1
|
Zhong H, Yao L, An H, Fang L, Liu X, Wang Q, Li Q, Liu D, Fan C, Zhang M, Zhang C, Zhang Y, Hao P. MrgD as a Novel Modeling and Treatment Target for Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2025; 45:e164-e183. [PMID: 40143817 DOI: 10.1161/atvbaha.124.322337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The hyperproliferation of smooth muscle cells and deposition of collagen in the pulmonary artery are among the primary characteristics of pulmonary hypertension (PH). These processes contribute to vascular remodeling, ultimately leading to elevated pulmonary artery pressure and right ventricular failure. The MrgD (Mas-related G-protein-coupled receptor member D) exhibits close associations with certain cardiovascular diseases; however, its role in PH remains unclear. METHODS The effects of the absence or activation of MrgD on PH were investigated using PH animal models induced by Sugen5416+hypoxia, monocrotaline, as well as global or smooth muscle-specific knockout of MrgD. Signaling pathways regulated by MrgD were investigated using high-throughput screening of data from single-cell sequencing of mouse lungs and RNA sequencing of human pulmonary artery smooth muscle cells, as well as other molecular biology experiments. RESULTS We observed decreased MrgD levels in animal models and patients with PH. Both global and conditional knockout of MrgD exacerbated hypoxia-induced PH in mice. MrgD activation attenuated the PH phenotypes in several established models, although these protective effects were reversed in MrgD-knockout mice. Transcriptome analysis revealed a significantly differentially expressed gene, PIM1 (proviral integration site for Moloney murine leukemia virus 1), as a potential MrgD target. Silencing MrgD increased pulmonary artery smooth muscle cell proliferation by facilitating the AKT (protein kinase B)-mediated interaction of MAZ (MYC-associated Zinc-finger protein) with PIM1. MrgD activation inhibited this pathway and was ineffective in PH mice with pulmonary artery smooth muscle cells overexpressing PIM1. CONCLUSIONS MrgD deficiency in pulmonary arterioles increases susceptibility to PH, particularly in a hypoxic environment. MrgD is a potential modeling and therapeutic target for PH.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Humans
- Mice, Knockout
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Vascular Remodeling
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Cell Proliferation
- Mice, Inbred C57BL
- Male
- Hypoxia/complications
- Mice
- Cells, Cultured
- Monocrotaline
- Indoles
- Pyrroles
Collapse
Affiliation(s)
- Hongyu Zhong
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lina Yao
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huailong An
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijun Fang
- Department of Pulmonary and Critical Care Medicine (L.F.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolin Liu
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qianqian Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (Q.W.)
| | - Qimou Li
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongdong Liu
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Fan
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mei Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Panpan Hao
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Chen J, Jiang C, Hu X, Zhang Y, Gao X, Guo X, Jin H, Zhang Y, Wu Y, Liang J, Liu P, Liu P. Mechanism of pulmonary arterial vascular cell dysfunction in pulmonary hypertension in broiler chickens. Avian Pathol 2025:1-12. [PMID: 40272452 DOI: 10.1080/03079457.2025.2480802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025]
Abstract
Broiler ascites syndrome is a common and complex disease in broiler farming, which severely impacts broiler growth performance and health and brings huge economic losses to the breeding industry. Hypoxia has been shown to be an important cause of this disease. Prolonged exposure of broiler chickens to a hypoxic environment induces pulmonary vasoconstriction, which leads to an increase in pulmonary artery pressure, triggering pulmonary artery remodelling and compensatory right ventricular hypertrophy, and ultimately ascites. Pulmonary artery remodelling is a process in which the vascular wall tissue structure and function undergo pathological changes after the pulmonary artery is stimulated by various injuries or hypoxia, including endothelial dysfunction, abnormal proliferation of pulmonary artery smooth muscle cells, vascular fibrosis, etc. When these cells are damaged or stimulated, they may undergo programmed cell death, an orderly and regulated mode of cell death that is important for maintaining the stability of the body's internal environment. It has been demonstrated that death modes such as apoptosis and autophagy are involved in the pathophysiologic process of pulmonary hypertension, but their specific molecular mechanisms are still unclear. In this review, we first describe the pathogenesis of broiler ascites, then describe the specific mechanism of dysfunction of pulmonary artery vascular cells in broiler ascites syndrome, and finally elaborate the progression of different programmed cell death in broiler pulmonary hypertension. This study aims to elucidate the specific mechanisms underlying the dysfunction of pulmonary artery vascular cells in broiler pulmonary hypertension, thereby enhancing our understanding of the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Juan Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Chenxi Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Xiaoqin Hu
- Jiangxi Agricultural Engineering Vocational College, Zhangshu, Jiangxi, People's Republic of China
| | - Yun Zhang
- Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan, People's Republic of China
| | - Xiaona Gao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Xiaoquan Guo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Huibo Jin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Ying Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Yirong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Jing Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Pei Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Ping Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| |
Collapse
|
3
|
Peng W, Wan G, Cheng S, Li G, Liu L, Chen J, Liu P, Guo X, Gao X, Cai G, Zheng Z, Liu P. Potential role of TRAF2 in pulmonary hypertension in broiler chickens and preparation and specificity analysis of its polyclonal antibody. Int J Biol Macromol 2025; 295:139741. [PMID: 39798767 DOI: 10.1016/j.ijbiomac.2025.139741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Due to the lack of specific antibody anti-chicken tumor necrosis factor receptor-associated factor 2 (TRAF2), it is difficult to further explore the role of TRAF2 in pulmonary artery remodeling in pulmonary hypertension(PH) in broilers. In this experiment, we prepared a polyclonal antibody to TRAF2 by constructing a TRAF2 recombinant protein prokaryotic expression vector and analyzed the expression of TRAF2 in in vivo and in vitro models of pulmonary hypertension in broiler chickens and the effect of TRAF2 on the activity and apoptosis of PASMCs. The results showed that after immunization with TRAF2 recombinant protein we obtained high titers of polyclonal antibodies, and astragalus polysaccharide as an immune adjuvant could enhance the effect of immunization. Antibody specificity showed that the TRAF2 polyclonal antibody specifically bound to TRAF2 protein in chickens and ducks but weakly to TRAF2 protein in rabbits, mice and goats.TRAF2 was significantly upregulated in an in vivo and in vitro model of PH in broilers. Knockdown of TRAF2 inhibited the activity of PASMCs and induced apoptosis in PASMCs. Our study lays the foundation for further research on the pathomechanism of PH in broiler chickens and provides new targets for its prevention and drug development.
Collapse
Affiliation(s)
- Wen Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Gen Wan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Sufang Cheng
- Jiangxi Biotech Vocational College, Nanchang, 330200, PR China
| | - Guyue Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Liling Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Juan Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Pei Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiaoquan Guo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiaona Gao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Gaofeng Cai
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zhanhong Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Ping Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
4
|
Lu Y, Liang X, Song J, Guan Y, Yang L, Shen R, Niu Y, Guo Z, Zhu N. Niclosamide modulates phenotypic switch and inflammatory responses in human pulmonary arterial smooth muscle cells. Mol Cell Biochem 2025; 480:1583-1593. [PMID: 38980591 DOI: 10.1007/s11010-024-05061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) represent key steps of pulmonary vascular remodeling, leading to the development of pulmonary arterial hypertension (PAH) and right ventricular failure. Niclosamide (NCL), an FDA-approved anthelmintic, has been shown to regulate cell proliferation, migration, invasion, and apoptosis through a variety of signaling pathways. However, its role on modulating the phenotypic switch and inflammatory responses in PASMCs remains unclear. In this study, cell proliferation assay showed that NCL inhibited PDGF-BB induced proliferation of human PASMCs in a dose-dependent manner. Western blot analysis further confirmed a notable reduction in the expression of cyclin D1 and PCNA proteins. Subsequently, flow cytometry analysis demonstrated that NCL induced an increased percentage of cells in the G1 phase while promoting apoptosis in PASMCs. Moreover, both scratch wound assay and transwell assay confirmed that NCL decreased PDGF-BB-induced migration of PASMCs. Mechanistically, western blot revealed that pretreatment of PASMCs with NCL markedly restored the protein levels of SMA, SM22, and calponin, while reducing phosphorylation of P38/STAT3 signaling in the presence of PDGF-BB. Interestingly, macrophages adhesion assay showed that NCL markedly reduced recruitment of Calcein-AM labeled RAW264.7 by TNFα-stimulated PASMCs. Western blot revealed that NCL suppressed TNFα-induced expression of both of VCAM-1 and ICAM-1 proteins. Furthermore, pretreatment of PASMCs with NCL significantly inhibited NLRP3 inflammasome activity through reducing NLRP3, AIM2, mature interleukin-1β (IL-β), and cleaved Caspase-1 proteins expression. Together, these results suggested versatile effects of NCL on controlling of proliferation, migration, and inflammatory responses in PASMCs through modulating different pathways, indicating that repurposing of NCL may emerge as a highly effective drug for PAH treatment.
Collapse
Affiliation(s)
- Yuwen Lu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaogan Liang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yugen Guan
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Liang Yang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Rongrong Shen
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yunpu Niu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Ni Zhu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Li M, Zhao C, Xiang H, Wang Y, Gao R, Cai Q, Chen Q, Chen Z, Hu L, Li Q. Design, synthesis and optimization of pyrazolo[3,4-b] pyridine derivatives as Hsp110-STAT3 interaction disruptors for the treatment of pulmonary arterial hypertension. Bioorg Chem 2024; 153:107888. [PMID: 39423772 DOI: 10.1016/j.bioorg.2024.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal cardiovascular disorder that is characterized by pulmonary vascular remodeling. Our previous results demonstrated that heat shock protein (Hsp110) was significantly activated to induce vascular remodeling by enhancing the Hsp110-STAT3 interaction. The development of inhibitors that disrupt this association represents a novel strategy for the treatment of PAH. This study is committed to finding new inhibitors targeting the Hsp110-STAT3 interaction based on the structure of the lead compound 2h. A fusion design principle was employed in conjunction with structural optimization in the identification of the compound 10b. In vitro data indicates that 10b exhibited greater potency in the inhibition of pulmonary vascular cells malignant phenotypes via impeding the chaperone function of Hsp110 and the Hsp110-STAT3 interaction. In hypoxia-induced PAH rats, administration of 10b significantly attenuated vascular remodeling and right ventricular hypertrophy by inhibiting the Hsp110-STAT3 association. In short, this work identified a novel and promising lead compound for the development of anti-PAH drugs targeting the Hsp110-STAT3 interaction.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Honglin Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Yu Wang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Ruizhe Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Qinling Cai
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Qingsong Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
6
|
Nagayama K, Nogami K, Sugano S, Nakazawa M. Dedifferentiation- and aging-induced loss of mechanical contractility and polarity in vascular smooth muscle cells: Heterogeneous changes in macroscopic and microscopic behavior of cells in serial passage culture. J Mech Behav Biomed Mater 2024; 160:106744. [PMID: 39303420 DOI: 10.1016/j.jmbbm.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Dedifferentiation and aging of vascular smooth muscle cells (VSMCs) are associated with serious vascular diseases, such as arteriosclerosis and aneurysm. However, how cell dedifferentiation and aging affect cellular mechanical behaviors at the single-cell and intracellular structure levels remains unclear. An in-depth understanding of these interactions is extremely important for understanding the mechanism underlying VSMC mechanical integrity and homeostatic regulation of vascular walls. Herein, we systematically investigated changes in VSMC morphology, structure, contractility, and motility during dedifferentiation and aging induced by serial passage culture using traction force microscopy with elastic micropillar substrates, laser nanodissection of cytoskeletons, confocal fluorescence microscopy, and atomic force microscopy. We found that VSMC dedifferentiation started in the middle stage of serial passage culture, accompanied by a transient cell spreading in the cell width and decrease in contractile protein expression. Dedifferentiated VSMCs showed a significant decrease in the contraction and stiffness of individual actin stress fibers; however, their overall cell traction forces were maintained. Simultaneously, a significant increase in cell motility and the number of actin fibers was observed in dedifferentiated VSMCs, which may be associated with the enhancement of cell migration and disruption of cell/tissue integrity during the early stage of vascular diseases. As cell senescence progressed in the later stage of serial passage culture, VSMCs displayed reduced cell spreading and migration with decrease in the overall cell traction forces and drastic reduction in mechanical polarity of cell structures and forces. These results suggested that cell senescence causes loss of mechanical contractility and polarity in VSMCs, which may be an important factor in vascular disease progression. The experimental systems established in this study can be powerful tools for understanding the mechanisms underlying cellular dedifferentiation and aging from a biomechanical perspective.
Collapse
Affiliation(s)
- Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan.
| | - Kenzo Nogami
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| | - Shunta Sugano
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| | - Miku Nakazawa
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| |
Collapse
|
7
|
Zhang D, Gou Z, Qu Y, Su X. Understanding how methyltransferase-like 3 functions in lung diseases: From pathogenesis to clinical application. Biomed Pharmacother 2024; 179:117421. [PMID: 39241568 DOI: 10.1016/j.biopha.2024.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Lung diseases have complex pathogenesis and treatment challenges, showing an obvious increase in the rate of diagnosis and death every year. Therefore, elucidating the mechanism for their pathogenesis and treatment ineffective from novel views is essential and urgent. Methyltransferase-like 3 (METTL3) is a novel post-transcriptional regulator for gene expression that has been implicated in regulating lung diseases, including that observed in chronic conditions such as pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), and chronic obstructive pulmonary disease (COPD), as well as acute conditions such as pneumonia, severe acute respiratory syndrome coronavirus 2 infection, and sepsis-induced acute respiratory distress syndrome. Notably, a comprehensive summary and analysis of findings from these studies might help understand lung diseases from the novel view of METTL3-regulated mechanism, however, such a review is still lacking. Therefore, this review aims to bridge such shortage by summarising the roles of METTL3 in lung diseases, establishing their interrelationships, and elucidating the potential applications of METTL3 regarding diagnosis, treatment, and prognosis. The analysis collectively suggests METTL3 is contributable to the onset and progression of these lung diseases, thereby prospecting METTL3 as a valuable biomarker for their diagnosis, treatment, and prognosis. In conclusion, this review offers elucidation into the correlation between METTL3 and lung diseases in both research and clinical settings and highlights potential avenues for exploring the roles of METTL3 in the respiratory system.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yi Qu
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Wang E, Zhang B, Huang L, Li P, Han R, Zhou S, Zeng D, Wang R. LncRNA MIR210HG promotes phenotype switching of pulmonary arterial smooth muscle cells through autophagy-dependent ferroptosis pathway. Apoptosis 2024; 29:1648-1662. [PMID: 38635022 DOI: 10.1007/s10495-024-01963-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a pathophysiological syndrome in which pulmonary vascular pressure increases under hypoxic stimulation and there is an urgent need to develop emerging therapies for the treatment of HPH. LncRNA MIR210HG is a long non-coding RNA closely related to hypoxia and has been widely reported in a variety of tumor diseases. But its mechanism in hypoxic pulmonary hypertension is not clear. In this study, we identified for the first time the potential effect of MIR210HG on disease progression in HPH. Furthermore, we investigated the underlying mechanism through which elevated levels of MIR210HG promotes the transition from a contractile phenotype to a synthetic phenotype in PASMCs under hypoxia via activation of autophagy-dependent ferroptosis pathway. While overexpression of HIF-2α in PASMCs under hypoxia significantly reversed the phenotypic changes induced by MIR210HG knockdown. We further investigated the potential positive regulatory relationship between STAT3 and the transcription of MIR210HG in PASMCs under hypoxic conditions. In addition, we established both in vivo and in vitro models of HPH to validate the differential expression of specific markers associated with hypoxia. Our findings suggest a potential mechanism of LncRNA MIR210HG in the progression of HPH and offer potential targets for disease intervention and treatment.
Collapse
Affiliation(s)
- Enze Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ling Huang
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei, 230001, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei, 230022, China.
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital, Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
9
|
Deng ZH, Chen YX, Xue-Gao, Yang JY, Wei XY, Zhang GX, Qian JX. Mesenchymal stem cell-derived exosomes ameliorate hypoxic pulmonary hypertension by inhibiting the Hsp90aa1/ERK/pERK pathway. Biochem Pharmacol 2024; 226:116382. [PMID: 38909785 DOI: 10.1016/j.bcp.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.
Collapse
Affiliation(s)
- Zhi-Hua Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Yao-Xin Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xue-Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing-Yu Yang
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xia-Ying Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Guo-Xing Zhang
- Department of Physiology and Neurosciences, Medical College of Soochow University, Suzhou 215000, China
| | - Jin-Xian Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
10
|
Hu Y, Zhao C, Tan W, Li M, Wang Y, Gao R, Chen Z, Jin Z, Hu L, Li Q. Discovery and Optimization of Hsp110 and sGC Dual-Target Regulators for the Treatment of Pulmonary Arterial Hypertension. J Med Chem 2024. [PMID: 39058542 DOI: 10.1021/acs.jmedchem.4c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Currently, bifunctional agents with vasodilation and ameliorated vascular remodeling effects provide more advantages for the treatment of pulmonary arterial hypertension (PAH). In this study, we first screened the hit 1 with heat shock protein 110 (Hsp110) inhibition effect from our in-house compound library with soluble guanylate cyclase (sGC) activity. Subsequently, a series of novel bisamide derivatives were designed and synthesized as Hsp110/sGC dual-target regulators based on hit 1. Among them, 17i exhibited optimal Hsp110 and sGC molecular activities as well as remarkable cell malignant phenotypes inhibitory and vasodilatory effects in vitro. Moreover, compared to riociguat, 17i showed superior efficacy in attenuating pulmonary vascular remodeling and right ventricular hypertrophy via Hsp110 suppression in hypoxia-induced PAH rat models (i.g.). Notably, our study successfully demonstrated that the simultaneous regulation of Hsp110 and sGC dual targets was a novel and feasible strategy for PAH therapy, providing a promising lead compound for anti-PAH drug discovery.
Collapse
Affiliation(s)
- Yuanbo Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Wenhua Tan
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Mengqi Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Yu Wang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Ruizhe Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhenming Jin
- College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| |
Collapse
|
11
|
Kang K, Sun C, Li H, Liu X, Deng J, Chen S, Zeng L, Chen J, Liu X, Kuang J, Xiang J, Cheng J, Liao X, Lin M, Zhang X, Zhan C, Liu S, Wang J, Niu Y, Liu C, Liang C, Zhu J, Liang S, Tang H, Gou D. N6-methyladenosine-driven miR-143/145-KLF4 circuit orchestrates the phenotypic switch of pulmonary artery smooth muscle cells. Cell Mol Life Sci 2024; 81:256. [PMID: 38866991 PMCID: PMC11335293 DOI: 10.1007/s00018-024-05304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Pulmonary hypertension (PH) is characterized by vascular remodeling predominantly driven by a phenotypic switching in pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanisms for this phenotypic alteration remain incompletely understood. Here, we identified that RNA methyltransferase METTL3 is significantly elevated in the lungs of hypoxic PH (HPH) mice and rats, as well as in the pulmonary arteries (PAs) of HPH rats. Targeted deletion of Mettl3 in smooth muscle cells exacerbated hemodynamic consequences of hypoxia-induced PH and accelerated pulmonary vascular remodeling in vivo. Additionally, the absence of METTL3 markedly induced phenotypic switching in PASMCs in vitro. Mechanistically, METTL3 depletion attenuated m6A modification and hindered the processing of pri-miR-143/145, leading to a downregulation of miR-143-3p and miR-145-5p. Inhibition of hnRNPA2B1, an m6A mediator involved in miRNA maturation, similarly resulted in a significant reduction of miR-143-3p and miR-145-5p. We demonstrated that miR-145-5p targets Krüppel-like factor 4 (KLF4) and miR-143-3p targets fascin actin-bundling protein 1 (FSCN1) in PASMCs. The decrease of miR-145-5p subsequently induced an upregulation of KLF4, which in turn suppressed miR-143/145 transcription, establishing a positive feedback circuit between KLF4 and miR-143/145. This regulatory circuit facilitates the persistent suppression of contractile marker genes, thereby sustaining PASMC phenotypic switch. Collectively, hypoxia-induced upregulation of METTL3, along with m6A mediated regulation of miR-143/145, might serve as a protective mechanism against phenotypic switch of PASMCs. Our results highlight a potential therapeutic strategy targeting m6A modified miR-143/145-KLF4 loop in the treatment of PH.
Collapse
Affiliation(s)
- Kang Kang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Chuannan Sun
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Xiaojia Liu
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Jingyuan Deng
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Silei Chen
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Le Zeng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Jiahao Chen
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Xinyi Liu
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Jiahao Kuang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Jingjing Xiang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Jingqian Cheng
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Xiaoyun Liao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Mujin Lin
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Xingshi Zhang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Chuzhi Zhan
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Sisi Liu
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Cuilian Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Cai Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Jinsheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
13
|
Liu Q, Yang Y, Wu M, Wang M, Yang P, Zheng J, Du Z, Pang Y, Bao L, Niu Y, Zhang R. Hub gene ELK3-mediated reprogramming lipid metabolism regulates phenotypic switching of pulmonary artery smooth muscle cells to develop pulmonary arterial hypertension induced by PM 2.5. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133190. [PMID: 38071773 DOI: 10.1016/j.jhazmat.2023.133190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Fine particulate matter (PM2.5) as an environmental pollutant is related with respiratory and cardiovascular diseases. Pulmonary arterial hypertension (PAH) was characterized by incremental pulmonary artery pressure and pulmonary arterial remodeling, leading to right ventricular hypertrophy, and finally cardiac failure and death. The adverse effects on pulmonary artery and the molecular biological mechanism underlying PM2.5-caused PAH has not been elaborated clearly. In the current study, the ambient PM2.5 exposure mice model along with HPASMCs models were established. Based on bioinformatic methods and machine learning algorithms, the hub genes in PAH were screened and then adverse effects on pulmonary artery and potential mechanism was studied. Our results showed that chronic PM2.5 exposure contributed to increased pulmonary artery pressure, pulmonary arterial remodeling and right ventricular hypertrophy in mice. In vitro, PM2.5 induced phenotypic switching in HPASMCs, which served as the early stage of PAH. In mechanism, we investigated that PM2.5-mediated mitochondrial dysfunction could induce phenotypic switching in HPASMCs, which was possibly through reprogramming lipid metabolism. Next, we used machine learning algorithm to identify ELK3 as potential hub gene for mitochondrial fission. Besides, the effect of DNA methylation on ELK3 was further detected in HPASMCs after PM2.5 exposure. The results provided novel directions for protection of pulmonary vasculature injury, against adverse environmental stimuli. This work also provided a new idea for the prevention of PAH, as well as provided experimental evidence for the targeted therapy of PAH.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Zheng
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Zhe Du
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
14
|
Hu S, Zhang Y, Qiu C, Li Y. RGS10 inhibits proliferation and migration of pulmonary arterial smooth muscle cell in pulmonary hypertension via AKT/mTORC1 signaling. Clin Exp Hypertens 2023; 45:2271186. [PMID: 37879890 DOI: 10.1080/10641963.2023.2271186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Objective: Excessive proliferation and migration of pulmonary arterial smooth muscle cell (PASMC) is a core event of pulmonary hypertension (PH). Regulators of G protein signaling 10 (RGS10) can regulate cellular proliferation and cardiopulmonary diseases. We demonstrate whether RGS10 also serves as a regulator of PH.Methods: PASMC was challenged by hypoxia to induce proliferation and migration. Adenovirus carrying Rgs10 gene (Ad-Rgs10) was used for external expression of Rgs10. Hypoxia/SU5416 or MCT was used to induce PH. Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were used to validate the establishment of PH model.Results: RGS10 was downregulated in hypoxia-challenged PASMC. Ad-Rgs10 significantly suppressed proliferation and migration of PASMC after hypoxia stimulus, while silencing RGS10 showed contrary effect. Mechanistically, we observed that phosphorylation of S6 and 4E-Binding Protein 1 (4EBP1), the main downstream effectors of mammalian target of rapamycin complex 1 (mTORC1) as well as phosphorylation of AKT, the canonical upstream of mTORC1 in hypoxia-induced PASMC were negatively modulated by RGS10. Both recovering mTORC1 activity and restoring AKT activity abolished these effects of RGS10 on PASMC. More importantly, AKT activation also abolished the inhibitory role of RGS10 in mTORC1 activity in hypoxia-challenged PASMC. Finally, we also observed that overexpression of RGS10 in vivo ameliorated pulmonary vascular wall thickening and reducing RVSP and RVHI in mouse PH model.Conclusion: Our findings reveal the modulatory role of RGS10 in PASMC and PH via AKT/mTORC1 axis. Therefore, targeting RGS10 may serve as a novel potent method for the prevention against PH."
Collapse
Affiliation(s)
- Sheng Hu
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Yijie Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Chenming Qiu
- Department of Burn, The General Hospital of Western Theater Command, Chengdu, China
| | - Ying Li
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
15
|
Zheng Y, Yuan P, Zhang Z, Fu Y, Li S, Ruan Y, Li P, Chen Y, Feng W, Zheng X. Fatty Oil of Descurainia Sophia Nanoparticles Improve Monocrotaline-Induced Pulmonary Hypertension in Rats Through PLC/IP3R/Ca 2+ Signaling Pathway. Int J Nanomedicine 2023; 18:7483-7503. [PMID: 38090366 PMCID: PMC10714987 DOI: 10.2147/ijn.s436866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Fatty oil of Descurainia Sophia (OIL) has poor stability and low solubility, which limits its pharmacological effects. We hypothesized that fatty oil nanoparticles (OIL-NPs) could overcome this limitation. The protective effect of OIL-NPs against monocrotaline-induced lung injury in rats was studied. Methods We prepared OIL-NPs by wrapping fatty oil with polylactic-polyglycolide nanoparticles (PLGA-NPs) and conducted in vivo and in vitro experiments to explore its anti-pulmonary hypertension (PH) effect. In vitro, we induced malignant proliferation of pulmonary artery smooth muscle cells (RPASMC) using anoxic chambers, and studied the effects of OIL-NPs on the malignant proliferation of RPASMC cells and phospholipase C (PLC)/inositol triphosphate receptor (IP3R)/Ca2+ signal pathways. In vivo, we used small animal echocardiography, flow cytometry, immunohistochemistry, western blotting (WB), polymerase chain reaction (PCR) and metabolomics to explore the effects of OIL-NPs on the heart and lung pathological damage and PLC/IP3R/Ca2+ signal pathway of pulmonary hypertension rats. Results We prepared fatty into OIL-NPs. In vitro, OIL-NPs could improve the mitochondrial function and inhibit the malignant proliferation of RPASMC cells by inhibiting the PLC/IP3R/Ca2+signal pathway. In vivo, OIL-NPs could reduce the pulmonary artery pressure of rats and alleviate the pathological injury and inflammatory reaction of heart and lung by inhibiting the PLC/IP3R/Ca2+ signal pathway. Conclusion OIL-NPs have anti-pulmonary hypertension effect, and the mechanism may be related to the inhibition of PLC/IP3R/Ca2+signal pathway.
Collapse
Affiliation(s)
- Yajuan Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Peipei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, People’s Republic of China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, People’s Republic of China
| | - Saifei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Yuan Ruan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Panying Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, People’s Republic of China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450008, People’s Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, People’s Republic of China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450008, People’s Republic of China
| |
Collapse
|
16
|
Olajuyin AM, Olajuyin AK, Zhang X, Hu Q. Immunomodulatory macrophages and Treg in pulmonary hypertension. COMPARATIVE CLINICAL PATHOLOGY 2023; 33:163-173. [DOI: 10.1007/s00580-023-03540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2025]
|
17
|
Zhao C, Le X, Li M, Hu Y, Li X, Chen Z, Hu G, Hu L, Li Q. Inhibition of Hsp110-STAT3 interaction in endothelial cells alleviates vascular remodeling in hypoxic pulmonary arterial Hypertension model. Respir Res 2023; 24:289. [PMID: 37978368 PMCID: PMC10655391 DOI: 10.1186/s12931-023-02600-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary vascular remodeling which is associated with the malignant phenotypes of pulmonary vascular cells. Recently, the effects of heat shock protein 110 (Hsp110) in human arterial smooth muscle cells were reported. However, the underlying roles and mechanisms of Hsp110 in human pulmonary arterial endothelial cells (HPAECs) that was disordered firstly at the early stage of PAH remain unknown. METHODS In this research, the expression of Hsp110 in PAH human patients and rat models was investigated, and the Hsp110 localization was determined both in vivo and in vitro. The roles and mechanism of elevated Hsp110 in excessive cell proliferation and migration of HPAECs were assessed respectively exposed to hypoxia. Small molecule inhibitors targeting Hsp110-STAT3 interaction were screened via fluorescence polarization, anti-aggregation and western blot assays. Moreover, the effects of compound 6 on HPAECs abnormal phenotypes in vitro and pulmonary vascular remodeling of hypoxia-indued PAH rats in vivo by interrupting Hsp110-STAT3 interaction were evaluated. RESULTS Our studies demonstrated that Hsp110 expression was increased in the serum of patients with PAH, as well as in the lungs and pulmonary arteries of PAH rats, when compared to their respective healthy subjects. Moreover, Hsp110 levels were significantly elevated in HPAECs under hypoxia and mediated its aberrant phenotypes. Furthermore, boosted Hsp110-STAT3 interaction resulted in abnormal proliferation and migration via elevating p-STAT3 and c-Myc in HPAECs. Notably, we successfully identified compound 6 as potent Hsp110-STAT3 interaction inhibitor, which effectively inhibited HPAECs proliferation and migration, and significantly ameliorated right heart hypertrophy and vascular remodeling of rats with PAH. CONCLUSIONS Our studies suggest that elevated Hsp110 plays a vital role in HPAECs and inhibition of the Hsp110-STAT3 interaction is a novel strategy for improving vascular remodeling. In addition, compound 6 could serve as a promising lead compound for developing first-in-class drugs against PAH.
Collapse
Affiliation(s)
- Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Mengqi Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yuanbo Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| |
Collapse
|
18
|
Wei S, Lin L, Jiang W, Chen J, Gong G, Sui D. Naked cuticle homolog 1 prevents mouse pulmonary arterial hypertension via inhibition of Wnt/β-catenin and oxidative stress. Aging (Albany NY) 2023; 15:11114-11130. [PMID: 37857014 PMCID: PMC10637826 DOI: 10.18632/aging.205105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a poorly prognostic cardiopulmonary disease characterized by abnormal contraction and remodeling of pulmonary artery (PA). Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are considered as the major etiology of PA remodeling. As a negative regulator of Wnt/β-catenin pathway, naked cuticle homolog 1 (NKD1) is originally involved in the tumor growth and metastasis via affecting the proliferation and migration of different types of cancer cells. However, the effect of NKD1 on PAH development has not been investigated. In the current study, downregulated NKD1 was identified in hypoxia-challenged PASMCs. NKD1 overexpression by adenovirus carrying vector encoding Nkd1 (Ad-Nkd1) repressed hypoxia-induced proliferation and migration of PASMCs. Mechanistically, upregulating NKD1 inhibited excessive reactive oxygen species (ROS) generation and β-catenin expression in PASMCs after hypoxia stimulus. Both inducing ROS and recovering β-catenin expression abolished NKD1-mediated suppression of proliferation and migration in PASMCs. In vivo, we also observed decreased expression of NKD1 in dissected PAs of monocrotaline (MCT)-induced PAH model. Upregulating NKD1 by Ad-Nkd1 transfection attenuated the increase in right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), pulmonary vascular wall thickening, and vascular β-catenin expression after MCT treatment. After recovering β-catenin expression by SKL2001, the vascular protection of external expression of NKD1 was also abolished. Taken together, our data suggest that NKD1 inhibits the proliferation, migration of PASMC, and PAH via inhibition of β-catenin and oxidative stress. Thus, targeting NKD1 may provide novel insights into the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Shanwu Wei
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Lu Lin
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wen Jiang
- Department of Outpatient, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jie Chen
- Department of Cardiac Surgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Daming Sui
- Department of Pain Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
19
|
Heuckeroth RO. Sometimes Gut Smooth Muscle Forget That They Are Supposed to Contract: CARMN and Visceral Myopathy. Gastroenterology 2023; 165:27-29. [PMID: 37172742 PMCID: PMC11302369 DOI: 10.1053/j.gastro.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Robert O Heuckeroth
- Perelman School of Medicine, University of Pennsylvania and, The Children's Hospital of Philadelphia-Research Institute, Philadelphia, Pennsylvania.
| |
Collapse
|