1
|
Tsoulia T, Sundaram AY, Amundsen MM, Rimstad E, Wessel Ø, Jørgensen JB, Dahle MK. Comparison of transcriptome responses in blood cells of Atlantic salmon infected by three genotypes of Piscine orthoreovirus. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110088. [PMID: 39662648 DOI: 10.1016/j.fsi.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Piscine orthoreovirus (PRV) infection is common in aquaculture of salmonids. The three known PRV genotypes (PRV-1-3) have host species specificity and cause different diseases, but all infect and replicate in red blood cells (RBCs) in early infection phase. PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar), PRV-2 causes erythrocytic inclusion body syndrome (EIBS) in coho salmon (Oncorhynchus kisutch), while PRV-3 induces HSMI-like disease in farmed rainbow trout (Oncorhynchus mykiss). PRV-3 can also infect A. salmon without causing clinical disease and has been shown to cross-protect against PRV-1 infection and HSMI, while PRV-2 or inactivated adjuvanted PRV-1 vaccine only partially reduced HSMI pathologic changes. In the present work, we studied the transcriptional responses in blood cells of A. salmon two- and five-weeks post infection with PRV-1, PRV-2, PRV-3, or post injection with inactivated PRV-1 vaccine. PRV-1 and PRV-3 replicated well in A. salmon blood cells, and both induced the typical innate antiviral responses triggered by dsRNA viruses. Two weeks post infection, PRV-3 triggered stronger antiviral responses than PRV-1, despite their similar viral RNA replication levels, but after five weeks the induced responses were close to equal. PRV-2 and the InPRV-1 vaccine did not trigger the same typical antiviral responses as the replicating PRV-1 and PRV-3 genotypes, but induced genes involved in membrane trafficking and signaling pathways that may regulate physiological functions. These findings propose that the protection mediated by PRV-3 against a secondary infection by PRV-1 occur due to a potent and early activation of the same type of innate immune responses. The difference in the timing of antiviral responses may give PRV-1 an evolutionary edge, facilitating its dissemination to A. salmon heart, a critical step for HSMI development.
Collapse
Affiliation(s)
- Thomais Tsoulia
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway.
| | - Arvind Ym Sundaram
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Marit M Amundsen
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Espen Rimstad
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Wessel
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B Jørgensen
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| | - Maria K Dahle
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Culiat C, Soni D, Malkes W, Wienhold M, Zhang LH, Henry E, Dragan M, Kar S, Angeles DM, Eaker S, Biswas R. NELL1 variant protein (NV1) modulates hyper-inflammation, Th-1 mediated immune response, and the HIF-1α hypoxia pathway to promote healing in viral-induced lung injury. Biochem Biophys Res Commun 2025; 744:151198. [PMID: 39706056 DOI: 10.1016/j.bbrc.2024.151198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Research underscores the urgent need for technological innovations to treat lung tissue damage from viral infections and the lasting impact of COVID-19. Our study demonstrates the effectiveness of recombinant human NV1 protein in promoting a pro-healing extracellular matrix that regulates homeostasis in response to excessive tissue reactions caused by infection and injury. NV1 achieves this by calibrating multiple biological mechanisms, including reducing hyperinflammatory cytokine levels (e.g., IFN-γ, TNF-α, IL-10, and IP-10), enhancing the production of proteins involved in viral inactivation and clearance through endocytosis and phagocytosis (e.g., IL-9, IL-1α), regulating pro-clotting and thrombolytic pathways (e.g., downregulates SERPINE 1 and I-TAC during Th1-mediated inflammation), maintaining cell survival under hypoxic conditions via HIF-1α regulation through the M3K5-JNK-AP-1 and TSC2-mTOR pathways, and promoting blood vessel formation. Our findings reveal NV1 as a potential therapeutic candidate for treating severe lung injuries caused by inflammatory and hypoxic conditions from viral infections and related diseases.
Collapse
Affiliation(s)
| | - Dharmendra Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Mark Wienhold
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | | | | | | | | | | | - Shannon Eaker
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Deniz S, Uludağ B, Demirci F. Correlation between vascular endothelial growth factor, soluble urokinase plasminogen activator receptor, and tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio in group E chronic obstructive lung disease. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240589. [PMID: 39536250 PMCID: PMC11554328 DOI: 10.1590/1806-9282.20240589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/21/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Vascular endothelial growth factor is a signaling protein created by cells performing important bodily functions. Vascular endothelial growth factor is abundant in the lung, and plasma levels are elevated in patients with severe pulmonary arterial hypertension. An association between soluble urokinase plasminogen activator receptor, an inflammatory biomarker, and soluble urokinase plasminogen activator receptor levels and interstitial pulmonary and vascular involvement (e.g., development of pulmonary hypertension) has been shown in SSc patients. The tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio, which has been recommended as a useful diagnostic tool in the last guideline, is one of the additional echocardiographic signs suggestive of pulmonary hypertension. We aimed to examine whether these biomarkers contribute to the diagnosis and management of pulmonary hypertension. METHODS Patients with group E chronic obstructive lung disease were included in this prospective study. Demographic data, echocardiographic signs about the right ventricle (right atrium area, tricuspid annular plane systolic excursion/systolic pulmonary artery pressure, fractional area change, and right ventricular outflow tract), and peripheral blood analysis were examined and recorded. RESULTS A total of 70 patients, 12 of whom were female, were analyzed in the study. The mean age was 66.6±8.7 years. The mean vascular endothelial growth factor-A and soluble urokinase plasminogen activator receptor were 91.05±70.7 and 955.8±571.1, and their Pearson correlation coefficients between vascular endothelial growth factor-A and tricuspid annular plane systolic excursion/systolic pulmonary artery pressure, and soluble urokinase plasminogen activator receptor and tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio were 0.341 (p=0.004) and -0.045 (p=0.70), respectively. The linear regression model included four variables with significant correlation (vascular endothelial growth factor-A, right atrium area, fractional area change, and right ventricular outflow tract). Three steps were performed, and adjusted r2 was 0.22, 0.22, 0.20, and p<0.001 for each step. Vascular endothelial growth factor-A and right ventricular outflow tract remained in the last step. It was detected a standardized coefficient beta of 0.322 (p=0.004) and a 95%CI 0.000-0.001 for vascular endothelial growth factor-A. CONCLUSION Vascular endothelial growth factor-A is correlated with the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio and not with soluble urokinase plasminogen activator receptor.
Collapse
Affiliation(s)
- Sami Deniz
- University of Health Sciences Turkey, İzmir Faculty of Medicine – İzmir, Turkey
- Dr. Suat Seren Chest Diseases and Thoracic Surgery Research and Education Hospital – İzmir, Turkey
| | - Burcu Uludağ
- Dr. Suat Seren Chest Diseases and Thoracic Surgery Research and Education Hospital – İzmir, Turkey
| | - Ferhat Demirci
- Dr. Suat Seren Chest Diseases and Thoracic Surgery Research and Education Hospital – İzmir, Turkey
| |
Collapse
|
4
|
De Fenza M, Locri F, Plastino F, Chino M, Maglio O, Leone L, Gazzaroli G, Belleri M, Giacomini A, Kvanta A, André H, Pavone V, D’Alonzo D. Turn-Adopting Peptidomimetic as a Formyl Peptide Receptor-1 Antagonist. ACS Pharmacol Transl Sci 2024; 7:3476-3487. [PMID: 39539264 PMCID: PMC11555506 DOI: 10.1021/acsptsci.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The design, synthesis, and characterization of a new peptidomimetic acting as a formyl peptide receptor (FPR1) antagonist (N-19004) are herein reported. The molecule has been identified with docking studies of the highly potent FPR1 antagonist UPARANT on human receptor. N-19004 recapitulates all pharmacophoric groups necessary for recognition into a minimal structure, with a crucial role of the 2,6-diamino-thiophenyl scaffold mimicking the positions of Cα atoms of Arg residues in the turned Arg-Aib-Arg segment of UPARANT. N-19004 demonstrated to interfere with the biological properties of FPR1 both in vitro and in vivo. In a mouse model of choroidal neovascularization, N-19004 markedly reduced the size of laser-induced choroidal lesions, with reabsorption of the edema regions by a systemic administration route.
Collapse
Affiliation(s)
- Maria De Fenza
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Filippo Locri
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Flavia Plastino
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Chino
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Ornella Maglio
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
- Institute
of Biostructures and Bioimaging (IBB), National
Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Linda Leone
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Giorgia Gazzaroli
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mirella Belleri
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Anders Kvanta
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Helder André
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vincenzo Pavone
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| |
Collapse
|
5
|
Arientová S, Matúšková K, Bartoš O, Beran O, Holub M. Evaluation of Soluble Urokinase Plasminogen Activator Receptor in COVID-19 Patients. J Clin Med 2024; 13:6340. [PMID: 39518479 PMCID: PMC11546495 DOI: 10.3390/jcm13216340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: This retrospective study analyzed soluble urokinase plasminogen activator receptor (suPAR) plasma levels alongside routine inflammatory markers, including the neutrophil-to-lymphocyte count ratio, C-reactive protein (CRP), interleukin-6 (IL-6), procalcitonin (PCT), and D-dimers in COVID-19 patients hospitalized during the Omicron wave of the pandemic. Methods: We measured plasma suPAR levels using a suPARnostic® Quick Triage kit. We divided COVID-19 patients into two groups based on the severity of SARS-CoV-2 infection according to the National Institutes of Health (NIH) criteria. The logistic regression analysis tested the predictive value of the biomarkers. Results: We evaluated 160 consecutive COVID-19 patients hospitalized between January and August 2022. The cohort exhibited a high incidence of comorbidities, with an in-hospital mortality rate of 5.6%. Upon admission, the median suPAR plasma levels were not significantly different between patients with mild COVID-19 (n = 110) and those with moderate/severe disease (n = 50), with 7.25 ng/mL and 7.55 ng/mL, respectively. We observed significant differences (p < 0.01) between the groups for CRP and IL-6 levels that were higher in moderate/severe disease than in mild infection. Additionally, suPAR plasma levels were above the normal range (0-2.00 ng/mL) in all patients, with a significant positive correlation identified between suPAR levels and serum IL-6, PCT, and creatinine levels. Conclusions: These findings indicate that COVID-19 during the Omicron wave is strongly associated with elevated suPAR levels; however, these levels do not directly correlate with the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Simona Arientová
- Department of Infectious Diseases, Military University Hospital Prague and First Faculty of Medicine of Charles University, 16902 Prague, Czech Republic; (S.A.); (K.M.); (O.B.)
| | - Kateřina Matúšková
- Department of Infectious Diseases, Military University Hospital Prague and First Faculty of Medicine of Charles University, 16902 Prague, Czech Republic; (S.A.); (K.M.); (O.B.)
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, 16200 Prague, Czech Republic
| | - Ondřej Beran
- Department of Infectious Diseases, Military University Hospital Prague and First Faculty of Medicine of Charles University, 16902 Prague, Czech Republic; (S.A.); (K.M.); (O.B.)
| | - Michal Holub
- Department of Infectious Diseases, Military University Hospital Prague and First Faculty of Medicine of Charles University, 16902 Prague, Czech Republic; (S.A.); (K.M.); (O.B.)
- Ústřední Vojenská Nemocnice—Vojenská Fakultní Nemonice Praha, U Vojenské Nemocnice 1200, Praha 6-Břevnov, 16902 Prague, Czech Republic
| |
Collapse
|
6
|
Leno-Duran E, Serrano-Conde E, Salas-Rodríguez A, Salcedo-Bellido I, Barrios-Rodríguez R, Fuentes A, Viñuela L, García F, Requena P. Evaluation of inflammatory biomarkers and their association with anti-SARS-CoV-2 antibody titers in healthcare workers vaccinated with BNT162B2. Front Immunol 2024; 15:1447317. [PMID: 39247198 PMCID: PMC11377239 DOI: 10.3389/fimmu.2024.1447317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Vaccine-induced immunity against COVID-19 generates antibody and lymphocyte responses. However, variability in antibody titers has been observed after vaccination, and the determinants of a better response should be studied. The main objective of this investigation was to analyze the inflammatory biomarker response induced in healthcare workers vaccinated with BNT162b2, and its association with anti-Spike (a SARS-CoV-2 antigen) antibodies measured throughout a 1-year follow-up. Methods Anti-spike antibodies and 92 biomarkers were analyzed in serum, along with socio-demographic and clinical variables collected by interview or exploration. Results In our study, four biomarkers (ADA, IL-17C, CCL25 and CD8α) increased their expression after the first vaccine dose; and 8 others (uPA, IL-18R1, EN-RAGE, CASP-8, MCP-2, TNFβ, CD5 and CXCL10) decreased their expression. Age, body mass index (BMI), smoking, alcohol consumption, and prevalent diseases were associated with some of these biomarkers. Furthermore, higher baseline levels of T-cell surface glycoprotein CD6 and hepatocyte growth factor (HGF) were associated with lower mean antibody titers at follow-up, while levels of monocyte chemotactic protein 2 (MCP-2) had a positive association with antibody levels. Age and BMI were positively related to baseline levels of MCP-2 (β=0.02, 95%CI 0.00-0.04, p=0.036) and HGF (β=0.03, 95%CI 0.00-0.06, p=0.039), respectively. Conclusion Our findings indicate that primary BNT162b2 vaccination had a positive effect on the levels of several biomarkers related to T cell function, and a negative one on some others related to cancer or inflammatory processes. In addition, a higher level of MCP-2 and lower levels of HGF and CD6 were found to be associated with higher anti-Spike antibody titer following vaccination.
Collapse
Affiliation(s)
- Ester Leno-Duran
- Universidad de Granada, Departamento de Obstetricia y Ginecología, Granada, Spain
| | - Esther Serrano-Conde
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Ana Salas-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Fuentes
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Viñuela
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
7
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
8
|
Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswamy-Ramanujam G, Rawls A, Wilson-Rawls J, Chen H, McFadden G, Lucas AR. Urokinase-Type Plasminogen Activator Receptor (uPAR) in Inflammation and Disease: A Unique Inflammatory Pathway Activator. Biomedicines 2024; 12:1167. [PMID: 38927374 PMCID: PMC11201033 DOI: 10.3390/biomedicines12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a unique protease binding receptor, now recognized as a key regulator of inflammation. Initially, uPA/uPAR was considered thrombolytic (clot-dissolving); however, recent studies have demonstrated its predominant immunomodulatory functions in inflammation and cancer. The uPA/uPAR complex has a multifaceted central role in both normal physiological and also pathological responses. uPAR is expressed as a glycophosphatidylinositol (GPI)-linked receptor interacting with vitronectin, integrins, G protein-coupled receptors, and growth factor receptors within a large lipid raft. Through protein-to-protein interactions, cell surface uPAR modulates intracellular signaling, altering cellular adhesion and migration. The uPA/uPAR also modifies extracellular activity, activating plasminogen to form plasmin, which breaks down fibrin, dissolving clots and activating matrix metalloproteinases that lyse connective tissue, allowing immune and cancer cell invasion and releasing growth factors. uPAR is now recognized as a biomarker for inflammatory diseases and cancer; uPAR and soluble uPAR fragments (suPAR) are increased in viral sepsis (COVID-19), inflammatory bowel disease, and metastasis. Here, we provide a comprehensive overview of the structure, function, and current studies examining uPAR and suPAR as diagnostic markers and therapeutic targets. Understanding uPAR is central to developing diagnostic markers and the ongoing development of antibody, small-molecule, nanogel, and virus-derived immune-modulating treatments that target uPAR.
Collapse
Affiliation(s)
- Mostafa Hamada
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Kyle Steven Varkoly
- Department of Internal Medicine, McLaren Macomb Hospital, Michigan State University College of Human Medicine, 1000 Harrington St., Mt Clemens, MI 48043, USA
| | - Omer Riyadh
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Roxana Beladi
- Department of Neurosurgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, 16001 W Nine Mile Rd, Southfield, MI 48075, USA;
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Grant McFadden
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| |
Collapse
|
9
|
Tsukalov I, Sánchez-Cerrillo I, Rajas O, Avalos E, Iturricastillo G, Esparcia L, Buzón MJ, Genescà M, Scagnetti C, Popova O, Martin-Cófreces N, Calvet-Mirabent M, Marcos-Jimenez A, Martínez-Fleta P, Delgado-Arévalo C, de Los Santos I, Muñoz-Calleja C, Calzada MJ, González Álvaro I, Palacios-Calvo J, Alfranca A, Ancochea J, Sánchez-Madrid F, Martin-Gayo E. NFκB and NLRP3/NLRC4 inflammasomes regulate differentiation, activation and functional properties of monocytes in response to distinct SARS-CoV-2 proteins. Nat Commun 2024; 15:2100. [PMID: 38453949 PMCID: PMC10920883 DOI: 10.1038/s41467-024-46322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.
Collapse
Affiliation(s)
- Ilya Tsukalov
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Rajas
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Elena Avalos
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | | | - Laura Esparcia
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - María José Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camila Scagnetti
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Olga Popova
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martin-Cófreces
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Marcos-Jimenez
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Pedro Martínez-Fleta
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ignacio de Los Santos
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Calzada
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa. Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - José Palacios-Calvo
- Department of Pathology, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad de Alcalá. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Ancochea
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Duijvelaar E, Gisby J, Peters JE, Bogaard HJ, Aman J. Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients. Nat Commun 2024; 15:744. [PMID: 38272877 PMCID: PMC10811341 DOI: 10.1038/s41467-024-44986-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The pathobiology of respiratory failure in COVID-19 consists of a complex interplay between viral cytopathic effects and a dysregulated host immune response. In critically ill patients, imatinib treatment demonstrated potential for reducing invasive ventilation duration and mortality. Here, we perform longitudinal profiling of 6385 plasma proteins in 318 hospitalised patients to investigate the biological processes involved in critical COVID-19, and assess the effects of imatinib treatment. Nine proteins measured at hospital admission accurately predict critical illness development. Next to dysregulation of inflammation, critical illness is characterised by pathways involving cellular adhesion, extracellular matrix turnover and tissue remodelling. Imatinib treatment attenuates protein perturbations associated with inflammation and extracellular matrix turnover. These proteomic alterations are contextualised using external pulmonary RNA-sequencing data of deceased COVID-19 patients and imatinib-treated Syrian hamsters. Together, we show that alveolar capillary barrier disruption in critical COVID-19 is reflected in the plasma proteome, and is attenuated with imatinib treatment. This study comprises a secondary analysis of both clinical data and plasma samples derived from a clinical trial that was registered with the EU Clinical Trials Register (EudraCT 2020-001236-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001236-10/NL ) and Netherlands Trial Register (NL8491, https://www.trialregister.nl/trial/8491 ).
Collapse
Affiliation(s)
- Erik Duijvelaar
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Jack Gisby
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - James E Peters
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
He S, Blombäck M, Wallén H. COVID-19: Not a thrombotic disease but a thromboinflammatory disease. Ups J Med Sci 2024; 129:9863. [PMID: 38327640 PMCID: PMC10845889 DOI: 10.48101/ujms.v129.9863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 10/21/2023] [Indexed: 02/09/2024] Open
Abstract
While Coronavirus Disease in 2019 (COVID-19) may no longer be classified as a global public health emergency, it still poses a significant risk at least due to its association with thrombotic events. This study aims to reaffirm our previous hypothesis that COVID-19 is fundamentally a thrombotic disease. To accomplish this, we have undertaken an extensive literature review focused on assessing the comprehensive impact of COVID-19 on the entire hemostatic system. Our analysis revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection significantly enhances the initiation of thrombin generation. However, it is noteworthy that the thrombin generation may be modulated by specific anticoagulants present in patients' plasma. Consequently, higher levels of fibrinogen appear to play a more pivotal role in promoting coagulation in COVID-19, as opposed to thrombin generation. Furthermore, the viral infection can stimulate platelet activation either through widespread dissemination from the lungs to other organs or localized effects on platelets themselves. An imbalance between Von Willebrand Factor (VWF) and ADAMTS-13 also contributes to an exaggerated platelet response in this disease, in addition to elevated D-dimer levels, coupled with a significant increase in fibrin viscoelasticity. This paradoxical phenotype has been identified as 'fibrinolysis shutdown'. To clarify the pathogenesis underlying these hemostatic disorders in COVID-19, we also examined published data, tracing the reaction process of relevant proteins and cells, from ACE2-dependent viral invasion, through induced tissue inflammation, endothelial injury, and innate immune responses, to occurrence of thrombotic events. We therefrom understand that COVID-19 should no longer be viewed as a thrombotic disease solely based on abnormalities in fibrin clot formation and proteolysis. Instead, it should be regarded as a thromboinflammatory disorder, incorporating both classical elements of cellular inflammation and their intricate interactions with the specific coagulopathy.
Collapse
Affiliation(s)
- Shu He
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Margareta Blombäck
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Wallén
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Yatsenko T, Rios R, Nogueira T, Salama Y, Takahashi S, Tabe Y, Naito T, Takahashi K, Hattori K, Heissig B. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19. Front Immunol 2024; 14:1299792. [PMID: 38313435 PMCID: PMC10835145 DOI: 10.3389/fimmu.2023.1299792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Patients with coronavirus disease-2019 (COVID-19) have an increased risk of thrombosis and acute respiratory distress syndrome (ARDS). Thrombosis is often attributed to increases in plasminogen activator inhibitor-1 (PAI-1) and a shut-down of fibrinolysis (blood clot dissolution). Decreased urokinase-type plasminogen activator (uPA), a protease necessary for cell-associated plasmin generation, and increased tissue-type plasminogen activator (tPA) and PAI-1 levels have been reported in COVID-19 patients. Because these factors can occur in free and complexed forms with differences in their biological functions, we examined the predictive impact of uPA, tPA, and PAI-1 in their free forms and complexes as a biomarker for COVID-19 severity and the development of ARDS. In this retrospective study of 69 Japanese adults hospitalized with COVID-19 and 20 healthy donors, we found elevated free, non-complexed PAI-1 antigen, low circulating uPA, and uPA/PAI-1 but not tPA/PAI-1 complex levels to be associated with COVID-19 severity and ARDS development. This biomarker profile was typical for patients in the complicated phase. Lack of PAI-1 activity in circulation despite free, non-complexed PAI-1 protein and plasmin/α2anti-plasmin complex correlated with suPAR and sVCAM levels, markers indicating endothelial dysfunction. Furthermore, uPA/PAI-1 complex levels positively correlated with TNFα, a cytokine reported to trigger inflammatory cell death and tissue damage. Those levels also positively correlated with lymphopenia and the pro-inflammatory factors interleukin1β (IL1β), IL6, and C-reactive protein, markers associated with the anti-viral inflammatory response. These findings argue for using uPA and uPA/PAI-1 as novel biomarkers to detect patients at risk of developing severe COVID-19, including ARDS.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Enzymes Chemistry and Biochemistry, Palladin Institute of Biochemistry of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Ricardo Rios
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Tatiane Nogueira
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Hematology/Oncology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Vasbinder A, Padalia K, Pizzo I, Machado K, Catalan T, Presswalla F, Anderson E, Ismail A, Hutten C, Huang Y, Blakely P, Azam TU, Berlin H, Feroze R, Launius C, Meloche C, Michaud E, O'Hayer P, Pan M, Shadid HR, Rasmussen LJH, Roberts DA, Zhao L, Banerjee M, Murthy V, Loosen SH, Chalkias A, Tacke F, Reiser J, Giamarellos-Bourboulis EJ, Eugen-Olsen J, Pop-Busui R, Hayek SS. SuPAR, biomarkers of inflammation, and severe outcomes in patients hospitalized for COVID-19: The International Study of Inflammation in COVID-19. J Med Virol 2024; 96:e29389. [PMID: 38235904 PMCID: PMC10829525 DOI: 10.1002/jmv.29389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Severe coronavirus disease 2019 (COVID-19) is a hyperinflammatory syndrome. The biomarkers of inflammation best suited to triage patients with COVID-19 are unknown. We conducted a prospective multicenter observational study of adult patients hospitalized specifically for COVID-19 from February 1, 2020 to October 19, 2022. Biomarkers measured included soluble urokinase plasminogen activator receptor (suPAR), C-reactive protein, interleukin-6, procalcitonin, ferritin, and D-dimer. In-hospital outcomes examined include death and the need for mechanical ventilation. Patients admitted in the United States (US, n = 1962) were used to compute area under the curves (AUCs) and identify biomarker cutoffs. The combined European cohorts (n = 1137) were used to validate the biomarker cutoffs. In the US cohort, 356 patients met the composite outcome of death (n = 197) or need for mechanical ventilation (n = 290). SuPAR was the most important predictor of the composite outcome and had the highest AUC (0.712) followed by CRP (0.642), ferritin (0.619), IL-6 (0.614), D-dimer (0.606), and lastly procalcitonin (0.596). Inclusion of other biomarkers did not improve discrimination. A suPAR cutoff of 4.0 ng/mL demonstrated a sensitivity of 95.4% (95% CI: 92.4%-98.0%) and negative predictive value (NPV) of 92.5% (95% CI: 87.5%-96.9%) for the composite outcome. Patients with suPAR < 4.0 ng/mL comprised 10.6% of the cohort and had a 0.8% probability of the composite outcome. Applying this cutoff to the validation cohort yielded a sensitivity of 93.8% (90.4%-96.7%) and NPV of 95.5% (93.1%-97.8%) for the composite outcome. Among commonly measured biomarkers, suPAR offered stronger discriminatory ability and may be useful in triaging low-risk patients with COVID-19.
Collapse
Affiliation(s)
- Alexi Vasbinder
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kishan Padalia
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Pizzo
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristen Machado
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tonimarie Catalan
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Feriel Presswalla
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Anderson
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anis Ismail
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina Hutten
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yiyuan Huang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Pennelope Blakely
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tariq U Azam
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hanna Berlin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rafey Feroze
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Launius
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chelsea Meloche
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Erinleigh Michaud
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick O'Hayer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Husam R Shadid
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Donald A Roberts
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Mousumi Banerjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Venkatesh Murthy
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sven H Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Outcomes Research Consortium, Cleveland, Ohio, USA
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Jesper Eugen-Olsen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Rodica Pop-Busui
- Division of Endocrinology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Salim S Hayek
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Helena C, Giulia T, Alessandra C, Roberto G, Caterina S, Sabrina G, Simone B, Tommaso B, Alessandra B, Roberto L. Detection of Inflammatory Biomarker suPAR in COVID-19 Disease With CHORUS TRIO Instrument. Biomark Insights 2023; 18:11772719231210407. [PMID: 38035182 PMCID: PMC10687937 DOI: 10.1177/11772719231210407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Background Deregulation in the urokinase-type plasminogen activator receptor (uPA/uPAR) system is reported in many diseases where the immune system is activated. During SARS-CoV-2 infection, a rise in soluble uPAR (suPAR) levels has been detected and its concentration above 6 µg/L predicts worsening to severe respiratory failure 14 days earlier, with a positive predictive value of 85.9%, and was the prerequisite for a treatment with anakinra, a recombinant IL-1 receptor antagonist that blocks the activity of both IL-1α and IL-1β. Objectives To compare suPAR concentrations measured by CHORUS suPAR on CHORUS TRIO instrument of DIESSE with the commercially available suPARnostic (ViroGates) ELISA assay. Design A single-centre, non-pharmacological, diagnostic study was performed. Results A total of 522 serum samples from patients with COVID-19 were tested for suPAR. CHORUS suPAR resulted accurate and reliable, with a high grade of specificity (97.9%), accuracy (97.3%) and sensitivity (96.9%). The median concentration of suPAR, as determined with CHORUS suPAR, was 6.8 µg/L (interquartile range 4.5-9.7) in patients with moderate disease (n = 465) and 8.5 µg/L (interquartile range 5.4-10.6) in patients with severe disease. Among patients with moderate and severe disease, 60.6% and 71.9%, respectively, reached the cut-off concentration of suPAR ⩾6 µg/L, defining their illness severity and suggesting eligibility to anakinra treatment. Conclusion CHORUS suPAR kit resulted as sensitive, specific, accurate and able to quantify suPAR concentrations in patients with moderate and severe COVID-19.
Collapse
Affiliation(s)
- Cerutti Helena
- R&D DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | - Tesi Giulia
- R&D DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | | | - Guerranti Roberto
- Laboratorio Patologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Silvestrini Caterina
- Laboratorio Patologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Gori Sabrina
- Laboratorio Patologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Bianciardi Simone
- R&D DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | - Bandini Tommaso
- R&D DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | - Brogi Alessandra
- R&D DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | - Leoncini Roberto
- Laboratorio Patologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| |
Collapse
|
15
|
Zhang L, Li Y(H, Kibler K, Kraberger S, Varsani A, Turk J, Elmadbouly N, Aliskevich E, Spaccarelli L, Estifanos B, Enow J, Zanetti IR, Saldevar N, Lim E, Schlievert J, Browder K, Wilson A, Juan FA, Pinteric A, Garg A, Monder H, Saju R, Gisriel S, Jacobs B, Karr TL, Florsheim EB, Kumar V, Wallen J, Rahman M, McFadden G, Hogue BG, Lucas AR. Viral anti-inflammatory serpin reduces immuno-coagulopathic pathology in SARS-CoV-2 mouse models of infection. EMBO Mol Med 2023; 15:e17376. [PMID: 37534622 PMCID: PMC10493584 DOI: 10.15252/emmm.202317376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Yize (Henry) Li
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Karen Kibler
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Simona Kraberger
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
| | - Arvind Varsani
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
- Center for Evolution and Medicine, School of Life SciencesArizona State UniversityTempeAZUSA
| | - Julie Turk
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Nora Elmadbouly
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Emily Aliskevich
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Laurel Spaccarelli
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Bereket Estifanos
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Junior Enow
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Isabela Rivabem Zanetti
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Nicholas Saldevar
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Efrem Lim
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
| | - Jessika Schlievert
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Kyle Browder
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Anjali Wilson
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Fernando Arcos Juan
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Aubrey Pinteric
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Aman Garg
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Henna Monder
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Rohan Saju
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Savanah Gisriel
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Departments of Pathology & Lab MedicineYale‐New Haven HospitalNew HavenCTUSA
| | - Bertram Jacobs
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Timothy L Karr
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Neurodegenerative Disease Research Center & Proteomics Center, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Esther Borges Florsheim
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Vivek Kumar
- New Jersey Institute of TechnologyNewarkNJUSA
| | | | - Masmudur Rahman
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Grant McFadden
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Brenda G Hogue
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center for Applied Structural Discovery, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| |
Collapse
|
16
|
Hsieh MC, Yu WC, Weng CC, Chen WJ, Chen CK, Lee YC, Chen MH. Elevated serum levels of T-cell immunoglobulin and mucin-domain containing molecule 3 in patients with systemic inflammation following COVID-19 vaccination. J Chin Med Assoc 2023; 86:818-825. [PMID: 37481764 DOI: 10.1097/jcma.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND ChAdOx1 nCoV-19 vaccine has been widely used. Some unexpected adverse effects such as the development of systemic hyper inflammation with multiorgan involvement after vaccination, in rare cases, have been reported. However, its pathogenesis remains unclear. METHODS This study recruited two cases who suffered from systemic inflammation following ChAdOx1 nCoV-19 vaccine and two 30-year-old male volunteers without underlying disease who have received ChAdOx1 nCoV-19 vaccine as control group. Blood samples were collected from our patients and healthy subjects before and after treatment with anti-inflammatory agent such as glucocorticoid and tocilizumab. The immune profile from our patients and healthy controls were measured using a human XL cytokine Proteome Profiler array (ARY022b, R&D Systems). RESULTS Biochemical parameters revealed leukocytosis with segmented neutrophil dominance and elevated serum levels of C-reactive protein (CRP), erythrocyte sedimentation rate, and ferritin in these two patients. The cytokine array revealed that mean levels of T cell immunoglobulin and mucin-domain containing-3 (TIM-3) (3640.3 vs 1580.5 pixels per inch [ppi]), B-cell activating factor (BAFF) (3036.8 vs 1471.0 ppi), urokinase plasminogen activator surface receptor (uPAR) (1043.1 vs 516.8 ppi), Resistin (1783.7 vs 711.3 ppi), platelet-derived growth factor (PDGF)-AB/BB (1980.7 vs 939.7 ppi), macrophage inflammatory protein-3-beta (MIP-3β) (911.9 vs 346.2 ppi), and interferon-inducible T-cell alpha chemoattractant (I-TAC) (1026.3 vs 419.7 ppi) were 2-fold higher in the patients than in normal subjects who received ChAdOx1 nCoV-19 vaccine. CONCLUSION We demonstrated that systemic inflammation may occur in subjects who have received the ChAdOx1 nCoV-19 vaccination. Moreover, we proposed immune markers, which may be implicated in the pathogenesis of systemic inflammation following COVID-19 vaccination as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Ming-Chieh Hsieh
- Division of Allergy-Immunology-Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wen-Chung Yu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chang-Chi Weng
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Jen Chen
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Shu-Tien Urological Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chun-Ku Chen
- Division of Cardiopulmonary Radiology, Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Radiology, Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ying-Chi Lee
- Division of Cardiopulmonary Radiology, Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Han Chen
- Division of Allergy-Immunology-Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
17
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
18
|
Fu Y, Xue H, Wang T, Ding Y, Cui Y, Nie H. Fibrinolytic system and COVID-19: From an innovative view of epithelial ion transport. Biomed Pharmacother 2023; 163:114863. [PMID: 37172333 PMCID: PMC10169260 DOI: 10.1016/j.biopha.2023.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023] Open
Abstract
Lifeways of worldwide people have changed dramatically amid the coronavirus disease 2019 (COVID-19) pandemic, and public health is at stake currently. In the early stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, fibrinolytic system is mostly inhibited, which is responsible for the development of hypofibrinolysis, promoting disseminated intravascular coagulation, hyaline membrane formation, and pulmonary edema. Whereas the common feature and risk factor at advanced stage is a large amount of fibrin degradation products, including D-dimer, the characteristic of hyperfibrinolysis. Plasmin can cleave both SARS-CoV-2 spike protein and γ subunit of epithelial sodium channel (ENaC), a critical element to edematous fluid clearance. In this review, we aim to sort out the role of fibrinolytic system in the pathogenesis of COVID-19, as well as provide the possible guidance in current treating methods. In addition, the abnormal regulation of ENaC in the occurrence of SARS-CoV-2 mediated hypofibrinolysis and hyperfibrinolysis are summarized, with the view of proposing an innovative view of epithelial ion transport in preventing the dysfunction of fibrinolytic system during the progress of COVID-19.
Collapse
Affiliation(s)
- Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Xue
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
19
|
Abbasifard M, Fakhrabadi AH, Bahremand F, Khorramdelazad H. Evaluation of the interaction between tumor growth factor-β and interferon type I pathways in patients with COVID-19: focusing on ages 1 to 90 years. BMC Infect Dis 2023; 23:248. [PMID: 37072722 PMCID: PMC10112317 DOI: 10.1186/s12879-023-08225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Evidence revealed that age could affect immune responses in patients with the acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. This study investigated the impact of age on immune responses, especially on the interaction between the tumor growth factor-β (TGF-β) and interferon type-I (IFN-I) axes in the pathogenesis of novel coronavirus disease 2019 (COVID-19). METHODS This age-matched case-control investigation enrolled 41 COVID-19 patients and 40 healthy controls categorized into four groups, including group 1 (up to 20 years), group 2 (20-40 years), group 3 (40-60 years), and group 4 (over 60 years). Blood samples were collected at the time of admission. The expression of TGF-βRI, TGF-βRII, IFNARI, IFNARII, interferon regulatory factor 9 (IRF9), and SMAD family member 3 (SMAD3) was measured using the real-time PCR technique. In addition, serum levels of TGF-β, IFN-α, and SERPINE1 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. All biomarkers were measured and analyzed in the four age studies groups. RESULTS The expression of TGF-βRI, TGF-βRII, IFNARI, IFNARII, IRF9, and SMAD3 was markedly upregulated in all age groups of patients compared with the matched control groups. Serum levels of IFN-α and SERPINE1 were significantly higher in patient groups than in control groups. While TGF-β serum levels were only significantly elevated in the 20 to 40 and over 60 years patient group than in matched control groups. CONCLUSIONS These data showed that the age of patients, at least at the time of admission, may not significantly affect TGF-β- and IFN-I-associated immune responses. However, it is possible that the severity of the disease affects these pathway-mediated responses, and more studies with a larger sample size are needed to verify it.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hasani Fakhrabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Bahremand
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
21
|
COVID-19 and Pulmonary Angiogenesis: The Possible Role of Hypoxia and Hyperinflammation in the Overexpression of Proteins Involved in Alveolar Vascular Dysfunction. Viruses 2023; 15:v15030706. [PMID: 36992415 PMCID: PMC10057465 DOI: 10.3390/v15030706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
COVID-19 has been considered a vascular disease, and inflammation, intravascular coagulation, and consequent thrombosis may be associated with endothelial dysfunction. These changes, in addition to hypoxia, may be responsible for pathological angiogenesis. This research investigated the impact of COVID-19 on vascular function by analyzing post-mortem lung samples from 24 COVID-19 patients, 10 H1N1pdm09 patients, and 11 controls. We evaluated, through the immunohistochemistry technique, the tissue immunoexpressions of biomarkers involved in endothelial dysfunction, microthrombosis, and angiogenesis (ICAM-1, ANGPT-2, and IL-6, IL-1β, vWF, PAI-1, CTNNB-1, GJA-1, VEGF, VEGFR-1, NF-kB, TNF-α and HIF-1α), along with the histopathological presence of microthrombosis, endothelial activation, and vascular layer hypertrophy. Clinical data from patients were also observed. The results showed that COVID-19 was associated with increased immunoexpression of biomarkers involved in endothelial dysfunction, microthrombosis, and angiogenesis compared to the H1N1 and CONTROL groups. Microthrombosis and vascular layer hypertrophy were found to be more prevalent in COVID-19 patients. This study concluded that immunothrombosis and angiogenesis might play a key role in COVID-19 progression and outcome, particularly in patients who die from the disease.
Collapse
|
22
|
Sharma SB, Melvin WJ, Audu CO, Bame M, Rhoads N, Wu W, Kanthi Y, Knight JS, Adili R, Holinstat MA, Wakefield TW, Henke PK, Moore BB, Gallagher KA, Obi AT. The histone methyltransferase MLL1/KMT2A in monocytes drives coronavirus-associated coagulopathy and inflammation. Blood 2023; 141:725-742. [PMID: 36493338 PMCID: PMC9743412 DOI: 10.1182/blood.2022015917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Coronavirus-associated coagulopathy (CAC) is a morbid and lethal sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. CAC results from a perturbed balance between coagulation and fibrinolysis and occurs in conjunction with exaggerated activation of monocytes/macrophages (MO/Mφs), and the mechanisms that collectively govern this phenotype seen in CAC remain unclear. Here, using experimental models that use the murine betacoronavirus MHVA59, a well-established model of SARS-CoV-2 infection, we identify that the histone methyltransferase mixed lineage leukemia 1 (MLL1/KMT2A) is an important regulator of MO/Mφ expression of procoagulant and profibrinolytic factors such as tissue factor (F3; TF), urokinase (PLAU), and urokinase receptor (PLAUR) (herein, "coagulopathy-related factors") in noninfected and infected cells. We show that MLL1 concurrently promotes the expression of the proinflammatory cytokines while suppressing the expression of interferon alfa (IFN-α), a well-known inducer of TF and PLAUR. Using in vitro models, we identify MLL1-dependent NF-κB/RelA-mediated transcription of these coagulation-related factors and identify a context-dependent, MLL1-independent role for RelA in the expression of these factors in vivo. As functional correlates for these findings, we demonstrate that the inflammatory, procoagulant, and profibrinolytic phenotypes seen in vivo after coronavirus infection were MLL1-dependent despite blunted Ifna induction in MO/Mφs. Finally, in an analysis of SARS-CoV-2 positive human samples, we identify differential upregulation of MLL1 and coagulopathy-related factor expression and activity in CD14+ MO/Mφs relative to noninfected and healthy controls. We also observed elevated plasma PLAU and TF activity in COVID-positive samples. Collectively, these findings highlight an important role for MO/Mφ MLL1 in promoting CAC and inflammation.
Collapse
Affiliation(s)
- Sriganesh B. Sharma
- Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - William J. Melvin
- Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christopher O. Audu
- Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Monica Bame
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Nicole Rhoads
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Weisheng Wu
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis & Inflammation, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Michael A. Holinstat
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Thomas W. Wakefield
- Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Peter K. Henke
- Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Katherine A. Gallagher
- Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Andrea T. Obi
- Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
23
|
Singh M, Pushpakumar S, Bard N, Zheng Y, Homme RP, Mokshagundam SPL, Tyagi SC. Simulation of COVID-19 symptoms in a genetically engineered mouse model: implications for the long haulers. Mol Cell Biochem 2023; 478:103-119. [PMID: 35731343 PMCID: PMC9214689 DOI: 10.1007/s11010-022-04487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
The ongoing pandemic (also known as coronavirus disease-19; COVID-19) by a constantly emerging viral agent commonly referred as the severe acute respiratory syndrome corona virus 2 or SARS-CoV-2 has revealed unique pathological findings from infected human beings, and the postmortem observations. The list of disease symptoms, and postmortem observations is too long to mention; however, SARS-CoV-2 has brought with it a whole new clinical syndrome in "long haulers" including dyspnea, chest pain, tachycardia, brain fog, exercise intolerance, and extreme fatigue. We opine that further improvement in delivering effective treatment, and preventive strategies would be benefited from validated animal disease models. In this context, we designed a study, and show that a genetically engineered mouse expressing the human angiotensin converting enzyme 2; ACE-2 (the receptor used by SARS-CoV-2 agent to enter host cells) represents an excellent investigative resource in simulating important clinical features of the COVID-19. The ACE-2 mouse model (which is susceptible to SARS-CoV-2) when administered with a recombinant SARS-CoV-2 spike protein (SP) intranasally exhibited a profound cytokine storm capable of altering the physiological parameters including significant changes in cardiac function along with multi-organ damage that was further confirmed via histological findings. More importantly, visceral organs from SP treated mice revealed thrombotic blood clots as seen during postmortem examination. Thus, the ACE-2 engineered mouse appears to be a suitable model for studying intimate viral pathogenesis thus paving the way for identification, and characterization of appropriate prophylactics as well as therapeutics for COVID-19 management.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Nia Bard
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Sri Prakash L Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
24
|
Zhan K, Wang L, Lin H, Fang X, Jia H, Ma X. Novel inflammatory biomarkers in the prognosis of COVID-19. Ther Adv Respir Dis 2023; 17:17534666231199679. [PMID: 37727063 PMCID: PMC10515606 DOI: 10.1177/17534666231199679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The central role of inflammatory progression in the development of Coronavirus disease 2019 (COVID-19), especially in severe cases, is indisputable. However, the role of some novel inflammatory biomarkers in the prognosis of COVID-19 remains controversial. OBJECTIVE To assess the effect of some novel inflammatory biomarkers in the occurrence and prognosis of COVID-19. METHODS We systematically retrieved the studies related to COVID-19 and the inflammatory biomarkers of interest. The data of each biomarker in different groups were extracted, then were categorized and pooled. The standardized mean difference was chosen as an effect size measure to compare the difference between groups. RESULTS A total of 90 studies with 12,059 participants were included in this study. We found higher levels of endocan, PTX3, suPAR, sRAGE, galectin-3, and monocyte distribution width (MDW) in the COVID-19 positive groups compared to the COVID-19 negative groups. No significant differences for suPAR and galectin-3 were detected between the severe group and mild/moderate group of COVID-19. In addition, the deaths usually had higher levels of PTX3, sCD14-ST, suPAR, and MDW at admission compared to the survivors. Furthermore, patients with higher levels of endocan, galectin-3, sCD14-ST, suPAR, and MDW usually developed poorer comprehensive clinical prognoses. CONCLUSIONS In summary, this meta-analysis provides the most up-to-date and comprehensive evidence for the role of the mentioned novel inflammatory biomarkers in the prognosis of COVID-19, especially in evaluating death and other poor prognoses, with most biomarkers showing a better discriminatory ability.
Collapse
Affiliation(s)
- Kegang Zhan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
- College of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhan Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Lin
- West China School of Clinical Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Fang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Jia
- College of Public Health, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
25
|
Van Nynatten LR, Slessarev M, Martin CM, Leligdowicz A, Miller MR, Patel MA, Daley M, Patterson EK, Cepinskas G, Fraser DD. Novel plasma protein biomarkers from critically ill sepsis patients. Clin Proteomics 2022; 19:50. [PMID: 36572854 PMCID: PMC9792322 DOI: 10.1186/s12014-022-09389-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.
Collapse
Affiliation(s)
| | - Marat Slessarev
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Claudio M Martin
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Aleks Leligdowicz
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Michael R Miller
- Lawson Health Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Maitray A Patel
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Lawson Health Research Institute, London, ON, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
| | | | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, Canada.
- Pediatrics, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology and Pharmacology, Western University, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
26
|
Nekrasova LA, Shmakova AA, Samokhodskaya LM, Kirillova KI, Stoyanova SS, Mershina EA, Nazarova GB, Rubina KA, Semina EV, Kamalov AA. The Association of PLAUR Genotype and Soluble suPAR Serum Level with COVID-19-Related Lung Damage Severity. Int J Mol Sci 2022; 23:ijms232416210. [PMID: 36555850 PMCID: PMC9785175 DOI: 10.3390/ijms232416210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Uncovering the risk factors for acute respiratory disease coronavirus 2019 (COVID-19) severity may help to provide a valuable tool for early patient stratification and proper treatment implementation, improving the patient outcome and lowering the burden on the healthcare system. Here we report the results of a single-center retrospective cohort study on 151 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected symptomatic hospitalized adult patients. We assessed the association of several blood test measurements, soluble urokinase receptor (uPAR) serum level and specific single nucleotide polymorphisms of ACE (I/D), NOS3 (rs2070744, rs1799983), SERPINE1 (rs1799768), PLAU (rs2227564) and PLAUR (rs344781, rs2302524) genes, with the disease severity classified by the percentage of lung involvement on computerized tomography scans. Our findings reveal that the T/C genotype of PLAUR rs2302524 was independently associated with a less severe lung damage (odds ratio 0.258 [0.071-0.811]). Along with high C-reactive protein, fibrinogen and soluble uPAR serum levels turned out to be independently associated with more severe lung damage in COVID-19 patients. The identified factors may be further employed as predictors of a possibly severe COVID-19 clinical course.
Collapse
Affiliation(s)
- Ludmila A. Nekrasova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anna A. Shmakova
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Larisa M. Samokhodskaya
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Karina I. Kirillova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Simona S. Stoyanova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Elena A. Mershina
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Galina B. Nazarova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina V. Semina
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Correspondence:
| | - Armais A. Kamalov
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
27
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
28
|
Pelle MC, Zaffina I, Lucà S, Forte V, Trapanese V, Melina M, Giofrè F, Arturi F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life (Basel) 2022; 12:1605. [PMID: 36295042 PMCID: PMC9604693 DOI: 10.3390/life12101605] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2, a novel coronavirus found in Wuhan (China) at the end of 2019, is the etiological agent of the current pandemic that is a heterogeneous disease, named coronavirus disease 2019 (COVID-19). SARS-CoV-2 affects primarily the lungs, but it can induce multi-organ involvement such as acute myocardial injury, myocarditis, thromboembolic eventsandrenal failure. Hypertension, chronic kidney disease, diabetes mellitus and obesity increase the risk of severe complications of COVID-19. There is no certain explanation for this systemic COVID-19 involvement, but it could be related to endothelial dysfunction, due to direct (endothelial cells are infected by the virus) and indirect damage (systemic inflammation) factors. Angiotensin-converting enzyme 2 (ACE2), expressed in human endothelium, has a fundamental role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In fact, ACE2 is used as a receptor by SARS-CoV-2, leading to the downregulation of these receptors on endothelial cells; once inside, this virus reduces the integrity of endothelial tissue, with exposure of prothrombotic molecules, platelet adhesion, activation of coagulation cascades and, consequently, vascular damage. Systemic microangiopathy and thromboembolism can lead to multi-organ failure with an elevated risk of death. Considering the crucial role of the immunological response and endothelial damage in developing the severe form of COVID-19, in this review, we will attempt to clarify the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Lucà
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Forte
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Trapanese
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Melania Melina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
29
|
Luo S, Vasbinder A, Du‐Fay‐de‐Lavallaz JM, Gomez JMD, Suboc T, Anderson E, Tekumulla A, Shadid H, Berlin H, Pan M, Azam TU, Khaleel I, Padalia K, Meloche C, O'Hayer P, Catalan T, Blakely P, Launius C, Amadi K, Pop‐Busui R, Loosen SH, Chalkias A, Tacke F, Giamarellos‐Bourboulis EJ, Altintas I, Eugen‐Olsen J, Williams KA, Volgman AS, Reiser J, Hayek SS. Soluble Urokinase Plasminogen Activator Receptor and Venous Thromboembolism in COVID-19. J Am Heart Assoc 2022; 11:e025198. [PMID: 35924778 PMCID: PMC9683642 DOI: 10.1161/jaha.122.025198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Background Venous thromboembolism (VTE) contributes significantly to COVID-19 morbidity and mortality. The urokinase receptor system is involved in the regulation of coagulation. Levels of soluble urokinase plasminogen activator receptor (suPAR) reflect hyperinflammation and are strongly predictive of outcomes in COVID-19. Whether suPAR levels identify patients with COVID-19 at risk for VTE is unclear. Methods and Results We leveraged a multinational observational study of patients hospitalized for COVID-19 with suPAR and D-dimer levels measured on admission. In 1960 patients (mean age, 58 years; 57% men; 20% Black race), we assessed the association between suPAR and incident VTE (defined as pulmonary embolism or deep vein thrombosis) using logistic regression and Fine-Gray modeling, accounting for the competing risk of death. VTE occurred in 163 (8%) patients and was associated with higher suPAR and D-dimer levels. There was a positive association between suPAR and D-dimer (β=7.34; P=0.002). Adjusted for clinical covariables, including D-dimer, the odds of VTE were 168% higher comparing the third with first suPAR tertiles (adjusted odds ratio, 2.68 [95% CI, 1.51-4.75]; P<0.001). Findings were consistent when stratified by D-dimer levels and in survival analysis accounting for death as a competing risk. On the basis of predicted probabilities from random forest, a decision tree found the combined D-dimer <1 mg/L and suPAR <11 ng/mL cutoffs, identifying 41% of patients with only 3.6% VTE probability. Conclusions Higher suPAR was associated with incident VTE independently of D-dimer in patients hospitalized for COVID-19. Combining suPAR and D-dimer identified patients at low VTE risk. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04818866.
Collapse
Affiliation(s)
- Shengyuan Luo
- Department of MedicineRush University Medical CenterChicagoIL
| | - Alexi Vasbinder
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | | | | | - Tisha Suboc
- Department of MedicineRush University Medical CenterChicagoIL
| | - Elizabeth Anderson
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Annika Tekumulla
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Husam Shadid
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Hanna Berlin
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Michael Pan
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Tariq U. Azam
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Ibrahim Khaleel
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Kishan Padalia
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Chelsea Meloche
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Patrick O'Hayer
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Tonimarie Catalan
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Pennelope Blakely
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Christopher Launius
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Kingsley‐Michael Amadi
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Rodica Pop‐Busui
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of MedicineUniversity of ThessalyLarisaGreece
- Outcomes Research ConsortiumClevelandOH
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow‐KlinikumCharité University Medicine BerlinBerlinGermany
| | | | - Izzet Altintas
- Department of Clinical ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Jesper Eugen‐Olsen
- Department of Clinical ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Kim A. Williams
- Department of Internal MedicineUniversity of Louisville School of MedicineLouisvilleKY
| | | | - Jochen Reiser
- Department of MedicineRush University Medical CenterChicagoIL
| | - Salim S. Hayek
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| |
Collapse
|
30
|
Liao TH, Wu HC, Liao MT, Hu WC, Tsai KW, Lin CC, Lu KC. The Perspective of Vitamin D on suPAR-Related AKI in COVID-19. Int J Mol Sci 2022; 23:10725. [PMID: 36142634 PMCID: PMC9500944 DOI: 10.3390/ijms231810725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of millions of people around the world. Severe vitamin D deficiency can increase the risk of death in people with COVID-19. There is growing evidence that acute kidney injury (AKI) is common in COVID-19 patients and is associated with poorer clinical outcomes. The kidney effects of SARS-CoV-2 are directly mediated by angiotensin 2-converting enzyme (ACE2) receptors. AKI is also caused by indirect causes such as the hypercoagulable state and microvascular thrombosis. The increased release of soluble urokinase-type plasminogen activator receptor (suPAR) from immature myeloid cells reduces plasminogen activation by the competitive inhibition of urokinase-type plasminogen activator, which results in low plasmin levels and a fibrinolytic state in COVID-19. Frequent hypercoagulability in critically ill patients with COVID-19 may exacerbate the severity of thrombosis. Versican expression in proximal tubular cells leads to the proliferation of interstitial fibroblasts through the C3a and suPAR pathways. Vitamin D attenuates the local expression of podocyte uPAR and decreases elevated circulating suPAR levels caused by systemic inflammation. This decrease preserves the function and structure of the glomerular barrier, thereby maintaining renal function. The attenuated hyperinflammatory state reduces complement activation, resulting in lower serum C3a levels. Vitamin D can also protect against COVID-19 by modulating innate and adaptive immunity, increasing ACE2 expression, and inhibiting the renin-angiotensin-aldosterone system. We hypothesized that by reducing suPAR levels, appropriate vitamin D supplementation could prevent the progression and reduce the severity of AKI in COVID-19 patients, although the data available require further elucidation.
Collapse
Affiliation(s)
- Tzu-Hsien Liao
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsien-Chang Wu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Ching-Chieh Lin
- Department of Chest Medicine, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
31
|
Clerbaux LA, Albertini MC, Amigó N, Beronius A, Bezemer GFG, Coecke S, Daskalopoulos EP, del Giudice G, Greco D, Grenga L, Mantovani A, Muñoz A, Omeragic E, Parissis N, Petrillo M, Saarimäki LA, Soares H, Sullivan K, Landesmann B. Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. J Clin Med 2022; 11:4464. [PMID: 35956081 PMCID: PMC9369763 DOI: 10.3390/jcm11154464] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | | | - Núria Amigó
- Biosfer Teslab SL., 43204 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), 23204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Gillina F. G. Bezemer
- Impact Station, 1223 JR Hilversum, The Netherlands;
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Evangelos P. Daskalopoulos
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Ceze, France;
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium;
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Nikolaos Parissis
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Laura A. Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Helena Soares
- Laboratory of Immunobiology and Pathogenesis, Chronic Diseases Research Centre, Faculdade de Ciências Médicas Medical School, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC 20016, USA;
| | - Brigitte Landesmann
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| |
Collapse
|
32
|
Gómez-Carballa A, Rivero-Calle I, Pardo-Seco J, Gómez-Rial J, Rivero-Velasco C, Rodríguez-Núñez N, Barbeito-Castiñeiras G, Pérez-Freixo H, Cebey-López M, Barral-Arca R, Rodriguez-Tenreiro C, Dacosta-Urbieta A, Bello X, Pischedda S, Currás-Tuala MJ, Viz-Lasheras S, Martinón-Torres F, Salas A. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. ENVIRONMENTAL RESEARCH 2022; 210:112890. [PMID: 35202626 PMCID: PMC8861187 DOI: 10.1016/j.envres.2022.112890] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 05/08/2023]
Abstract
Coronavirus Disease-19 (COVID-19) symptoms range from mild to severe illness; the cause for this differential response to infection remains unknown. Unravelling the immune mechanisms acting at different levels of the colonization process might be key to understand these differences. We carried out a multi-tissue (nasal, buccal and blood; n = 156) gene expression analysis of immune-related genes from patients affected by different COVID-19 severities, and healthy controls through the nCounter technology. Mild and asymptomatic cases showed a powerful innate antiviral response in nasal epithelium, characterized by activation of interferon (IFN) pathway and downstream cascades, successfully controlling the infection at local level. In contrast, weak macrophage/monocyte driven innate antiviral response and lack of IFN signalling activity were present in severe cases. Consequently, oral mucosa from severe patients showed signals of viral activity, cell arresting and viral dissemination to the lower respiratory tract, which ultimately could explain the exacerbated innate immune response and impaired adaptative immune responses observed at systemic level. Results from saliva transcriptome suggest that the buccal cavity might play a key role in SARS-CoV-2 infection and dissemination in patients with worse prognosis. Co-expression network analysis adds further support to these findings, by detecting modules specifically correlated with severity involved in the abovementioned biological routes; this analysis also provides new candidate genes that might be tested as biomarkers in future studies. We also found tissue specific severity-related signatures mainly represented by genes involved in the innate immune system and cytokine/chemokine signalling. Local immune response could be key to determine the course of the systemic response and thus COVID-19 severity. Our findings provide a framework to investigate severity host gene biomarkers and pathways that might be relevant to diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Laboratorio de Inmunología. Servicio de Análisis Clínicos. Hospital Clínico Universitario (SERGAS), Galicia, Spain
| | - Carmen Rivero-Velasco
- Intensive Medicine Department, Hospital Clìnico Universitario de Santiago de Compostela, Galicia, Spain
| | - Nuria Rodríguez-Núñez
- Pneumology Department, Hospital Clìnico Universitario de Santiago de Compostela, Galicia, Spain
| | - Gema Barbeito-Castiñeiras
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Hugo Pérez-Freixo
- Preventive Medicine Department, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - Miriam Cebey-López
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ruth Barral-Arca
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Dacosta-Urbieta
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María José Currás-Tuala
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sandra Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
33
|
López-Rodríguez R, Del Pozo-Valero M, Corton M, Minguez P, Ruiz-Hornillos J, Pérez-Tomás ME, Barreda-Sánchez M, Mancebo E, Villaverde C, Núñez-Moreno G, Romero R, Paz-Artal E, Guillén-Navarro E, Almoguera B, Ayuso C. Presence of rare potential pathogenic variants in subjects under 65 years old with very severe or fatal COVID-19. Sci Rep 2022; 12:10369. [PMID: 35725860 PMCID: PMC9208539 DOI: 10.1038/s41598-022-14035-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare variants affecting host defense against pathogens could be involved in COVID-19 severity and may help explain fatal outcomes in young and middle-aged patients. Our aim was to report the presence of rare genetic variants in certain genes, by using whole exome sequencing, in a selected group of COVID-19 patients under 65 years who required intubation or resulting in death (n = 44). To this end, different etiopathogenic mechanisms were explored using gene prioritization-based analysis in which genes involved in immune response, immunodeficiencies or blood coagulation were studied. We detected 44 different variants of interest, in 29 different patients (66%). Some of these variants were previously described as pathogenic and were located in genes mainly involved in immune response. A network analysis, including the 42 genes with candidate variants, showed three main components, consisting of 25 highly interconnected genes related to immune response and two additional networks composed by genes enriched in carbohydrate metabolism and in DNA metabolism and repair processes. In conclusion, we have detected candidate variants that may potentially influence COVID-19 outcome in our cohort of patients. Further studies are needed to confirm the ultimate role of the genetic variants described in the present study on COVID-19 severity.
Collapse
Affiliation(s)
- Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pablo Minguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Javier Ruiz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - María Elena Pérez-Tomás
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Barreda-Sánchez
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Health Sciences Faculty, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Raquel Romero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Encarna Guillén-Navarro
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Medical Genetics Section, Pediatric Department, Virgen de la Arrixaca University Clinical Hospital, Faculty of Medicine, University of Murcia (UMU), Murcia, Spain
| | - Berta Almoguera
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
34
|
Moro G, Severin Sfragano P, Ghirardo J, Mazzocato Y, Angelini A, Palchetti I, Polo F. Bicyclic peptide-based assay for uPA cancer biomarker. Biosens Bioelectron 2022; 213:114477. [PMID: 35751954 DOI: 10.1016/j.bios.2022.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
The use of synthetic bioreceptors to develop biosensing platforms has been recently gaining momentum. This case study compares the performance of a biosensing platform for the human biomarker urokinase-type plasminogen activator (h-uPA) when using two bicyclic peptides (P1 and P2) with different affinities for the target protein. The bioreceptors P1 and P2 were immobilized on magnetic microbeads and tested within a sandwich-type affinity electrochemical assay. Apart from enabling h-uPA quantification at nanomolar levels (105.8 ng/mL for P1 and 32.5 ng/mL for P2), this case study showed the potential of synthetic bicyclic peptides applicability and how bioreceptor affinity can influence the performance of the final sensing platform.
Collapse
Affiliation(s)
- Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Patrick Severin Sfragano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Jessica Ghirardo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy.
| |
Collapse
|
35
|
SCD14-ST and New Generation Inflammatory Biomarkers in the Prediction of COVID-19 Outcome. Biomolecules 2022; 12:biom12060826. [PMID: 35740951 PMCID: PMC9220996 DOI: 10.3390/biom12060826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 12/18/2022] Open
Abstract
Since no definitive cure for COVID-19 is available so far, one of the challenges against the disease is understanding the clinical features and the laboratory inflammatory markers that can differentiate among different severity grades of the disease. The aim of the present study is a comprehensive and longitudinal evaluation of SCD14-ST and other new inflammatory markers, as well as cytokine storm molecules and current inflammatory parameters, in order to define a panel of biomarkers that could be useful for a better prognostic prediction of COVID-19 mortality. SCD14-ST, as well as the inflammatory markers IL-6, IL-10, SuPAR and sRAGE, were measured in plasma-EDTA of ICU COVID-19 positive patients. In this longitudinal study, SCD14-ST resulted significantly higher in patients who eventually died compared to those who were discharged from the ICU. The results suggest that the new infection biomarker SCD14-ST, in addition to new generation inflammatory biomarkers, such as SuPAR, sRAGE and the cytokines IL-6 and IL-10, can be a useful prognostic tool associated with canonical inflammatory parameters, such as CRP, to predict SARS-CoV-2 outcome in ICU patients.
Collapse
|
36
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
37
|
Dholariya S, Parchwani DN, Singh R, Radadiya M, Katoch CDS. Utility of P-SEP, sTREM-1 and suPAR as Novel Sepsis Biomarkers in SARS-CoV-2 Infection. Indian J Clin Biochem 2022; 37:131-138. [PMID: 34642555 PMCID: PMC8494168 DOI: 10.1007/s12291-021-01008-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
The coronavirus disease 2019 is a highly contagious viral infection caused by SARS-CoV-2 virus, member of coronaviridae family. It causes life threatening complications due to complexity and rapid onset course of the disease. Early identification of high-risk patients who require close monitoring and aggressive treatment remains challengeable till date. Novel biomarkers which help to identify high risk patients at the early stage is high priority. Objective of this review to find utility of P-SEP, sTREM-1 and suPAR for diagnosis, risk stratification and prognosis of SARS-CoV-2 infected cases. Soluble receptors like, P-SEP, sTREM-1 and suPAR have been involved in immune regulation in SARS-CoV-2 infection and elevate more in severe cases. A comprehensive research of databases like PubMed, EMBASE, CNKI and Web of Science was performed for relevant studies. A total of nine out of fifteen research literature in initial screening were included for this review. Interestingly all studies have reported high levels of P-SEP, sTREM-1 and suPAR in SARS-CoV-2 infected cases and the biomarkers positively correlated with severity of infection. This implies that P-SEP, sTREM-1 and suPAR can be implemented as surrogate marker in blood profile for early diagnosis, risk stratification and prognosis in SARS-CoV-2 for better management in Indian population at the current situation.
Collapse
Affiliation(s)
- Sagar Dholariya
- All India Institute of Medical Sciences, Rajkot, Gujarat India
| | | | - Ragini Singh
- All India Institute of Medical Sciences, Rajkot, Gujarat India
| | | | - C. D. S. Katoch
- All India Institute of Medical Sciences, Rajkot, Gujarat India
| |
Collapse
|
38
|
Taşlı NP, Gönen ZB, Kırbaş OK, Gökdemir NS, Bozkurt BT, Bayrakcı B, Sağraç D, Taşkan E, Demir S, Ekimci Gürcan N, Bayındır Bilgiç M, Bayrak ÖF, Yetişkin H, Kaplan B, Pavel STI, Dinç G, Serhatlı M, Çakırca G, Eken A, Aslan V, Yay M, Karakukcu M, Unal E, Gül F, Basaran KE, Ozkul Y, Şahin F, Jones OY, Tekin Ş, Özdarendeli A, Cetin M. Preclinical Studies on Convalescent Human Immune Plasma-Derived Exosome: Omics and Antiviral Properties to SARS-CoV-2. Front Immunol 2022; 13:824378. [PMID: 35401544 PMCID: PMC8987587 DOI: 10.3389/fimmu.2022.824378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
The scale of the COVID-19 pandemic forced urgent measures for the development of new therapeutics. One of these strategies is the use of convalescent plasma (CP) as a conventional source for passive immunity. Recently, there has been interest in CP-derived exosomes. In this report, we present a structural, biochemical, and biological characterization of our proprietary product, convalescent human immune plasma-derived exosome (ChipEXO), following the guidelines set forth by the Turkish Ministry of Health and the Turkish Red Crescent, the Good Manufacturing Practice, the International Society for Extracellular Vesicles, and the Gene Ontology Consortium. The data support the safety and efficacy of this product against SARS-CoV-2 infections in preclinical models.
Collapse
Affiliation(s)
| | - Zeynep Burçin Gönen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| | | | - Nur Seda Gökdemir
- Oral and Maxillofacial Surgery, Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| | | | - Buse Bayrakcı
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Derya Sağraç
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Taşkan
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sevda Demir
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | | | | | - Hazel Yetişkin
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Büşra Kaplan
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Shaikh Terkıs Islam Pavel
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gökçen Dinç
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Müge Serhatlı
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
| | - Gamze Çakırca
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Ahmet Eken
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Vedat Aslan
- Antalya Training and Research Hospital, Antalya, Turkey
| | - Mehmet Yay
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fethi Gül
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey
| | - Kemal Erdem Basaran
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Olcay Y. Jones
- Division of Rheumatology, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Şaban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
- Medical Biology, Department of Basic Medical Sciences, University of Health Sciences, Istanbul, Turkey
| | - Aykut Özdarendeli
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Mustafa Cetin
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
39
|
Perlas A, Argilaguet J, Bertran K, Sánchez-González R, Nofrarías M, Valle R, Ramis A, Cortey M, Majó N. Dual Host and Pathogen RNA-Seq Analysis Unravels Chicken Genes Potentially Involved in Resistance to Highly Pathogenic Avian Influenza Virus Infection. Front Immunol 2022; 12:800188. [PMID: 35003125 PMCID: PMC8727699 DOI: 10.3389/fimmu.2021.800188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe systemic disease and high mortality rates in chickens, leading to a huge economic impact in the poultry sector. However, some chickens are resistant to the disease. This study aimed at evaluating the mechanisms behind HPAIV disease resistance. Chickens of different breeds were challenged with H7N1 HPAIV or clade 2.3.4.4b H5N8 HPAIV, euthanized at 3 days post-inoculation (dpi), and classified as resistant or susceptible depending on the following criteria: chickens that presented i) clinical signs, ii) histopathological lesions, and iii) presence of HPAIV antigen in tissues were classified as susceptible, while chickens lacking all these criteria were classified as resistant. Once classified, we performed RNA-Seq from lung and spleen samples in order to compare the transcriptomic signatures between resistant and susceptible chickens. We identified minor transcriptomic changes in resistant chickens in contrast with huge alterations observed in susceptible chickens. Interestingly, six differentially expressed genes were downregulated in resistant birds and upregulated in susceptible birds. Some of these genes belong to the NF-kappa B and/or mitogen-activated protein kinase signaling pathways. Among these six genes, the serine protease-encoding gene PLAU was of particular interest, being the most significantly downregulated gene in resistant chickens. Expression levels of this protease were further validated by RT-qPCR in a larger number of experimentally infected chickens. Furthermore, HPAIV quasi-species populations were constructed using 3 dpi oral swabs. No substantial changes were found in the viral segments that interact with the innate immune response and with the host cell receptors, reinforcing the role of the immune system of the host in the clinical outcome. Altogether, our results suggest that an early inactivation of important host genes could prevent an exaggerated immune response and/or viral replication, conferring resistance to HPAIV in chickens.
Collapse
Affiliation(s)
- Albert Perlas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Argilaguet
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kateri Bertran
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Raúl Sánchez-González
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Miquel Nofrarías
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Rosa Valle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Antonio Ramis
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Natàlia Majó
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
40
|
Bouton MC, Corral J, Lucas AR. Editorial: The Serpin Family in the Cardiovascular System. Front Cardiovasc Med 2022; 8:821490. [PMID: 35187116 PMCID: PMC8847448 DOI: 10.3389/fcvm.2021.821490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marie-Christine Bouton
- LVTS, INSERM, U1148, Université de Paris, X. Bichat Hospital, Paris, France
- *Correspondence: Marie-Christine Bouton
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia Campus Mare Nostrum, IMIB, CIBERER, Murcia, Spain
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
41
|
Sarif J, Raychaudhuri D, D'Rozario R, Bandopadhyay P, Singh P, Mehta P, Hoque MA, Sinha BP, Kushwaha M, Sahni S, Devi P, Chattopadhyay P, Paul SR, Ray Y, Chaudhuri K, Banerjee S, Majumdar D, Saha B, Sarkar BS, Bhattacharya P, Chatterjee S, Paul S, Ghosh P, Pandey R, Sengupta S, Ganguly D. Plasma Gradient of Soluble Urokinase-Type Plasminogen Activator Receptor Is Linked to Pathogenic Plasma Proteome and Immune Transcriptome and Stratifies Outcomes in Severe COVID-19. Front Immunol 2021; 12:738093. [PMID: 34777349 PMCID: PMC8581406 DOI: 10.3389/fimmu.2021.738093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Disease caused by SARS-CoV-2 coronavirus (COVID-19) led to significant morbidity and mortality worldwide. A systemic hyper-inflammation characterizes severe COVID-19 disease, often associated with acute respiratory distress syndrome (ARDS). Blood biomarkers capable of risk stratification are of great importance in effective triage and critical care of severe COVID-19 patients. Flow cytometry and next-generation sequencing were done on peripheral blood cells and urokinase-type plasminogen activator receptor (suPAR), and cytokines were measured from and mass spectrometry-based proteomics was done on plasma samples from an Indian cohort of COVID-19 patients. Publicly available single-cell RNA sequencing data were analyzed for validation of primary data. Statistical analyses were performed to validate risk stratification. We report here higher plasma abundance of suPAR, expressed by an abnormally expanded myeloid cell population, in severe COVID-19 patients with ARDS. The plasma suPAR level was found to be linked to a characteristic plasma proteome, associated with coagulation disorders and complement activation. Receiver operator characteristic curve analysis to predict mortality identified a cutoff value of suPAR at 1,996.809 pg/ml (odds ratio: 2.9286, 95% confidence interval 1.0427-8.2257). Lower-than-cutoff suPAR levels were associated with a differential expression of the immune transcriptome as well as favorable clinical outcomes, in terms of both survival benefit (hazard ratio: 0.3615, 95% confidence interval 0.1433-0.912) and faster disease remission in our patient cohort. Thus, we identified suPAR as a key pathogenic circulating molecule linking systemic hyperinflammation to the hypercoagulable state and stratifying clinical outcomes in severe COVID-19 patients with ARDS.
Collapse
Affiliation(s)
- Jafar Sarif
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Deblina Raychaudhuri
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Ranit D'Rozario
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Purbita Bandopadhyay
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Praveen Singh
- Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Md Asmaul Hoque
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bishnu Prasad Sinha
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kushwaha
- Cardiorespiratory Disease Biology, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shweta Sahni
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Priti Devi
- Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Partha Chattopadhyay
- Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shekhar Ranjan Paul
- Department of Medicine, Infectious Diseases and Beliaghata General (ID & BG) Hospital, Kolkata, India
| | - Yogiraj Ray
- Department of Medicine, Infectious Diseases and Beliaghata General (ID & BG) Hospital, Kolkata, India.,Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Kausik Chaudhuri
- Department of Medicine, Infectious Diseases and Beliaghata General (ID & BG) Hospital, Kolkata, India
| | - Sayantan Banerjee
- Department of Medicine, Infectious Diseases and Beliaghata General (ID & BG) Hospital, Kolkata, India
| | - Debajyoti Majumdar
- Department of Medicine, Infectious Diseases and Beliaghata General (ID & BG) Hospital, Kolkata, India.,Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Biswanath Sharma Sarkar
- Department of Medicine, Infectious Diseases and Beliaghata General (ID & BG) Hospital, Kolkata, India
| | - Prasun Bhattacharya
- Department of Immunohematology and Blood Transfusion, Medical College, Kolkata, India
| | - Shilpak Chatterjee
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Sandip Paul
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Pramit Ghosh
- Department of Community Medicine, Deben Mahata Government Medical College & Hospital, Purulia, India
| | - Rajesh Pandey
- Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Sengupta
- Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dipyaman Ganguly
- Indian Institute of Chemical Biology (IICB)-Translational Research Unit of Excellence, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
42
|
Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J, Wang J. uPAR: An Essential Factor for Tumor Development. J Cancer 2021; 12:7026-7040. [PMID: 34729105 PMCID: PMC8558663 DOI: 10.7150/jca.62281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is closely related to the loss of control of many genes. Urokinase-type plasminogen activator receptor (uPAR), a glycolipid-anchored protein on the cell surface, is controlled by many factors in tumorigenesis and is expressed in many tumor tissues. In this review, we summarize the regulatory effects of the uPAR signaling pathway on processes and factors related to tumor progression, such as tumor cell proliferation, adhesion, metastasis, glycolysis, tumor microenvironment and angiogenesis. Overall, the evidence accumulated to date suggests that uPAR induction by tumor progression may be one of the most important factors affecting therapeutic efficacy. An improved understanding of the interactions between uPAR and its coreceptors in cancer will provide critical biomolecular information that may help to better predict the disease course and response to therapy.
Collapse
Affiliation(s)
- Tao Lv
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Ying Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China 610500
| | - Hemei Yuan
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Haibo Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Xuelin Cui
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiashun Xu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jingye Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianlin Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| |
Collapse
|
43
|
Velissaris D, Lagadinou M, Paraskevas T, Oikonomou E, Karamouzos V, Karteri S, Bousis D, Pantzaris N, Tsiotsios K, Marangos M. Evaluation of Plasma Soluble Urokinase Plasminogen Activator Receptor Levels in Patients With COVID-19 and Non-COVID-19 Pneumonia: An Observational Cohort Study. J Clin Med Res 2021; 13:474-478. [PMID: 34691321 PMCID: PMC8510652 DOI: 10.14740/jocmr4579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Background The respiratory system is the main system affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a great number of infected people need hospitalization. Soluble urokinase plasminogen activator receptor (suPAR) is a biomarker indicative of acute and chronic inflammation. Current literature supports that suPAR has great predictive ability for mortality in patients with coronavirus disease 2019 (COVID-19). The aim of this study was to compare the value of suPAR and other laboratory biomarkers in patients with chest infection and suspected COVID-19. Methods A total of 41 consecutive patients with chest infection were enrolled in the study and were assigned into two groups according to the real-time polymerase chain reaction (PCR) result for SARS-CoV-2. The two groups had no significant difference in baseline data (age, sex), arterial oxygen partial pressure (PO2)/fraction of inspired oxygen (FiO2) ratio and mortality. Results Among patients with chest infection who required hospitalization, suPAR was significantly higher on admission in those with COVID-19 when compared to patients with non-COVID-19. suPAR had a great prognostic ability for in-hospital mortality in the COVID-19 subgroup. Conclusions A single measurement of suPAR on admission can provide prognostic information for patients with suspected COVID-19 pneumonia. In the subgroup of patients with positive real-time PCR result for SARS-CoV2, suPAR was significantly higher and had an excellent prognostic value for the in-hospital mortality.
Collapse
Affiliation(s)
| | - Maria Lagadinou
- Department of Internal Medicine, University Hospital of Patras, Rion, Greece
| | | | - Eleousa Oikonomou
- Department of Internal Medicine, University Hospital of Patras, Rion, Greece
| | | | - Sofia Karteri
- Division of Oncology, Department of Medicine, University Hospital of Patras, Rion, Greece
| | - Dimitrios Bousis
- Department of Internal Medicine, University Hospital of Patras, Rion, Greece
| | | | | | - Markos Marangos
- Department of Internal Medicine, University Hospital of Patras, Rion, Greece
| |
Collapse
|
44
|
Napolitano F, Di Spigna G, Vargas M, Iacovazzo C, Pinchera B, Spalletti Cernia D, Ricciardone M, Covelli B, Servillo G, Gentile I, Postiglione L, Montuori N. Soluble Urokinase Receptor as a Promising Marker for Early Prediction of Outcome in COVID-19 Hospitalized Patients. J Clin Med 2021; 10:4914. [PMID: 34768433 PMCID: PMC8584815 DOI: 10.3390/jcm10214914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has rapidly spread to become a global pandemic, putting a strain on health care systems. SARS-CoV-2 infection may be associated with mild symptoms or, in severe cases, lead patients to the intensive care unit (ICU) or death. The critically ill patients suffer from acute respiratory distress syndrome (ARDS), sepsis, thrombotic complications and multiple organ failure. For optimization of hospital resources, several molecular markers and algorithms have been evaluated in order to stratify COVID-19 patients, based on the risk of developing a mild, moderate, or severe disease. Here, we propose the soluble urokinase receptor (suPAR) as a serum biomarker of clinical severity and outcome in patients who are hospitalized with COVID-19. In patients with mild disease course, suPAR levels were increased as compared to healthy controls, but they were dramatically higher in severely ill patients. Since early identification of disease progression may facilitate the individual management of COVID-19 symptomatic patients and the time of admission to the ICU, we suggest paying more clinical attention on patients with high suPAR levels.
Collapse
Affiliation(s)
- Filomena Napolitano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; (F.N.); (G.D.S.); (D.S.C.); (M.R.); (B.C.); (L.P.)
| | - Gaetano Di Spigna
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; (F.N.); (G.D.S.); (D.S.C.); (M.R.); (B.C.); (L.P.)
| | - Maria Vargas
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (M.V.); (C.I.); (G.S.)
| | - Carmine Iacovazzo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (M.V.); (C.I.); (G.S.)
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery-Section of Infectious Diseases, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (B.P.); (I.G.)
| | - Daniela Spalletti Cernia
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; (F.N.); (G.D.S.); (D.S.C.); (M.R.); (B.C.); (L.P.)
| | - Margherita Ricciardone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; (F.N.); (G.D.S.); (D.S.C.); (M.R.); (B.C.); (L.P.)
| | - Bianca Covelli
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; (F.N.); (G.D.S.); (D.S.C.); (M.R.); (B.C.); (L.P.)
| | - Giuseppe Servillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (M.V.); (C.I.); (G.S.)
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery-Section of Infectious Diseases, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (B.P.); (I.G.)
| | - Loredana Postiglione
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; (F.N.); (G.D.S.); (D.S.C.); (M.R.); (B.C.); (L.P.)
| | - Nunzia Montuori
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; (F.N.); (G.D.S.); (D.S.C.); (M.R.); (B.C.); (L.P.)
| |
Collapse
|
45
|
Zhao L, Yu S, Wang L, Zhang X, Hou J, Li X. Blood suPAR, Th1 and Th17 cell may serve as potential biomarkers for elderly sepsis management. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:488-493. [PMID: 34369213 DOI: 10.1080/00365513.2021.1952483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Although soluble urokinase plasminogen activator receptor (suPAR), T helper (Th)-1 and Th17 cells are separately reported to be dysregulated and correlate with disease severity in several infection-mediated diseases, fewer studies report their interaction and clinical value in sepsis management. Thus, this study aimed to investigate the correlation of blood suPAR with Th1 and Th17 cell proportion, as well as their diagnostic and prognostic value in elderly sepsis patients. Totally, 223 elderly sepsis patients were recruited. Serum suPAR was detected by enzyme-linked immunosorbent assay. Besides, Th1 and Th17 cell proportion from CD4+ T cells were determined by flow cytometry. For sepsis severity evaluation, Acute Physiology and Chronic Health Evaluation (APACHE) II score and the Sequential Organ Failure Assessment (SOFA) score were used. Moreover, survival profile within 28 days was documented. The mean value of suPAR, Th1 cell proportion and Th17 cell proportion was 27.5 ± 15.1 ng/mL, 15.3 ± 4.3% and 4.0 ± 2.3%, respectively. Furthermore, suPAR was positively correlated with Th1 cell proportion, Th17 cell proportion, IFN-γ, IL-17 and TNF-α. Meanwhile, suPAR was positively correlated with APACHE II score and SOFA score, so did Th17 cell proportion. Regarding their prognostic value, suPAR and Th17 cell proportion were superior to differ survivors from deaths than Th1 cell proportion. SuPAR positively correlates with Th1, Th17 cell proportion; and they correlate with increased disease severity and mortality risk in elderly sepsis patients.
Collapse
Affiliation(s)
- Lixin Zhao
- The Second Department of Critical Care Medicine, Tangshan Grongren Hospital, Tangshan, China
| | - Sifang Yu
- Department of Critical Care Medicine, Tangshan Central Hospital, Tangshan, China
| | - Lin Wang
- The Second Department of Critical Care Medicine, Tangshan Grongren Hospital, Tangshan, China
| | - Xiuping Zhang
- Department of General Surgery and Urology, Caofeidian District Hospital, Tangshan, China
| | - Junming Hou
- The Second Department of Critical Care Medicine, Tangshan Grongren Hospital, Tangshan, China
| | - Xuesong Li
- The Second Department of Critical Care Medicine, Tangshan Grongren Hospital, Tangshan, China
| |
Collapse
|
46
|
Low level of plasminogen increases risk for mortality in COVID-19 patients. Cell Death Dis 2021; 12:773. [PMID: 34354045 PMCID: PMC8340078 DOI: 10.1038/s41419-021-04070-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The pathophysiology of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and especially of its complications is still not fully understood. In fact, a very high number of patients with COVID-19 die because of thromboembolic causes. A role of plasminogen, as precursor of fibrinolysis, has been hypothesized. In this study, we aimed to investigate the association between plasminogen levels and COVID-19-related outcomes in a population of 55 infected Caucasian patients (mean age: 69.8 ± 14.3, 41.8% female). Low levels of plasminogen were significantly associated with inflammatory markers (CRP, PCT, and IL-6), markers of coagulation (D-dimer, INR, and APTT), and markers of organ dysfunctions (high fasting blood glucose and decrease in the glomerular filtration rate). A multidimensional analysis model, including the correlation of the expression of coagulation with inflammatory parameters, indicated that plasminogen tended to cluster together with IL-6, hence suggesting a common pathway of activation during disease's complication. Moreover, low levels of plasminogen strongly correlated with mortality in COVID-19 patients even after multiple adjustments for presence of confounding. These data suggest that plasminogen may play a pivotal role in controlling the complex mechanisms beyond the COVID-19 complications, and may be useful both as biomarker for prognosis and for therapeutic target against this extremely aggressive infection.
Collapse
|
47
|
Beaudoin CA, Jamasb AR, Alsulami AF, Copoiu L, van Tonder AJ, Hala S, Bannerman BP, Thomas SE, Vedithi SC, Torres PH, Blundell TL. Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Comput Struct Biotechnol J 2021; 19:3938-3953. [PMID: 34234921 PMCID: PMC8249111 DOI: 10.1016/j.csbj.2021.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/19/2022] Open
Abstract
Potential coronavirus spike protein mimicry revealed by structural comparison. Human and non-human protein potential interactions with virus identified. Predicted structural mimicry corroborated by protein–protein docking. Epitope-based alignments may help guide vaccine efforts.
Viruses often encode proteins that mimic host proteins in order to facilitate infection. Little work has been done to understand the potential mimicry of the SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins, particularly the receptor-binding motifs, which could be important in determining tropism and druggability of the virus. Peptide and epitope motifs have been detected on coronavirus spike proteins using sequence homology approaches; however, comparing the three-dimensional shape of the protein has been shown as more informative in predicting mimicry than sequence-based comparisons. Here, we use structural bioinformatics software to characterize potential mimicry of the three coronavirus spike protein receptor-binding motifs. We utilize sequence-independent alignment tools to compare structurally known protein models with the receptor-binding motifs and verify potential mimicked interactions with protein docking simulations. Both human and non-human proteins were returned for all three receptor-binding motifs. For example, all three were similar to several proteins containing EGF-like domains: some of which are endogenous to humans, such as thrombomodulin, and others exogenous, such as Plasmodium falciparum MSP-1. Similarity to human proteins may reveal which pathways the spike protein is co-opting, while analogous non-human proteins may indicate shared host interaction partners and overlapping antibody cross-reactivity. These findings can help guide experimental efforts to further understand potential interactions between human and coronavirus proteins.
Collapse
Affiliation(s)
- Christopher A. Beaudoin
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Corresponding authors.
| | - Arian R. Jamasb
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Department of Computer Science & Technology, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0FD, United Kingdom
| | - Ali F. Alsulami
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Liviu Copoiu
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, United Kingdom
| | - Sharif Hala
- King Abdullah International Medical Research Centre – Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Bridget P. Bannerman
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Sherine E. Thomas
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Sundeep Chaitanya Vedithi
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Pedro H.M. Torres
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tom L. Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Corresponding authors.
| |
Collapse
|
48
|
Magomedov A, Zickler D, Karaivanov S, Kurreck A, Münch FH, Kamhieh-Milz J, Ferse C, Kahl A, Piper SK, Eckardt KU, Dörner T, Kruse JM. Viscoelastic testing reveals normalization of the coagulation profile 12 weeks after severe COVID-19. Sci Rep 2021; 11:13325. [PMID: 34172793 PMCID: PMC8233385 DOI: 10.1038/s41598-021-92683-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
COVID 19 is associated with a hypercoagulable state and frequent thromboembolic complications. For how long this acquired abnormality lasts potentially requiring preventive measures, such as anticoagulation remains to be delineated. We used viscoelastic rotational thrombelastometry (ROTEM) in a single center cohort of 13 critical ill patients and performed follow up examinations three months after discharge from ICU. We found clear signs of a hypercoagulable state due to severe hypofibrinolysis and a high rate of thromboembolic complications during the phase of acute illness. Three month follow up revealed normalization of the initial coagulation abnormality and no evidence of venous thrombosis in all thirteen patients. In our cohort the coagulation profile was completely normalized three months after COVID-19. Based on these findings, discontinuation of anticoagulation can be discussed in patients with complete venous reperfusion.
Collapse
Affiliation(s)
- Abakar Magomedov
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Stoyan Karaivanov
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Annika Kurreck
- Department of Hematology and Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frédéric H Münch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medince, Universitätsmedizin Berlin, Berlin, Germany
- Wimedko GmbH, Manfred-von-Richthofen Str. 15, 12101, Berlin, Germany
| | - Caroline Ferse
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Kahl
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sophie K Piper
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology und Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ) Berlin, Berlin, Germany
| | - Jan Matthias Kruse
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
49
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
50
|
Kerget B, Kerget F, Aksakal A, Aşkın S, Uçar EY, Sağlam L. Evaluation of the relationship between KIM-1 and suPAR levels and clinical severity in COVID-19 patients: A different perspective on suPAR. J Med Virol 2021; 93:5568-5573. [PMID: 34019703 PMCID: PMC8242801 DOI: 10.1002/jmv.27099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is one of the most pressing health problems of this century, but our knowledge of the disease is still limited. In this study, we aimed to examine serum-soluble urokinase plasminogen activator receptor (suPAR) and kidney injury molecule 1 (KIM-1) levels based on the clinical course of COVID-19. Our study included 102 patients over the age of 18 who were diagnosed as having COVID-19 between September 2020 and December 2020 and a control group of 50 health workers over the age of 18 whose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR results were negative. KIM-1 was measured by ELISA and suPAR by suPARnostic™ assay. Analysis of previously identified variables of prognostic significance in COVID-19 revealed high neutrophil to lymphocyte ratio, lactose dehydrogenase, prothrombin time, C-reactive protein, PaO2 /FiO2 , D-dimer, ferritin, and fibrinogen levels in patients with severe disease (p < 0.05 for all). KIM-1 and suPAR levels were significantly higher in COVID-19 patients compared to the control group (p = 0.001 for all). KIM-1 level was higher in severe patients compared to moderate patients (p = 0.001), while suPAR level was lower (p = 0.001). KIM-1, which is believed to play an important role in the endocytosis of SARS-CoV-2, was elevated in patients with severe COVID-19 and may be a therapeutic target in the future. SuPAR may have a role in defense mechanism and fibrinolysis, and low levels in severe patients may be associated with poor prognosis in the early period.
Collapse
Affiliation(s)
- Buğra Kerget
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Ferhan Kerget
- Department of Infection Diseases and Clinical Microbiology, Health Sciences University Erzurum Regional Education and Research Hospital, Yakutiye, Erzurum, Turkey
| | - Alperen Aksakal
- Department of Pulmonary Diseases, Health Sciences University Erzurum Regional Education and Research Hospital, Yakutiye, Erzurum, Turkey
| | - Seda Aşkın
- Department of Biochemistry, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Elif Yılmazel Uçar
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Leyla Sağlam
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| |
Collapse
|