1
|
Briante R, Zhai Q, Mohanty S, Zhang P, O’Connor A, Misker H, Wang W, Tan C, Abuhay M, Morgan J, Theolis R, Ponath P, Arathoon R. Successful targeting of multidrug-resistant tumors with bispecific antibodies. MAbs 2025; 17:2492238. [PMID: 40248904 PMCID: PMC12013451 DOI: 10.1080/19420862.2025.2492238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Multidrug resistance (MDR) hinders efficacious cancer chemotherapy. Overexpression of the P-glycoprotein (P-gp) efflux pump (EP) on cancer cells is a primary cause of MDR since it expels numerous anticancer drugs. Small molecule intracellular P-gp antagonists have been investigated clinically to redress MDR but have failed primarily due to adverse effects on P-gp in normal tissue. We used a new approach to counteract P-gp with bispecific antibodies (BsAbs) that simultaneously bound P-gp and CD47 in cis on MDR cells but not normal tissue. Affinities of the individual arms of the BsAbs were low enough to minimize normal tissue binding, but, when the two targets were co-located on MDR cancer cells, both arms of the BsAb engaged with effective avidity. Proof-of-concept was shown in three different MDR xenograft tumor models with a non-humanized chimeric BsAb (targeting P-gp and CD47) that potently restored tumor sensitivity to paclitaxel. Fully humanized variants were successfully developed and characterized. Significant anti-tumor efficacy was observed with the BsAbs both when combined with paclitaxel and as single agents in the absence of paclitaxel. Treatment of MDR cancers with BsAbs using this novel approach has several distinct advantages over prior efforts with small molecule antagonists, including 1) invoking a direct immune attack on the tumors, 2) multimodal mechanisms of action, 3) tumor-specific targeting (with reduced toxicity to normal tissue), and 4) broad applicability as single agents and compatibility with other therapeutics.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Animals
- Drug Resistance, Neoplasm/drug effects
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- CD47 Antigen/immunology
- Paclitaxel/pharmacology
- Neoplasms/drug therapy
- Neoplasms/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Female
Collapse
Affiliation(s)
- Raffaella Briante
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Qianting Zhai
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | | | - Pingping Zhang
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Alissa O’Connor
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Hiwot Misker
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Willie Wang
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Cindy Tan
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Mastewal Abuhay
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Jessica Morgan
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Richard Theolis
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Paul Ponath
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Robert Arathoon
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| |
Collapse
|
2
|
Sajid A, Ranganathan N, Guha R, Murakami M, Ahmed S, Durell SR, Ambudkar SV. Conversion of Human Multidrug Transporter P-glycoprotein (ABCB1) from Drug Efflux to Uptake Pump: Evidence for a Switch Region Modulating the Direction of Substrate Transport. J Mol Biol 2025; 437:168979. [PMID: 39900286 PMCID: PMC11875896 DOI: 10.1016/j.jmb.2025.168979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
The multidrug transporter P-glycoprotein (P-gp), is pivotal in exporting various chemically dissimilar amphipathic compounds including anti-cancer drugs, thus causing multidrug resistance during cancer treatment. P-gp is composed of two transmembrane domains (TMDs), each containing six homologous transmembrane helices (TMHs). Among these helices, TMH 6 and 12 align oppositely, lining a drug-binding pocket in the transmembrane region which acts as a pathway for drug efflux. Previously, we demonstrated that specific mutations within TMH 6 and 12 resulted in loss of substrate efflux and altered the transport direction from efflux to uptake for some substrates. This suggested the presence of a regulatory switch that governs the direction of transport. In this study, we sought to elucidate the mechanism of switch region modulation of the uptake function by engineering several mutants via substituting specific residues in TMH 6 and 12. We discovered that the alanine substitution of four residues (V974, L975, V977, and F978) within the upper region of TMH 12, along with three residues (V334, F336, and F343) within TMH 6, was sufficient to convert P-gp from an efflux to an uptake pump. Additional mutagenesis of the residues in the middle region of TMH 12 revealed that the uptake function, like efflux, is reversible. Further studies, including molecular dynamics simulations, revealed that the switch region appears to act during the substrate translocation step. We propose that the switch region in TMH 6 and 12, which modulates the direction of transport by P-gp, provides a novel approach to selectively target P-gp-expressing cancer cells.
Collapse
MESH Headings
- Humans
- Biological Transport
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- Amino Acid Substitution
- Molecular Dynamics Simulation
- Models, Molecular
- Mutation
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nandhini Ranganathan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajan Guha
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shafaq Ahmed
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
McKeown BT, Groves B, Jakeman DL, Goralski KB. Acquired resistance to jadomycin B in human triple-negative breast cancer cells is associated with increased cyclooxygenase-2 expression. J Pharmacol Exp Ther 2025; 392:103565. [PMID: 40253988 DOI: 10.1016/j.jpet.2025.103565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Jadomycin B, produced by the soil bacterium Streptomyces venezuelae ISP5230, induces cytotoxicity in human breast cancer cells in vitro and has antitumoral effects in animal models. In models of multidrug-resistant, triple-negative breast cancer, jadomycin B has shown promise as it is not a substrate of ABCB1 and ABCG2 drug efflux transporters. The generation of reactive oxygen species and inhibition of topoisomerases are potential mechanisms of jadomycin B-mediated DNA damage and apoptosis. However, the mechanisms of jadomycin B's anticancer activity have not been fully elucidated. By gradually exposing MDA-MB-231 triple-negative human breast cancer cells to jadomycin B, we hypothesized that resistance could be selected to further understand jadomycin B's pharmacological mechanisms. A 3-fold increase in the jadomycin B IC50 was observed in MDA-MB-231 cells exposed to increasing jadomycin B concentrations (0-3 μM) over 7 months, herein 231-JB cells. The 231-JB cells were cross-resistant to jadomycin F and S but not to the comparator drugs mitoxantrone, doxorubicin, and SN-38. The 231-JB cells did not have increased mRNA expression of topoisomerase-2 nor ABCB1 and ABCG2. Cyclooxygenase-2 (COX-2) increased by 25-fold, but expression of prostaglandin E2 receptor 4 did not significantly change. Cotreatment with celecoxib (15-45 μM), a COX-2 inhibitor, resensitized the 231-JB cells to jadomycin B (IC50 = 1.41 ± 0.24 to 0.75 ± 0.31 μM vs 2.28 ± 0.54 with 0 μM celecoxib). To our knowledge, this work represents the first report of the involvement of COX-2 in jadomycin B activity in vitro, proving to be an exciting new target for the exploration of jadomycin B anticancer activity. SIGNIFICANCE STATEMENT: Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin production, is associated with procancer signaling. COX-2, ABCB1, and ABCG2 overexpression are typically correlated in cancer, contributing to chemotherapy resistance. We observed increased COX-2, but not ABCG2 or ABCB1, expression in 231-JB cells. This indicates that jadomycin B triggers a distinct resistance mechanism. The COX-2 inhibitor celecoxib reversed jadomycin B resistance in 231-JB cells. As such, 231-JB cells represent an important model for COX-2 signaling in breast cancer and jadomycin B mechanism of action.
Collapse
Affiliation(s)
- Brendan T McKeown
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Brandon Groves
- Department of Chemistry, Faculty of Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David L Jakeman
- Department of Chemistry, Faculty of Sciences, Dalhousie University, Halifax, Nova Scotia, Canada; College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada; College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada; Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada.
| |
Collapse
|
4
|
Yuan T, Zheng Y, Chen J, Yin H, Yin J. Long-term chronic exposure to benzo[a]pyrene and catechol induced multidrug resistance in lung cancer cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125859. [PMID: 39954765 DOI: 10.1016/j.envpol.2025.125859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Multiple studies have raised concerns about the impact of long-term exposure to environmental pollutants on the occurrence and progression of cancer, but little is known about how these compounds affect the treatment of cancer patients. In this work, two common pollutants including benzo [a]pyrene (B [a]P) and catechol (CL) were tested for their chronic effects on the efficacy of common chemotherapeutic drug in lung cancer (A549) cells. Both pollutants were unlikely to be the substrates of ABC transporters, as their toxicity was unaffected by ABC transporter inhibitors. However, their repeated exposure led to the generation of chemoresistance to doxorubicin (DOX) and cisplatin (CDDP), indicating the formation of multidrug-resistance (MDR) cells. Compared with DOX-resistant cells, decreased expression of ABC transporters but increased responses were found in pollutants-resistant cells. In addition, pollutants-resistant cells were more potent in up-regulating anti-apoptosis, proliferation, and migration pathways, which were confirmed by the wound-healing and apoptosis assays. Overall, these results indicated a distinct MDR mechanism induced by non-substrate pollutants, and could be beneficial for understanding the environmental risk of pollutants in their "safe" concentrations.
Collapse
Affiliation(s)
- Tongkuo Yuan
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yu Zheng
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Jing Chen
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Huancai Yin
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Jian Yin
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China.
| |
Collapse
|
5
|
Wu Y, Liu Y, Wu H, Tong M, Du L, Ren S, Che Y. Advances in Ultrasound-Targeted Microbubble Destruction (UTMD) for Breast Cancer Therapy. Int J Nanomedicine 2025; 20:1425-1442. [PMID: 39925678 PMCID: PMC11804227 DOI: 10.2147/ijn.s504363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is one of the most common types of cancer in women worldwide and is a leading cause of cancer deaths among women. As a result, various treatments have been developed to combat this disease. Breast cancer treatment varies based on its stage and type of pathology. Among the therapeutic options, ultrasound has been employed to assist in the treatment of breast cancer, including radiation therapy, chemotherapy, targeted immunotherapy, hormonal therapy, and, more recently, radiofrequency ablation for early-stage and inoperable patients. One notable advancement is ultrasound-targeted microbubble destruction (UTMD), which is gradually becoming a highly effective and non-invasive anti-tumor modality. This technique can enhance chemical, genetic, immune, and anti-vascular therapies through its physical and biological effects. Specifically, UTMD improves drug transfer efficiency and destroys tumor neovascularization while reducing toxic side effects on the body during tumor treatment. Given these developments, the application of ultrasound-assisted therapy to breast cancer has gained significant attention from research scholars. In this review, we will discuss the development of various therapeutic modalities for breast cancer and, importantly, highlight the application of ultrasound microbubble-targeted disruption techniques in breast cancer treatment.
Collapse
Affiliation(s)
- Yunfeng Wu
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Yuxi Liu
- Department of Ultrasound, Shandong Second Medical University Affiliated Hospital, Shan Dong, Weifang, People’s Republic of China
| | - Han Wu
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Mengying Tong
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Linyao Du
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Shuangsong Ren
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Ying Che
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| |
Collapse
|
6
|
Abbasfard Z, Behzad-Behbahani A, Rastegari B, Naeimi S, Moghanibashi M, Safari F. SiRNA-mediated Knockdown of ABCB1 Enhances the Efficacy of Doxorubicin and Vinorelbine in Breast Cancer Cells. Curr Pharm Biotechnol 2025; 26:716-727. [PMID: 38616741 DOI: 10.2174/0113892010284774240328144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Breast cancer remains a leading cause of cancer-related deaths among women, primarily attributed to the formidable challenge of multidrug resistance, often driven by the overexpression of the ABCB1 gene. OBJECTIVE This study aimed to assess the synergistic effects of siRNA, doxorubicin, and vinorelbine on ABCB1 gene expression and cell viability in doxorubicin-resistant MCF-7/ADR breast cancer cells, with siRNA targeting ABCB1 to reduce its expression and doxorubicin/ vinorelbine to eradicate cancer cells. METHODS Our methodology involved culturing MCF-7 and MCF-7/ADR cells in standard cell culture conditions. The synthesized siRNA sequences transfected cells with siRNA at final concentrations of 10, 20, and 30 nM and assessed cell viability using the MTT assay was performed. Real-time PCR was employed to quantify ABCB1 mRNA expression levels. RESULTS Results indicated that MCF-7/ADR cells exhibited substantial resistance to vinorelbine and doxorubicin compared to MCF-7 cells, displaying resistance at 12.50 μM and 25.00 μM for vinorelbine and 6.25 μM and 25.00 μM for doxorubicin. Remarkably, siRNA treatment effectively reversed drug resistance in MCF-7/ADR cells across all concentrations of vinorelbine and doxorubicin tested. When combined, siRNA, doxorubicin, and vinorelbine yielded a significantly greater reduction in cell viability compared to individual drug treatments, particularly at a 20 μM siRNA concentration. This combination therapy also significantly suppressed ABCB1 gene expression by a factor of 41.48 in MCF-7 cells relative to MCF-7/ADR cells. CONCLUSION these findings suggest that combining siRNA, doxorubicin, and vinorelbine holds promise as a therapeutic strategy to overcome ABCB1-mediated multidrug resistance in breast cancer. Further investigations and clinical trials are warranted to evaluate its clinical efficacy rigorously.
Collapse
Affiliation(s)
- Zahra Abbasfard
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sirous Naeimi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Shi Z, Zeng Y, Luo J, Wang X, Ma G, Zhang T, Huang P. Endogenous Magnetic Lipid Droplet-Mediated Cascade-Targeted Sonodynamic Therapy as an Approach to Reversing Breast Cancer Multidrug Resistance. ACS NANO 2024; 18:28659-28674. [PMID: 39387174 DOI: 10.1021/acsnano.4c05938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Multidrug resistance (MDR) has emerged as a major barrier to effective breast cancer treatment, contributing to high rates of chemotherapy failure and disease recurrence. There is thus a pressing need to overcome MDR and to facilitate the efficient and precise treatment of breast cancer in a targeted manner. In this study, endogenous functional lipid droplets (IR780@LDs-Fe3O4/OA) were developed and used to effectively overcome the limited diffusion distance of reactive oxygen species owing to their amenability to cascade-targeted delivery, thereby facilitating precise and effective sonodynamic therapy (SDT) for MDR breast cancer. Initially, IR780@LDs-Fe3O4/OA was efficiently enriched within tumor sites in a static magnetic field, achieving the visualization of tumor treatment. Subsequently, the cascade-targeted SDT combined with the Fenton effect induced lysosome membrane permeabilization and relieved lysosomal sequestration, thus elevating drug concentration at the target site. This treatment approach also suppressed ATP production, thereby inhibiting P-glycoprotein-mediated chemotherapeutic drug efflux. This cascade-targeted SDT strategy significantly increased the sensitivity of MDR cells to doxorubicin, increasing the IC50 value of doxorubicin by approximately 10-fold. Moreover, the cascade-targeted SDT also altered the gene expression profiles of MDR cells and suppressed the expression of MDR-related genes. In light of these promising results, the combination of cascade-targeted SDT and conventional chemotherapy holds great clinical promise as an effective treatment modality with excellent biocompatibility that can improve MDR breast cancer patient outcomes.
Collapse
Affiliation(s)
- Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, No. 66 Dongxin Avenue, Binjiang District, Hangzhou 310053, P. R. China
| |
Collapse
|
8
|
Salazar PB, Murakami M, Ranganathan N, Durell SR, Ambudkar SV. Mutational analysis reveals the importance of residues of the access tunnel inhibitor site to human P-glycoprotein (ABCB1)-mediated transport. Protein Sci 2024; 33:e5155. [PMID: 39194126 DOI: 10.1002/pro.5155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Human P-glycoprotein (P-gp) utilizes energy from ATP hydrolysis for the efflux of chemically dissimilar amphipathic small molecules and plays an important role in the development of resistance to chemotherapeutic agents in most cancers. Efforts to overcome drug resistance have focused on inhibiting P-gp-mediated drug efflux. Understanding the features distinguishing P-gp inhibitors from substrates is critical. Cryo-electron microscopy has revealed distinct binding patterns, emphasizing the role of the L-site or access tunnel in inhibition. We substituted 5-9 residues of the L-site with alanine to investigate whether the binding of a second inhibitor molecule to the L-site is required for inhibiting drug efflux. We reveal, for the first time, that mutations in the L-site affect the drug efflux activity of P-gp, despite their distance from the substrate-binding pocket (SBP). Surprisingly, after the mutations were introduced, inhibitors such as tariquidar and zosuquidar still inhibited drug efflux by mutant P-gps. Communication between the transmembrane helices (TMHs) and nucleotide-binding domains (NBDs) was evaluated using the ATPase assay, revealing distinct modulation patterns by inhibitors for the mutants, with zosuquidar exhibiting substrate-like stimulation of ATPase. Furthermore, L-site mutations abolished ATP-dependent thermal stabilization. In silico molecular docking studies corroborated the altered inhibitor binding due to mutations in the L-site residues, shedding light on their critical role in substrate transport and inhibitor interactions with P-gp. These findings suggest that inhibitors bind either to the SBP alone, and/or to alternate site(s) when the L-site is disabled by mutagenesis.
Collapse
Affiliation(s)
- Paula B Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nandhini Ranganathan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Sarwar S, Morozov VM, Newcomb MA, Yan B, Brant JO, Opavsky R, Guryanova OA, Ishov AM. Overcoming ABCB1 mediated multidrug resistance in castration resistant prostate cancer. Cell Death Dis 2024; 15:558. [PMID: 39090086 PMCID: PMC11294535 DOI: 10.1038/s41419-024-06949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. PCa that relapses after hormonal therapies, referred to as castration resistant PCa (CRPC), often presents with metastases (mCRPC) that are the major cause of mortality. The few available therapies for mCRPC patients include taxanes docetaxel (DTX) and cabazitaxel (CBZ). However, development of resistance limits their clinical use. Mechanistically, resistance arises through upregulation of multidrug resistance (MDR) proteins such as MDR1/ABCB1, making ABCB1 an attractive therapeutic target. Yet, ABCB1 inhibitors failed to be clinically useful due to low specificity and toxicity issues. To study taxanes resistance, we produced CBZ resistant C4-2B cells (RC4-2B) and documented resistance to both CBZ and DTX in cell culture and in 3D prostaspheres settings. RNAseq identified increased expression of ABCB1 in RC4-2B, that was confirmed by immunoblotting and immunofluorescent analysis. ABCB1-specific inhibitor elacridar reversed CBZ and DTX resistance in RC4-2B cells, confirming ABCB1-mediated resistance mechanism. In a cell-based screen using a curated library of cytotoxic drugs, we found that DNA damaging compounds Camptothecin (CPT) and Cytarabine (Ara-C) overcame resistance as seen by similar cytotoxicity in parental C4-2B and resistant RC4-2B. Further, these compounds were cytotoxic to multiple PC cells resistant to taxanes with high ABCB1 expression and, therefore, can be used to conquer the acquired resistance to taxanes in PCa. Finally, inhibition of cyclin-dependent kinases 4/6 (CDK4/6) with small molecule inhibitors (CDK4/6i) potentiated cytotoxic effect of CPT or Ara-C in both parental and resistant cells. Overall, our findings indicate that DNA damaging agents CPT and Ara-C alone or in combination with CDK4/6i can be suggested as a new treatment regimen in CRPC patients, including those that are resistant to taxanes.
Collapse
Affiliation(s)
- Sadia Sarwar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mallory A Newcomb
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jason O Brant
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.
- University of Florida Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
10
|
Marin JJG, Macias RIR, Asensio M, Romero MR, Temprano AG, Pereira OR, Jimenez S, Mauriz JL, Di Giacomo S, Avila MA, Efferth T, Briz O. Strategies to enhance the response of liver cancer to pharmacological treatments. Am J Physiol Cell Physiol 2024; 327:C11-C33. [PMID: 38708523 DOI: 10.1152/ajpcell.00176.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Alvaro G Temprano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Olívia R Pereira
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Silvia Jimenez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Servicio de Farmacia Hospitalaria, Hospital de Salamanca, Salamanca, Spain
| | - Jose L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Silvia Di Giacomo
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Hepatology Laboratory, Solid Tumors Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IdisNA), Pamplona, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
11
|
Yang Q, To KKW, Hu G, Fu K, Yang C, Zhu S, Pan C, Wang F, Luo K, Fu L. BI-2865, a pan-KRAS inhibitor, reverses the P-glycoprotein induced multidrug resistance in vitro and in vivo. Cell Commun Signal 2024; 22:325. [PMID: 38872211 PMCID: PMC11170860 DOI: 10.1186/s12964-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Multidrug resistance (MDR) limits successful cancer chemotherapy. P-glycoprotein (P-gp), BCRP and MRP1 are the key triggers of MDR. Unfortunately, no MDR modulator was approved by FDA to date. Here, we will investigate the effect of BI-2865, a pan-KRAS inhibitor, on reversing MDR induced by P-gp, BCRP and MRP1 in vitro and in vivo, and its reversal mechanisms will be explored. METHODS The cytotoxicity of BI-2865 and its MDR removal effect in vitro were tested by MTT assays, and the corresponding reversal function in vivo was assessed through the P-gp mediated KBv200 xenografts in mice. BI-2865 induced alterations of drug discharge and reservation in cells were estimated by experiments of Flow cytometry with fluorescent doxorubicin, and the chemo-drug accumulation in xenografts' tumor were analyzed through LC-MS. Mechanisms of BI-2865 inhibiting P-gp substrate's efflux were analyzed through the vanadate-sensitive ATPase assay, [125I]-IAAP-photolabeling assay and computer molecular docking. The effects of BI-2865 on P-gp expression and KRAS-downstream signaling were detected via Western blotting, Flow cytometry and/or qRT-PCR. Subcellular localization of P-gp was visualized by Immunofluorescence. RESULTS We found BI-2865 notably fortified response of P-gp-driven MDR cancer cells to the administration of chemo-drugs including paclitaxel, vincristine and doxorubicin, while such an effect was not observed in their parental sensitive cells and BCRP or MRP1-driven MDR cells. Importantly, the mice vivo combination study has verified that BI-2865 effectively improved the anti-tumor action of paclitaxel without toxic injury. In mechanism, BI-2865 prompted doxorubicin accumulating in carcinoma cells by directly blocking the efflux function of P-gp, which more specifically, was achieved by BI-2865 competitively binding to the drug-binding sites of P-gp. What's more, at the effective MDR reversal concentrations, BI-2865 neither varied the expression and location of P-gp nor reduced its downstream AKT or ERK1/2 signaling activity. CONCLUSIONS This study uncovered a new application of BI-2865 as a MDR modulator, which might be used to effectively, safely and specifically improve chemotherapeutic efficacy in the clinical P-gp mediated MDR refractory cancers.
Collapse
MESH Headings
- Humans
- Animals
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Multiple/drug effects
- Mice
- Cell Line, Tumor
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Xenograft Model Antitumor Assays
- Mice, Nude
- Doxorubicin/pharmacology
- Mice, Inbred BALB C
- Female
Collapse
Affiliation(s)
- Qihong Yang
- People's Hospital of Longhua, Shenzhen, 518109, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kewang Luo
- People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
12
|
Fan W, Shao K, Luo M. Structural View of Cryo-Electron Microscopy-Determined ATP-Binding Cassette Transporters in Human Multidrug Resistance. Biomolecules 2024; 14:231. [PMID: 38397468 PMCID: PMC10886794 DOI: 10.3390/biom14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, acting as cellular "pumps," facilitate solute translocation through membranes via ATP hydrolysis. Their overexpression is closely tied to multidrug resistance (MDR), a major obstacle in chemotherapy and neurological disorder treatment, hampering drug accumulation and delivery. Extensive research has delved into the intricate interplay between ABC transporter structure, function, and potential inhibition for MDR reversal. Cryo-electron microscopy has been instrumental in unveiling structural details of various MDR-causing ABC transporters, encompassing ABCB1, ABCC1, and ABCG2, as well as the recently revealed ABCC3 and ABCC4 structures. The newly obtained structural insight has deepened our understanding of substrate and drug binding, translocation mechanisms, and inhibitor interactions. Given the growing body of structural information available for human MDR transporters and their associated mechanisms, we believe it is timely to compile a comprehensive review of these transporters and compare their functional mechanisms in the context of multidrug resistance. Therefore, this review primarily focuses on the structural aspects of clinically significant human ABC transporters linked to MDR, with the aim of providing valuable insights to enhance the effectiveness of MDR reversal strategies in clinical therapies.
Collapse
Affiliation(s)
| | | | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (W.F.); (K.S.)
| |
Collapse
|
13
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Amorós Morales LC, Marchesini A, Gómez Bergna SM, García Fallit M, Tongiani SE, Vásquez L, Ferrelli ML, Videla-Richardson GA, Candolfi M, Romanowski V, Pidre ML. PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms. Viruses 2023; 15:1984. [PMID: 37896762 PMCID: PMC10610652 DOI: 10.3390/v15101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Baculoviruses are insect-specific pathogens widely used in biotechnology. In particular, the Autographa californica nucleopolyhedrovirus (AcMNPV) has been exploited as a platform for bio-inputs production. This is why the improvement of the technologies used for the production of recombinant baculoviruses takes on particular relevance. To achieve this goal, we developed a highly versatile baculoviral transfer vector generation system called PluriBAC. The PluriBAC system consists of three insert entry levels using Golden Gate assembly technology. The wide availability of vectors and sticky ends allows enough versatility to combine more than four different promoters, genes of interest, and terminator sequences. Here, we report not only the rational design of the PluriBAC system but also its use for the generation of baculoviral reporter vectors applied to different fields of biotechnology. We demonstrated that recombinant AcMNPV baculoviruses generated with the PluriBAC system were capable of infecting Spodoptera frugiperda larvae. On the other hand, we found that the recombinant budded virions (BV) generated using our system were capable of transducing different types of tumor and normal cells both in vitro and in vivo. Our findings suggest that the PluriBAC system could constitute a versatile tool for the generation of insecticide and gene therapy vectors.
Collapse
Affiliation(s)
- Leslie C. Amorós Morales
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Abril Marchesini
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Santiago M. Gómez Bergna
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías García Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Silvana E. Tongiani
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Larisa Vásquez
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Guillermo A. Videla-Richardson
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Ciudad Autónoma de Buenos Aires C1121A6B, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías L. Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| |
Collapse
|
15
|
Lee JW, Lee H, Chun YS, Ahn J, Moon JY, Kim DK, Cho SK, Choi HK. Characterization of chemoresistant human non-small cell lung cancer cells by metabolic and lipidomic profiling. Metabolomics 2023; 19:80. [PMID: 37690093 DOI: 10.1007/s11306-023-02045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Lung cancer is one of the most malignant cancers and the leading cause of cancer-related deaths worldwide, while acquired chemoresistance would represent a major problem in the treatment of non-small cell lung cancer (NSCLC) because of the reduced treatment effect and increased rates of recurrence. METHODS To establish the chemoresistant NSCLC cells, doxorubicin was treated to A549 cells over 3 months at gradually increasing concentrations from 0.03 to 0.5 µM. Real-time PCR and Western blotting were employed for investigating mRNA and protein expression of the glutathione peroxidase (GPX) protein family and multidrug resistance protein 1 (MRP1) in A549 and A549/CR cells. We also employed gas chromatography mass-spectrometry and nano electrospray ionization mass-spectrometry coupled with multivariate statistical analysis to characterize the unique metabolic and lipidomic profiles of chemoresistant NSCLC cells in order to identify potential therapeutic targets. RESULTS Reactive oxygen species levels were decreased, and mRNA and protein levels of GPX2 and multidrug resistance protein 1 (MRP1) were increased in A549/CR. We identified 87 metabolites and intact lipid species in A549 and A549/CR. Among these metabolites, lactic acid, glutamic acid, glycine, proline, aspartic acid, succinic acid, and ceramide, alongside the PC to PE ratio, and arachidonic acid-containing phospholipids were suggested as characteristic features of chemoresistant NSCLC cells (A549/CR). CONCLUSIONS This study reveals characteristic feature differences between drug-resistance NSCLC cells and their parental cells. We suggest potential therapeutic targets in chemoresistant NSCLC. Our results provide new insight into metabolic and lipidomic alterations in chemoresistant NSCLC. This could be used as fundamental information to develop therapeutic strategies for the treatment of chemoresistant NSCLC patients.
Collapse
Affiliation(s)
- Ji Won Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoon Shik Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Junyoung Ahn
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong Yong Moon
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea
| | - Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
16
|
Rahman H, Ware MJ, Sajid A, Lusvarghi S, Durell SR, Ambudkar SV. Residues from Homologous Transmembrane Helices 4 and 10 Are Critical for P-Glycoprotein (ABCB1)-Mediated Drug Transport. Cancers (Basel) 2023; 15:3459. [PMID: 37444569 DOI: 10.3390/cancers15133459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
P-glycoprotein (P-gp, ABCB1) transports structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs, thus contributing to multidrug-resistant cancer. Cryo-EM structures of human P-gp revealed that TMHs 4 and 10 contribute to the formation of the drug-binding cavity and undergo conformational changes during drug transport. To assess the role of the conformational changes in TMH4 and TMH10 during drug transport, we generated two mutants (TMH4-7A and TMH10-7A), each containing seven alanine substitutions. Analysis of the drug efflux function of these mutants using 15 fluorescent substrates revealed that most of the substrates were transported, indicating that even seven mutations in an individual helix have no significant effect on transport function. We then designed the TMH4,10-14A mutant combining seven mutations in both TMHs 4 and 10. Interestingly, when the TMH4,10-14A mutant was tested with 15 substrates, there was no efflux observed for fourteen. The basal ATPase activity of the TMH4,10-14A mutant, similar to that of the WT protein, was inhibited by zosuquidar but was not stimulated by verapamil or rhodamine 6G. Molecular dynamics simulations indicated that the mutations cause TMHs 4 and 10 to pack tighter to their proximal helices, reducing their independent mobility. In aggregate, our findings demonstrate the critical role of the residues of homologous TMHs 4 and 10 for substrate transport, consistent with conformational changes observed in the structure of P-gp.
Collapse
Affiliation(s)
- Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Mark J Ware
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| |
Collapse
|
17
|
Schäfer J, Klösgen VJ, Omer EA, Kadioglu O, Mbaveng AT, Kuete V, Hildebrandt A, Efferth T. In Silico and In Vitro Identification of P-Glycoprotein Inhibitors from a Library of 375 Phytochemicals. Int J Mol Sci 2023; 24:10240. [PMID: 37373385 DOI: 10.3390/ijms241210240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer therapy with clinically established anticancer drugs is frequently hampered by the development of drug resistance of tumors and severe side effects in normal organs and tissues. The demand for powerful, but less toxic, drugs is high. Phytochemicals represent an important reservoir for drug development and frequently exert less toxicity than synthetic drugs. Bioinformatics can accelerate and simplify the highly complex, time-consuming, and expensive drug development process. Here, we analyzed 375 phytochemicals using virtual screenings, molecular docking, and in silico toxicity predictions. Based on these in silico studies, six candidate compounds were further investigated in vitro. Resazurin assays were performed to determine the growth-inhibitory effects towards wild-type CCRF-CEM leukemia cells and their multidrug-resistant, P-glycoprotein (P-gp)-overexpressing subline, CEM/ADR5000. Flow cytometry was used to measure the potential to measure P-gp-mediated doxorubicin transport. Bidwillon A, neobavaisoflavone, coptisine, and z-guggulsterone all showed growth-inhibitory effects and moderate P-gp inhibition, whereas miltirone and chamazulene strongly inhibited tumor cell growth and strongly increased intracellular doxorubicin uptake. Bidwillon A and miltirone were selected for molecular docking to wildtype and mutated P-gp forms in closed and open conformations. The P-gp homology models harbored clinically relevant mutations, i.e., six single missense mutations (F336Y, A718C, Q725A, F728A, M949C, Y953C), three double mutations (Y310A-F728A; F343C-V982C; Y953A-F978A), or one quadruple mutation (Y307C-F728A-Y953A-F978A). The mutants did not show major differences in binding energies compared to wildtypes. Closed P-gp forms generally showed higher binding affinities than open ones. Closed conformations might stabilize the binding, thereby leading to higher binding affinities, while open conformations may favor the release of compounds into the extracellular space. In conclusion, this study described the capability of selected phytochemicals to overcome multidrug resistance.
Collapse
Affiliation(s)
- Julia Schäfer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Vincent Julius Klösgen
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
- Institute of Bioinformatics, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Armelle T Mbaveng
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Andreas Hildebrandt
- Institute of Bioinformatics, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
18
|
Bakadlag R, Limniatis G, Georges G, Georges E. The anti-estrogen receptor drug, tamoxifen, is selectively Lethal to P-glycoprotein-expressing Multidrug resistant tumor cells. BMC Cancer 2023; 23:24. [PMID: 36609245 PMCID: PMC9824978 DOI: 10.1186/s12885-022-10474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND P-glycoprotein (P-gp), a member of the ATP Binding Cassette B1 subfamily (ABCB1), confers resistance to clinically relevant anticancer drugs and targeted chemotherapeutics. However, paradoxically P-glycoprotein overexpressing drug resistant cells are "collaterally sensitive" to non-toxic drugs that stimulate its ATPase activity. METHODS Cell viability assays were used to determine the effect of low concentrations of tamoxifen on the proliferation of multidrug resistant cells (CHORC5 and MDA-Doxo400), expressing P-gp, their parental cell lines (AuxB1 and MDA-MB-231) or P-gp-CRISPR knockout clones of AuxB1 and CHORC5 cells. Western blot analysis was used to estimate P-gp expression in different cell lines. Apoptosis of tamoxifen-induced cell death was estimated by flow cytometry using Annexin-V-FITC stained cells. Oxidative stress of tamoxifen treated cells was determined by measuring levels of reactive oxygen species and reduced thiols using cell-permeant 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and 5,5-dithio-bis-(2-nitrobenzoic acid) DTNB, respectively. RESULTS In this report, we show that P-gp-expressing drug resistant cells (CHORC5 and MDA-Doxo400) are collaterally sensitive to the anti-estrogen tamoxifen or its metabolite (4-hydroxy-tamoxifen). Moreover, P-gp-knockout clones of CHORC5 cells display complete reversal of collateral sensitivity to tamoxifen. Drug resistant cells exposed to low concentrations of tamoxifen show significant rise in reactive oxygen species, drop of reduced cellular thiols and increased apoptosis. Consistent with the latter, CHORC5 cells expressing high levels of human Bcl-2 (CHORC5-Bcl-2) show significant resistance to tamoxifen. In addition, the presence of the antioxidant N-acetylcysteine or P-gp ATPase inhibitor, PSC-833, reverse the collateral sensitivity of resistant cells to tamoxifen. By contrast, the presence of rotenone (specific inhibitor of mitochondria complex I) synergizes with tamoxifen. CONCLUSION This study demonstrates the use of tamoxifen as collateral sensitivity drug that can preferentially target multidrug resistant cells expressing P-gp at clinically achievable concentrations. Given the widespread use of tamoxifen in the treatment of estrogen receptor-positive breast cancers, this property of tamoxifen may have clinical applications in treatment of P-gp-positive drug resistant breast tumors.
Collapse
Affiliation(s)
- Rowa Bakadlag
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Québec, H9X-3V9 Canada
| | - Georgia Limniatis
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Québec, H9X-3V9 Canada
| | - Gabriel Georges
- grid.421142.00000 0000 8521 1798Department of Cardiac Surgery, Quebec Heart & Lung Institute, Université Laval, Québec, Canada
| | - Elias Georges
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Québec, H9X-3V9 Canada
| |
Collapse
|
19
|
Colombo M, Passarelli F, Corsetto PA, Rizzo AM, Marabese M, De Simone G, Pastorelli R, Broggini M, Brunelli L, Caiola E. NSCLC Cells Resistance to PI3K/mTOR Inhibitors Is Mediated by Delta-6 Fatty Acid Desaturase (FADS2). Cells 2022; 11:cells11233719. [PMID: 36496978 PMCID: PMC9736998 DOI: 10.3390/cells11233719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Hyperactivation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most common events in human cancers. Several efforts have been made toward the identification of selective PI3K pathway inhibitors. However, the success of these molecules has been partially limited due to unexpected toxicities, the selection of potentially responsive patients, and intrinsic resistance to treatments. Metabolic alterations are intimately linked to drug resistance; altered metabolic pathways can help cancer cells adapt to continuous drug exposure and develop resistant phenotypes. Here we report the metabolic alterations underlying the non-small cell lung cancer (NSCLC) cell lines resistant to the usual PI3K-mTOR inhibitor BEZ235. In this study, we identified that an increased unsaturation degree of lipid species is associated with increased plasma membrane fluidity in cells with the resistant phenotype and that fatty acid desaturase FADS2 mediates the acquisition of chemoresistance. Therefore, new studies focused on reversing drug resistance based on membrane lipid modifications should consider the contribution of desaturase activity.
Collapse
Affiliation(s)
- Marika Colombo
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Federico Passarelli
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Paola A. Corsetto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Angela M. Rizzo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia De Simone
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Roberta Pastorelli
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence: (M.B.); (L.B.)
| | - Laura Brunelli
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence: (M.B.); (L.B.)
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
20
|
McKeown BT, Relja NJ, Hall SR, Gebremeskel S, MacLeod JM, Veinotte CJ, Bennett LG, Ohlund LB, Sleno L, Jakeman DL, Berman JN, Johnston B, Goralski KB. Pilot study of jadomycin B pharmacokinetics and anti-tumoral effects in zebrafish larvae and mouse breast cancer xenograft models. Can J Physiol Pharmacol 2022; 100:1065-1076. [PMID: 35985040 DOI: 10.1139/cjpp-2022-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite numerous therapeutic options, multidrug resistance (MDR) remains an obstacle to successful breast cancer therapy. Jadomycin B, a natural product derived from Streptomyces venezuelae ISP5230, maintains cytotoxicity in MDR human breast cancer cells. Our objectives were to evaluate the pharmacokinetics, toxicity, anti-tumoral, and anti-metastatic effects of jadomycin B in zebrafish larvae and mice. In a zebrafish larval xenograft model, jadomycin B significantly reduced the proliferation of human MDA-MB-231 cells at or below its maximum tolerated dose (40 µm). In female Balb/C mice, a single intraperitoneal dose (6 mg/kg) was rapidly absorbed with a maximum serum concentration of 3.4 ± 0.27 µm. Jadomycin B concentrations declined biphasically with an elimination half-life of 1.7 ± 0.058 h. In the 4T1 mouse mammary carcinoma model, jadomycin B (12 mg/kg every 12 h from day 6 to 15 after tumor cell injection) decreased primary tumor volume compared to vehicle control. Jadomycin B-treated mice did not exhibit weight loss, nor significant increases in biomarkers of impaired hepatic (alanine aminotransferase) and renal (creatinine) function. In conclusion, jadomycin B demonstrated a good safety profile and provided partial anti-tumoral effects, warranting further dose-escalation safety and efficacy studies in MDR breast cancer models.
Collapse
Affiliation(s)
- Brendan T McKeown
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, B3H 4R2, Canada
| | - Nicholas J Relja
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Steven R Hall
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Simon Gebremeskel
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jeanna M MacLeod
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Chansey J Veinotte
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, B3K 6R8, Canada
| | - Leah G Bennett
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Leanne B Ohlund
- Chemistry department/CERMO-FC, Faculty of Sciences, Université du Québec à Montréal, Montréal, QC, H2X 2J6, Canada
| | - Lekha Sleno
- Chemistry department/CERMO-FC, Faculty of Sciences, Université du Québec à Montréal, Montréal, QC, H2X 2J6, Canada
| | - David L Jakeman
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Chemistry, Faculty of Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jason N Berman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, B3K 6R8, Canada.,Children's Hospital of Eastern Ontario Research Institute and Department of Pediatrics, University of Ottawa, Ottawa, ON, K1H 5B2, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Brent Johnston
- Beatrice Hunter Cancer Research Institute, Halifax, NS, B3H 4R2, Canada.,Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, B3H 4R2, Canada.,Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, B3K 6R8, Canada
| |
Collapse
|
21
|
Wei J, Liu S, Wang K, Sun C, Li S, Liu X, Yin X, Bai S, Liang G, Crickmore N, An S. Cyclosporin A acts as a novel insecticide against Cry1Ac-susceptible and -resistant Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105283. [PMID: 36464338 DOI: 10.1016/j.pestbp.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed. As a fungal metabolite, Cyclosporin A (CsA) has not been applied in agriculture pests. Here, CsA was evaluated as a propective insecticide for H. armigera. The results showed that CsA displayed high insecticidal activity against both Cry1Ac-susceptible and -resistant populations of H. armigera. Moreover, lower concentrations of CsA had clear effects, including significantly reduced pupal weight, pupation rate, emergence rate, ovary size, female fecundity and egg hatchability. Further study confirmed that CsA suppressed calcineurin activity and the subsequent expression of endogenous antimicrobial peptide genes (APMs), leading to impaired immunity, ultimately resulting in delayed development and increased mortality. Thus, CsA treatment could control the cotton bollworm population and even showed efficacy against those with Bt resistance. In addition, the morphological changes observed in insects fed CsA with lower concentrations provide insight into insect immunity, regulation of growth and development, regulation of body color, ovary development and sexual selection under external pressure. Overall, our study provides information on biological control potential of Cry1Ac-susceptible and -resistant populations of H. armigera to develop novel bioinsecticides.
Collapse
Affiliation(s)
- Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaokai Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengxian Sun
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sufen Bai
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
22
|
Sun C, Li S, Wang K, Yin X, Wang Y, Du M, Wei J, An S. Cyclosporin A as a Potential Insecticide to Control the Asian Corn Borer Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae). INSECTS 2022; 13:965. [PMID: 36292912 PMCID: PMC9604310 DOI: 10.3390/insects13100965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The long-term use of chemical insecticides has caused serious problems of insect resistance and environmental pollution; new insecticides are needed to solve this problem. Cyclosporin A (CsA) is a polypeptide produced by many fungi, which is used to prevent or treat immune rejection during organ transplantation. However, little is known about the utility of CsA as an insecticide. Therefore, this study evaluated the insecticidal activity of CsA using Ostrinia furnacalis as a model. The results demonstrated that CsA was toxic to O. furnacalis with LC50 values of 113.02 μg/g and 198.70 μg/g for newly hatched neonates and newly molted third-instar larvae, respectively. Furthermore, CsA treatment had sublethal effects on the development of O. furnacalis, and significantly reduced the fecundity of adults; this suggests that CsA has great potential to suppress O. furnacalis populations. Further analysis revealed that CsA suppressed calcineurin activity in larvae. CsA had independent or synergistic toxic effects on O. furnacalis when combined with β-cypermethrin, indoxacarb, emamectin benzoate, azadirachtin, and the Bacillus thuringiensis toxin Cry1Ac, which suggests that CsA can help prevent or manage resistance. Our study provides detailed information on the potential of CsA as an insecticide for controlling lepidopterans.
Collapse
Affiliation(s)
- Chengxian Sun
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengfang Du
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
23
|
Zhang H, Bian S, Xu Z, Gao M, Wang H, Zhang J, Zhang M, Ke Y, Wang W, Chen ZS, Xu H. The effect and mechanistic study of encequidar on reversing the resistance of SW620/AD300 cells to doxorubicin. Biochem Pharmacol 2022; 205:115258. [PMID: 36179932 DOI: 10.1016/j.bcp.2022.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022]
Abstract
Encequidar, a gut-specific P-glycoprotein (P-gp) inhibitor, makes oral paclitaxel possible, and has been used in clinical treatment of metastatic breast cancer, however, its pharmacological effect and mechanism of reversal of drug resistance in drug-resistant colon cancer cells SW620/AD300 are still unknown. Herein, we first synthesized encequidar and demonstrated that it could inhibit the transport activity of P-gp, reduced doxorubicin (DOX) efflux, enhanced DOX cytotoxicity and promoted tumor-apoptosis in SW620/AD300 cells. Metabolomic analysis of cell samples was performedusing liquid chromatography Q-Exactive mass spectrometer, the results of metabolite enrichment analysis and pathway analysis showed that the combination of encequidar and DOX could: i) significantly affect the citric acid cycle (TCA cycle) and reduce the energy supply required for P-gp to exert its transport activity; ii) affect the metabolism of glutathione, which is the main component of the anti-oxidative stress system, and reduce the ability of cells to resist oxidative stress; iii) increase the intracellular reactive oxygen species (ROS) production and enhance ROS-induced cell damage and lipid peroxidation, which in turn restore the sensitivity of drug-resistant cells to DOX. In conclusion, these results provide sufficient data support for the therapeutical application of the P-gp inhibitor encequidar to reverse MDR, and are of great significance to further understand the therapeutic advantages of encequidar in anti-tumor therapy and guide clinical rational drug use.
Collapse
Affiliation(s)
- Hang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shaopan Bian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhihao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ming Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Han Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junwei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mingkun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weijia Wang
- Department of International Medical Services (IMS), Beijing Tiantan Hospital of Capital Medical University, Beijing, 100070, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA.
| | - Haiwei Xu
- Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
24
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
25
|
Arnason TG, MacDonald-Dickinson V, Gaunt MC, Davies GF, Lobanova L, Trost B, Gillespie ZE, Waldner M, Baldwin P, Borrowman D, Marwood H, Vizeacoumar FS, Vizeacoumar FJ, Eskiw CH, Kusalik A, Harkness TAA. Activation of the Anaphase Promoting Complex Reverses Multiple Drug Resistant Cancer in a Canine Model of Multiple Drug Resistant Lymphoma. Cancers (Basel) 2022; 14:cancers14174215. [PMID: 36077749 PMCID: PMC9454423 DOI: 10.3390/cancers14174215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Multiple drug resistant cancers develop all too soon in patients who received successful cancer treatment. A lack of treatment options often leaves palliative care as the last resort. We tested whether the insulin sensitizer, metformin, known to have anti-cancer activity, could impact canines with drug resistant lymphoma when added to chemotherapy. All canines in the study expressed protein markers of drug resistance and within weeks of receiving metformin, the markers were decreased. A microarray was performed, and from four canines assessed, a common set of 290 elevated genes were discovered in tumor cells compared to control cells. This cluster was enriched with genes that stall the cell cycle, with a large component representing substrates of the Anaphase Promoting Complex (APC), which degrades proteins. One canine entered partial remission. RNAs from this canine showed that APC substrates were decreased during remission and elevated again during relapse, suggesting that the APC was impaired in drug resistant canines and restored when remission occurred. We validated our results in cell lines using APC inhibitors and activators. We conclude that the APC may be a vital guardian of the genome and could delay the onset of multiple drug resistance when activated. Abstract Like humans, canine lymphomas are treated by chemotherapy cocktails and frequently develop multiple drug resistance (MDR). Their shortened clinical timelines and tumor accessibility make canines excellent models to study MDR mechanisms. Insulin-sensitizers have been shown to reduce the incidence of cancer in humans prescribed them, and we previously demonstrated that they also reverse and delay MDR development in vitro. Here, we treated canines with MDR lymphoma with metformin to assess clinical and tumoral responses, including changes in MDR biomarkers, and used mRNA microarrays to determine differential gene expression. Metformin reduced MDR protein markers in all canines in the study. Microarrays performed on mRNAs gathered through longitudinal tumor sampling identified a 290 gene set that was enriched in Anaphase Promoting Complex (APC) substrates and additional mRNAs associated with slowed mitotic progression in MDR samples compared to skin controls. mRNAs from a canine that went into remission showed that APC substrate mRNAs were decreased, indicating that the APC was activated during remission. In vitro validation using canine lymphoma cells selected for resistance to chemotherapeutic drugs confirmed that APC activation restored MDR chemosensitivity, and that APC activity was reduced in MDR cells. This supports the idea that rapidly pushing MDR cells that harbor high loads of chromosome instability through mitosis, by activating the APC, contributes to improved survival and disease-free duration.
Collapse
Affiliation(s)
- Terra G. Arnason
- Division of Endocrinology and Metabolism, Department of Medicine, Saskatoon, SK S7N 0W8, Canada
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (T.G.A.); (T.A.A.H.)
| | - Valerie MacDonald-Dickinson
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Matthew Casey Gaunt
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Gerald F. Davies
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, Saskatoon, SK S7N 5E5, Canada
| | - Liubov Lobanova
- Division of Endocrinology and Metabolism, Department of Medicine, Saskatoon, SK S7N 0W8, Canada
| | - Brett Trost
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Zoe E. Gillespie
- Department of Food and Bioproduct Sciences, Saskatoon, SK S7N 5A8, Canada
| | - Matthew Waldner
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Paige Baldwin
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Devon Borrowman
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Hailey Marwood
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Franco J. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Anthony Kusalik
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Troy A. A. Harkness
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (T.G.A.); (T.A.A.H.)
| |
Collapse
|
26
|
Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022; 23:ijms23169442. [PMID: 36012706 PMCID: PMC9409216 DOI: 10.3390/ijms23169442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARβ2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
- Correspondence: ; Tel.: +20-1094-970-173
| |
Collapse
|
27
|
Radhakrishnan D, Mohanan S, Choi G, Choy JH, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:225-274. [PMID: 35875329 PMCID: PMC9307116 DOI: 10.1080/14686996.2022.2052181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Goeun Choi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan31116, Korea
| | - Jin-Ho Choy
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- Course, College of Medicine, Dankook UniversityDepartment of Pre-medical, Cheonan31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shankar Bolan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nikki Verrills
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pradeep Tanwar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
28
|
Hanssen KM, Wheatley MS, Yu DMT, Conseil G, Norris MD, Haber M, Cole SPC, Fletcher JI. GSH facilitates the binding and inhibitory activity of novel multidrug resistance protein 1 (MRP1) modulators. FEBS J 2022; 289:3854-3875. [PMID: 35080351 DOI: 10.1111/febs.16374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
MRP1 (ABCC1) is a membrane transporter that confers multidrug resistance in cancer cells by exporting chemotherapeutic agents, often in a reduced glutathione (GSH)-dependent manner. This transport activity can be altered by compounds (modulators) that block drug transport while simultaneously stimulating GSH efflux by MRP1. In MRP1-expressing cells, modulator-stimulated GSH efflux can be sufficient to deplete GSH and increase sensitivity to chemotherapy, enhancing cancer cell death. Further development of clinically useful MRP1 modulators requires a better mechanistic understanding of modulator binding and its relationship to GSH binding and transport. Here, we explore the mechanism of two MRP1 small molecule modulators, 5681014 and 7914321, in relation to a bipartite substrate-binding cavity of MRP1. Binding of these modulators to MRP1 was dependent on the presence of GSH but not its reducing capacity. Accordingly, the modulators poorly inhibited organic anion transport by K332L-mutant MRP1, where GSH binding and transport is limited. However, the inhibitory activity of the modulators was also diminished by mutations that limit E2 17βG but spare GSH-conjugate binding and transport (W553A, M1093A, W1246A), suggesting overlap between the E2 17βG and modulator binding sites. Immunoblots of limited trypsin digests of MRP1 suggest that binding of GSH, but not the modulators, induces a conformation change in MRP1. Together, these findings support the model, in which GSH binding induces a conformation change that facilitates binding of MRP1 modulators, possibly in a proposed hydrophobic binding pocket of MRP1. This study may facilitate the structure-guided design of more potent and selective MRP1 modulators.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Madeleine S Wheatley
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia
| | - Denise M T Yu
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, Canada
| | - Murray D Norris
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, Australia
| | - Michelle Haber
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, Canada
| | - Jamie I Fletcher
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| |
Collapse
|
29
|
Dhas N, Pastagia M, Sharma A, Khera A, Kudarha R, Kulkarni S, Soman S, Mutalik S, Barnwal RP, Singh G, Patel M. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. J Control Release 2022; 348:798-824. [PMID: 35752250 DOI: 10.1016/j.jconrel.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/19/2022]
Abstract
Tumours are the second leading cause of death globally, generating alterations in biological interactions and, as a result, malfunctioning of crucial genetic traits. Technological advancements have made it possible to identify tumours at the cellular level, making transcriptional gene variations and other genetic variables more easily investigated. Standard chemotherapy is seen as a non-specific treatment that has the potential to destroy healthy cells while also causing systemic toxicity in individuals. As a result, developing new technologies has become a pressing necessity. QDs are semiconductor particles with diameters ranging from 2 to 10 nanometers. QDs have grabbed the interest of many researchers due to their unique characteristics, including compact size, large surface area, surface charges, and precise targeting. QD-based drug carriers are well known among the many nanocarriers. Using QDs as a delivery approach enhances solubility, lengthens retention time, and reduces the harmful effects of loaded medicines. Several varieties of quantum dots used in drug administration are discussed in this article, along with their chemical and physical characteristics and manufacturing methods. Furthermore, it discusses the role of QDs in biological, medicinal, and theranostic applications.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Monarch Pastagia
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Alisha Khera
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
30
|
Pape VFS, Palkó R, Tóth S, Szabó MJ, Sessler J, Dormán G, Enyedy ÉA, Soós T, Szatmári I, Szakács G. Structure-Activity Relationships of 8-Hydroxyquinoline-Derived Mannich Bases with Tertiary Amines Targeting Multidrug-Resistant Cancer. J Med Chem 2022; 65:7729-7745. [PMID: 35613553 PMCID: PMC9189845 DOI: 10.1021/acs.jmedchem.2c00076] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
A recently proposed
strategy to overcome multidrug resistance (MDR)
in cancer is to target the collateral sensitivity of otherwise resistant
cells. We designed a library of 120 compounds to explore the chemical
space around previously identified 8-hydroxyquinoline-derived Mannich
bases with robust MDR-selective toxicity. We included compounds to
study the effect of halogen and alkoxymethyl substitutions in R5 in
combination with different Mannich bases in R7, a shift of the Mannich
base from R7 to R5, as well as the introduction of an aromatic moiety.
Cytotoxicity tests performed on a panel of parental and MDR cells
highlight a strong influence of experimentally determined pKa values of the donor atom moieties, indicating
that protonation and metal chelation are important factors modulating
the MDR-selective anticancer activity of the studied compounds. Our
results identify structural requirements increasing MDR-selective
anticancer activity, providing guidelines for the development of more
effective anticancer chelators targeting MDR cancer.
Collapse
Affiliation(s)
- Veronika F S Pape
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.,Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Roberta Palkó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | | | - Judit Sessler
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - György Dormán
- TargetEx Ltd., Madách Imre u 31/2., H-2120 Dunakeszi, Hungary
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.,Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| |
Collapse
|
31
|
Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:784-804. [PMID: 34993424 PMCID: PMC8730335 DOI: 10.20517/cdr.2021.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp) and ABCG2 are multidrug transporters that confer drug resistance to numerous anti-cancer therapeutics in cell culture. These findings initially created great excitement in the medical oncology community, as inhibitors of these transporters held the promise of overcoming clinical multidrug resistance in cancer patients. However, clinical trials of P-gp and ABCG2 inhibitors in combination with cancer chemotherapeutics have not been successful due, in part, to flawed clinical trial designs resulting from an incomplete molecular understanding of the multifactorial basis of multidrug resistance (MDR) in the cancers examined. The field was also stymied by the lack of high-resolution structural information for P-gp and ABCG2 for use in the rational structure-based drug design of inhibitors. Recent advances in structural biology have led to numerous structures of both ABCG2 and P-gp that elucidated more clearly the mechanism of transport and the polyspecific nature of their substrate and inhibitor binding sites. These data should prove useful helpful for developing even more potent and specific inhibitors of both transporters. As such, although possible pharmacokinetic interactions would need to be evaluated, these inhibitors may show greater effectiveness in overcoming ABC-dependent multidrug resistance in combination with chemotherapeutics in carefully selected subsets of cancers. Another perhaps even more compelling use of these inhibitors may be in reversibly inhibiting endogenously expressed P-gp and ABCG2, which serve a protective role at various blood-tissue barriers. Inhibition of these transporters at sanctuary sites such as the brain and gut could lead to increased penetration by chemotherapeutics used to treat brain cancers or other brain disorders and increased oral bioavailability of these agents, respectively.
Collapse
Affiliation(s)
- Jason Goebel
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | | |
Collapse
|
32
|
Nurcahyanti ADR, Kusmita L, Wink M. Bixin and fucoxanthin sensitize human lung cancer and cervical cancer cell to cisplatin in vitro. BMC Res Notes 2021; 14:454. [PMID: 34922615 PMCID: PMC8684137 DOI: 10.1186/s13104-021-05866-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Cisplatin is a conventional anticancer drug that generates reactive oxygen species and causes apoptosis. However, many cancer cells develop alterations in the ATP binding cassette transporter responsible for the uptake and efflux process, which leads to resistance. Many natural products have shown potential to compete with ATP binding cassette transporter and may sensitize resistant cells to cisplatin. Studies have shown pro-oxidant effect of carotenoids that promote apoptosis of cancer cells. Bixin and fucoxanthin are well-known carotenoids with known antioxidant properties, however their bioactivity in lung cancer cells, clinically known to develop resistance due to ATP binding cassette transporter, has been minimally studied. This study is the first to investigate the potential of bixin and fucoxanthin to sensitize human lung cancer cell line, A549 and cervical cancer cell line, HeLa, to cisplatin. Drug combination method developed by Chou and Talalay theorem was employed. Result Employing the best combination ratio, this study shows selective sensitization of cancer cells to cisplatin after bixin and fucoxanthin treatment. Further study on the mechanism of action in specific types of cancer cells is warranted. It may improve cisplatin sensitivity in tumors and rational use of cancer drugs. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05866-4.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, Jakarta, 14440, Indonesia.
| | - Lia Kusmita
- Department of Pharmacy, STIFAR Yayasan Pharmasi Semarang, Letjend Sarwo Edhie Wibowo KM 1, Plamongansari Pucanggading, Semarang, Indonesia
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
33
|
Pahnke J, Bascuñana P, Brackhan M, Stefan K, Namasivayam V, Koldamova R, Wu J, Möhle L, Stefan SM. Strategies to gain novel Alzheimer's disease diagnostics and therapeutics using modulators of ABCA transporters. FREE NEUROPATHOLOGY 2021; 2:33. [PMID: 34977908 PMCID: PMC8717091 DOI: 10.17879/freeneuropathology-2021-3528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Adenosine-triphosphate-(ATP)-binding cassette (ABC) transport proteins are ubiquitously present membrane-bound efflux pumps that distribute endo- and xenobiotics across intra- and intercellular barriers. Discovered over 40 years ago, ABC transporters have been identified as key players in various human diseases, such as multidrug-resistant cancer and atherosclerosis, but also neurodegenerative diseases, such as Alzheimer's disease (AD). Most prominent and well-studied are ABCB1, ABCC1, and ABCG2, not only due to their contribution to the multidrug resistance (MDR) phenotype in cancer, but also due to their contribution to AD. However, our understanding of other ABC transporters is limited, and most of the 49 human ABC transporters have been largely neglected as potential targets for novel small-molecule drugs. This is especially true for the ABCA subfamily, which contains several members known to play a role in AD initiation and progression. This review provides up-to-date information on the proposed functional background and pathological role of ABCA transporters in AD. We also provide an overview of small-molecules shown to interact with ABCA transporters as well as potential in silico, in vitro, and in vivo methodologies to gain novel templates for the development of innovative ABC transporter-targeting diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
| | - Pablo Bascuñana
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mirjam Brackhan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jingyun Wu
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Luisa Möhle
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
35
|
Cheng Y, Li S, Gao L, Zhi K, Ren W. The Molecular Basis and Therapeutic Aspects of Cisplatin Resistance in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:761379. [PMID: 34746001 PMCID: PMC8569522 DOI: 10.3389/fonc.2021.761379] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a kind of malignant tumors with low survival rate and prone to have early metastasis and recurrence. Cisplatin is an alkylating agent which induces DNA damage through the formation of cisplatin-DNA adducts, leading to cell cycle arrest and apoptosis. In the management of advanced OSCC, cisplatin-based chemotherapy or chemoradiotherapy has been considered as the first-line treatment. Unfortunately, only a portion of OSCC patients can benefit from cisplatin treatment, both inherent resistance and acquired resistance greatly limit the efficacy of cisplatin and even cause treatment failure. Herein, this review outline the underlying mechanisms of cisplatin resistance in OSCC from the aspects of DNA damage and repair, epigenetic regulation, transport processes, programmed cell death and tumor microenvironment. In addition, this review summarizes the strategies applicable to overcome cisplatin resistance, which can provide new ideas to improve the clinical therapeutic outcome of OSCC.
Collapse
Affiliation(s)
- Yali Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Polonio-Alcalá E, Rabionet M, Ruiz-Martínez S, Palomeras S, Porta R, Vásquez-Dongo C, Bosch-Barrera J, Puig T, Ciurana J. Polycaprolactone Electrospun Scaffolds Produce an Enrichment of Lung Cancer Stem Cells in Sensitive and Resistant EGFRm Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13215320. [PMID: 34771484 PMCID: PMC8582538 DOI: 10.3390/cancers13215320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The culture of lung cancer stem cells (LCSCs) is not possible using traditional flat polystyrene surfaces. The study of these tumor-initiating cells is fundamental due to their key role in the resistance to anticancer therapies, tumor recurrence, and metastasis. Hence, we evaluated the use of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSC population in sensitive and resistant EGFR-mutated lung adenocarcinoma models. Our findings revealed that both cell models seeded on PCL-ES structures showed a higher drug resistance, enhanced levels of several genes and proteins related to epithelial-to-mesenchymal process, stemness, and surface markers, and the activation of the Hedgehog pathway. We also determined that the non-expression of CD133 was associated with a low degree of histological differentiation, disease progression, distant metastasis, and worse overall survival in EGFR-mutated non-small cell lung cancer patients. Therefore, we confirmed PCL-ES scaffolds as a suitable three-dimensional cell culture model for the study of LCSC niche. Abstract The establishment of a three-dimensional (3D) cell culture model for lung cancer stem cells (LCSCs) is needed because the study of these stem cells is unable to be done using flat surfaces. The study of LCSCs is fundamental due to their key role in drug resistance, tumor recurrence, and metastasis. Hence, the purpose of this work is the evaluation of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSCs in sensitive and resistant EGFR-mutated (EGFRm) lung adenocarcinoma cell models. We performed a thermal, physical, and biological characterization of 10% and 15%-PCL-ES structures. Several genes and proteins associated with LCSC features were analyzed by RT-qPCR and Western blot. Vimentin and CD133 tumor expression were evaluated in samples from 36 patients with EGFRm non-small cell lung cancer through immunohistochemistry. Our findings revealed that PC9 and PC9-GR3 models cultured on PCL-ES scaffolds showed higher resistance to osimertinib, upregulation of ABCB1, Vimentin, Snail, Twist, Sox2, Oct-4, and CD166, downregulation of E-cadherin and CD133, and the activation of Hedgehog pathway. Additionally, we determined that the non-expression of CD133 was significantly associated with a low degree of histological differentiation, disease progression, and distant metastasis. To sum up, we confirmed PCL-ES scaffolds as a suitable 3D cell culture model for the study of the LCSC niche.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Marc Rabionet
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Sònia Palomeras
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Rut Porta
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Medical Oncology Department, Catalan Institute of Oncology, 17007 Girona, Spain;
| | - Carmen Vásquez-Dongo
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Department of Pathology, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | | | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| |
Collapse
|
37
|
Lu X, Yan G, Klauck SM, Fleischer E, Klinger A, Sugimoto Y, Shan L, Efferth T. Cytotoxicity of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide in multidrug-resistant cancer cells through activation of PERK/eIF2α/ATF4 pathway. Biochem Pharmacol 2021; 193:114788. [PMID: 34582772 DOI: 10.1016/j.bcp.2021.114788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
After decades of research, multidrug resistance (MDR) remains a huge challenge in cancer treatment. In this study, the cytotoxic of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide (MCC1734) has been investigated towards multidrug-resistant cancer cell lines. MCC1734 exerted cytotoxicity on cell lines expressing different mechanisms of drug resistance (P-glycoprotein, BCRP, ABCB5, EGFR, p53 knockout) to a different extent. Interestingly, sensitive CCRF-CEM cells and multidrug-resistant P-gp-overexpressing CEM/ADR5000 cells represented similar sensitivity towards MCC1734, indicating MCC1734 can bypass P-gp-mediated resistance. Microarray-based mRNA expression revealed that MCC1734 affected cells by multiple pathways, including cell cycle regulation, mitochondrial dysfunction, apoptosis signaling, and EIF2 signaling. MCC1734 stimulated the generation of excessive reactive oxygen species and the collapse of mitochondria membrane potential in CCRF-CEM cells, companied by the arrest of the cell cycle in the G2M phase and apoptosis induction as determined by flow cytometry. In addition, our immunoblotting analysis highlighted that MCC1734 triggered endoplasmic reticulum (ER) stress, evidenced by the activation of p-PERK, p-eIF2α, ATF4 and CHOP. The anti-cancer effects of MCC1734 were further observed in vivo using human xenograft tumors transplanted to zebrafish, providing further support for MCC1734 as a promising new candidate for cancer drug development.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
38
|
Rabionet M, Polonio-Alcalá E, Relat J, Yeste M, Sims-Mourtada J, Kloxin AM, Planas M, Feliu L, Ciurana J, Puig T. Fatty acid synthase as a feasible biomarker for triple negative breast cancer stem cell subpopulation cultured on electrospun scaffolds. Mater Today Bio 2021; 12:100155. [PMID: 34841239 PMCID: PMC8606546 DOI: 10.1016/j.mtbio.2021.100155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022] Open
Abstract
There is no targeted therapy for triple negative breast cancer (TNBC), which presents an aggressive profile and poor prognosis. Recent studies noticed the feasibility of breast cancer stem cells (BCSCs), a small population responsible for tumor initiation and relapse, to become a novel target for TNBC treatments. However, new cell culture supports need to be standardized since traditional two-dimensional (2D) surfaces do not maintain the stemness state of cells. Hence, three-dimensional (3D) scaffolds represent an alternative to study in vitro cell behavior without inducing cell differentiation. In this work, electrospun polycaprolactone scaffolds were used to enrich BCSC subpopulation of MDA-MB-231 and MDA-MB-468 TNBC cells, confirmed by the upregulation of several stemness markers and the existence of an epithelial-to-mesenchymal transition within 3D culture. Moreover, 3D-cultured cells displayed a shift from MAPK to PI3K/AKT/mTOR signaling pathways, accompanied by an enhanced EGFR and HER2 activation, especially at early cell culture times. Lastly, the fatty acid synthase (FASN), a lipogenic enzyme overexpressed in several carcinomas, was found to be hyperactivated in stemness-enriched samples. Its pharmacological inhibition led to stemness diminishment, overcoming the BCSC expansion achieved in 3D culture. Therefore, FASN may represent a novel target for BCSC niche in TNBC samples.
Collapse
Affiliation(s)
- Marc Rabionet
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Pic de Peguera 15, 17003, Girona, Spain
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, DE, USA
| | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
| |
Collapse
|
39
|
Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13081321. [PMID: 34452282 PMCID: PMC8399070 DOI: 10.3390/pharmaceutics13081321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising tool for the treatment of cancer. In the past decades, major steps have been made to bring nanotechnology into the clinic in the form of nanoparticle-based drug delivery systems. The great hope of drug delivery systems is to reduce the side effects of chemotherapeutics while simultaneously increasing the efficiency of the therapy. An increased treatment efficiency would greatly benefit the quality of life as well as the life expectancy of cancer patients. However, besides its many advantages, nanomedicines have to face several challenges and hurdles before they can be used for the effective treatment of tumors. Here, we give an overview of the hallmarks of cancer, especially colorectal cancer, and discuss biological barriers as well as how drug delivery systems can be utilized for the effective treatment of tumors and metastases.
Collapse
|
40
|
Wu Q, Siddharth S, Sharma D. Triple Negative Breast Cancer: A Mountain Yet to Be Scaled Despite the Triumphs. Cancers (Basel) 2021; 13:3697. [PMID: 34359598 PMCID: PMC8345029 DOI: 10.3390/cancers13153697] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic progression and tumor recurrence pertaining to TNBC are certainly the leading cause of breast cancer-related mortality; however, the mechanisms underlying TNBC chemoresistance, metastasis, and tumor relapse remain somewhat ambiguous. TNBCs show 77% of the overall 4-year survival rate compared to other breast cancer subtypes (82.7 to 92.5%). TNBC is the most aggressive subtype of breast cancer, with chemotherapy being the major approved treatment strategy. Activation of ABC transporters and DNA damage response genes alongside an enrichment of cancer stem cells and metabolic reprogramming upon chemotherapy contribute to the selection of chemoresistant cells, majorly responsible for the failure of anti-chemotherapeutic regime. These selected chemoresistant cells further lead to distant metastasis and tumor relapse. The present review discusses the approved standard of care and targetable molecular mechanisms in chemoresistance and provides a comprehensive update regarding the recent advances in TNBC management.
Collapse
Affiliation(s)
| | - Sumit Siddharth
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA;
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA;
| |
Collapse
|
41
|
Limniatis G, Georges E. The phenothiazine, trifluoperazine, is selectively lethal to ABCB1-expressing multidrug resistant cells. Biochem Biophys Res Commun 2021; 570:148-153. [PMID: 34284140 DOI: 10.1016/j.bbrc.2021.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
P-glycoprotein, member of the B-subfamily of the ATP-binding cassette (ABC) superfamily (e.g., ABCB1), has been demonstrated to confer resistance to clinically relevant anticancer drugs. Paradoxically, ABCB1-expressing multidrug resistant (MDR) cells are hypersensitivity or collateral sensitivity to non-toxic drugs. In this report, we demonstrate the capacity of trifluoperazine (TFP), a calmodulin inhibitor, to confer a collateral sensitivity onto ABCB1-overexpressing MDR cells. We show TFP-induced collateral sensitivity to be linked to ABCB1 expression and ATPase activity, as such phenotype is abolished in ABCB1-knockout MDR cells (CHORC5ΔABCB1 clones A1-A3) or with inhibitors of ABCB1 ATPase. TFP-induced collateral sensitivity is mediated by apoptotic cell death, due to enhanced oxidative stress. The findings in this study show for first time the use TFP as a collateral sensitivity drug, at clinically relevant concentrations. Moreover, given the use of trifluoperazine in the treatment for symptoms of schizophrenia and the role of ABCB1 transporter in tissue blood barriers and other physiologic functions, the finding in this study may have implications beyond cancer chemotherapy.
Collapse
Affiliation(s)
- Georgia Limniatis
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Québec, Canada
| | - Elias Georges
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Québec, Canada.
| |
Collapse
|
42
|
Narayanan S, Wu ZX, Wang JQ, Ma H, Acharekar N, Koya J, Yoganathan S, Fang S, Chen ZS, Pan Y. The Spleen Tyrosine Kinase Inhibitor, Entospletinib (GS-9973) Restores Chemosensitivity in Lung Cancer Cells by Modulating ABCG2-mediated Multidrug Resistance. Int J Biol Sci 2021; 17:2652-2665. [PMID: 34326700 PMCID: PMC8315011 DOI: 10.7150/ijbs.61229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are important in managing lymphoid malignancies by targeting B-cell receptor signaling pathways. Entospletinib (GS-9973) is an oral, selective inhibitor of spleen tyrosine kinase (Syk), currently in the phase II clinical trials for the treatment of chronic lymphocytic leukemia. Syk is abundantly present in the cells of hematopoietic lineage that mediates cell proliferation, differentiation, and adhesion. In this current study, we evaluated the efficacy of GS-9973 to overcome multidrug resistance (MDR) due to the overexpression of the ABCG2 transporter in the non-small cell lung cancer (NSCLC) cell line, NCI-H460/MX20. In vitro, 3 μM of GS-9973 reversed the drug resistance of NCI-H460/MX20 cell line to mitoxantrone or doxorubicin. GS-9973, at 3 μM reverses ABCG2-mediated MDR by blocking ABCG2 efflux activity and downregulating ABCG2 expression at the protein level but did not alter the ABCG2 mRNA expression and subcellular localization of the ABCG2 protein compared to drug-resistant cells incubated with the vehicle. GS-9973 produced a moderate concentration-dependent increase in the ATPase activity of ABCG2 (EC50 = 0.42 µM) and molecular docking data indicated that GS-9973 had a high affinity (-10.226 kcal/mol) for the substrate-binding site of ABCG2. Finally, HPLC analysis proved that the intracellular concentration of GS-9973 is not significantly different in both parental and resistant cell lines. In conclusion, our study suggests that in vitro, GS-9973 in combination with certain anticancer drugs, represent a strategy to overcome ABCG2-mediated MDR cancers.
Collapse
Affiliation(s)
- Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Hansu Ma
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yihang Pan
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| |
Collapse
|
43
|
Mdivi-1 induces spindle abnormalities and augments taxol cytotoxicity in MDA-MB-231 cells. Cell Death Discov 2021; 7:118. [PMID: 34016960 PMCID: PMC8137698 DOI: 10.1038/s41420-021-00495-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/03/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023] Open
Abstract
Taxol is a first-line chemotherapeutic for numerous cancers, including the highly refractory triple-negative breast cancer (TNBC). However, it is often associated with toxic side effects and chemoresistance in breast cancer patients, which greatly limits the clinical utility of the drug. Hence, compounds that act in concert with taxol to promote cytotoxicity may be useful to improve the efficacy of taxol-based chemotherapy. In this study, we demonstrated that mdivi-1, a putative inhibitor of mitochondrial fission protein Drp1, enhances the anticancer effects of taxol and overcomes taxol resistance in a TNBC cell line (MDA-MB-231). Not only did mdivi-1 induce mitotic spindle abnormalities and mitotic arrest when used alone, but it also enhanced taxol-induced antimitotic effects when applied in combination. In addition, mdivi-1 induced pronounced spindle abnormalities and cytotoxicity in a taxol-resistant cell line, indicating that it can overcome taxol resistance. Notably, the antimitotic effects of mdivi-1 were not accompanied by prominent morphological or functional alterations in mitochondria and were Drp1-independent. Instead, mdivi-1 exhibited affinity to tubulin at μM level, inhibited tubulin polymerization, and immediately disrupted spindle assembly when cells entered mitosis. Together, our results show that mdivi-1 associates with tubulin and impedes tubulin polymerization, actions which may underlie its antimitotic activity and its ability to enhance taxol cytotoxicity and overcome taxol resistance in MDA-MB-231 cells. Furthermore, our data imply a possibility that mdivi-1 could be useful to improve the therapeutic efficacy of taxol in breast cancer.
Collapse
|
44
|
Giddings EL, Champagne DP, Wu MH, Laffin JM, Thornton TM, Valenca-Pereira F, Culp-Hill R, Fortner KA, Romero N, East J, Cao P, Arias-Pulido H, Sidhu KS, Silverstrim B, Kam Y, Kelley S, Pereira M, Bates SE, Bunn JY, Fiering SN, Matthews DE, Robey RW, Stich D, D’Alessandro A, Rincon M. Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat Commun 2021; 12:2804. [PMID: 33990571 PMCID: PMC8121950 DOI: 10.1038/s41467-021-23071-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023] Open
Abstract
Chemotherapy remains the standard of care for most cancers worldwide, however development of chemoresistance due to the presence of the drug-effluxing ATP binding cassette (ABC) transporters remains a significant problem. The development of safe and effective means to overcome chemoresistance is critical for achieving durable remissions in many cancer patients. We have investigated the energetic demands of ABC transporters in the context of the metabolic adaptations of chemoresistant cancer cells. Here we show that ABC transporters use mitochondrial-derived ATP as a source of energy to efflux drugs out of cancer cells. We further demonstrate that the loss of methylation-controlled J protein (MCJ) (also named DnaJC15), an endogenous negative regulator of mitochondrial respiration, in chemoresistant cancer cells boosts their ability to produce ATP from mitochondria and fuel ABC transporters. We have developed MCJ mimetics that can attenuate mitochondrial respiration and safely overcome chemoresistance in vitro and in vivo. Administration of MCJ mimetics in combination with standard chemotherapeutic drugs could therefore become an alternative strategy for treatment of multiple cancers.
Collapse
Affiliation(s)
- Emily L. Giddings
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Devin P. Champagne
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Meng-Han Wu
- grid.430503.10000 0001 0703 675XDepartment of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Joshua M. Laffin
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Tina M. Thornton
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Felipe Valenca-Pereira
- grid.430503.10000 0001 0703 675XDepartment of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Rachel Culp-Hill
- grid.430503.10000 0001 0703 675XDepartment of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Karen A. Fortner
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Natalia Romero
- grid.422638.90000 0001 2107 5309Cell Analysis Division, Agilent Technologies, Lexington, MA USA
| | - James East
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA ,grid.59062.380000 0004 1936 7689Department of Radiology, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Phoebe Cao
- grid.430503.10000 0001 0703 675XDepartment of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Hugo Arias-Pulido
- grid.254880.30000 0001 2179 2404Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
| | - Karatatiwant S. Sidhu
- grid.59062.380000 0004 1936 7689Department of Chemistry, University of Vermont, Burlington, VT USA
| | - Brian Silverstrim
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Yoonseok Kam
- grid.422638.90000 0001 2107 5309Cell Analysis Division, Agilent Technologies, Lexington, MA USA
| | - Shana Kelley
- grid.17063.330000 0001 2157 2938Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON Canada
| | - Mark Pereira
- grid.17063.330000 0001 2157 2938Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON Canada
| | - Susan E. Bates
- grid.239585.00000 0001 2285 2675Division of Hematology/Oncology, Columbia University Medical Center, New York City, NY USA
| | - Janice Y. Bunn
- grid.59062.380000 0004 1936 7689Department of Medical Biostatistics, University of Vermont, Burlington, VT USA
| | - Steven N. Fiering
- grid.254880.30000 0001 2179 2404Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
| | - Dwight E. Matthews
- grid.59062.380000 0004 1936 7689Department of Chemistry, University of Vermont, Burlington, VT USA
| | - Robert W. Robey
- grid.48336.3a0000 0004 1936 8075Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Domink Stich
- grid.430503.10000 0001 0703 675XAdvanced Light Microscopy Core, Neurotechnology Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Angelo D’Alessandro
- grid.430503.10000 0001 0703 675XDepartment of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Mercedes Rincon
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA ,grid.430503.10000 0001 0703 675XDepartment of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
45
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
46
|
Namasivayam V, Silbermann K, Wiese M, Pahnke J, Stefan SM. C@PA: Computer-Aided Pattern Analysis to Predict Multitarget ABC Transporter Inhibitors. J Med Chem 2021; 64:3350-3366. [PMID: 33724808 PMCID: PMC8041314 DOI: 10.1021/acs.jmedchem.0c02199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on literature reports of the last two decades, a computer-aided pattern analysis (C@PA) was implemented for the discovery of novel multitarget ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) inhibitors. C@PA included basic scaffold identification, substructure search and statistical distribution, as well as novel scaffold extraction to screen a large virtual compound library. Over 45,000 putative and novel broad-spectrum ABC transporter inhibitors were identified, from which 23 were purchased for biological evaluation. Our investigations revealed five novel lead molecules as triple ABCB1, ABCC1, and ABCG2 inhibitors. C@PA is the very first successful computational approach for the discovery of promiscuous ABC transporter inhibitors.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Silbermann
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway.,LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany.,Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Riga, Latvia.,Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Sven Marcel Stefan
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.,Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway.,Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Building, 10 Westbourne Street, Sydney, New South Wales 2065, Australia
| |
Collapse
|
47
|
Relation of Metal-Binding Property and Selective Toxicity of 8-Hydroxyquinoline Derived Mannich Bases Targeting Multidrug Resistant Cancer Cells. Cancers (Basel) 2021; 13:cancers13010154. [PMID: 33466433 PMCID: PMC7796460 DOI: 10.3390/cancers13010154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/25/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Effective treatment of cancer is often limited by the resistance of cancer cells to chemotherapy. A well-described mechanism supporting multidrug resistance (MDR) relies on the efflux of toxic drugs from cancer cells, mediated by P-glycoprotein (Pgp). Circumventing Pgp-mediated resistance is expected to make a significant contribution to improved therapy of malignancies. Interestingly, MDR cells exhibit paradoxical hypersensitivity towards a diverse set of anticancer chelators. In this study we explore the relation of chemical and structural properties influencing metal binding and toxicity of a set of 8-hydroxyquinoline derivatives to reveal key characteristics governing “MDR-selective” activity. We find that subtle changes in the stability and redox activity of the biologically relevant metal complexes significantly influence MDR-selective toxicity. Our results underline the importance of chelation in MDR-selective toxicity, suggesting that the collateral sensitivity of MDR cells may be targeted by preferential iron deprivation or the formation of redox-active copper(II) complexes. Abstract Resistance to chemotherapeutic agents is a major obstacle in cancer treatment. A recently proposed strategy is to target the collateral sensitivity of multidrug resistant (MDR) cancer. Paradoxically, the toxicity of certain metal chelating agents is increased, rather than decreased, by the function of P-glycoprotein (Pgp), which is known to confer resistance by effluxing chemotherapeutic compounds from cancer cells. We have recently characterized and compared the solution’s chemical properties including ligand protonation and the metal binding properties of a set of structurally related 8-hydroxyquinoline derived Mannich bases. Here we characterize the impact of the solution stability and redox activity of their iron(III) and copper(II) complexes on MDR-selective toxicity. Our results show that the MDR-selective anticancer activity of the studied 8-hydroxyquinoline derived Mannich bases is associated with the iron deprivation of MDR cells and the preferential formation of redox-active copper(II) complexes, which undergo intracellular redox-cycling to induce oxidative stress.
Collapse
|
48
|
Silbermann K, Li J, Namasivayam V, Stefan SM, Wiese M. Rational drug design of 6-substituted 4-anilino-2-phenylpyrimidines for exploration of novel ABCG2 binding site. Eur J Med Chem 2020; 212:113045. [PMID: 33454462 DOI: 10.1016/j.ejmech.2020.113045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
In the search for novel, highly potent, and nontoxic adjuvant chemotherapeutics to resolve the major issue of ABC transporter-mediated multidrug resistance (MDR), pyrimidines were discovered as a promising compound class of modern ABCG2 inhibitors. As ABCG2-mediated MDR is a major obstacle in leukemia, pancreatic carcinoma, and breast cancer chemotherapy, adjuvant chemotherapeutics are highly desired for future clinical oncology. Very recently, docking studies of one of the most potent reversers of ABCG2-mediated MDR were reported and revealed a putative second binding pocket of ABCG2. Based on this (sub)pocket, a series of 16 differently 6-substituted 4-anilino-2-phenylpyrimidines was designed and synthesized to explore the potential increase in inhibitory activity of these ABCG2 inhibitors. The compounds were assessed for their influence on the ABCG2-mediated pheophorbide A transport, as well as the ABCB1- and ABCC1-mediated transport of calcein AM. They were additionally evaluated in MDR reversal assays to determine their half-maximal reversal concentration (EC50). The 6-substitution did not only show increased toxicity against ABCG2-overexpressing cells in combination with SN-38 but also a negative influence on cell viability in general. Nevertheless, several candidates had EC50 values in the low double-digit nanomolar concentration range, qualifying them as some of the most potent reversers of ABCG2-mediated MDR. In addition, five novel multitarget ABCB1, ABCC1, and ABCG2 inhibitors were discovered, four of them exerting their inhibitory power against the three stated transporters at least in the single-digit micromolar concentration range.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Jiyang Li
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Sven Marcel Stefan
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Michael Wiese
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
49
|
Contino M, Guglielmo S, Riganti C, Antonello G, Perrone MG, Giampietro R, Rolando B, Fruttero R, Colabufo NA. One molecule two goals: A selective P-glycoprotein modulator increases drug transport across gastro-intestinal barrier and recovers doxorubicin toxicity in multidrug resistant cancer cells. Eur J Med Chem 2020; 208:112843. [DOI: 10.1016/j.ejmech.2020.112843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
|
50
|
Chen KG, Duran GE, Mogul MJ, Wang YC, Ross KL, Jaffrézou JP, Huff LM, Johnson KR, Fojo T, Lacayo NJ, Sikic BI. Genomic stability at the coding regions of the multidrug transporter gene ABCB1: insights into the development of alternative drug resistance mechanisms in human leukemia cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:959-979. [PMID: 34541464 PMCID: PMC8445225 DOI: 10.20517/cdr.2020.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 10/09/2020] [Indexed: 01/12/2023]
Abstract
AIM Despite considerable efforts to reverse clinical multidrug resistance (MDR), targeting the predominant multidrug transporter ABCB1/P-glycoprotein (P-gp) using small molecule inhibitors has been unsuccessful, possibly due to the emergence of alternative drug resistance mechanisms. However, the non-specific P-gp inhibitor cyclosporine (CsA) showed significant clinical benefits in patients with acute myeloid leukemia (AML), which likely represents the only proof-of-principle clinical trial using several generations of MDR inhibitors. Nevertheless, the mutational mechanisms that may underlie unsuccessful MDR modulation by CsA are not elucidated because of the absence of CsA-relevant cellular models. In this study, our aims were to establish CsA-resistant leukemia models and to examine the presence or absence of ABCB1 exonic mutations in these models as well as in diverse types of human cancer samples including AMLs. METHODS Drug-resistant lines were established by stepwise drug co-selection and characterized by drug sensitivity assay, rhodamine-123 accumulation, [3H]-labeled drug export, ABCB1 cDNA sequencing, and RNase protection assay. The genomic stability of the ABCB1 coding regions was evaluated by exome sequencing analysis of variant allele frequencies in human populations. Moreover, the mutational spectrum of ABCB1 was further assessed in diverse types of cancer samples including AMLs in the Cancer Genome Atlas (TCGA) at the National Cancer Institute. RESULTS We report the development of two erythroleukemia variants, RVC and RDC, which were derived by stepwise co-selection of K562/R7 drug-resistant leukemia cells with the etoposide-CsA and doxorubicin-CsA drug combinations, respectively. Interestingly, both RVC and RDC cell lines, which retained P-gp expression, showed altered multidrug-resistant phenotypes that were resistant to CsA modulation. Strikingly, no mutations were found in the ABCB1 coding regions in these variant cells even under long-term stringent drug selection. Genomically, ABCB1 displayed relatively low variant allele frequencies in human populations when compared with several ABC superfamily members. Moreover, ABCB1 also exhibited a very low mutational frequency in AMLs compared with all types of human cancer. In addition, we found that CsA played a role in undermining the selection of highly drug-resistant cells via induction of low-level and unstable drug resistance. CONCLUSION Our data indicate that ABCB1 coding regions are genomically stable and relatively resistant to drug-induced mutations. Non-ABCB1 mutational mechanisms are responsible for the drug-resistant phenotypes in both RVC and RDC cell lines, which are also prevalent in clinical AML patients. Accordingly, we propose several relevant models that account for the development of alternative drug resistance mechanisms in the absence of ABCB1 mutations.
Collapse
Affiliation(s)
- Kevin G. Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Current Address: NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - George E. Duran
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark J. Mogul
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Current Address: Medical Affairs U.S., Servier Pharmaceuticals, Boston, MA 02210, USA
| | - Yan C. Wang
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin L. Ross
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Current Address: Ross BioPharm Group, Rocky Point, NY 11778, USA
| | - Jean-Pierre Jaffrézou
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Current Address: French National Centre for Scientific Research, Paris 75016, France
| | - Lyn M. Huff
- Medicine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Current Address, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kory R. Johnson
- Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tito Fojo
- Medicine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Current Address: Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Norman J. Lacayo
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pediatric Hematology-Oncology-Stem Cell Transplantation and Cancer Biology, Stanford University School of Medicine and Stanford Cancer Institute, Palo Alto, CA 94305, USA
| | - Branimir I. Sikic
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|