1
|
Memis KB, Celik AS, Aydin S, Kantarci M. Rectal ameboma: A new entity in the differential diagnosis of rectal cancer. World J Gastrointest Surg 2025; 17:100278. [PMID: 39872767 PMCID: PMC11757176 DOI: 10.4240/wjgs.v17.i1.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 11/22/2024] [Indexed: 12/27/2024] Open
Abstract
We examined the case report written by Ke et al, describing a rare clinical case. In this editorial, we would like to emphasize the differential diagnosis of rectal masses through a rare case. We describe a case of ameboma, which manifested itself as a mass in the rectum in terms of imaging and rectoscopic features, in an immunocompetent patient who had complaints of constipation and rectal bleeding for weeks. The initial diagnosis suggested malignancy due to imaging and rectoscopic features, but the pathology report reported it as amoebiasis. After ten days of metronidazole and oral amebicide (diloxanide furoate) treatment, the patient's symptoms and radiological findings were successfully regressed.
Collapse
Affiliation(s)
- Kemal Bugra Memis
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24000, Türkiye
| | - Ayse Sena Celik
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24000, Türkiye
| | - Sonay Aydin
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24000, Türkiye
| | - Mecit Kantarci
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24000, Türkiye
| |
Collapse
|
2
|
Inshutiyimana S, Aleu MM, Abdinoor MA, Janoowalla MM, Norhayati N. Diloxanide in amoebiasis management: Unravelling the mechanism of action and effectiveness. Basic Clin Pharmacol Toxicol 2025; 136:e14106. [PMID: 39564686 DOI: 10.1111/bcpt.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Although diloxanide is a drug of choice for treating asymptomatic amoebiasis, its mechanism of action (MOA) remains unclear. This review aims to shed light on the current understanding of the effectiveness and MOA of diloxanide in treating amoebiasis . It involves analysis of articles, retrieved from PubMed, Google Scholar and EBSCOhost, on diloxanide and the treatment of Entamoeba histolytica infection. Diloxanide is used in an ester form, which allows its high luminal concentration and greater efficacy than metronidazole in the management of asymptomatic amoebiasis. The current understanding of the action of diloxanide is based on its structural similarity to chloramphenicol at dichloroacetamide group. It acts against protein synthesis in E. histolytica trophozoites, blocking their conversion to more virulent and invasive cyst forms. Furthermore, it has a parasite clearance rate of 81-96% and treats amoebic abscesses when combined with metronidazole and chloroquine. Nevertheless, it is associated with adverse events such as flatulence, anorexia, headache and urticaria. Diloxanide is efficacious against amoebiasis but there is a need to explore its structure-activity relationship.The study suggests future directions, including novel drug formulations, diagnostic improvements, and combination regimens to enhance treatment outcomes and mitigate relapse associated with the use of diloxanide.
Collapse
Affiliation(s)
- Samuel Inshutiyimana
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya
| | - Michael Matiop Aleu
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya
| | - Mustaf Aden Abdinoor
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya
| | - Mariyah Murtaza Janoowalla
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya
| | - Norhayati Norhayati
- Department of Pharmacy, Faculty of Pharmacy, Universitas Borneo Lestari, Banjarbaru, Indonesia
| |
Collapse
|
3
|
Li L, Cai F, Guo C, Liu Z, Qin J, Huang J. Gut microbiome and NAFLD: impact and therapeutic potential. Front Microbiol 2024; 15:1500453. [PMID: 39664063 PMCID: PMC11632136 DOI: 10.3389/fmicb.2024.1500453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) affects approximately 32.4% of the global population and poses a significant health concern. Emerging evidence underscores the pivotal role of the gut microbiota-including bacteria, viruses, fungi, and parasites-in the development and progression of NAFLD. Dysbiosis among gut bacteria alters key biological pathways that contribute to liver fat accumulation and inflammation. The gut virome, comprising bacteriophages and eukaryotic viruses, significantly shapes microbial community dynamics and impacts host metabolism through complex interactions. Similarly, gut fungi maintain a symbiotic relationship with bacteria; the relationship between gut fungi and bacteria is crucial for overall host health, with certain fungal species such as Candida in NAFLD patients showing detrimental associations with metabolic markers and liver function. Additionally, the "hygiene hypothesis" suggests that reduced exposure to gut parasites may affect immune regulation and metabolic processes, potentially influencing conditions like obesity and insulin resistance. This review synthesizes current knowledge on the intricate interactions within the gut microbiota and their associations with NAFLD. We highlight the therapeutic potential of targeting these microbial communities through interventions such as probiotics, prebiotics, and fecal microbiota transplantation. Addressing the complexities of NAFLD requires comprehensive strategies that consider the multifaceted roles of gut microorganisms in disease pathology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Bashar SJ, Islam MR, Nuzhat S, Amin R, Rahman MM, Pavlinac PB, Arnold SLM, Newlands A, Ahmed T, Chisti MJ. Antibiotic use prior to attending a large diarrheal disease hospital among preschool children suffering from bloody or non-bloody diarrhea: A cross-sectional study conducted in Bangladesh. PLoS One 2024; 19:e0314325. [PMID: 39591443 PMCID: PMC11593761 DOI: 10.1371/journal.pone.0314325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Among diarrheal children, injudicious use of antibiotics is a major public health concern particularly in low- and middle-income countries. There are evidence-based guidelines by the World Health Organization (WHO) to prescribe antibiotics for bloody diarrhea in children. There is a scarcity of published data regarding the judicious use of antibiotics for bloody diarrhea in children. So, we aimed to evaluate the presenting features of bloody diarrhea at hospital with prior antibiotic use at home and the prevalence of injudicious antibiotic use for bloody diarrhea in children. METHODS We screened 7,289 children aged 24-59 months with diarrhea (≥3 loose stools in the last 24 h) at Dhaka Hospital, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), from December 5, 2021 to February 16, 2023. Antibiotic intake at home due to current diarrheal illness was evaluated and confirmed by direct observation of a prescription, the bottle of antibiotics, or asking the caregiver about the name of antibiotics. RESULTS Out of 7,289 children presented with diarrhea, 3,823 (52.45%) children consumed antibiotics before visiting hospital. 254 (3.48%) children presented with bloody diarrhea, among which 162 ingested antibiotics. Among 162 children, 88 (54.32%) received inappropriate antibiotics due to bloody diarrhea, according to the WHO guidelines. The most prevalent single antibiotic consumed in bloody diarrhea was metronidazole (n = 45, 27.78%), followed by ciprofloxacin (n = 39, 24.07%) and azithromycin (n = 32, 19.75%). After adjusting for relevant covariates like age, sex, presence of straining/tenesmus, fever during admission, history of cough, stunting, wasting, and underweight; children suffering from bloody diarrhea had 1.55 times higher odds of using metronidazole alone or in combination with other antibiotics (aOR:1.55, 95% CI: 1.10-2.19, p-value = 0.012) and 1.93 times higher odds of using multiple antibiotics (aOR:1.93, 95% CI: 1.23-3.02, p-value = 0.004) compared to children with non-bloody diarrhea. CONCLUSION The study underscores the excessive use of antimicrobials among children with diarrheal illnesses. It is also evident that metronidazole use and multiple antibiotic use are increasing among children due to bloody diarrhea, which is alarming and calls for antibiotic stewardship by regulating bodies in the country.
Collapse
Affiliation(s)
- Syed Jayedul Bashar
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Md. Ridwan Islam
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Sharika Nuzhat
- Clinical and Diagnostic Services, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Rukaeya Amin
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Md. Mushfiqur Rahman
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Patricia B. Pavlinac
- Department of Global Health, University of Washington, Seattle, United States of America
| | - Samuel L. M. Arnold
- Department of Pharmaceutics, University of Washington, Seattle, United States of America
| | | | - Tahmeed Ahmed
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
- Clinical and Diagnostic Services, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
- Office of the Executive Director, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Mohammod Jobayer Chisti
- Clinical and Diagnostic Services, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
5
|
Wang Y, Zeng Y, Wu Y, Lu F, Hou X, Shao J, Zhang T, Shao C. Molecular characterization and zoonotic potential of Entamoeba spp., Enterocytozoon bieneusi and Blastocystis from captive wild animals in northwest China. BMC Vet Res 2024; 20:309. [PMID: 38987757 PMCID: PMC11234763 DOI: 10.1186/s12917-024-04172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Parasites Entamoeba spp., Enterocytozoon bieneusi and Blastocystis are prevalent pathogens causing gastrointestinal illnesses in animals and humans. Consequently, researches on their occurrence, distribution and hosts are crucial for the well-being of both animals and humans. Due to the confined spaces and frequent interaction between animals and humans, animal sanctuaries have emerged as potential reservoirs for these parasites. In this study, the wildlife sanctuary near the Huang Gorge of the Qinling Mountains in northwest China is chosen as an ideal site for parasite distribution research, considering its expansive stocking area and high biodiversity. RESULTS We collected 191 fecal specimens from 37 distinct wildlife species and extracted genomic DNA. We identified these three parasites by amplifying specific gene regions and analyzed their characteristics and evolutionary relationships. All the parasites exhibited a high overall infection rate, reaching 90.05%. Among them, seven Entamoeba species were identified, accounting for a prevalence of 54.97%, with the highest infection observed in Entamoeba bovis. In total, 11 Enterocytozoon bieneusi genotypes were discovered, representing a prevalence of 35.08%, including three genotypes of human-pathogenic Group 1 and two novel genotypes (SXWZ and SXLG). Additionally, 13 Blastocystis subtypes were detected, showing a prevalence of 74.87% and encompassing eight zoonotic subtypes. All of the above suggests significant possibilities of parasite transmission between animals and humans. CONCLUSIONS This study investigated the occurrence and prevalence of three intestinal parasites, enhancing our understanding of their genetic diversity and host ranges in northwest China. Furthermore, the distribution of these parasites implies significant potential of zoonotic transmission, underscoring the imperative for ongoing surveillance and implementation of control measures. These efforts are essential to mitigate the risk of zoonotic disease outbreaks originating from wildlife sanctuary.
Collapse
Affiliation(s)
- Yuexin Wang
- Laboratory of Biodiversity and Evolution of Protozoa, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuechen Zeng
- Laboratory of Biodiversity and Evolution of Protozoa, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yaoli Wu
- Xi'an Dahanshanglinyuan Industrial Co., Ltd, Xi'an, Shaanxi, China
| | - Furui Lu
- Laboratory of Biodiversity and Evolution of Protozoa, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaopeng Hou
- Laboratory of Biodiversity and Evolution of Protozoa, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Junfeng Shao
- Xi'an Dahanshanglinyuan Industrial Co., Ltd, Xi'an, Shaanxi, China
| | - Tengteng Zhang
- Laboratory of Biodiversity and Evolution of Protozoa, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Chen Shao
- Laboratory of Biodiversity and Evolution of Protozoa, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Kumari P, Agrawal P, Umarao P, Ramachandran V, Gourinath S. Identification of Small Molecule Inhibitors Targeting Phosphoserine Phosphatase: A Novel Target for the Development of Antiamoebic Drugs. ACS OMEGA 2024; 9:27906-27918. [PMID: 38973836 PMCID: PMC11223228 DOI: 10.1021/acsomega.3c09439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 07/09/2024]
Abstract
Amoebiasis, a widespread disease caused by the protozoan parasite Entamoeba histolytica, poses challenges due to the adverse effects of existing antiamoebic drugs and rising drug resistance. Novel targeted drugs are in need of the hour to combat the prevalence of this disease. Given the significance of cysteine for Entamoeba survival, the rate-determining step in the serine (the sole substrate of cysteine synthesis) biosynthetic pathway, i.e., the conversion of 3-phosphoserine to l-serine catalyzed by phosphoserine phosphatase (PSP), emerges as a promising drug target. Our previous study unveils the essential role of EhPSP in amoebas' survival, particularly under oxidative stress, by increasing cysteine production. The study also revealed that EhPSP differs significantly from its human counterpart, both structurally and biochemically, highlighting its potential as a viable target for developing new antiamoebic drugs. In the present study, employing in silico screening of vast natural and synthetic small chemical compound libraries, we identified 21 potential EhPSP inhibitor molecules. Out of the 21 compounds examined, only five could inhibit the catalytic activity of EhPSP. The inhibition capability of these five compounds was subsequently validated by in silico binding free energy calculations, SPR-based real-time binding studies, and molecular simulations to assess the stability of the EhPSP-inhibitor complexes. By identifying the five potential inhibitors that can target cysteine synthesis via EhPSP, our findings establish EhPSP as a drug candidate that can serve as a foundation for antiamoebic drug research.
Collapse
Affiliation(s)
- Poonam Kumari
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Preeti Umarao
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vijayan Ramachandran
- The
Centre for Innovation in Brain Sciences, University of Arizona, Tucson 85721, Arizona, United States
| | - Samudrala Gourinath
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Shao Y, Lv H, Zhou W, Zhou B, Jiang Q, Qian J. A case report of refractory amebic colitis and literature review. Medicine (Baltimore) 2024; 103:e37195. [PMID: 38335414 PMCID: PMC10860968 DOI: 10.1097/md.0000000000037195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
RATIONALE Amebic colitis has been less prevalent in recent times in China, and the similarity of its symptoms to those of inflammatory bowel disease (IBD) results in the difficulty of early identification and diagnosis. PATIENT CONCERNS A 31-year-old male who exhibited intermittent diarrhea and hematochezia was highly suspected as IBD initially. Despite the partial relief of symptoms following the administration of mesalamine, the endoscopic ulcers remained largely unchanged. DIAGNOSES Two years after the onset of mesalamine therapy, amebic cysts were detected in stool microscopy and trophozoites were found on the surface of cecal ulcers. The patient was then diagnosed with amebic colitis. INTERVENTIONS After 2 rounds of standardized metronidazole treatment, amebic colitis remained refractory until diloxanide was administered. OUTCOMES The patient remained asymptomatic, and the mucosa of colon was normal during the annual follow-up. LESSONS Individuals newly diagnosed with IBD should undergo essential screening for amebiasis. And the use of steroids should be taken with caution, especially in cases where the effect of mesalamine is limited. For symptomatic intestinal amebiasis, even after the administration of tissue amebicides, the continued use of luminal amebicides is necessary to prevent recurrence.
Collapse
Affiliation(s)
| | - Hong Lv
- Department of Gastroenterology
| | | | - Baotong Zhou
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | | | | |
Collapse
|
8
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
9
|
Toledano-Magaña Y, Néquiz M, Valenzuela-Salas LM, Sánchez-García JJ, Galindo-Murillo R, García-Ramos JC, Klimova EI. The Amoebicidal Activity of Diferrocenyl Derivatives: A Significant Dependence on the Electronic Environment. Molecules 2023; 28:6008. [PMID: 37630260 PMCID: PMC10458203 DOI: 10.3390/molecules28166008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Amoebiasis is the second leading cause of death worldwide associated with parasitic disease and is becoming a critical health problem in low-income countries, urging new treatment alternatives. One of the most promising strategies is enhancing the redox imbalance within these susceptible parasites related to their limited antioxidant defense system. Metal-based drugs represent a perfect option due to their extraordinary capacity to stabilize different oxidation states and adopt diverse geometries, allowing their interaction with several molecular targets. This work describes the amoebicidal activity of five 2-(Z-2,3-diferrocenylvinyl)-4X-4,5-dihydrooxazole derivatives (X = H (3a), Me (3b), iPr (3c), Ph (3d), and benzyl (3e)) on Entamoeba histolytica trophozoites and the physicochemical, experimental, and theoretical properties that can be used to describe the antiproliferative activity. The growth inhibition capacity of these organometallic compounds is strongly related to a fine balance between the compounds' redox potential and hydrophilic character. The antiproliferative activity of diferrocenyl derivatives studied herein could be described either with the redox potential, the energy of electronic transitions, logP, or the calculated HOMO-LUMO values. Compound 3d presents the highest antiproliferative activity of the series with an IC50 of 23 µM. However, the results of this work provide a pipeline to improve the amoebicidal activity of these compounds through the directed modification of their electronic environment.
Collapse
Affiliation(s)
- Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada 22860, Mexico
| | - Mario Néquiz
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico;
| | | | - Jessica J. Sánchez-García
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (J.J.S.-G.); (E.I.K.)
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada 22860, Mexico
| | - Elena I. Klimova
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (J.J.S.-G.); (E.I.K.)
| |
Collapse
|
10
|
Morán P, Serrano-Vázquez A, Rojas-Velázquez L, González E, Pérez-Juárez H, Hernández EG, Padilla MDLA, Zaragoza ME, Portillo-Bobadilla T, Ramiro M, Ximénez C. Amoebiasis: Advances in Diagnosis, Treatment, Immunology Features and the Interaction with the Intestinal Ecosystem. Int J Mol Sci 2023; 24:11755. [PMID: 37511519 PMCID: PMC10380210 DOI: 10.3390/ijms241411755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
This review of human amoebiasis is based on the most current knowledge of pathogenesis, diagnosis, treatment, and Entamoeba/microbiota interactions. The most relevant findings during this last decade about the Entamoeba parasite and the disease are related to the possibility of culturing trophozoites of different isolates from infected individuals that allowed the characterization of the multiple pathogenic mechanisms of the parasite and the understanding of the host-parasite relationship in the human. Second, the considerable advances in molecular biology and genetics help us to analyze the genome of Entamoeba, their genetic diversity, and the association of specific genotypes with the different amoebic forms of human amoebiasis. Based on this knowledge, culture and/or molecular diagnostic strategies are now available to determine the Entamoeba species and genotype responsible for invasive intestinal or extraintestinal amoebiasis cases. Likewise, the extensive knowledge of the immune response in amoebiasis with the appearance of new technologies made it possible to design diagnostic tools now available worldwide. Finally, the understanding of the interaction between the Entamoeba species and the intestinal microbiota aids the understanding of the ecology of this parasite in the human environment. These relevant findings will be discussed in this review.
Collapse
Affiliation(s)
- Patricia Morán
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Angélica Serrano-Vázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Liliana Rojas-Velázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Enrique González
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Horacio Pérez-Juárez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Eric G Hernández
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Maria de Los Angeles Padilla
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Martha E Zaragoza
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Tobías Portillo-Bobadilla
- Unidad de Bioinformática, Bioestadística y Biología Computacional, Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Manuel Ramiro
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Cecilia Ximénez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| |
Collapse
|
11
|
Tien V, Singh U. Entamoeba histolytica (Amebiasis). PRINCIPLES AND PRACTICE OF PEDIATRIC INFECTIOUS DISEASES 2023:1341-1346.e3. [DOI: 10.1016/b978-0-323-75608-2.00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Sharma I, Farr L, Moonah S. Alcohol Abuse Drug Disulfiram Is Effective against Cyst Stages of Entamoeba histolytica Parasite. Antimicrob Agents Chemother 2022; 66:e0083222. [PMID: 36255253 PMCID: PMC9664845 DOI: 10.1128/aac.00832-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
New anti-Entamoeba histolytica multistage drugs are needed because only one drug class, nitroimidazoles, is available for treating invasive disease, and it does not effectively eradicate the infective cyst stage. Zinc ditiocarb (ZnDTC), a main metabolite of the FDA-approved drug disulfiram, was recently shown to be highly effective against the invasive trophozoite stage. In this brief report, we show that ZnDTC is active against cysts, with similar potency to first-line cysticidal drug paromomycin.
Collapse
Affiliation(s)
- Ishrya Sharma
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Farr
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shannon Moonah
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
González-Blanco G, García-Rivera G, Talmás-Rohana P, Orozco E, Galindo-Rosales JM, Vélez C, Salucedo-Cárdenas O, Azuara-Liceaga E, Rodríguez-Rodríguez MA, Nozaki T, Valdés J. An Unusual U2AF2 Inhibits Splicing and Attenuates the Virulence of the Human Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:888428. [PMID: 35782149 PMCID: PMC9247205 DOI: 10.3389/fcimb.2022.888428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
E. histolytica is the etiological agent of intestinal amebiasis and liver abscesses, which still poses public health threat globally. Metronidazole is the drug of choice against amebiasis. However, metronidazole-resistant amoebic clinical isolates and strains have been reported recently, challenging the efforts for amebiasis eradication. In search of alternative treatments, E. histolytica transcriptomes have shown the association of genes involved in RNA metabolism with the virulence of the parasite. Among the upregulated genes in amoebic liver abscesses are the splicing factors EhU2AF2 and a paralog of EhSF3B1. For this reason and because EhU2AF2 contains unusual KH-QUA2 (84KQ) motifs in its lengthened C-terminus domain, here we investigated how the role of EhU2AF2 in pre-mRNA processing impacts the virulence of the parasite. We found that 84KQ is involved in splicing inhibition/intron retention of several virulence and non-virulence-related genes. The 84KQ domain interacts with the same domain of the constitutive splicing factor SF1 (SF1KQ), both in solution and when SF1KQ is bound to branchpoint signal RNA probes. The 84KQ–SF1KQ interaction prevents splicing complex E to A transition, thus inhibiting splicing. Surprisingly, the deletion of the 84KQ domain in EhU2AF2 amoeba transformants increased splicing and enhanced the in vitro and in vivo virulence phenotypes. We conclude that the interaction of the 84KQ and SF1KQ domains, probably involving additional factors, tunes down Entamoeba virulence by favoring intron retention.
Collapse
Affiliation(s)
- Gretter González-Blanco
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Patricia Talmás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Ester Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - José Manuel Galindo-Rosales
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Odila Salucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| | - Mario Alberto Rodríguez-Rodríguez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
- *Correspondence: Jesús Valdés,
| |
Collapse
|
14
|
Britten NS, Butler JA. Ruthenium metallotherapeutics: novel approaches to combatting parasitic infections. Curr Med Chem 2022; 29:5159-5178. [PMID: 35366762 DOI: 10.2174/0929867329666220401105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Human parasitic infections cause a combined global mortality rate of over one million people per annum and represent some of the most challenging diseases for medical intervention. Current chemotherapeutic strategies often require prolonged treatment, coupled with subsequent drug-induced cytotoxic morbidity to the host, while resistance generation is also a major concern. Metals have been used extensively throughout the history of medicine, with more recent applications as anticancer and antimicrobial agents. Ruthenium metallotherapeutic antiparasitic agents are highly effective at targeting a range of key parasites, including the causative agents of malaria, trypanosomiasis, leishmaniasis, amoebiasis, toxoplasmosis and other orphan diseases, while demonstrating lower cytotoxicity profiles than current treatment strategies. Generally, such compounds also demonstrate activity against multiple cellular target sites within parasites, including inhibition of enzyme function, cell membrane perturbation, and alterations to metabolic pathways, therefore reducing the opportunity for resistance generation. This review provides a comprehensive and subjective analysis of the rapidly developing area of ruthenium metal-based antiparasitic chemotherapeutics, in the context of rational drug design and potential clinical approaches to combatting human parasitic infections.
Collapse
Affiliation(s)
- Nicole S. Britten
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jonathan A. Butler
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
15
|
Sarid L, Ankri S. Are Metabolites From the Gut Microbiota Capable of Regulating Epigenetic Mechanisms in the Human Parasite Entamoeba histolytica? Front Cell Dev Biol 2022; 10:841586. [PMID: 35300430 PMCID: PMC8921869 DOI: 10.3389/fcell.2022.841586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica inhabits the human gut. It has to adapt to a complex environment that consists of the host microbiota, nutritional stress, oxidative stress, and nitrosative stress. Adaptation to this complex environment is vital for the survival of this parasite. Studies have shown that the host microbiota shapes virulence and stress adaptation in E. histolytica. Increasing evidence suggests that metabolites from the microbiota mediate communication between the parasite and microbiota. In this review, we discuss the bacterial metabolites that regulate epigenetic processes in E. histolytica and the implications that this knowledge may have for the development of new anti-amebic strategies.
Collapse
Affiliation(s)
- Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
16
|
Abas ASM, Elagib SM. Antiparasitic activity of aqueous extract of Anethum graveolens against Entamoeba histolytica: In vitro and in vivo study. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Foodborne Parasitic Diseases in the Neotropics - A Review. Helminthologia 2021; 58:119-133. [PMID: 34248373 PMCID: PMC8256457 DOI: 10.2478/helm-2021-0022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Within the Universal Declaration of Human Rights, it is stated that everyone has the right to an adequate standard of living, which ensures, as well as their family, health and well-being, and food, thereby ensuring adequate nutrition. One of the major threats to overcome this is to ensure food security, which becomes particularly challenging in developing countries due to the high incidence of parasitic diseases. The World Health Organization (WHO), considers it one of the main causes of morbidity, closely linked to poverty and related to inadequate personal hygiene, consumption of raw food, lack of sanitary services, limited access to drinking water and fecal contamination in the environment. It is estimated that more than a fifth of the world’s population is infected by one or several intestinal parasites, and that in many countries of Central and South America the average percentage of infected people is 45%, being Taenia solium, Echinococcus granulosus, Toxoplasma gondii, Cryptosporidium spp, Entamoeba histolytica, Trichinella spiralis, Ascaris spp, Trypanosoma cruzi and Fasciola hepatica some of the most important ones in the neotropics. One of the main reasons why these diseases are diffi cult to control is t he ignorance of their lifecycles, as well as symptoms and current epidemiology of the disease, which contributes to a late or erroneous diagnosis. The present work aims to discuss and make public the current knowledge as well as the general characteristics of these diseases to the general audience.
Collapse
|
18
|
Dušeková A, Garajová M, Lukáč M, Mrva M. Derivatisation of metronidazole enhances cytotoxic effect against Acanthamoeba genotype T4 isolates and leads to cytomorphological changes in trophozoites. Acta Trop 2021; 216:105830. [PMID: 33465352 DOI: 10.1016/j.actatropica.2021.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Amoebae of the genus Acanthamoeba are worldwide distributed causative agents of serious human infections such as granulomatous amoebic encephalitis (GAE) and Acanthamoeba keratitis (AK). To date, treatment of these infections is non-uniform and frequently unsuccessful. Recently, the phosphonium salts were studied for their high levels of antimicrobial activity. This work was aimed to investigate the cytotoxic effect of metronidazole and two phosphonium salts (PS1, PS2) on two clinical Acanthamoeba isolates. The isolates showed distinctly higher susceptibility to both phosphonium salts than to metronidazole. The highest susceptibility was noted to PS1 after 48 h of incubation. Metronidazole derivate PS2 showed higher susceptibility than metronidazole. The values of EC50 of PS2 were approximately twenty times lower than EC50 of metronidazole for Acanthamoeba lugdunensis strain and sixteen times lower for Acanthamoeba quina strain after 48 h. Although the therapeutic effect of metronidazole in Acanthamoeba infections is usually insufficient, its derivatisation can result in a significantly higher amoebicidal effect. Cytomorphological changes of trophozoites after exposure to tested compounds included rounding up of the cells, damage of membrane integrity, presence of pathological protrusions, elongation of the cells or pseudocyst-like stages. Obtained results indicate possible therapeutic potential of studied phosphonium salts.
Collapse
|
19
|
Ankri S. Entamoeba histolytica-Gut Microbiota Interaction: More Than Meets the Eye. Microorganisms 2021; 9:microorganisms9030581. [PMID: 33809056 PMCID: PMC7998739 DOI: 10.3390/microorganisms9030581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Amebiasis is a disease caused by the unicellular parasite Entamoeba histolytica. In most cases, the infection is asymptomatic but when symptomatic, the infection can cause dysentery and invasive extraintestinal complications. In the gut, E. histolytica feeds on bacteria. Increasing evidences support the role of the gut microbiota in the development of the disease. In this review we will discuss the consequences of E. histolytica infection on the gut microbiota. We will also discuss new evidences about the role of gut microbiota in regulating the resistance of the parasite to oxidative stress and its virulence.
Collapse
Affiliation(s)
- Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
20
|
Shirley DA, Sharma I, Warren CA, Moonah S. Drug Repurposing of the Alcohol Abuse Medication Disulfiram as an Anti-Parasitic Agent. Front Cell Infect Microbiol 2021; 11:633194. [PMID: 33777846 PMCID: PMC7991622 DOI: 10.3389/fcimb.2021.633194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/18/2021] [Indexed: 01/24/2023] Open
Abstract
Parasitic infections contribute significantly to worldwide morbidity and mortality. Antibiotic treatment is essential for managing patients infected with these parasites since control is otherwise challenging and there are no vaccines available for prevention. However, new antimicrobial therapies are urgently needed as significant problems exist with current treatments such as drug resistance, limited options, poor efficacy, as well as toxicity. This situation is made worse by the challenges of drug discovery and development which is costly especially for non-profitable infectious diseases, time-consuming, and risky with a high failure rate. Drug repurposing which involves finding new use for existing drugs may help to more rapidly identify therapeutic candidates while drastically cutting costs of drug research and development. In this perspective article, we discuss the importance of drug repurposing, review disulfiram pharmacology, and highlight emerging data that supports repurposing disulfiram as an anti-parasitic, exemplified by the major diarrhea-causing parasite Entamoeba histolytica.
Collapse
Affiliation(s)
- Debbie-Ann Shirley
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Virginia, Charlottesville, VA, United States
| | - Ishrya Sharma
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Cirle A Warren
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shannon Moonah
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
21
|
Queuine Is a Nutritional Regulator of Entamoeba histolytica Response to Oxidative Stress and a Virulence Attenuator. mBio 2021; 12:mBio.03549-20. [PMID: 33688012 PMCID: PMC8092309 DOI: 10.1128/mbio.03549-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entamoeba histolytica is a unicellular parasite that causes amebiasis. The parasite resides in the colon and feeds on the colonic microbiota. Queuosine is a naturally occurring modified ribonucleoside found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His, and Tyr. Eukaryotes lack pathways to synthesize queuine, the nucleobase precursor to queuosine, and must obtain it from diet or gut microbiota. Here, we describe the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica, the causative agent of amebic dysentery. Queuine is efficiently incorporated into E. histolytica tRNAs by a tRNA-guanine transglycosylase (EhTGT) and this incorporation stimulates the methylation of C38 in
tRNAGUCAsp. Queuine protects the parasite against oxidative stress (OS) and antagonizes the negative effect that oxidation has on translation by inducing the expression of genes involved in the OS response, such as heat shock protein 70 (Hsp70), antioxidant enzymes, and enzymes involved in DNA repair. On the other hand, queuine impairs E. histolytica virulence by downregulating the expression of genes previously associated with virulence, including cysteine proteases, cytoskeletal proteins, and small GTPases. Silencing of EhTGT prevents incorporation of queuine into tRNAs and strongly impairs methylation of C38 in
tRNAGUCAsp, parasite growth, resistance to OS, and cytopathic activity. Overall, our data reveal that queuine plays a dual role in promoting OS resistance and reducing parasite virulence.
Collapse
|
22
|
Li J, Cui Z, Li X, Zhang L. Review of zoonotic amebiasis: Epidemiology, clinical signs, diagnosis, treatment, prevention and control. Res Vet Sci 2021; 136:174-181. [PMID: 33676155 DOI: 10.1016/j.rvsc.2021.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Amebiasis is a disease caused by the protozoan parasite Entamoeba histolytica, which mainly shows symptoms of acute diarrhea, dysentery, amebic colitis, and amebic liver abscesses. As the fourth leading parasitic cause of human mortality, E. histolytica mainly infect children in developing countries, transmitted by food and water contamination. In the majority of infected individuals, Entamoeba sp. asymptomatically colonizes the large intestine and self-limiting, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Metronidazole (MTZ) is the recommended and most widely used drug for treating the invasive amebiasis. No amebiasis vaccine has been approved for human clinical trials to date, but many recent vaccine development studies hold promise. For the prevention and control of amebiasis, improvement of water purification systems and hygiene practices could decrease disease incidence. In this review, we focus on the epidemiology, transmission, clinical signs, pathogenesis, diagnosis, treatment, prevention and control of the zoonotic amebiasis.
Collapse
Affiliation(s)
- Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaohui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
23
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
24
|
Shirley DAT, Watanabe K, Moonah S. Significance of amebiasis: 10 reasons why neglecting amebiasis might come back to bite us in the gut. PLoS Negl Trop Dis 2019; 13:e0007744. [PMID: 31725715 PMCID: PMC6855409 DOI: 10.1371/journal.pntd.0007744] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Debbie-Ann T. Shirley
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Koji Watanabe
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Shannon Moonah
- Department of Medicine, University of Virginia School of Medicine Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Debnath A, Rodriguez MA, Ankri S. Editorial: Recent Progresses in Amebiasis. Front Cell Infect Microbiol 2019; 9:247. [PMID: 31338336 PMCID: PMC6629773 DOI: 10.3389/fcimb.2019.00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Mario Alberto Rodriguez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|