1
|
Kim G, Grams RJ, Hsu KL. Advancing Covalent Ligand and Drug Discovery beyond Cysteine. Chem Rev 2025. [PMID: 40404146 DOI: 10.1021/acs.chemrev.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Targeting intractable proteins remains a key challenge in drug discovery, as these proteins often lack well-defined binding pockets or possess shallow surfaces not readily addressed by traditional drug design. Covalent chemistry has emerged as a powerful solution for accessing protein sites in difficult to ligand regions. By leveraging activity-based protein profiling (ABPP) and LC-MS/MS technologies, academic groups and industry have identified cysteine-reactive ligands that enable selective targeting of challenging protein sites to modulate previously inaccessible biological pathways. Cysteines within a protein are rare, however, and developing covalent ligands that target additional residues hold great promise for further expanding the ligandable proteome. This review highlights recent advancements in targeting amino acids beyond cysteine binding with an emphasis on tyrosine- and lysine-directed covalent ligands and their applications in chemical biology and therapeutic development. We outline the process of developing covalent ligands using chemical proteomic methodology, highlighting recent successful examples and discuss considerations for future expansion to additional amino acid sites on proteins.
Collapse
Affiliation(s)
- Gibae Kim
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - R Justin Grams
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Mamun MAA, Bakunts AG, Chernorudskiy AL. Targeted degradation of extracellular proteins: state of the art and diversity of degrader designs. J Hematol Oncol 2025; 18:52. [PMID: 40307925 PMCID: PMC12044797 DOI: 10.1186/s13045-025-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Selective elimination of proteins associated with the pathogenesis of diseases is an emerging therapeutic modality with distinct advantages over traditional inhibitor-based approaches. This strategy, called targeted protein degradation (TPD), is based on hijacking the cellular proteolytic machinery using chimeric degrader molecules that physically link the target protein of interest with the degradation effectors. The TPD era began with the development of PROteolysis TAtrgeting Chimeras (PROTACs) in 2001, with various methods and applications currently available. Classical PROTAC molecules are heterobifunctional chimeras linking target proteins with E3 ubiquitin ligases. This induced interaction leads to the ubiquitylation of the target protein, which is needed for its recognition and subsequent degradation by the cellular proteasomes. However, this technology is limited to intracellular proteins since the effectors involved (E3 ubiquitin ligases and proteasomes) are located in the cytosol. The related methods for selective destruction of proteins present in the extracellular space have only emerged recently and are collectively termed extracellular TPD (eTPD). The prototypic eTPD technology utilizes LYsosomal TArgeting Chimeras (LYTACs) that link extracellular target proteins (secreted or membrane-associated) to lysosome-targeting receptors (LTRs) on the cell surface. The resulting complex is then internalized by endocytosis and trafficked to lysosomes, where the target protein is degraded. The successful elimination of various extracellular proteins via LYTACs and related approaches has been reported, including several important targets in oncology that drive tumor growth and dissemination. This review summarizes current progress in the eTPD field and focuses primarily on the respective technological developments. It discusses the design principles and diversity of degrader molecules and the landscape of available targets and effectors that can be employed for eTPD. Finally, it emphasizes current open questions, challenges, and perspectives of this technological platform to promote the expansion of the eTPD toolkit and further development of its therapeutic applications.
Collapse
Affiliation(s)
- M A A Mamun
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Anush G Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Alexander L Chernorudskiy
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China.
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, 20156, Italy.
| |
Collapse
|
3
|
Paolino M, Tassone G, Governa P, Saletti M, Lami M, Carletti R, Sacchetta F, Pozzi C, Orlandini M, Manetti F, Olivucci M, Cappelli A. Morita-Baylis-Hillman Adduct Chemistry as a Tool for the Design of Lysine-Targeted Covalent Ligands. ACS Med Chem Lett 2025; 16:397-405. [PMID: 40104796 PMCID: PMC11912265 DOI: 10.1021/acsmedchemlett.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
The use of Targeted Covalent Inhibitors (TCIs) is an expanding strategy for the development of innovative drugs. It is driven by two fundamental steps: (1) recognition of the target site by the molecule and (2) establishment of the covalent interaction by its reactive group. The development of new TCIs depends on the development of new warheads. Here, we propose the use of Morita-Baylis-Hillman adducts (MBHAs) to covalently bind Lys strategically placed inside a lipophilic pocket. A human cellular retinoic acid binding protein II mutant (M2) was selected as a test bench for a library of 19 MBHAs. The noncovalent interaction step was investigated by molecular docking studies, while experimentally the entire library was incubated with M2 and crystallized to confirm covalent binding with the target lysine. The results, rationalized through covalent docking analysis, support our hypothesis of MBHAs as reactive scaffolds for the design of lysine-TCIs.
Collapse
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Giusy Tassone
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Paolo Governa
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Matteo Lami
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riccardo Carletti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Filippo Sacchetta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Maurizio Orlandini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
4
|
Lu H, Sun D, Wang Z, Cui H, Min L, Zhang H, Zhang Y, Wu J, Cai X, Ding X, Zhang M, Aliper A, Ren F, Zhavoronkov A. Design, Synthesis, and Biological Evaluation of Novel Orally Available Covalent CDK12/13 Dual Inhibitors for the Treatment of Tumors. J Med Chem 2025; 68:4148-4167. [PMID: 39948720 DOI: 10.1021/acs.jmedchem.4c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Cyclin-dependent kinases 12 and 13 (CDK12/13) safeguard genomic integrity by preferentially regulating gene expression in the DNA damage response (DDR). The CDK12/13-mediated upregulation of DDR genes and pathways significantly contributes to both tumorigenesis and the development of resistance to antitumor therapies. Thus, the functional inhibition of CDK12/13 offers an attractive strategy to combat carcinogenesis, particularly for refractory and treatment-resistant cancers. Here, we report the discovery of compound 12b as a novel, potent, orally available covalent CDK12/13 dual inhibitor with a promising safety profile and robust in vivo antitumor properties.
Collapse
Affiliation(s)
- Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Deheng Sun
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Zhen Wang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hui Cui
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Lihua Min
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Haoyu Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Yihong Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Jianping Wu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xin Cai
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi 145748, UAE
- Insilico Medicine Hong Kong Ltd, Hong Kong Science and Technology Park, Hong Kong 999077, China
| |
Collapse
|
5
|
Tang T, Luo J, Zhang D, Lu Y, Liao W, Zhang J. Innovative design and potential applications of covalent strategy in drug discovery. Eur J Med Chem 2025; 284:117202. [PMID: 39756145 DOI: 10.1016/j.ejmech.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research. Covalent inhibitors targeting EGFR, BTK, and KRAS (G12X), which overcome drug resistance and off-target, non-"medicinal" difficulties, as well as covalent inhibitors targeting SARS-CoV-2 Mpro, have paved the way for the development of new antiviral medicines. Furthermore, the use of covalent methods in drug discovery procedures, such as covalent PROTACs, covalent molecular gels, covalent probes, CoLDR, and Dual-targeted covalent inhibitors, preserves these tactics' inherent features while incorporating the advantages of covalent inhibitors. This synthesis opens up new therapeutic opportunities. This review comprehensively examines the use of covalent techniques in drug discovery, emphasizing their transformational potential for future drug development.
Collapse
Affiliation(s)
- Tianyong Tang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxiang Luo
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Dalton SE, Di Pietro O, Hennessy E. A Medicinal Chemistry Perspective on FDA-Approved Small Molecule Drugs with a Covalent Mechanism of Action. J Med Chem 2025; 68:2307-2313. [PMID: 39899741 DOI: 10.1021/acs.jmedchem.4c02661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Covalent modification of disease-driving proteins as a therapeutic strategy has experienced a well-documented resurgence since 2010. However, the earliest FDA approval dates for covalent drugs are in the 1940s, although the covalent mechanism of action may not have been known at the time. This article discloses a data set of all FDA-approved small molecule drugs acting via a covalent mechanism of action, annotated by indication, biological target, reactive group on the drug, biological reactive partner (i.e., amino acid residue, cofactor, etc.), chemical reaction mechanism, bioactivation requirements, key references, and reversibility profile. We discuss these data in the context of addressing key questions posed by the Merck Discovery Chemistry community when considering a chemical series with a covalent mechanism of action.
Collapse
Affiliation(s)
- Samuel E Dalton
- Department of Discovery Chemistry, MSD, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Ornella Di Pietro
- Department of Discovery Chemistry, MSD, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Elisabeth Hennessy
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| |
Collapse
|
7
|
Scalvini L, Pala D, Cuzzolin A, Galvani F, Lodola A, Rivara S, Mor M, Rizzi A. JAK3 Inhibitors: Covalent and Noncovalent Interactions of a Cyanamide Group Investigated by Multiscale Free-Energy Simulations. J Chem Inf Model 2025; 65:1404-1418. [PMID: 39818786 DOI: 10.1021/acs.jcim.4c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Janus kinase type 3 (JAK3), an emerging target for treating autoimmune diseases, possesses a front pocket cysteine that is targeted by covalent modifiers, best represented by the marketed drug ritlecitinib (1). Recently, 2,3-dihydro-1H-inden-1-ylcyanamides have been developed as novel JAK3 inhibitors. Among them, the N-(6-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,3-dihydro-1H-inden-1-yl)cyanamide inhibitor (2) and its methylated analogue (3), while being potent inhibitors, displayed different mechanisms of action (covalent vs noncovalent) and binding modes (Casimiro-Garcia et al., J Med Chem 2018). Prompted by this intriguing behavior, we applied a multiscale approach to characterize the reaction mechanism between the JAK3 front-pocket Cys909 and cyanamide-based inhibitors. Quantum mechanics/molecular mechanics simulations showed that 2 can readily form an isothiourea adduct with the Cys909 only when a conserved water molecule assists the reaction as a proton shuttle and that methylation of the 2,3-dihydro-1H-inden-1-ylcyanamide moiety of 2 hampers the isothiourea formation by displacing this water molecule. Metadynamics and thermodynamic integration simulations were applied to investigate the relative abundance of alternative poses accessible to 2,3-dihydro-1H-inden-1-ylcyanamides, explaining the effect of methylation on the relative binding mode preference. This multiscale approach provides new chemical insights into the mechanism of action of cyanamide inhibitors and emerges as an effective protocol to investigate the interaction between drugs and molecular targets.
Collapse
Affiliation(s)
- Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Daniele Pala
- Medicinal Chemistry and Drug Design Technologies Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Alberto Cuzzolin
- Medicinal Chemistry and Drug Design Technologies Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Francesca Galvani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Andrea Rizzi
- Medicinal Chemistry and Drug Design Technologies Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| |
Collapse
|
8
|
Tan YS, Chakrabarti M, Stein RM, Prentis LE, Rizzo RC, Kurtzman T, Fischer M, Balius TE. Development of Receptor Desolvation Scoring and Covalent Sampling in DOCK 6: Methods Evaluated on a RAS Test Set. J Chem Inf Model 2025; 65:722-748. [PMID: 39757424 PMCID: PMC11776051 DOI: 10.1021/acs.jcim.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Molecular docking methods are widely used in drug discovery efforts. RAS proteins are important cancer drug targets, and are useful systems for evaluating docking methods, including accounting for solvation effects and covalent small molecule binding. Water often plays a key role in small molecule binding to RAS proteins, and many inhibitors─including FDA-approved drugs─covalently bind to oncogenic RAS proteins. We assembled a RAS test set, consisting of 138 RAS protein structures and 2 structures of KRAS DNA in complex with ligands. In DOCK 6, we have implemented a receptor desolvation scoring function and a covalent docking algorithm. These new features were evaluated using the test set, with pose reproduction, cross-docking, and enrichment calculations. We tested two solvation methods for generating receptor desolvation scoring grids: GIST and 3D-RISM. Using grids from GIST or 3D-RISM, water displacements are precomputed with Gaussian-weighting, and trilinear interpolation is used to speed up this scoring calculation. To test receptor desolvation scoring, we prepared GIST and 3D-RISM grids for all KRAS systems in the test set, and we compare enrichment performance with and without receptor desolvation. Accounting for receptor desolvation using GIST improves enrichment for 51% of systems and worsens enrichment for 35% of systems, while using 3D-RISM improves enrichment for 44% of systems and worsens enrichment for 30% of systems. To more rigorously test accounting for receptor desolvation using 3D-RISM, we compare pose reproduction with and without 3D-RISM receptor desolvation. Pose reproduction docking with 3D-RISM yields a 1.8 ± 2.41% increase in success rate compared to docking without 3D-RISM. Accounting for receptor desolvation provides a small, but significant, improvement in both enrichment and pose reproduction for this set. We tested the covalent attach-and-grow algorithm on 70 KRAS systems containing covalent ligands, obtaining similar pose reproduction success rates between covalent and noncovalent docking. Comparing covalent docking to noncovalent docking, there is a 2.4 ± 3.29% increase and a 1.27 ± 3.33% decline in the success rate when docking with experimental and SMILES-generated ligand conformations, respectively. As a proof-of-concept, we performed covalent virtual screens with and without receptor desolvation scoring, targeting the switch II pocket of KRAS, using 3.4 million make-on-demand acrylamide compounds from the Enamine REAL database. On average, the attach-and-grow algorithm spends approximately 17.61 s per molecule across the screen. The test set is available at https://github.com/tbalius/teb_docking_test_sets.
Collapse
Affiliation(s)
- Y. Stanley Tan
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical
Research, Inc., P.O. Box B, Frederick 21702, Maryland, United States
| | - Mayukh Chakrabarti
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical
Research, Inc., P.O. Box B, Frederick 21702, Maryland, United States
| | - Reed M. Stein
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco 94158, California, United States
| | - Lauren E. Prentis
- Department
of Biochemistry and Structural Biology, Stony Brook University, Stony
Brook 11794, New York, United States
- Institute
of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook11794, New York, United States
| | - Robert C. Rizzo
- Institute
of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook11794, New York, United States
- Department
of Applied Mathematics and Statistics, Stony
Brook University, Stony Brook 11794, New York, United States
- Laufer Center
for Physical and Quantitative Biology, Stony
Brook University, Stony Brook11794, New York, United States
| | - Tom Kurtzman
- PhD
Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York 10016, New York, United States
- Department
of Chemistry, Lehman College, The City University
of New York, Bronx 10468, New York, United States
| | - Marcus Fischer
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis38105, Tennessee, United States
| | - Trent E. Balius
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical
Research, Inc., P.O. Box B, Frederick 21702, Maryland, United States
| |
Collapse
|
9
|
Du H, Zhang X, Wu Z, Zhang O, Gu S, Wang M, Zhu F, Li D, Hou T, Pan P. CovalentInDB 2.0: an updated comprehensive database for structure-based and ligand-based covalent inhibitor design and screening. Nucleic Acids Res 2025; 53:D1322-D1327. [PMID: 39441070 PMCID: PMC11701572 DOI: 10.1093/nar/gkae946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
The rational design of targeted covalent inhibitors (TCIs) has emerged as a powerful strategy in drug discovery, known for its ability to achieve strong binding affinity and prolonged target engagement. However, the development of covalent drugs is often challenged by the need to optimize both covalent warhead and non-covalent interactions, alongside the limitations of existing compound libraries. To address these challenges, we present CovalentInDB 2.0, an updated online database designed to support covalent drug discovery. This updated version includes 8303 inhibitors and 368 targets, supplemented by 3445 newly added cocrystal structures, providing detailed analyses of non-covalent interactions. Furthermore, we have employed an AI-based model to profile the ligandability of 144 864 cysteines across the human proteome. CovalentInDB 2.0 also features the largest covalent virtual screening library with 2 030 192 commercially available compounds and a natural product library with 105 901 molecules, crucial for covalent drug screening and discovery. To enhance the utility of these compounds, we performed structural similarity analysis and drug-likeness predictions. Additionally, a new user data upload feature enables efficient data contribution and continuous updates. CovalentInDB 2.0 is freely accessible at http://cadd.zju.edu.cn/cidb/.
Collapse
Affiliation(s)
- Hongyan Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xujun Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenxing Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Odin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shukai Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Mingyang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
10
|
Lu J, He Y, Li Y, Chen X, Li H, Chen X, Xu J, Chen H, Wang Y, He X, Liu S, Chen L. Exploring bifunctional molecules for anti-SARS-CoV-2 and anti-inflammatory activity through structure-based virtual screening, SAR investigation, and biological evaluation. Int J Biol Macromol 2025; 287:138529. [PMID: 39653224 DOI: 10.1016/j.ijbiomac.2024.138529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
As new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, they raise increasing concerns about the efficacy of neutralizing antibodies and vaccines. This situation underscores the urgent need for specific drugs against the coronavirus disease 2019 (COVID-19). Given that COVID-19 is particularly associated with substantial inflammation, the development of novel, effective antiviral and anti-inflammatory agents represents a promising research direction. In this study, we virtually screened a library consisting of 2900 anti-inflammatory small molecules for their inhibitory effects on the 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2 and selected 23 promising candidates for further testing using a fluorescence resonance energy transfer (FRET) assay. The results indicated that Gnetol had the most potent inhibitory effect against SARS-CoV-2 3CLpro. Further structural modifications led to the identification of compounds 38 and 39, which displayed superior inhibitory activity. Compound 39 showed good selectivity for host proteases. Subsequently, Gnetol and its structural analogs, which demonstrated SARS-CoV-2 3CLpro inhibitory activity, were tested for their anti-inflammatory effects. Among these, Piceatannol and compound 39 exhibited enhanced anti-inflammatory effects, with compound 39 alone showing the most potent antiviral and anti-inflammatory activity. Thus, our study has explored a new research strategy for discovering antiviral and anti-inflammatory bifunctional molecules. The discovery of Gnetol and its structural analogs has provided new lead candidates for the development of COVID-19 therapeutics.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingying He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China; Peptide and small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; DP Technology, Beijing 100080, China
| | - Xixiang Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jianrong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China; Peptide and small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; DP Technology, Beijing 100080, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China.
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Taki M, Kuwahara M, Li C, Tomoda N, Miyashita N, Kan T, Yang J. ARCaDia: single-round screening of a DNA-type targeted covalent binder possessing a latent warhead. Chem Commun (Camb) 2024; 60:14964-14967. [PMID: 39533973 DOI: 10.1039/d4cc04594g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A covalent binder for a target protein was obtained by a direct single-round screening of a latent-warhead-modified DNA library via affinity/reactivity-based co-selection of aptameric deoxyribonucleic acid (ARCaDia), followed by a top k-mer analysis. The optimal position of the conjugated warhead on the selected aptamer was simultaneously identified.
Collapse
Affiliation(s)
- Masumi Taki
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Chaohui Li
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Naoko Tomoda
- Department of GI Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoyuki Miyashita
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Department of Biological Systems Engineering, Graduate School of Biology-Oriented Science and Technology, KINDAI University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Tetsuo Kan
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Jay Yang
- Department of Engineering Science, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
- Department of GI Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
12
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
13
|
Agost-Beltrán L, Zimmer C, Räder HJ, Kersten C, Schirmeister T, Rodríguez S, González FV. Rhodesain inhibitors on the edge of reversibility-irreversibility. Bioorg Chem 2024; 153:107830. [PMID: 39306902 DOI: 10.1016/j.bioorg.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 12/12/2024]
Abstract
A comparative study of Michael acceptor and keto-Michael acceptor inhibitors of the cysteine protease rhodesain has been performed. Five new inhibitors have been prepared bearing the peptide structure of the known cysteine protease inhibitor K11777 and differing on the warhead. For the preparation of the Michael acceptor warhead, a Horner-Wadsworth-Emmons reaction was used. In the synthetic routes of the keto-Michael acceptor warheads, keto-enoate and keto-vinyl sulfone, a metathesis reaction and a radical sulfonylation were the key steps, respectively. Interestingly, keto-Michael acceptors inhibited rhodesain through a dual mode of action, showing reversibility at low inhibitor concentrations and irreversibility at high inhibitor concentrations.
Collapse
Affiliation(s)
- Laura Agost-Beltrán
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Hans Joachim Räder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany; Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University, BioZentrum I, Hanns-Dieter-Hüsch.Weg 15, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Santiago Rodríguez
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Florenci V González
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló de la Plana, Spain.
| |
Collapse
|
14
|
Bognár G, Kenari F, Pintér Z, Borges ID, Camargo AJ, Oliveira HCB, Sanches-Neto FO, Carvalho-Silva VH, Napolitano HB, Perjési P. ( E)-2-Benzylidenecyclanones: Part XX-Reaction of Cyclic Chalcone Analogs with Cellular Thiols: Unexpected Increased Reactivity of 4-Chromanone- Compared to 1-Tetralone Analogs in Thia-Michael Reactions. Molecules 2024; 29:5493. [PMID: 39683654 DOI: 10.3390/molecules29235493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
In vitro relative cytotoxicity (IC50 (IIb)/IC50 (IIIb) of (E)-3-(4'-methylbenzylidene)-4-chromanone (IIIb) towards human Molt 4/C8 and CEM T-lymphocytes showed a >50-fold increase in comparison to those of the respective tetralone derivative (IIb). On the other hand, such an increase was not observed in the analogous 4-OCH3 (IIc and IIIc) derivatives. In order to study whether thiol reactivity-as a possible basis of the mechanism of action-correlates with the observed cytotoxicities, the kinetics of the non-enzyme catalyzed reactions with reduced glutathione (GSH) and N-acetylcysteine (NAC) of IIIb and IIIc were investigated. The reactivity of the compounds and the stereochemical outcome of the reactions were evaluated using high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Molecular modeling calculations were performed to rationalize the unexpectedly higher thiol reactivity of the chromanones (III) compared to the carbocyclic analog tetralones (II). The results indicate the possible role of spontaneous thiol reactivity of compounds III in their recorded biological effects.
Collapse
Affiliation(s)
- Gábor Bognár
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
| | - Fatemeh Kenari
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Pintér
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
| | - Igor D Borges
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Ademir J Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Heibbe C B Oliveira
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
| | - Flávio Olimpio Sanches-Neto
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Valparaíso de Goiás 72876-601, GO, Brazil
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, Brasília 70904-970, Brazil
| | - Valter H Carvalho-Silva
- Laboratory for Modeling of Physical and Chemical Transformations, Research and Graduate Center, Goiás State University, Anápolis 75132-903, GO, Brazil
| | - Hamilton B Napolitano
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| |
Collapse
|
15
|
Naylon SH, Richaud AD, Zhao G, Bui L, Dufresne CP, Wu CJ, Wangpaichitr M, Savaraj N, Roche SP. A platform of ADAPTive scaffolds: development of CDR-H3 β-hairpin mimics into covalent inhibitors of the PD1/PDL1 immune checkpoint. RSC Chem Biol 2024; 5:d4cb00174e. [PMID: 39552936 PMCID: PMC11562385 DOI: 10.1039/d4cb00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Aberrant and dysregulated protein-protein interactions (PPIs) drive a significant number of human diseases, which is why they represent a major class of targets in drug discovery. Although a number of high-affinity antibody-based drugs have emerged in this therapeutic space, the discovery of smaller PPI inhibitors is lagging far behind, underscoring the need for novel scaffold modalities. To bridge this gap, we introduce a biomimetic platform technology - adaptive design of antibody paratopes into therapeutics (ADAPT) - that enables the paratope-forming binding loops of antibodies to be crafted into large β-hairpin scaffolds (ADAPTins). In this study, we describe a novel strategy for engineering native CDR-H3 "hot loops" with varying sequences, lengths, and rigidity into ADAPTins, ultimately transforming these compounds into irreversible covalent inhibitors. A proof-of-concept was established by creating a series of ADAPTin blockers of the PD1:PDL1 immune checkpoint PPI (blocking activity EC50 < 0.3 μM) which were subsequently modified into potent covalent PD1 inhibitors. The compelling rate of stable and folded ADAPTins above physiological temperature (21 out of 29) obtained across six different scaffolds suggests that the platform technology could provide a novel opportunity for high-quality peptide display and biological screening.
Collapse
Affiliation(s)
- Sarah H Naylon
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| | - Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| | - Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| | - Linda Bui
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| | | | - Chunjing J Wu
- University of Miami, Miller School of Medicine Miami Florida 33136 USA
| | | | - Niramol Savaraj
- University of Miami, Miller School of Medicine Miami Florida 33136 USA
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| |
Collapse
|
16
|
Shen W, Chen X, Zhou L, Cheng Y, Zhang Y, Jiang X, Sun H, Shen J. Discovery of the potent covalent inhibitor with an acrylate warhead for SARS-CoV-2 3CL protease. Bioorg Med Chem Lett 2024; 112:129942. [PMID: 39218405 DOI: 10.1016/j.bmcl.2024.129942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
COVID-19 has caused severe consequences in terms of public health and economy worldwide since its outbreak in December 2019. SARS-CoV-2 3C-like protease (3CLpro), crucial for the viral replications, is an attractive target for the development of antiviral drugs. In this study, several kinds of Michael acceptor warheads were utilized to hunt for potent covalent inhibitors against 3CLpro. Meanwhile, novel 3CLpro inhibitors with the P3-3,5-dichloro-4-(2-(dimethylamino)ethoxy)phenyl moiety were designed and synthesized which may form salt bridge with residue Glu166. Among them, two compounds 12b and 12c exhibited high inhibitory activities against SARS-CoV-2 3CLpro. Further investigations suggested that 12b with an acrylate warhead displayed potent activity against HCoV-OC43 (EC50 = 97 nM) and SARS-CoV-2 replicon (EC50 = 45 nM) and low cytotoxicity (CC50 > 10 μM) in Huh7 cells. Taken together, this study devised two series of 3CLpro inhibitors and provided the potent SARS-CoV-2 3CLpro inhibitor (12b) which may be used for treating coronavirus infections.
Collapse
Affiliation(s)
- Wen Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinyao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Liping Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiguo Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingshan Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Liang L, Zhang Z, You Q, Guo X. Recent advances in the design of small molecular drugs with acrylamides covalent warheads. Bioorg Med Chem 2024; 112:117902. [PMID: 39236467 DOI: 10.1016/j.bmc.2024.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
In the development of covalent inhibitors, acrylamides warhead is one of the most popular classes of covalent warheads. In recent years, researchers have made different structural modifications to acrylamides warheads, resulting in the creation of fluorinated acrylamide warheads and cyano acrylamide warheads. These new warheads exhibit superior selectivity, intracellular accumulation, and pharmacokinetic properties. Additionally, although ketoamide warheads have been applied in the design of covalent inhibitors for viral proteins, it has not received sufficient attention. Combined with the studies in kinase inhibitors and antiviral drugs, this review presents the structural features and the progression of acrylamides warheads, offering a perspective on future research and development in this field.
Collapse
Affiliation(s)
- Luxia Liang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ze Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Blua F, Monge C, Gastaldi S, Clemente N, Pizzimenti S, Lazzarato L, Senetta R, Vittorio S, Gigliotti CL, Boggio E, Dianzani U, Vistoli G, Altomare AA, Aldini G, Dianzani C, Marini E, Bertinaria M. Discovery of a septin-4 covalent binder with antimetastatic activity in a mouse model of melanoma. Bioorg Chem 2024; 144:107164. [PMID: 38306824 DOI: 10.1016/j.bioorg.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.
Collapse
Affiliation(s)
- Federica Blua
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Simone Gastaldi
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Nausicaa Clemente
- Settore Centri di Ricerca e Infrastrutture di Ateneo e Laboratori - Polo di NO, University of Piemonte Orientale, Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Torino, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rebecca Senetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Serena Vittorio
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Elena Boggio
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Turin, Italy.
| | - Massimo Bertinaria
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Borges PHO, Ferreira SB, Silva FP. Recent Advances on Targeting Proteases for Antiviral Development. Viruses 2024; 16:366. [PMID: 38543732 PMCID: PMC10976044 DOI: 10.3390/v16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Borges
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Sabrina Baptista Ferreira
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Floriano Paes Silva
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|