1
|
Ngiam JN, Al-Mubaarak A, Maurer-Stroh S, Tambyah PA. Does the COVID-19 XBB Omicron subvariant signal the beginning of the end of the pandemic? Singapore Med J 2024; 65:658-664. [PMID: 36648003 PMCID: PMC11698282 DOI: 10.4103/singaporemedj.smj-2022-180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
ABSTRACT All pandemic viruses have eventually adapted to human hosts so that they become more transmissible and less virulent. The XBB Omicron subvariant is rapidly becoming the dominant strain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Singapore from October 2022 and is one of several variants circulating globally with the potential to dominate autumn/winter waves in different countries. The XBB Omicron subvariant has demonstrated increased transmissibility through an apparent propensity for immune evasion. This is to be expected in the natural evolution of a virus in a population highly vaccinated with a vaccine targeting the spike protein of the original Wuhan strain of the virus. This review explores the important implications of the rising prevalence of the SARS-CoV-2 Omicron subvariant for public health in Singapore and beyond.
Collapse
Affiliation(s)
- Jinghao Nicholas Ngiam
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
| | - Abdurrahmaan Al-Mubaarak
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute and Infectious Diseases Labs, Agency for Science Technology and Research, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Paul Anantharajah Tambyah
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Costa T, Aoki M, Ribeiro C, Socca E, Itinose L, Basso R, Blanes L. Efficacy of convalescent plasma in hospitalized COVID-19 patients: findings from a controlled trial. Braz J Med Biol Res 2024; 57:e13627. [PMID: 39383382 PMCID: PMC11463911 DOI: 10.1590/1414-431x2024e13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024] Open
Abstract
The COVID-19 pandemic has driven the search for alternative therapies, including convalescent plasma, historically used in infectious diseases. Despite results in other diseases, its effectiveness against COVID-19 remains uncertain with conflicting results in clinical trials. A pragmatic, single-center, prospective, and open randomized controlled trial was carried out in a hospital in Brazil, with the aim of evaluating the impact of convalescent plasma on the clinical improvement of patients hospitalized with COVID-19. The World Health Organization (WHO) ordinal scale was used to measure clinical improvement, focusing on the reduction in disease severity by up to 2 points, while antibody and C-reactive protein levels were monitored over time. After hospital admission, participants were randomized 1:1 to receive convalescent plasma and standard treatment or to be part of the control group with standard treatment. Follow-up was carried out on days 1, 3, 7, 14 and/or at discharge. From January 14 to April 4, 2022, 38 patients were included, but 3 were excluded due to protocol deviations, resulting in a total of 35 patients: 19 in the control group and 16 in the plasma group. There was no significant difference in clinical improvement between the convalescent plasma group and the control group, nor in secondary outcomes. The study had limitations due to the small number of patients and limited representation of COVID-19 cases. Broader investigations are needed to integrate therapies into medical protocols, both for COVID-19 and other diseases. Conducting randomized studies is challenging due to the complexity of medical conditions and the variety of treatments available.
Collapse
Affiliation(s)
- T.P. Costa
- Diretoria Técnica e Qualidade, Maternidade e Cirurgia Nossa Senhora do Rocio-HR, Campo Largo, PR, Brasil
- Laboratório de Ciência e Tecnologia Aplicada è Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - M. Aoki
- Laboratório de Ciência e Tecnologia Aplicada è Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - C.M. Ribeiro
- Instituto de Pesquisa do Vale da Ciência, São Paulo, SP, Brasil
| | - E. Socca
- Instituto de Pesquisa do Vale da Ciência, São Paulo, SP, Brasil
| | - L. Itinose
- Diretoria Técnica e Qualidade, Maternidade e Cirurgia Nossa Senhora do Rocio-HR, Campo Largo, PR, Brasil
| | - R. Basso
- Diretoria Técnica e Qualidade, Maternidade e Cirurgia Nossa Senhora do Rocio-HR, Campo Largo, PR, Brasil
| | - L. Blanes
- Laboratório de Ciência e Tecnologia Aplicada è Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| |
Collapse
|
3
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
4
|
Focosi D, Franchini M, Casadevall A, Maggi F. An update on the anti-spike monoclonal antibody pipeline for SARS-CoV-2. Clin Microbiol Infect 2024; 30:999-1006. [PMID: 38663655 DOI: 10.1016/j.cmi.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Anti-spike monoclonal antibodies represent one of the most tolerable prophylaxis and therapies for COVID-19 in frail and immunocompromised patients. Unfortunately, viral evolution in Omicron has led all of them to failure. OBJECTIVES We review here the current pipeline of anti-spike mAb's, discussing in detail the most promising candidates. SOURCES We scanned PubMed, ClinicalTrials.gov and manufacturers' press releases for clinical studies on anti-spike monoclonal antibodies. CONTENT We present state-of-art data clinical progress for AstraZeneca's AZD3152, Invivyd's VYD222, Regeneron's REGN-17092 and Aerium Therapeutics' AER-800. IMPLICATIONS The anti-spike monoclonal antibody clinical pipeline is currently limited to few agents (most being single antibodies) with unknown efficacy against the dominant JN.1 sublineage. The field of antibody-based therapies requires boosting by both manufacturers and institutions.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| | - Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
5
|
Liang L, Wang B, Zhang Q, Zhang S, Zhang S. Antibody drugs targeting SARS-CoV-2: Time for a rethink? Biomed Pharmacother 2024; 176:116900. [PMID: 38861858 DOI: 10.1016/j.biopha.2024.116900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) heavily burdens human health. Multiple neutralizing antibodies (nAbs) have been issued for emergency use or tested for treating infected patients in the clinic. However, SARS-CoV-2 variants of concern (VOC) carrying mutations reduce the effectiveness of nAbs by preventing neutralization. Uncoding the mutation profile and immune evasion mechanism of SARS-CoV-2 can improve the outcome of Ab-mediated therapies. In this review, we first outline the development status of anti-SARS-CoV-2 Ab drugs and provide an overview of SARS-CoV-2 variants and their prevalence. We next focus on the failure causes of anti-SARS-CoV-2 Ab drugs and rethink the design strategy for developing new Ab drugs against COVID-19. This review provides updated information for the development of therapeutic Ab drugs against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Likeng Liang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Guo H, Ha S, Botten JW, Xu K, Zhang N, An Z, Strohl WR, Shiver JW, Fu TM. SARS-CoV-2 Omicron: Viral Evolution, Immune Evasion, and Alternative Durable Therapeutic Strategies. Viruses 2024; 16:697. [PMID: 38793580 PMCID: PMC11125895 DOI: 10.3390/v16050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions. Here, we provide a review focusing on the major events of Omicron viral evolution, including the features of spike mutation that lead to immune evasion against monoclonal antibody (mAb) therapy and vaccination, and suggest alternative durable options such as the ACE2-based experimental therapies superior to mAbs to address this unprecedented evolution of Omicron virus. In addition, this type of unique ACE2-based virus-trapping molecules can counter all zoonotic SARS coronaviruses, either from unknown animal hosts or from established wild-life reservoirs of SARS-CoV-2, and even seasonal alpha coronavirus NL63 that depends on human ACE2 for infection.
Collapse
Affiliation(s)
- Hailong Guo
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
7
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
8
|
Faye M, Faye MN, Ndiaye B, Diagne MM, Sankhe S, Top NM, Diallo A, Loucoubar C, Dia N, Sall AA, Faye O. Detection of a cluster of Omicron's BA.4 sublineage in Northern Senegal and identification of the first XAS recombinant variant in Senegal. Virus Res 2024; 339:199259. [PMID: 37926155 PMCID: PMC10652113 DOI: 10.1016/j.virusres.2023.199259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
In Senegal, since its first detection in early March 2020, genomic surveillance of SARS-CoV-2 isolates has led to the identification of the emergence of the Omicron BA.4 and BA.5 sublineages from early June 2022. To investigate the origin of a cluster of cases in Northern Senegal on July 2022, isolates were analysed using Next-generation sequencing and phylogeny. Our data provided evidence of the origin of the cluster of BA.4 cases from a XAS recombinant, that is to date, the first reported sequence of this variant from Senegal. Continuous genomic surveillance of positive SARS-CoV-2 samples is a crucial need.
Collapse
Affiliation(s)
- Martin Faye
- Virology Department, Institut Pasteur de Dakar, 36, avenue Pasteur, Dakar BP220, Senegal.
| | - Modeste Name Faye
- Virology Department, Institut Pasteur de Dakar, 36, avenue Pasteur, Dakar BP220, Senegal
| | - Babacar Ndiaye
- Biomedical Laboratory, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Moussa Moïse Diagne
- Virology Department, Institut Pasteur de Dakar, 36, avenue Pasteur, Dakar BP220, Senegal
| | - Safietou Sankhe
- Virology Department, Institut Pasteur de Dakar, 36, avenue Pasteur, Dakar BP220, Senegal
| | - Ndeye Marième Top
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Ndongo Dia
- Virology Department, Institut Pasteur de Dakar, 36, avenue Pasteur, Dakar BP220, Senegal
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, 36, avenue Pasteur, Dakar BP220, Senegal
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, 36, avenue Pasteur, Dakar BP220, Senegal
| |
Collapse
|
9
|
Liu X, Han J, Cui R, Peng M, Song H, Li R, Chen G. The Promotion of Humoral Immune Responses in Humans via SOCS1-Mediated Th2-Bias Following SARS-CoV-2 Vaccination. Vaccines (Basel) 2023; 11:1730. [PMID: 38006062 PMCID: PMC10674672 DOI: 10.3390/vaccines11111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The effectiveness of SARS-CoV-2 vaccines varies among individuals. During the COVID-19 global pandemic, SARS-CoV-2 infection showed significant Th1 characteristics, suggesting that the immune disorder and production of SARS-CoV-2 antibodies may be related to Th1/Th2 bias. However, the molecular mechanisms underlying Th1/Th2 bias effects on host immune responses to viruses remain unclear. In this study, the top three subjects with the highest and lowest changes in anti-SARS-CoV-2 antibodies after receiving three doses of SARS-CoV-2 vaccination were selected and defined as the elevated group (E) and the control group (C), respectively. Peripheral blood was collected, single-cell sequencing was performed before and after the third dose of the SARS-CoV-2 vaccine, and the changes in T cell clusters were analyzed. Compared with the C group, the Treg pre-vaccination proportion was lower in E, while the post-vaccination proportion was higher, suggesting that Tregs may be crucial in this process. Differential analysis results of Tregs between the two groups revealed that differentially expressed genes (DEGs) were significantly enriched in the IL4 pathway. Correlation analysis between DEGs and serum antibody showed that the expression of NR4A2, SOCS1, and SOCS3 in Tregs was significantly correlated with serum antibodies, suggesting that the immune response in E group changed to Th2 bias, thereby promoting host humoral immune responses. On the other hand, antibody-related genes SOCS1 and NR4A2, as well as lnc-RNA MALAT1 and NEAT1, were highly expressed in the CD4-MALAT1 subclusters. In summary, our study revealed that Th2 bias promotes humoral immune responses in humans by increasing SOCS1 in T cells after SARS-CoV-2 vaccination. Moreover, NR4A2, SOCS1, MALAT1, and NEAT1 were identified as the potential key biomarkers or treatment targets for enhanced SARS-CoV-2 antibody production by influencing the Th1/Th2 balance in T cells. Our findings have important implications for population stratification and tailored therapeutics for more effective SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xiaoyu Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China;
| | - Renjie Cui
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Meifang Peng
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
- Department of Endocrinology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Gang Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China;
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
10
|
Bhattacharya M, Chatterjee S, Lee SS, Dhama K, Chakraborty C. Antibody evasion associated with the RBD significant mutations in several emerging SARS-CoV-2 variants and its subvariants. Drug Resist Updat 2023; 71:101008. [PMID: 37757651 DOI: 10.1016/j.drup.2023.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Since the origin of the wild strain of SARS-CoV-2, several variants have emerged, which were designated as VOC, VOI, and VUM from time to time. The Omicron variant is noted as the recent VOC. After the origin of the Omicron variant on November 2021, several subvariants of Omicron have originated subsequently, like BA.1/2, BA.2.75/2.75.2, BA.4/5, BF.7, BQ.1/1.1, XBB.1/1.5, etc. which are circulated throughout the globe. Scientists reported that antibody escape is a common phenomenon observed in all the previous VOCs, VOIs, including Omicron and its subvariants. The mutations in the NTD (N-terminal domain) and RBD (Receptor-binding domain) of the spike of these variants and subvariants are responsible for antibody escape. At the same time, it has been noted that spike RBD mutations have been increasing in the last few months. This review illustrates significant RBD mutations namely R346T, K417N/T, L452R, N460K E484A/K/Q, and N501Y found in the previous emerging SARS-CoV-2 variants, including Omicron and its subvariants in high frequency and their role in antibody evasion and immune evasion. The review also describes the different classes of nAb responsible for antibody escape in SARS-CoV-2 variants and the molecular perspective of the mutation in nAb escape. It will help the future researchers to develop efficient vaccines which can finally prevent the pandemic.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India.
| |
Collapse
|
11
|
Kimura I, Yamasoba D, Nasser H, Ito H, Zahradnik J, Wu J, Fujita S, Uriu K, Sasaki J, Tamura T, Suzuki R, Deguchi S, Plianchaisuk A, Yoshimatsu K, Kazuma Y, Mitoma S, Schreiber G, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Takaori-Kondo A, The Genotype to Phenotype Japan (G2P-Japan) Consortium
MisawaNaoko1KosugiYusuke1PanLin1SuganamiMai1ChibaMika1YoshimuraRyo1YasudaKyoko1IidaKeiko1OhsumiNaomi1StrangeAdam P.1KakuYu1PlianchaisukArnon1GuoZiyi1HinayAlfredo Jr. Amolong1Mendoza TolentinoJarel Elgin1ChenLuo1ShimizuRyo2Monira BegumM. S. T.2TakahashiOtowa2IchiharaKimiko2JonathanMichael2MugitaYuka2SuzukiSaori3SuzukiTateki4KimuraKanako4NakajimaYukari4YajimaHisano4HashimotoRina4WatanabeYukio4SakamotoAyaka4YasuharaNaoko4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4ShibataniYuki5NishiuchiTomoko5YoshidaIsao6KawabataRyoko7MatsunoKeita8NaoNaganori9SawaHirofumi9TanakaShinya10TsudaMasumi10WangLei10OdaYoshikata10FerdousZannatul10ShishidoKenji10MotozonoChihiro11ToyodaMako11UenoTakamasa11TabataKaori12Institute of Medical Science, University of Tokyo, Tokyo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, JapanHokkaido University, Sapporo, JapanKyoto University, Kyoto, JapanUniversity of Miyazaki, Miyazaki, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanHiroshima University, Hiroshima, JapanOne Health Research Center, Hokkaido University, Sapporo, JapanInternational Institute for Zoonosis Control, Hokkaido University, Sapporo, JapanHokkaido University, Sapporo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto, JapanKyushu University, Fukuoka, Japan, Ito J, Shirakawa K, Takayama K, Irie T, Hashiguchi T, Nakagawa S, Fukuhara T, Saito A, Ikeda T, Sato K. Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics. J Virol 2023; 97:e0101123. [PMID: 37796123 PMCID: PMC10781145 DOI: 10.1128/jvi.01011-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Kobe University, Kobe, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Jiaqi Wu
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Yasuhiro Kazuma
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
MisawaNaoko1KosugiYusuke1PanLin1SuganamiMai1ChibaMika1YoshimuraRyo1YasudaKyoko1IidaKeiko1OhsumiNaomi1StrangeAdam P.1KakuYu1PlianchaisukArnon1GuoZiyi1HinayAlfredo Jr. Amolong1Mendoza TolentinoJarel Elgin1ChenLuo1ShimizuRyo2Monira BegumM. S. T.2TakahashiOtowa2IchiharaKimiko2JonathanMichael2MugitaYuka2SuzukiSaori3SuzukiTateki4KimuraKanako4NakajimaYukari4YajimaHisano4HashimotoRina4WatanabeYukio4SakamotoAyaka4YasuharaNaoko4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4ShibataniYuki5NishiuchiTomoko5YoshidaIsao6KawabataRyoko7MatsunoKeita8NaoNaganori9SawaHirofumi9TanakaShinya10TsudaMasumi10WangLei10OdaYoshikata10FerdousZannatul10ShishidoKenji10MotozonoChihiro11ToyodaMako11UenoTakamasa11TabataKaori12Institute of Medical Science, University of Tokyo, Tokyo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, JapanHokkaido University, Sapporo, JapanKyoto University, Kyoto, JapanUniversity of Miyazaki, Miyazaki, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanHiroshima University, Hiroshima, JapanOne Health Research Center, Hokkaido University, Sapporo, JapanInternational Institute for Zoonosis Control, Hokkaido University, Sapporo, JapanHokkaido University, Sapporo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto, JapanKyushu University, Fukuoka, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Kobe University, Kobe, Japan
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
García-López R, Rivera-Gutiérrez X, Rosales-Rivera M, Zárate S, Muñoz-Medina JE, Roche B, Herrera-Estrella A, Gómez-Gil B, Sanchez-Flores A, Taboada B, Arias CF. SARS-CoV-2 BW lineage, a fast-growing Omicron variant from southeast Mexico bearing relevant escape mutations. Infection 2023; 51:1549-1555. [PMID: 37058241 PMCID: PMC10103656 DOI: 10.1007/s15010-023-02034-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE The swift expansion of the BW.1 SARS-CoV-2 variant coincided with a rapid increase of COVID-19 cases occurring in Southeast Mexico in October, 2022, which marked the start of Mexico's sixth epidemiological wave. In Yucatan, up to 92% (58 of 73) of weekly sequenced genomes between epidemiological week 42 and 47 were identified as either BW.1 or its descendant, BW.1.1 in the region, during the last trimester of 2022. In the current study, a comprehensive genomic comparison was carried out to characterize the evolutionary history of the BW lineage, identifying its origins and its most important mutations. METHODS An alignment of all the genomes of the BW lineage and its parental BA.5.6.2 variant was carried out to identify their mutations. A phylogenetic and ancestral sequence reconstruction analysis with geographical inference, as well as a longitudinal analysis of point mutations, were performed to trace back their origin and contrast them with key RBD mutations in variant BQ.1, one of the fastest-growing lineages to date. RESULTS Our ancestral reconstruction analysis portrayed Mexico as the most probable origin of the BW.1 and BW.1.1 variants. Two synonymous substitutions, T7666C and C14599T, support their Mexican origin, whereas other two mutations are specific to BW.1: S:N460K and ORF1a:V627I. Two additional substitutions and a deletion are found in its descending subvariant, BW.1.1. Mutations found in the receptor binding domain, S:K444T, S:L452R, S:N460K, and S:F486V in BW.1 have been reported to be relevant for immune escape and are also key mutations in the BQ.1 lineage. CONCLUSIONS BW.1 appears to have arisen in the Yucatan Peninsula in Southeast Mexico sometime around July 2022 during the fifth COVID-19 wave. Its rapid growth may be in part explained by the relevant escape mutations also found in BQ.1.
Collapse
Affiliation(s)
- Rodrigo García-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Xaira Rivera-Gutiérrez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Mauricio Rosales-Rivera
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Selene Zárate
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - José Esteban Muñoz-Medina
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Benjamin Roche
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica Para La Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo AC, Unidad Mazatlán, Mazatlán, Mexico
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Blanca Taboada
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| |
Collapse
|
13
|
Scarpa F, Pascarella S, Ciccozzi A, Giovanetti M, Azzena I, Locci C, Casu M, Fiori PL, Quaranta M, Cella E, Sanna D, Ciccozzi M. Genetic and structural analyses reveal the low potential of the SARS-CoV-2 EG.5 variant. J Med Virol 2023; 95:e29075. [PMID: 37665162 DOI: 10.1002/jmv.29075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10-4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marta Giovanetti
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo, Horizonte, Minas Gerais, Brazil
| | - Ilenia Azzena
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Miriana Quaranta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
14
|
Holland SC, Holland LA, Smith MF, Lee MB, Hu JC, Lim ES. Digital PCR Discriminates between SARS-CoV-2 Omicron Variants and Immune Escape Mutations. Microbiol Spectr 2023; 11:e0525822. [PMID: 37306573 PMCID: PMC10434287 DOI: 10.1128/spectrum.05258-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mutations arise that will allow the virus to evade immune defenses and therapeutics. Assays that can identify these mutations can be used to guide personalized patient treatment plans. Digital PCR (dPCR) is a fast and reliable complement to whole-genome sequencing that can be used to discriminate single nucleotide polymorphisms (SNPs) in template molecules. Here, we developed a panel of SARS-CoV-2 dPCR assays and demonstrate its applications for typing variant lineages and therapeutic monoclonal antibody resistance. We first designed multiplexed dPCR assays for SNPs located at residue 3395 in the orf1ab gene that differentiate the Delta, Omicron BA.1, and Omicron BA.2 lineages. We demonstrate their effectiveness on 596 clinical saliva specimens that were sequence verified using Illumina whole-genome sequencing. Next, we developed dPCR assays for spike mutations R346T, K444T, N460K, F486V, and F486S, which are associated with host immune evasion and reduced therapeutic monoclonal antibody efficacy. We demonstrate that these assays can be run individually or multiplexed to detect the presence of up to 4 SNPs in a single assay. We perform these dPCR assays on 81 clinical saliva SARS-CoV-2-positive specimens and properly identify mutations in Omicron subvariants BA.2.75.2, BM.1.1, BN.1, BF.7, BQ.1, BQ.1.1, and XBB. Thus, dPCR could serve as a useful tool to determine if clinical specimens contain therapeutically relevant mutations and inform patient treatment. IMPORTANCE Spike mutations in the SARS-CoV-2 genome confer resistance to therapeutic monoclonal antibodies. Authorization for treatment options is typically guided by general trends of variant prevalence. For example, bebtelovimab is no longer authorized for emergency use in the United States due to the increased prevalence of antibody-resistant BQ.1, BQ.1.1, and XBB Omicron subvariants. However, this blanket approach limits access to life-saving treatment options to patients who are otherwise infected with susceptible variants. Digital PCR assays targeting specific mutations can complement whole-genome sequencing approaches to genotype the virus. In this study, we demonstrate the proof of concept that dPCR can be used to type lineage defining and monoclonal antibody resistance-associated mutations in saliva specimens. These findings show that digital PCR could be used as a personalized diagnostic tool to guide individual patient treatment.
Collapse
Affiliation(s)
- Steven C. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mihyun B. Lee
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C. Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
15
|
Lee TY, Lim WF, Ang GY, Yu CY. Genomic Surveillance of SARS-CoV-2 in Malaysia during the Era of Endemic COVID-19. Life (Basel) 2023; 13:1644. [PMID: 37629505 PMCID: PMC10455073 DOI: 10.3390/life13081644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
On 5 May 2023, WHO declared the end of coronavirus disease 2019 (COVID-19) as a public health emergency of international concern. However, the risk of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants causing rapid and high surges in cases and deaths remained. In Malaysia, five COVID-19 waves during the pandemic phase were well characterized, but similar studies focusing on the endemic phase were lacking. Hence, we retrieved 14,965 SARS-CoV-2 genomic sequences from the GISAID EpiCoV database for clade, lineage, and phylogenetic analysis in order to provide an insight into the population dynamics of SARS-CoV-2 that circulated in Malaysia from June 2022 to April 2023. The dominance of the Omicron variants was observed, and two new waves of infections driven by BA.5.2 and XBB.1, respectively, were detected. Data as of April 2023 also pointed to a possible eighth wave driven by XBB.1.9. Although new variants associated with higher transmissibility were behind the multiple surges, these subsequent waves had lower intensities as compared to the fourth and fifth waves. The on-going circulation and evolution of SARS-CoV-2 mean that COVID-19 still poses a serious threat, necessitating active genomic surveillance for early warning of potential new variants of concern.
Collapse
Affiliation(s)
- Tze Yan Lee
- School of Liberal Arts, Science and Technology (PUScLST), Perdana University, Kuala Lumpur 50490, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Geik Yong Ang
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Choo Yee Yu
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
16
|
Scarpa F, Locci C, Azzena I, Casu M, Fiori PL, Ciccozzi A, Giovanetti M, Quaranta M, Ceccarelli G, Pascarella S, Ciccozzi M, Sanna D. SARS-CoV-2 Recombinants: Genomic Comparison between XBF and Its Parental Lineages. Microorganisms 2023; 11:1824. [PMID: 37512996 PMCID: PMC10383834 DOI: 10.3390/microorganisms11071824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Recombination events are very common and represent one of the primary drivers of RNA virus evolution. The XBF SARS-CoV-2 lineage is one of the most recently generated recombinants during the COVID-19 pandemic. It is a recombinant of BA.5.2.3 and BA.2.75.3, both descendants of lineages that caused many concerns (BA.5 and BA.2.75, respectively). Here, we performed a genomic survey focused on comparing the recombinant XBF with its parental lineages to provide a comprehensive assessment of the evolutionary potential, epidemiological trajectory, and potential risks. Genetic analyses indicated that although XBF initially showed the typical expansion depicted by a steep curve, causing several concerns, currently there is no indication of significant expansion potential or a contagion rate surpassing that of other currently active or previously prevalent lineages. BSP indicated that the peak has been reached around 19 October 2022 and then the genetic variability suffered slight oscillations until early 5 March 2023 when the population size reduced for the last time starting its last plateau that is still lasting. Structural analyses confirmed its reduced potential, also indicating that properties of NTDs and RBDs of XBF and its parental lineages present no significant difference. Of course, cautionary measures must still be taken and genome-based monitoring remains the best tool for detecting any important changes in viral genome composition.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Ilenia Azzena
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Azienza Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico of Rome, 00128 Rome, Italy
- Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil
| | - Miriana Quaranta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza Università di Roma, 00185 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza Università di Roma, 00185 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Campus Bio-Medico, Fondazione Policlinico Universitario, 00128 Rome, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
17
|
Russo E, Corrao S, Di Gaudio F, Alberti G, Caprnda M, Kubatka P, Kruzliak P, Miceli V, Conaldi PG, Borlongan CV, La Rocca G. Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy. Cells 2023; 12:1664. [PMID: 37371134 PMCID: PMC10297457 DOI: 10.3390/cells12121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | | | - Giusi Alberti
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81499 Bratislava, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03649 Martin, Slovakia;
| | - Peter Kruzliak
- Research and Development Services, Pradlacka 18, 61300 Brno, Czech Republic;
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Cesario Venturina Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| |
Collapse
|
18
|
Tang J, Liu H, Wang Q, Gu X, Wang J, Li W, Luo Y, Li Y, Deng L, Luo Y, Du X, Tan D, Fu X, Chen X. Predictors of high SARS-CoV-2 immunoglobulin G titers in COVID-19 convalescent whole-blood donors: a cross-sectional study in China. Front Immunol 2023; 14:1191479. [PMID: 37388736 PMCID: PMC10303911 DOI: 10.3389/fimmu.2023.1191479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Background Demographic information has been shown to help predict high antibody titers of COVID-19 convalescent plasma (CCP) in CCP donors. However, there is no research on the Chinese population and little evidence on whole-blood donors. Therefore, we aimed to investigate these associations among Chinese blood donors after SARS-CoV-2 infection. Methods In this cross-sectional study, 5,064 qualified blood donors with confirmed or suspected SARS-CoV-2 infection completed a self-reported questionnaire and underwent tests of SARS-CoV-2 Immunoglobulin G (IgG) antibody and ABO blood type. Logistic regression models were used to calculate odds ratios (ORs) for high SARS-CoV-2 IgG titers according to each factor. Results Totally, 1,799 participants (with SARS-CoV-2 IgG titers≥1:160) had high-titer CCPs. Multivariable analysis showed that a 10-year increment in age and earlier donation were associated with higher odds of high-titer CCP, while medical personnel was associated with lower odds. The ORs (95% CIs) of high-titer CCP were 1.17 (1.10-1.23, p< 0.001) and 1.41 (1.25-1.58, p< 0.001) for each 10-year increment in age and earlier donation, respectively. The OR of high-titer CCP was 0.75 (0.60-0.95, p = 0.02) for medical personnel. Female early donors were associated with increased odds of high-titer CCP, but this association was insignificant for later donors. Donating after 8 weeks from the onset was associated with decreased odds of having high-titer CCP compared to donating within 8 weeks from the onset, and the HR was 0.38 (95% CI: 0.22-0.64, p <0.001). There was no significant association between ABO blood type or race and the odds of high-titer CCP. Discussion Older age, earlier donation, female early donors, and non-medical-related occupations are promising predictors of high-titer CCP in Chinese blood donors. Our findings highlight the importance of CCP screening at the early stage of the pandemic.
Collapse
Affiliation(s)
- Jingyun Tang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Humin Liu
- Department of Blood Testing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Qing Wang
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xiaobo Gu
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Jia Wang
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Wenjun Li
- Department of Blood Testing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Yinglan Luo
- Department of Blood Testing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Yan Li
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Lan Deng
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Yue Luo
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xinman Du
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Donglin Tan
- Department of Blood Processing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xuemei Fu
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xue Chen
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Lei H, Alu A, Yang J, He X, He C, Ren W, Chen Z, Hong W, Chen L, He X, Yang L, Li J, Wang Z, Wang W, Wei Y, Lu S, Lu G, Song X, Wei X. Cationic crosslinked carbon dots-adjuvanted intranasal vaccine induces protective immunity against Omicron-included SARS-CoV-2 variants. Nat Commun 2023; 14:2678. [PMID: 37160882 PMCID: PMC10169129 DOI: 10.1038/s41467-023-38066-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Mucosal immunity plays a significant role in the first-line defense against viruses transmitted and infected through the respiratory system, such as SARS-CoV-2. However, the lack of effective and safe adjuvants currently limits the development of COVID-19 mucosal vaccines. In the current study, we prepare an intranasal vaccine containing cationic crosslinked carbon dots (CCD) and a SARS-CoV-2 antigen, RBD-HR with spontaneous antigen particlization. Intranasal immunization with CCD/RBD-HR induces high levels of antibodies with broad-spectrum neutralization against authentic viruses/pseudoviruses of Omicron-included variants and protects immunized female BALB/c mice from Omicron infection. Despite strong systemic cellular immune response stimulation, the intranasal CCD/RBD-HR vaccine also induces potent mucosal immunity as determined by the generation of tissue-resident T cells in the lungs and airway. Moreover, CCD/RBD-HR not only activates professional antigen-presenting cells (APCs), dendritic cells, but also effectively targets nasal epithelial cells, promotes antigen binding via sialic acid, and surprisingly provokes the antigen-presenting of nasal epithelial cells. We demonstrate that CCD is a promising intranasal vaccine adjuvant for provoking strong mucosal immunity and might be a candidate adjuvant for intranasal vaccine development for many types of infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xi He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
- WestVac Biopharma Co. Ltd., Chengdu, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
- WestVac Biopharma Co. Ltd., Chengdu, China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
- WestVac Biopharma Co. Ltd., Chengdu, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
- WestVac Biopharma Co. Ltd., Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
- WestVac Biopharma Co. Ltd., Chengdu, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China.
- WestVac Biopharma Co. Ltd., Chengdu, China.
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China.
- WestVac Biopharma Co. Ltd., Chengdu, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China.
- WestVac Biopharma Co. Ltd., Chengdu, China.
| |
Collapse
|
20
|
Garraud O, Watier H. Is there any revival of the use of plasma therapy or neutralizing convalescent antibody therapy to treat SARS-CoV-2 variants and are we rethinking preparedness plans? Transfus Apher Sci 2023:103726. [PMID: 37169698 PMCID: PMC10164650 DOI: 10.1016/j.transci.2023.103726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Olivier Garraud
- SAINBIOSE INSERM U1049, Université de Saint-Etienne, Saint-Etienne, France.
| | - Hervé Watier
- CPER INSERM U1100 and Université de Tours, and CHRU de Tours, Tours, France
| |
Collapse
|
21
|
Branch-Elliman W, Monach PA. Moving towards a precision approach for prevention of severe COVID-19. Lancet 2023; 401:1423-1424. [PMID: 37120280 PMCID: PMC10139313 DOI: 10.1016/s0140-6736(23)00443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/27/2023] [Indexed: 05/01/2023]
Affiliation(s)
| | - Paul A Monach
- VA Boston Healthcare System, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
22
|
Silva JDP, Lima ABD, Alvim LB, Malta FSV, Mendonça CPTB, Carvalho AHBD, Rios JSH, Fonseca PLC, Queiroz DC, Santos LCGDAE, Ferreira ACDS, Souza RPD, Aguiar RSD, Zauli DAG. Epidemiological Surveillance Reveals the Rise and Establishment of the Omicron SARS-CoV-2 Variant in Brazil. Viruses 2023; 15:v15041017. [PMID: 37112997 PMCID: PMC10145299 DOI: 10.3390/v15041017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The introduction of SARS-CoV-2 variants of concern (VOCs) in Brazil has been associated with major impacts on the epidemiological and public health scenario. In this study, 291,571 samples were investigated for SARS-CoV-2 variants from August 2021 to March 2022 (the highest peak of positive cases) in four geographical regions of Brazil. To identify the frequency, introduction, and dispersion of SARS-CoV-2 variants in 12 Brazilian capitals, VOCs defining spike mutations were identified in 35,735 samples through genotyping and viral genome sequencing. Omicron VOC was detected in late November 2021 and replaced the Delta VOC in approximately 3.5 weeks. We estimated viral load differences between SARS-CoV-2 Delta and Omicron through the evaluation of the RT-qPCR cycle threshold (Ct) score in 77,262 samples. The analysis demonstrated that the Omicron VOC has a lower viral load in infected patients than the Delta VOC. Analyses of clinical outcomes in 17,586 patients across the country indicated that individuals infected with Omicron were less likely to need ventilatory support. The results of our study reinforce the importance of surveillance programs at the national level and showed the introduction and faster dispersion of Omicron over Delta VOC in Brazil without increasing the numbers of severe cases of COVID-19.
Collapse
Affiliation(s)
- Joice do Prado Silva
- Departamento de Pesquisa & Desenvolvimento, Instituto Hermes Pardini, Belo Horizonte 31270-901, Brazil
| | - Aline Brito de Lima
- Departamento de Pesquisa & Desenvolvimento, Instituto Hermes Pardini, Belo Horizonte 31270-901, Brazil
| | - Luige Biciati Alvim
- Departamento de Produtos e Inovação, Instituto Hermes Pardini, Belo Horizonte 31270-901, Brazil
| | | | | | | | | | - Paula Luize Camargos Fonseca
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luíza Campos Guerra de Araújo E Santos
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - Renan Pedra de Souza
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Renato Santana de Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | | |
Collapse
|
23
|
Hersi F, Sebastian A, Tarazi H, Srinivasulu V, Mostafa A, Allayeh AK, Zeng C, Hachim IY, Liu SL, Abu-Yousef IA, Majdalawieh AF, Zaher DM, Omar HA, Al-Tel TH. Discovery of novel papain-like protease inhibitors for potential treatment of COVID-19. Eur J Med Chem 2023; 254:115380. [PMID: 37075625 PMCID: PMC10106510 DOI: 10.1016/j.ejmech.2023.115380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.
Collapse
Affiliation(s)
- Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, Environment and Climate Change Institute, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Ibrahim Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
24
|
Kip KE, McCreary EK, Collins K, Minnier TE, Snyder GM, Garrard W, McKibben JC, Yealy DM, Seymour CW, Huang DT, Bariola JR, Schmidhofer M, Wadas RJ, Angus DC, Kip PL, Marroquin OC. Evolving Real-World Effectiveness of Monoclonal Antibodies for Treatment of COVID-19 : A Cohort Study. Ann Intern Med 2023; 176:496-504. [PMID: 37011399 PMCID: PMC10074437 DOI: 10.7326/m22-1286] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Treatment guidelines and U.S. Food and Drug Administration emergency use authorizations (EUAs) of monoclonal antibodies (mAbs) for treatment of high-risk outpatients with mild to moderate COVID-19 changed frequently as different SARS-CoV-2 variants emerged. OBJECTIVE To evaluate whether early outpatient treatment with mAbs, overall and by mAb product, presumed SARS-CoV-2 variant, and immunocompromised status, is associated with reduced risk for hospitalization or death at 28 days. DESIGN Hypothetical pragmatic randomized trial from observational data comparing mAb-treated patients with a propensity score-matched, nontreated control group. SETTING Large U.S. health care system. PARTICIPANTS High-risk outpatients eligible for mAb treatment under any EUA with a positive SARS-CoV-2 test result from 8 December 2020 to 31 August 2022. INTERVENTION Single-dose intravenous mAb treatment with bamlanivimab, bamlanivimab-etesevimab, sotrovimab, bebtelovimab, or intravenous or subcutaneous casirivimab-imdevimab administered within 2 days of a positive SARS-CoV-2 test result. MEASUREMENTS The primary outcome was hospitalization or death at 28 days among treated patients versus a nontreated control group (no treatment or treatment ≥3 days after SARS-CoV-2 test date). RESULTS The risk for hospitalization or death at 28 days was 4.6% in 2571 treated patients and 7.6% in 5135 nontreated control patients (risk ratio [RR], 0.61 [95% CI, 0.50 to 0.74]). In sensitivity analyses, the corresponding RRs for 1- and 3-day treatment grace periods were 0.59 and 0.49, respectively. In subgroup analyses, those receiving mAbs when the Alpha and Delta variants were presumed to be predominant had estimated RRs of 0.55 and 0.53, respectively, compared with 0.71 for the Omicron variant period. Relative risk estimates for individual mAb products all suggested lower risk for hospitalization or death. Among immunocompromised patients, the RR was 0.45 (CI, 0.28 to 0.71). LIMITATIONS Observational study design, SARS-CoV-2 variant presumed by date rather than genotyping, no data on symptom severity, and partial data on vaccination status. CONCLUSION Early mAb treatment among outpatients with COVID-19 is associated with lower risk for hospitalization or death for various mAb products and SARS-CoV-2 variants. PRIMARY FUNDING SOURCE None.
Collapse
Affiliation(s)
- Kevin E Kip
- Clinical Analytics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.E.K., K.C., W.G., J.C.M., O.C.M.)
| | - Erin K McCreary
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (E.K.M., G.M.S., J.R.B.)
| | - Kevin Collins
- Clinical Analytics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.E.K., K.C., W.G., J.C.M., O.C.M.)
| | - Tami E Minnier
- Wolff Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (T.E.M., P.L.K.)
| | - Graham M Snyder
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (E.K.M., G.M.S., J.R.B.)
| | - William Garrard
- Clinical Analytics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.E.K., K.C., W.G., J.C.M., O.C.M.)
| | - Jeffrey C McKibben
- Clinical Analytics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.E.K., K.C., W.G., J.C.M., O.C.M.)
| | - Donald M Yealy
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (D.M.Y., R.J.W.)
| | - Christopher W Seymour
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (C.W.S., D.C.A.)
| | - David T Huang
- Department of Emergency Medicine and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (D.T.H.)
| | - J Ryan Bariola
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (E.K.M., G.M.S., J.R.B.)
| | - Mark Schmidhofer
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.S.)
| | - Richard J Wadas
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (D.M.Y., R.J.W.)
| | - Derek C Angus
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (C.W.S., D.C.A.)
| | - Paula L Kip
- Wolff Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (T.E.M., P.L.K.)
| | - Oscar C Marroquin
- Clinical Analytics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (K.E.K., K.C., W.G., J.C.M., O.C.M.)
| |
Collapse
|
25
|
Mohanty A, Rohilla R, Mehta R, Padhi BK, Sah R. XBB.1.5 an emerging threat: correspondence. Int J Surg 2023; 109:1050-1051. [PMID: 37097621 PMCID: PMC10132297 DOI: 10.1097/js9.0000000000000261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 04/26/2023]
Affiliation(s)
- Aroop Mohanty
- Department of Microbiology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh
| | - Ranjana Rohilla
- Shir Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand
| | - Rachana Mehta
- National Public Health Laboratory, Teku, Kathmandu, Nepal
| | - Bijaya Kumar Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Kathmandu, Nepal
| | - Ranjit Sah
- Dr. D.Y Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Tribhuvan University Teaching Hospital, Institute of Medicine
| |
Collapse
|
26
|
Alves RPDS, Wang YT, Mikulski Z, McArdle S, Shafee N, Valentine KM, Miller R, Verma SK, Batiz FAS, Maule E, Nguyen MN, Timis J, Mann C, Zandonatti M, Alarcon S, Rowe J, Kronenberg M, Weiskopf D, Sette A, Hastie K, Saphire EO, Festin S, Kim K, Shresta S. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Res 2023; 212:105580. [PMID: 36940916 PMCID: PMC10027296 DOI: 10.1016/j.antiviral.2023.105580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.
Collapse
Affiliation(s)
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen M Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fernanda Ana Sosa Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Suzie Alarcon
- Sequencing Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jenny Rowe
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathryn Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Stephen Festin
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
27
|
Tay MZ, Goh YS, Fong SW, Chang ZW, Rouers A, Wong N, Torres-Ruesta A, Huang Y, Selvam SK, Hor PX, Loh CY, Wang B, Mohd Salleh SN, Ngoh EZX, Lee RTC, Neo V, Kam IKJ, Poh XY, Rao S, Chia PY, Ong SW, Lee TH, Lim C, Teo J, NCID Study Group, PRIBIVAC Cohort Study Group, Maurer-Stroh S, Wang CI, Leo YS, Lin RTP, Lye DC, Young BE, Ng LF, Renia L. Heterologous mRNA vaccine boosters induce a stronger and longer-lasting antibody response against Omicron XBB variant. THE LANCET REGIONAL HEALTH: WESTERN PACIFIC 2023; 33:100732. [PMID: 37125085 PMCID: PMC9988436 DOI: 10.1016/j.lanwpc.2023.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Affiliation(s)
- Matthew Zirui Tay
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yun Shan Goh
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Siew-Wai Fong
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Zi Wei Chang
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Angeline Rouers
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Nathan Wong
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Anthony Torres-Ruesta
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yuling Huang
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Sooriya Kannan Selvam
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Pei Xiang Hor
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Chiew Yee Loh
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Bei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Siti Nazihah Mohd Salleh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Eve Zi Xian Ngoh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Raphael Tze Chuen Lee
- Bioinformatics Institute (BII), Agency of Science, Technology and Research (A∗STAR), Singapore, Singapore,GISAID Global Data Science Initiative (GISAID), Munich, Germany
| | - Vanessa Neo
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Isaac Kai Jie Kam
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Xuan Ying Poh
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Suma Rao
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sean W.X. Ong
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tau Hong Lee
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Clarissa Lim
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Jefanie Teo
- National Centre for Infectious Diseases, Singapore, Singapore
| | | | - PRIBIVAC Cohort Study Group
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore,Bioinformatics Institute (BII), Agency of Science, Technology and Research (A∗STAR), Singapore, Singapore,GISAID Global Data Science Initiative (GISAID), Munich, Germany,National Public Health Laboratory, Singapore, Singapore,Department of Biological Sciences, National University of Singapore, Singapore, Singapore,Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raymond Tzer Pin Lin
- National Centre for Infectious Diseases, Singapore, Singapore,National Public Health Laboratory, Singapore, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David C. Lye
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lisa F.P. Ng
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore,National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK,Corresponding author. Lisa F.P. Ng, A∗STAR ID Labs, A∗STAR, 8A Biomedical Grove, Immunos #05-13, Singapore 138648, Singapore
| | - Laurent Renia
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore,Corresponding author. Laurent Renia, A∗STAR ID Labs, A∗STAR, 8A Biomedical Grove, Immunos #05-13, Singapore 138648, Singapore
| |
Collapse
|
28
|
Nicot F, Trémeaux P, Latour J, Carcenac R, Demmou S, Jeanne N, Ranger N, De Smet C, Raymond S, Dimeglio C, Izopet J. Whole-genome single molecule real-time sequencing of SARS-CoV-2 Omicron. J Med Virol 2023; 95:e28564. [PMID: 36756931 DOI: 10.1002/jmv.28564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
New variants and genetic mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome can only be identified using accurate sequencing methods. Single molecule real-time (SMRT) sequencing has been used to characterize Alpha and Delta variants, but not Omicron variants harboring numerous mutations in the SARS-CoV-2 genome. This study assesses the performance of a target capture SMRT sequencing protocol for whole genome sequencing (WGS) of SARS-CoV-2 Omicron variants and compared it to that of an amplicon SMRT sequencing protocol optimized for Omicron variants. The failure rate of the target capture protocol (6%) was lower than that of the amplicon protocol (34%, p < 0.001) on our data set, and the median genome coverage with the target capture protocol (98.6% [interquartile range (IQR): 86-99.4]) was greater than that with the amplicon protocol (76.6% [IQR: 66-89.6], [p < 0.001]). The percentages of samples with >95% whole genome coverage were 64% with the target capture protocol and 19% with the amplicon protocol (p < 0.05). The clades of 96 samples determined with both protocols were 93% concordant and the lineages of 59 samples were 100% concordant. Thus, target capture SMRT sequencing appears to be an efficient method for WGS, genotyping and detecting mutations of SARS-CoV-2 Omicron variants.
Collapse
Affiliation(s)
- Florence Nicot
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Pauline Trémeaux
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Justine Latour
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Romain Carcenac
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Sofia Demmou
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Nicolas Jeanne
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Noémie Ranger
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | | | - Stéphanie Raymond
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1291-CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Toulouse, France
| | - Chloé Dimeglio
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1291-CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Toulouse, France
| | - Jacques Izopet
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1291-CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Toulouse, France
| |
Collapse
|
29
|
Abduljabbar M, Alghamdi R, Althobaiti K, Althubaiti S, Alharthi N, Alosaimi G, Qunq M, Saleh L, Alosaimi M. The length of hospital stays and clinical and therapeutic characteristics of patients with COVID-19 early in the pandemic in Taif City, KSA: A retrospective study. Medicine (Baltimore) 2022; 101:e32386. [PMID: 36595802 PMCID: PMC9794303 DOI: 10.1097/md.0000000000032386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic is unprecedented in the healthcare sector worldwide. This retrospective study focused on the length of hospital stay and clinical and therapeutic characteristics of patients with COVID-19. Retrospective data of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) positive patients were collected between March 12 and June 30, 2020, and categorized into mild, moderate, and severe disease groups based on symptoms and severity of COVID-19. A total of 843 SARS-COV-2-positive patients were identified in this study (mildly symptomatic, 132; moderately symptomatic, 168; severely symptomatic, 17). The mean lengths (days) of hospital stay of Groups 1 to 8 were 16.38, 13.18, 13.72, 9.30, 6.96, 10.86, 5.77, and 7.37, respectively. Treatment Group 1 had the highest mean. In the treatment group, 7 patients who were not treated had the shortest stay. The patients with heart failure and Group 1 received antiviral, antimalarial, and antibiotic therapy; patients in Group 3 received antimalarial and antibiotic therapy; patients in Group 4 received antiviral and antibiotic therapy were tended to have a longer hospital stay. The length of hospital stay and clinical and therapeutic characteristics are crucial indicators of pandemic management, a shorter hospital stay is a positive outcome of better COVID-19 management.
Collapse
Affiliation(s)
- Maram Abduljabbar
- Department of Pharmacology and Toxicology, Collage of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Raghad Alghamdi
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | | | | | - Najla Alharthi
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ghada Alosaimi
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mawddah Qunq
- Pharm D, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Lobna Saleh
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal Alosaimi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Singh P, Sharma K, Shaw D, Bhargava A, Negi SS. Mosaic Recombination Inflicted Various SARS-CoV-2 Lineages to Emerge into Novel Virus Variants: a Review Update. Indian J Clin Biochem 2022; 38:1-8. [PMID: 36569378 PMCID: PMC9759274 DOI: 10.1007/s12291-022-01109-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Human Coronaviruses (hCoVs) belongs to the enormous and dissimilar family of positive-sense, non-segmented, single-stranded RNA viruses. The RNA viruses are prone to high rates of mutational recombination resulting in emergence of evolutionary variant to alter various features including transmissibility and severity. The evolutionary changes affect the immune escape and reduce effectiveness of diagnostic and therapeutic measures by becoming undetectable by the currently available diagnostics and refractory to therapeutics and vaccines. Whole genome sequencing studies from various countries have adequately reported mosaic recombination between different lineage strain of SARS-CoV-2 whereby RNA dependent RNA polymerase (RdRp) gene reconnects with a homologous RNA strand at diverse position. This all lead to evolutionary emergence of new variant/ lineage as evident with the emergence of XBB in India at the time of writing this review. The continuous periodical genomic surveillance is utmost required for understanding the various lineages involved in recombination to emerge into hybrid variant. This may further help in assessing virus transmission dynamics, virulence and severity factor to help health authorities take appropriate timely action for prevention and control of any future COVID-19 outbreak.
Collapse
Affiliation(s)
- Pushpendra Singh
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Kuldeep Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Dipika Shaw
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Anudita Bhargava
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Sanjay Singh Negi
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| |
Collapse
|
31
|
Reggiani A, Rugna G, Bonilauri P. SARS-CoV-2 and animals, a long story that doesn't have to end now: What we need to learn from the emergence of the Omicron variant. Front Vet Sci 2022; 9:1085613. [PMID: 36590812 PMCID: PMC9798331 DOI: 10.3389/fvets.2022.1085613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
OIE, the world organization for animal health, recently released an update on the state of the art of knowledge regarding SARS-CoV-2 in animals. For farmed animals, ferrets and minks were found to be highly susceptible to the virus and develop symptomatic disease both in natural conditions and in experimental infections. Lagomorphs of the species Oryctolagus cuniculus are indicated as highly susceptible to the virus under experimental conditions, but show no symptoms of the disease and do not transmit the virus between conspecifics, unlike raccoon dogs (Nyctereutes procyonoides), which in addition to being highly susceptible to the virus under experimental conditions, can also transmit the virus between conspecifics. Among felines, the circulation of the virus has reached a level of cases such as sometimes suggests the experimental use of vaccines for human use or treatments with monoclonal antibodies. But even among wild animals, several species (White-tailed deer, Egyptian rousettes, and minks) have now been described as potential natural reservoirs of the virus. This proven circulation of SARS-CoV-2 among animals has not been accompanied by the development of an adequate surveillance system that allows following the evolution of the virus among its natural hosts. This will be all the more relevant as the surveillance system in humans inevitably drops and we move to surveillance by sentinels similar to the human flu virus. The lesson that we can draw from the emergence of Omicron and, more than likely, its animal origin must not be lost, and in this mini-review, we explain why.
Collapse
|