. Among them, compounds 4, 9, and 10 displayed the highest mean inhibition zone of 13.7 ± 0.58, 16.0 ± 1.7, and 20.7 ± 1.5 mm, respectively, at 0.1 μg/μL. The radical scavenging property of these compounds was evaluated using DPPH radical assay where compounds 9 and 20 showed the strongest activity with IC50 values of 1.25 and 1.75 μg/mL, respectively. At the same concentration, the IC50 value of ascorbic acid was 4.5 μg/mL. The synthesized compounds were also assessed for their in silico molecular docking analysis. Compounds 4 (−6.9 kcal/mol), 9 (−6.9 kcal/mol), and 10 (−7.9 kcal/mol) showed the maximum binding affinity close to ciprofloxacin (−7.2 kcal/mol) used as a positive control. Thus, compounds 4, 9, and 10 showed the best antibacterial activities in both in vitro and molecular docking analyses among the synthetic compounds. The results of in silico molecular docking evaluation of the synthetic compounds against E. coli DNA gyrase B were in good agreement with the in vitro antibacterial analysis. Therefore, the antibacterial activity displayed by these compounds is encouraging for further investigation to improve the activities of [2,3′-biquinoline]-4-carboxylic acid by incorporating various bioisosteric groups in either of the quinoline rings.
Collapse
|
27
|
da Silva SEB, da Silva Moura JA, de Sousa Nunes TR, da Rocha Pitta I, da Rocha Pitta MG. New Trends On Biological Activities And Clinical Studies Of Quinolinic Analogues: A Review. Curr Drug Targets 2021; 23:441-457. [PMID: 33858312 DOI: 10.2174/1389450122666210415100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/24/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
The quinolinic ring, present in several molecules, has a great diversity of biological activities. Therefore, this ring is in the structure composition of several candidates of drugs in preclinical and clinical studies, thus, it is necessary the grouping of these results to facilitate the design of new drugs. For this reason, some of the activities were selected for this review, such as: antimalarial, antimicrobial, anticancer, anti-inflammatory, antidiabetic, anti-rheumatic and antiviral. All publications of scientific articles chosen are dated between 2000 and 2020. In addition to presenting the structures of some natural and synthetic compounds with their activities, we list the clinical studies of phases III and IV of antimalarial drugs containing the quinoline nucleus and phase III clinical studies of hydroxychloroquine and chloroquine to assess their possible role in COVID-19. Finally, we show some of the mechanisms of action, as well as the side effects of some of the quinolinic derivatives.
Collapse
Affiliation(s)
- Sandra Elizabeth Barbosa da Silva
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife. Brazil
| | - José Arion da Silva Moura
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife. Brazil
| | - Tiago Rafael de Sousa Nunes
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife. Brazil
| | - Ivan da Rocha Pitta
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife. Brazil
| | - Marina Galdino da Rocha Pitta
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife. Brazil
| |
Collapse
|
28
|
Small A, Fisher AD, Lee C, Colditz I. Analgesia for Sheep in Commercial Production: Where to Next? Animals (Basel) 2021; 11:ani11041127. [PMID: 33920025 PMCID: PMC8070992 DOI: 10.3390/ani11041127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Increasing societal and customer pressure to provide animals with ‘a life worth living’ continues to apply pressure on industry to alleviate pain associated with husbandry practices, injury and illness. Although a number of analgesic solutions are now available for sheep, providing some amelioration of the acute pain responses, this review has highlighted a number of potential areas for further research. Abstract Increasing societal and customer pressure to provide animals with ‘a life worth living’ continues to apply pressure on livestock production industries to alleviate pain associated with husbandry practices, injury and illness. Over the past 15–20 years, there has been considerable research effort to understand and develop mitigation strategies for painful husbandry procedures in sheep, leading to the successful launch of analgesic approaches specific to sheep in a number of countries. However, even with multi-modal approaches to analgesia, using both local anaesthetic and non-steroidal anti-inflammatory drugs (NSAID), pain is not obliterated, and the challenge of pain mitigation and phasing out of painful husbandry practices remains. It is timely to review and reflect on progress to date in order to strategically focus on the most important challenges, and the avenues which offer the greatest potential to be incorporated into industry practice in a process of continuous improvement. A structured, systematic literature search was carried out, incorporating peer-reviewed scientific literature in the period 2000–2019. An enormous volume of research is underway, testament to the fact that we have not solved the pain and analgesia challenge for any species, including our own. This review has highlighted a number of potential areas for further research.
Collapse
Affiliation(s)
- Alison Small
- CSIRO Agriculture & Food, Locked Bag 1, Armidale, NSW 2350, Australia; (C.L.); (I.C.)
- Correspondence: ; Tel.: +61-2-6776-1435
| | - Andrew David Fisher
- Animal Welfare Science Centre, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Caroline Lee
- CSIRO Agriculture & Food, Locked Bag 1, Armidale, NSW 2350, Australia; (C.L.); (I.C.)
| | - Ian Colditz
- CSIRO Agriculture & Food, Locked Bag 1, Armidale, NSW 2350, Australia; (C.L.); (I.C.)
| |
Collapse
|
29
|
Habibi-Khorassani SM, Shahraki M, Talaiefar S. Kinetics and a mechanistic investigation of 2H-thiopyrano [2, 3-b] quinoline-2, 3-dicarboxylates from 2-mercaptoquinoline-3-carbaldehydes, dialkyl acetylenedicarboxylates and triphenylphosphine: Empirical approach. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1833330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Mehdi Shahraki
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Sadegh Talaiefar
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
30
|
Rathod PK, Jonnalagadda S, Panaganti L. A simple and efficient synthesis of benzofuroquinolines via the decarboxylative cross-coupling. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Liu RX, Luo RY, Tang MT, Liu YC, Chen ZF, Liang H. The first copper(I) complex of anthrahydrazone with potential ROS scavenging activity showed significant in vitro anticancer activity by inducing apoptosis and autophagy. J Inorg Biochem 2021; 218:111390. [PMID: 33721719 DOI: 10.1016/j.jinorgbio.2021.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
Based on the anticancer pharmacophore of anthrahydrazone and quinoline, a new quinolylanthrahydrazone ligand, 9-AQH (anthracene-9-quinolylhydrazone), was synthesized to further afford four metal complexes, [CoII(9-AQH)(NO3)2(H2O)] (1), [NiII(9-AQH)2(H2O)2]·2NO3 (2), [CuI(9-AQH)2]·NO3 (3), [ZnII(9-AQH)2(NO3)]·NO3 (4), determined by X-ray single crystal diffraction analysis. The reaction of Cu(NO3)2 with 9-AQH formed the stable and repeatable copper(I) complex 3. In vitro screening demonstrated only 3 showed significant and broad-spectrum anticancer activity, indicating that Cu(I) played a key role in exerting the anticancer activity. In solution, Cu(I) was not naturally oxidized to Cu(II) suggested by 1H-NMR (Nuclear Magnetic Resonance) and EPR (Electron Paramagnetic Resonance) analysis. The presence of 3 could also catalyze the H2O2 system to give hydroxyl free radicals, suggested by further EPR and electrophoresis assay. At the cellular level, although no obvious Cu(II) signals were detected and the total ROS (Reactive Oxygen Species) scavenging in the tumor cells treated with 3, the potential redox property between Cu(I)/Cu(II), as a key role, should not be denied for the significant anticancer activity of 3, considering the much complicated circumstance and other reductive substances in cells. The anticancer mechanism of 3 on the most sensitive MGC-803 cells pointed to significant cell apoptosis through mitochondrial pathway, rather than cell cycle arrest. While the autophagy observed in tumor cells treated by 3 suggested its complicated anticancer mechanism, and whether there was an intrinsic correlation still needed to be further investigated.
Collapse
Affiliation(s)
- Rui-Xue Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ru-Yi Luo
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Meng-Ting Tang
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Cheng Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| | - Zhen-Feng Chen
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hong Liang
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
32
|
Toan DN, Thanh ND, Truong MX, Van DT. Synthesis, Cytotoxicity, ADMET and Molecular Docking Studies of Some Quinoline-Pyrimidine Hybrid Compounds: 3-(2-Amino-6-arylpyrimidin-4- yl)-4-hydroxy-1-methylquinolin-2(1H)-ones. Med Chem 2020; 18:36-50. [PMID: 33380305 DOI: 10.2174/1573406417666201230092615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
AIMS Synthesis of 3-(2-amino-6-arylpyrimidin-4-yl)-4-hydroxy-1-methylquinolin-2(1H)-ones and estimation their anticancer activities on HepG2 and KB cancer lines. BACKGROUND Many derivatives of quinoline-2-on have been consider to synthesize and evaluate their biological properties by organic chemists due to their various biological effects, including antibacterial, antioxidant, anti-inflammatory, anticancer activities. Quinolinepyrimidine hybrid compounds exhibited various biological activities, such as antituberculosis, antibacterial, anticancer, antifungal, etc. The connection of 4-hydroxyquinoline-2-one with 2-amino-pyrimidine could initiate the new activities. OBJECTIVE α,β-Unsaturated ketones of 3-acetyl-4-hydroxy-N-methylquinolin-2-one were prepared. Novel 2-amino-6-aryl-4-(4'-hydroxy-Nmethylquinolin- 2'-on-3'-yl)pyrimidines have been synthesized by reaction of these corresponding α,β-unsaturated ketones with guanidine hydrochloride. Human hepatocellular carcinoma HepG2 and squamous cell carcinoma KB cancer lines were used for screening their cytotoxicity. METHOD 3-Acetyl-4-hydroxy-N-methylquinolin-2-one was prepared from N-methylaniline and diethyl malonate. Reaction of (un)substituted benzaldehydes with this 4-hydroxyquinoline-2-one produced corresponding substituted α ,β-unsaturated ketones in the presence of piperidine as catalyst. 2-Amino-6-aryl-4-(4'-hydroxy-N-methylquinolin-2'-on-3'-yl)pyrimidines have been synthesized from these α,β-unsaturated ketones of 3-acetyl-4-hydroxy-N-methylquinolin-2-one by reaction of corresponding α ,β-unsaturated ketones with guanidine hydrochloride. All obtained pyrimidines were screened for anticancer activity using MTT bio-assay method. RESULT Seven substituted (E)-4-hydroxy-3-(3-(aryl)acryloyl)-1-methylquinolin-2(1H)-ones were prepared and converted to corresponding substituted 2-amino-6-aryl-4-(4'-hydroxy-N-methylquinolin-2'-on-3'-yl)pyrimidines with yields of 58-74%. All the synthesized pyrimidines were screened for their in vitro anticancer activity against human hepatocellular carcinoma HepG2 and squamous cell carcinoma KB cancer lines. Compounds 6b and 6e had the best activity in the series, with IC50 values equal to 1.32 and 1.33 μM, respectively. ADMET properties showed that compounds 6b, 6e, and 6f possessed the drug-likeness behavior. Cross-docking results indicated that residues GLN778(A), DT8(C), DT9(D), DA12(F), and DG13(F) in the binding pocket as potential ligand binding hot-spot residues for compounds 6b, 6e, and 6f. CONCLUSION New substituted 2-amino-6-aryl-4-(4'-hydroxy-N-methylquinolin-2'-on-3'-yl)pyrimidines were obtained and displayed significant inhibition against human hepatocellular carcinoma HepG2 and squamous cell carcinoma KB cancer lines.
Collapse
Affiliation(s)
- Duong Ngoc Toan
- Faculty of Chemistry, Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen. Vietnam
| | - Nguyen Dinh Thanh
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi. Vietnam
| | - Mai Xuan Truong
- Faculty of Chemistry, Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen. Vietnam
| | - Dinh Thuy Van
- Faculty of Chemistry, Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen. Vietnam
| |
Collapse
|
33
|
Panda P, Chakroborty S. Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002790] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pravati Panda
- Department of Chemistry Rama Devi Women's University Bhubaneswar, Odisha 751004 India
| | | |
Collapse
|
34
|
Di Filippo M, Baumann M. Continuous Flow Synthesis of Quinolines via a Scalable Tandem Photoisomerization‐Cyclization Process. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mara Di Filippo
- School of Chemistry University College Dublin Science Centre South D04 N2E2 Belfield Dublin Ireland
| | - Marcus Baumann
- School of Chemistry University College Dublin Science Centre South D04 N2E2 Belfield Dublin Ireland
| |
Collapse
|
35
|
Mohamed MFA, Abuo-Rahma GEDA. Molecular targets and anticancer activity of quinoline-chalcone hybrids: literature review. RSC Adv 2020; 10:31139-31155. [PMID: 35520674 PMCID: PMC9056499 DOI: 10.1039/d0ra05594h] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
α,β-Unsaturated chalcone moieties and quinoline scaffolds play an important role in medicinal chemistry, especially in the identification and development of potential anticancer agents. The multi-target approach or hybridization is considered as a promising strategy in drug design and discovery. Hybridization may improve the affinity and potency while simultaneously decreasing the resistance and/or side effects. The conjugation of quinolines with chalcones has been a promising approach to the identification of potential anticancer agents. Most of these hybrids showed anticancer activities through the inhibition of tubulin polymerization, different kinases, topoisomerases, or by affecting DNA cleavage activity. Accordingly, this class of compounds can be classified based on their molecular modes of action. In this article, the quinolone-chalcone hybrids with potential anticancer activity have been reviewed. This class of compounds might be helpful for the design, discovery and development of new and potential multi-target anticancer agents or drugs.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University 82524 Sohag Egypt (+20)-1018384461
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University Minia 61519 Egypt +201003069431
| |
Collapse
|
36
|
Zhang Y, Sim JH, MacMillan SN, Lambert TH. Synthesis of 1,2-Dihydroquinolines via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Org Lett 2020; 22:6026-6030. [PMID: 32667809 PMCID: PMC7880559 DOI: 10.1021/acs.orglett.0c02116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synthesis of 1,2-dihydroquinolines by the hydrazine-catalyzed ring-closing carbonyl-olefin metathesis (RCCOM) of N-prenylated 2-aminobenzaldehydes is reported. Substrates with a variety of substitution patterns are shown. With an acid-labile protecting group on the nitrogen atom, in situ deprotection and autoxidation furnish quinoline. In comparison with related oxygen-containing substrates, the cycloaddition step of the catalytic cycle is shown to be slower, but the cycloreversion is found to be more facile.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Jae Hun Sim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Tristan H. Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
37
|
Mekheimer RA, Al-Sheikh MA, Medrasi HY, Sadek KU. Advancements in the synthesis of fused tetracyclic quinoline derivatives. RSC Adv 2020; 10:19867-19935. [PMID: 35520416 PMCID: PMC9054245 DOI: 10.1039/d0ra02786c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
Fused tetracyclic systems containing a quinoline nucleus represent an important class of heterocyclic bioactive natural products and pharmaceuticals because of their significant and wide-spectrum biological properties. Several of these compounds have been obtained with diverse pharmacological and biological activities, such as antiplasmodial, antifungal, antibacterial, potent antiparasitic, antiproliferative, anti-tumor and anti-inflammatory activities. This information will be beneficial for medicinal chemists in the field of drug discovery to design and synthesize new fused tetracyclic quinolines as potent therapeutical agents. This review article provides a comprehensive report regarding the methods developed for the synthesis of fused tetracyclic quinolines reported so far (till October 2019). The article includes synthesis by one-pot domino reaction, microwave synthesis using a catalyst, using ionic liquids, photocatalytic synthesis (UV radiation), Pfitzinger reaction, I2-catalyzed cyclization reaction, Wittig reaction, cascade reaction, imino Diels-Alder reaction, Friedel-Crafts reaction, CDC reaction, solvent-free reactions and using small chiral organic molecules as catalysts. To the best of our knowledge, this is the first review focused on the synthesis of fused tetracyclic quinolines along with mechanistic aspects.
Collapse
Affiliation(s)
- Ramadan A Mekheimer
- Department of Chemistry, Faculty of Science, Minia University Minia 61519 Egypt
| | - Mariam A Al-Sheikh
- Department of Chemistry, Faculty of Science, University of Jeddah Jeddah 21589 Saudi Arabia
| | - Hanadi Y Medrasi
- Department of Chemistry, Faculty of Science, University of Jeddah Jeddah 21589 Saudi Arabia
| | - Kamal U Sadek
- Department of Chemistry, Faculty of Science, Minia University Minia 61519 Egypt
| |
Collapse
|
38
|
Ibrahim MA, Badran AS. Synthesis and chemical reactivity of novel pyrano[3,2-c]quinoline-3-carbonitriles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1759095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Egypt
| | - Al-Shimaa Badran
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Egypt
| |
Collapse
|
39
|
Kim Y, Shinde VV, Jeong D, Jung S. Utilization of Water-Soluble Aminoethylamino-β-Cyclodextrin in the Pfitzinger Reaction-Catalyzed to the Synthesis of Diversely Functionalized Quinaldine. Polymers (Basel) 2020; 12:polym12020393. [PMID: 32050480 PMCID: PMC7077625 DOI: 10.3390/polym12020393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
In this study we describe the use of an aminoethylamino-β-cyclodextrin (AEA-β-CD) as a supramolecular homogeneous catalyst for the synthesis of a series of diversely substituted quinaldine derivatives which are medicinally important, via Pfitzinger reaction. This supramolecular catalyst exhibited remarkable catalytic activity with high substrate scope to achieve the synthetic targets in good to excellent yield, 69-92%. The structural and morphological properties of the synthesized AEA-β-CD were determined through MALDI-TOF mass spectrometry, NMR, FT-IR, and SEM analysis. Possible reaction mechanisms were determined through molecular host-guest complexation and proposed based on 2D NMR (ROESY) spectroscopy, FT-IR, FE-SEM, and DSC.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Systems Biotechnology & Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea
| | - Vijay Vilas Shinde
- Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea;
| | - Daham Jeong
- Department of Systems Biotechnology & Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea
| | - Seunho Jung
- Department of Systems Biotechnology & Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea
- Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-3520
| |
Collapse
|
40
|
Patel DB, Darji DG, Patel KR, Rajani DP, Rajani SD, Patel HD. Synthesis of novel quinoline‐thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME‐Tox properties. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dhaval B. Patel
- Department of Chemistry, School of SciencesGujarat University Ahmedabad India
| | - Drashti G. Darji
- Department of Chemistry, School of SciencesGujarat University Ahmedabad India
| | - Krupa R. Patel
- Department of Chemistry, School of SciencesGujarat University Ahmedabad India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Centre Surat India
| | - Smita D. Rajani
- Microcare Laboratory and Tuberculosis Research Centre Surat India
| | - Hitesh D. Patel
- Department of Chemistry, School of SciencesGujarat University Ahmedabad India
| |
Collapse
|
41
|
Tao LY, Wei Y, Shi M. Dimerization–cyclization reactions of isocyanoaryl-tethered alkylidenecyclobutanes via a triplet biradical mediated process. Org Chem Front 2020. [DOI: 10.1039/d0qo00878h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A triplet biradical mediated dimerization–cyclization reaction of isocyanoaryl-tethered alkylidenecyclobutanes to construct macrocyclic skeletons including dihydroquinoline and quinoline units has been reported.
Collapse
Affiliation(s)
- Le-Yi Tao
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
42
|
Wu Y, Lu X, Wang H, Liang E, Yuan Y, Zhao Q, Zhu Z, Huang J, Tang X. Acid-Catalyzed Synthesis of Quinoline Derivatives from 2-Methylquinolines and 2-Aryloxy/Alkoxybenzaldehyde in Aqueous Medium. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences; Southern Medical University; 1023 South Shatai Road, Baiyun District 510515 Guangzhou P. R. China
| | - Xianchen Lu
- Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences; Southern Medical University; 1023 South Shatai Road, Baiyun District 510515 Guangzhou P. R. China
| | - Hang Wang
- Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences; Southern Medical University; 1023 South Shatai Road, Baiyun District 510515 Guangzhou P. R. China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences; Southern Medical University; 1023 South Shatai Road, Baiyun District 510515 Guangzhou P. R. China
| | - Yingying Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences; Southern Medical University; 1023 South Shatai Road, Baiyun District 510515 Guangzhou P. R. China
| | - Qiaorun Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences; Southern Medical University; 1023 South Shatai Road, Baiyun District 510515 Guangzhou P. R. China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences; Wuyi University; 529020 Jiangmen China
| | - Jiaping Huang
- Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences; Southern Medical University; 1023 South Shatai Road, Baiyun District 510515 Guangzhou P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences; Southern Medical University; 1023 South Shatai Road, Baiyun District 510515 Guangzhou P. R. China
| |
Collapse
|
43
|
Kim J, Kim S, Kim D, Chang S. Ru-Catalyzed Deoxygenative Regioselective C8–H Arylation of Quinoline N-Oxides. J Org Chem 2019; 84:13150-13158. [DOI: 10.1021/acs.joc.9b01548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Suhyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
44
|
Nainwal LM, Tasneem S, Akhtar W, Verma G, Khan MF, Parvez S, Shaquiquzzaman M, Akhter M, Alam MM. Green recipes to quinoline: A review. Eur J Med Chem 2018; 164:121-170. [PMID: 30594028 DOI: 10.1016/j.ejmech.2018.11.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022]
Abstract
The quinoline core possesses a vast number of biological activities such as anticancer, antimalarial, antimicrobial, antifungal, antitubercular and antileishmanial. The conventional classical synthetic methods require the use of expensive and harsh conditions such as high temperature. Currently the scientific communities are searching new methodology to eliminate the use of chemicals, solvents and catalysts, which are hazardous to human health as well as to environment. This review provides a concise overview of new dimensions of green chemistry approaches in designing quinoline scaffold that would encourage the researchers towards green chemistry as well as future application of these greener, non-toxic, environment friendly methods in designing quinoline scaffold.
Collapse
Affiliation(s)
- Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sharba Tasneem
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Garima Verma
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
45
|
Singh JB, Mishra K, Gupta T, Singh RM. Copper-catalyzed cascade reaction: synthesis of pyrimido[4,5- b]quinolinones from 2-chloroquinoline-3-carbonitriles with (aryl)methanamines. NEW J CHEM 2018. [DOI: 10.1039/c7nj04689h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu-catalyzed cascade reaction of 2-chloroquinoline-3-carbonitriles with benzyl amines using sodium hydroxide in aerobic atmosphere has been developed for the synthesis of pyrimido[4,5-b]quinoline-4-ones.
Collapse
Affiliation(s)
- Jay Bahadur Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi
| | - Kalpana Mishra
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi
| | - Tanu Gupta
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi
| | - Radhey M. Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi
| |
Collapse
|
46
|
Computational and Experimental Study on Molecular Structure of Benzo[g]pyrimido[4,5-b]quinoline Derivatives: Preference of Linear over the Angular Isomer. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7100967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Hosseinzadeh H, Mazaheri F, Ghodsi R. Pharmacological effects of a synthetic quinoline, a hybrid of tomoxiprole and naproxen, against acute pain and inflammation in mice: a behavioral and docking study. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:446-450. [PMID: 28804615 PMCID: PMC5425928 DOI: 10.22038/ijbms.2017.8588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective(s): In the present study, we investigated the potential anti-nociceptive activity and acute anti-inflammatory effect of a synthetic quinoline compound (2-(4-Methoxyphenyl)benzo[h]quinoline-4-carboxylic acid, QC), possessing structural elements of both naproxen and tomoxiprole drugs. Materials and Methods: The anti-nociceptive activity of QC was evaluated using chemical- and thermal-induced nociception models and its acute anti-inflammatory effect was evaluated by xylene-induced ear edema test in mice. Results: QC displayed a dose dependent effect in both acute anti-nociceptive tests (writhing and hot plate). This compound at dose of 6.562 mg/kg showed a high anti-nociceptive effect near equal to diclofenac 5 mg/kg. It also showed high anti-inflammatory effects (less than 6.562 mg/kg) comparable to those of reference drugs diclofenac (5 mg/kg) and celecoxib (100 mg/kg). Docking study showed that this quinoline derivative could inhibit COX-2 enzyme strongly. Conclusion: QC showed high anti-nociceptive and anti-inflammatory effects comparable to reference drugs and can exert its anti-nociceptive and anti-inflammatory activities through COX-2 inhibition.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mazaheri
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Sasaki T, Moriyama K, Togo H. Preparation of 3-Iodoquinolines from N-Tosyl-2-propynylamines with Diaryliodonium Triflate and N-Iodosuccinimide. J Org Chem 2017; 82:11727-11734. [PMID: 28718287 DOI: 10.1021/acs.joc.7b01433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
4-Aryl and 4-alkyl substituted 3-iodoquinolines could be smoothly obtained in one pot by treating N-tosyl-2-propynylamines with diaryliodonium triflate in the presence of K3PO4 and a catalytic amount of CuCl at room temperature, followed by treatment with N-iodosuccinimide and BF3·OEt2 at 0 °C, and then NaOH in methanol solution. The product, 3-iodo-4-phenylquinoline was smoothly transformed into 4-phenylquinoline with zinc; 4-phenyl-3-toluenesulfenylquinoline with toluenethiol, K2CO3, and CuI; 4-phenyl-3-phenylethynylquinoline with the Sonogashira coupling reaction; 4-phenyl-3-styrylquinoline with the Heck coupling reaction; 3,4-diphenylquinoline with the Suzuki-Miyaura coupling reaction; 2-cyclohexyl-3-iodo-4-phenylquinoline with cyclohexanecarboxylic acid, Ag2CO3, and K2S2O8; and 3-iodo-2-(2',5'-dioxan-1'-yl)-4-phenylquinoline with benzoyl peroxide in dioxane.
Collapse
Affiliation(s)
- Teppei Sasaki
- Graduate School of Science and ‡Molecular Chirality Research Center, Chiba University , Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Katsuhiko Moriyama
- Graduate School of Science and ‡Molecular Chirality Research Center, Chiba University , Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Hideo Togo
- Graduate School of Science and ‡Molecular Chirality Research Center, Chiba University , Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
49
|
Wang Y, Yu F, Han X, Li M, Tong Y, Ding J, Hou H. From Surprising Solvothermal Reaction to Uncommon Zinc(II)-Catalyzed Aromatic C–H Activation Reaction for Direct Nitroquinoline Synthesis. Inorg Chem 2017; 56:5953-5958. [DOI: 10.1021/acs.inorgchem.7b00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yazhen Wang
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Feihu Yu
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiao Han
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ming Li
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yue Tong
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jie Ding
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
50
|
Musiol R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin Drug Discov 2017; 12:583-597. [DOI: 10.1080/17460441.2017.1319357] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|