1
|
Nakhaei A, Marzoughi S, Ghoflchi S, Hosseini H, Afshari AR, Jalili-Nik M, Kesharwani P, Sahebkar A. An exploration of molecular signaling in drug reprocessing for Oral Squamous Cell Carcinoma. Eur J Med Chem 2025; 295:117816. [PMID: 40466285 DOI: 10.1016/j.ejmech.2025.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/14/2025] [Accepted: 05/25/2025] [Indexed: 06/11/2025]
Abstract
The unique characteristics of cancer are crucial for comprehending the processes underlying cancer initiation, development, and maintenance. These hallmarks guide the development of novel therapeutic strategies aimed at fundamental traits of cancer, resulting in more targeted therapies with the possibility for sustained effectiveness and minimized adverse effects. Drug repurposing, a novel approach that leverages the known safety and pharmacological properties of existing drugs, has surfaced as a viable alternative to traditional drug development. This method expedites the timescale for introducing novel medicines into clinical practice, often demonstrating reduced failure rates in clinical trials. Recent data substantiates the therapeutic efficacy of many repurposed medications in the management of oral squamous cell carcinomas (OSCC), a highly aggressive and treatment-resistant malignancy. Prominent instances include metformin, phenformin, propranolol, acetylsalicylic acid, celecoxib, itraconazole, statins, dihydroartemisinin, and methotrexate. These pharmaceuticals demonstrated diverse anticancer actions, rendering them valuable tools in the therapy of OSCC. This review provides a comprehensive overview of molecular signaling in the reprocessing of drugs for OSCC.
Collapse
Affiliation(s)
- Ali Nakhaei
- Student Research Committee, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Sarah Marzoughi
- Student Research Committee, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Sahar Ghoflchi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Applied Biomedical Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu X, Li Y, He M, Zhao Y, Li C, Wang Y, Zhou Q, Peng Y, Zhan L. Multi-bioluminescence based dynamic imaging of Pseudomonas aeruginosa-induced hepatic inflammation process. Microb Pathog 2025; 204:107521. [PMID: 40169074 DOI: 10.1016/j.micpath.2025.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Bacterial infections are a major cause of death worldwide. However, it is difficult to track the in vivo dynamics of pathogenic bacteria and the expression of inflammatory factors in infected animals throughout the infection process. This work used Pseudomonas aeruginosa as an infection model and utilised genetically bioluminescence-labeled P. aeruginosa and hydrodynamic transfection technology to construct a liver-visual NF-κB, IL-6, TNF-α inflammation model, thereby enabling the tracking of the dynamic spread of P. aeruginosa in infected animals and the transient activation of the liver inflammation response. The results showed that P. aeruginosa introduced via the tail vein initially accumulates in the liver and gradually activates NF-κB, IL-6, and TNF-α. Subsequently, the P. aeruginosa infection gradually spreads to the lungs and small intestine, and final proliferation leads to septic death in mice. During the infection process, we observed a strictly negative correlation between platelet activation and bacterial proliferation; the higher the degree of platelet activation, the stronger the inhibitory effect on bacterial proliferation and liver inflammation. In conclusion, this bioluminescence-based in vivo imaging technique offers new opportunities to investigate the innate immune response in controlling pathogenic infections.
Collapse
Affiliation(s)
- Xingzhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yipu Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Minwei He
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yan Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Chenyan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yi Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Qianqian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China.
| | - Ying Peng
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
3
|
Abdel-Maksoud MS, Alatawi RA, Albalawi SSA, Alrashidi MN, Abo-Dya NE, Elsherbiny N, Ragab YM, Awaji AA, El-Sherbiny M, Elfadil H, Abd-Alhaseeb MM. Diacerein's antiproliferative effects alone and with 5-fluorouracil in an Ehrlich solid tumour model: Molecular docking, molecular dynamics Simulation studies, and experimental Verification. Eur J Pharmacol 2025; 996:177564. [PMID: 40157706 DOI: 10.1016/j.ejphar.2025.177564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
The current study used an experimental model of mammary gland carcinoma to assess the chemo-sensitizing effectiveness of the combined administration of diacerein and 5-Fluorouracil (5-FU). With docking scores of -8.1, -7.6, and -9.2 kcal/mol, respectively, the molecular docking experiments showed that diacerein exhibits significant binding affinities to Caspase-3, NF-κB, and AKT1. Molecular dynamics Simulations revealed that diacerein has favourable binding free energy (ΔGbind) of -26.7 kcal/mol for Caspase-3, -24.2 kcal/mol for NF-κB, and -39.9 kcal/mol for AKT1, combined with low root mean square deviation (RMSD) values of 3.1 Å, 1.6 Å, and 2.1 Å for the three targets respectively. To validate these findings in vivo, Ehrlich solid tumor (EST) was induced in female Swiss mice. Four groups of animals were randomly assigned: EST + vehicle, EST + 5-FU, EST + diacerein, and EST + combination. Diacerein and 5-FU combination treatment increased EST mice's life span and reduced the solid tumor's weight and volume. Furthermore, diacerein and 5-FU combination significantly suppressed oxidative stress, inhibited AKT phosphorylation, decreased downstream inflammation (NF-κB, TNF-α, IL-1β), and increased apoptosis by modulating Bax, Bcl2, P53, and caspase-3 levels in tumor tissues. In conclusion, by inhibiting the AKT/NF-κB axis, diacerein and 5-FU combination showed possible antiproliferative effectiveness in the EST model.
Collapse
Affiliation(s)
- Mohamed S Abdel-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | | | | | | | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, North Sinai, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, 71491, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia.
| | - Hassabelrasoul Elfadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt; Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
4
|
Oliveira MDS, Dias IRSB, Costa RGA, Rodrigues ACBDC, Silva SLR, Soares MBP, Dias RB, Valverde LF, Gurgel Rocha CA, Batista AA, Correa RS, Silva VR, Granado Pina ET, Bezerra DP. Ru(II)-thymine complex suppresses acute myeloid leukemia stem cells by inhibiting NF-κB signaling. Biomed Pharmacother 2025; 187:118080. [PMID: 40288174 DOI: 10.1016/j.biopha.2025.118080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/02/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Acute myeloid leukemia (AML) is a lethal hematologic malignancy caused by leukemic blasts that fail to mature normally. AML has a high relapse rate, primarily due to a small subset known as leukemic stem cells (LSCs). In this work, we investigated the ability of a Ru(II)-thymine complex (RTC) with the formula [Ru(PPh3)2(Thy)(bipy)]PF6 (where PPh3 = triphenylphosphine, Thy = thymine, and bipy = 2,2'-bipyridine) to suppress AML LSCs. RTC exhibited potent cytotoxicity toward both solid and hematologic malignancies and suppressed primary AML LSCs, as observed by the reduction in the CD34 +CD38- cell population. In the AML cell line KG-1a, which has an LSC-like population, RTC reduced the number of CD34 + and CD123 + cells. A reduction in leukemic blasts was detected in the bone marrow of RTC-treated NSG mice bearing KG-1a xenografts. Increased DNA fragmentation, YO-PRO-1 staining, active caspase-3 and cleaved PARP (Asp 214) levels, and mitochondrial superoxide levels were detected in RTC-treated KG-1a cells. The pancaspase inhibitor Z-VAD-(OMe)-FMK, but not the antioxidant N-acetylcysteine, partially prevented RTC-induced cell death in KG-1a cells, indicating that RTC induces caspase-mediated apoptosis in KG-1a cells via an oxidative stress-independent pathway. In molecular mechanism studies, transcripts of the NF-κB inhibitor NFKBIA were upregulated, and the level of NF-κB p65 phosphorylated at the Ser529 residue was reduced in RTC-treated KG-1a cells, indicating that RTC may inhibit NF-κB signaling. Overall, these results indicate the anti-AML potential of RTC in AML LSCs via the suppression of NF-κB signaling.
Collapse
Affiliation(s)
- Maiara de S Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | | | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador, BA 41650-010, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, BA 44036-900, Brazil
| | - Ludmila F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; Department of Dentistry, Federal University of Sergipe, Lagarto, SE 49400-000, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; Department of Propaedeutics, Faculty of Dentistry, Federal University of Bahia (UFBA), Salvador, BA 40301-155, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13561-901, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | - Eugênia T Granado Pina
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; Research Center, National Cancer Institute (INCA), Rio de Janeiro, RJ 20230-130, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil.
| |
Collapse
|
5
|
Yasir M, Park J, Han ET, Han JH, Park WS, Choe J, Chun W. Investigating Natural Product Inhibitors of IKKα: Insights from Integrative In Silico and Experimental Validation. Molecules 2025; 30:2025. [PMID: 40363830 PMCID: PMC12073143 DOI: 10.3390/molecules30092025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Nuclear factor-κB (NF-κB) signaling plays a pivotal role in regulating immune responses and is strongly implicated in cancer progression and inflammation-related diseases. The inhibitory κB kinases (IKKs), particularly IKKα, are central to modulating NF-κB activity, with distinct roles in the canonical and non-canonical signaling pathways. This study investigates the potential of selectively targeting IKKα to develop novel therapeutic strategies. A receptor-ligand interaction pharmacophore model was generated based on the co-crystallized structure of IKKα, incorporating six key features, two hydrogen bond acceptors, two hydrogen bond donors, one hydrophobic region, and one hydrophobic aromatic region. This model was used to virtually screen a diverse natural compound library of 5540 molecules, yielding 82 candidates that matched the essential pharmacophore features. Molecular docking and molecular dynamics simulations were subsequently employed to evaluate binding conformations, stability, and dynamic behavior of the top hits. The end-state free energy calculations (gmx_MMPBSA) further validated the interaction strength and stability of selected compounds. To experimentally confirm their inhibitory potential, key compounds were tested in LPS-stimulated RAW 264.7 cells, where they significantly reduced IκBα phosphorylation. These findings validate the integrative computational-experimental approach and identify promising natural compounds as selective IKKα inhibitors for further therapeutic development in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Jongseon Choe
- Department of Microbiology and Immunology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
6
|
Fu J, Song C, Jiang S, Yang S, Wu Q, Liu X, Hong Z, A R, Li B, Qu G, Ma T, Shao H. Drug Delivery Platform Targeting MMP9 in Combination with Photothermal Therapy to Improve Tumor Chemosensitivity. Adv Healthc Mater 2025; 14:e2500174. [PMID: 40264273 DOI: 10.1002/adhm.202500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Tumor chemotherapy insensitivity poses a significant challenge in cancer treatment, with angiogenesis being a key contributing factor. Angiogenesis supplies oxygen and nutrients to tumor cells, thereby impairing treatment outcomes. Based on these findings, an MMP9-responsive carbon quantum dot-based nanoplatform (MMP9i@MTX@CQDs) encapsulating methotrexate (MTX) and an MMP9 inhibitor (MMP9i) is developed to overcome chemotherapy insensitivity. Targeting the high expression of MMP9 in tumors, the platform releases its payload in a responsive manner. Under near-infrared (NIR) irradiation, the system effectively downregulated angiogenesis-related molecules, including VEGF and CD31, and inhibited the Wnt/β-catenin signaling pathway, thereby reversing chemotherapy insensitivity. This nanoplatform integrates MMP9-responsive CQDs with MTX, enabling photothermal therapy (PTT) and MMP9 inhibition, offering a robust and safe strategy to sensitize tumors to chemotherapy.
Collapse
Affiliation(s)
- Jixian Fu
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Chunyu Song
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shan Jiang
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shuping Yang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qianjiang Wu
- Institute of Cancer Prevention and Treatment, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Xiaolong Liu
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhiwen Hong
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Rouhan A
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Bolong Li
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Guofan Qu
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Tengchuang Ma
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Haibo Shao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
7
|
Chinh PT, Tham PT, Thanh HT, Lien VT, Loan LTT, Oanh KTP, Kien VT, Phuong PT, Van DT, Hai CT. Synthesis, cytotoxic evaluation, and molecular docking of novel zerumbone oxime esters and azazerumbone derivatives. Bioorg Med Chem Lett 2025; 120:130120. [PMID: 39900144 DOI: 10.1016/j.bmcl.2025.130120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/11/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Available online A series of thirteen novel zerumbone oxime esters and five new azazerumbone derivatives were successfully synthesized. Most of these derivatives exhibited significant cytotoxic activity against four human tumor cell lines (HepG2, A549, HL-60, and AGS). Among them, three derivatives (3i, 3j, and 3k) demonstrated strong cytotoxic effects against all tested cell lines, with IC50 values ranging from 0.41 ± 0.05 to 3.88 ± 0.19 μg/mL, displaying potency comparable to that of zerumbone and ellipticine. Docking results revealed that one compound (3i) showed the highest binding affinity for NF-κB p65.
Collapse
Affiliation(s)
- Pham The Chinh
- Thai Nguyen University of Sciences - TNU, Tan Thinh 24000 Thai Nguyen, Viet Nam
| | - Pham Thi Tham
- Hanoi University of Industry, Cau Dien, Bac Tu Liem, Hanoi, Viet Nam.
| | - Hoang Thi Thanh
- Thai Nguyen University of Sciences - TNU, Tan Thinh 24000 Thai Nguyen, Viet Nam.
| | - Vu Thi Lien
- Thai Nguyen University of Sciences - TNU, Tan Thinh 24000 Thai Nguyen, Viet Nam
| | - Le Thi Thuy Loan
- Thai Nguyen University of Sciences - TNU, Tan Thinh 24000 Thai Nguyen, Viet Nam; Tay Nguyen University, Le Duan, Buon Ma Thuat, Dak Lak, Viet Nam
| | - Kim Thi Phuong Oanh
- Institute of Genome Research - Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Vu Tuan Kien
- Thai Nguyen University of Sciences - TNU, Tan Thinh 24000 Thai Nguyen, Viet Nam
| | - Phan Thanh Phuong
- Thai Nguyen University of Sciences - TNU, Tan Thinh 24000 Thai Nguyen, Viet Nam
| | - Dinh Thuy Van
- Thai Nguyen University of Education - TNU, Quang Trung, 24000 Thai Nguyen, Viet Nam
| | - Cao Thanh Hai
- Thai Nguyen University of Sciences - TNU, Tan Thinh 24000 Thai Nguyen, Viet Nam
| |
Collapse
|
8
|
Xu ZJ, Liu B, Li RN, Linghu H. GFPT2 promotes paclitaxel resistance in epithelial ovarian cancer cells via activating NF-κB signaling pathway. Open Life Sci 2025; 20:20221039. [PMID: 40291779 PMCID: PMC12032973 DOI: 10.1515/biol-2022-1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 04/30/2025] Open
Abstract
This study investigated the role of glutamine-fructose-6-phosphate transaminase 2 (GFPT2) in the response of epithelial ovarian cancer cells to paclitaxel, a standard chemotherapy drug. We analyzed GFPT2 expression across various EOC cell lines, including SKOV3, HEY, ES-2, A2780, and OVCR3. In HEY cell lines, we performed GFPT2 knockdown, while A2780 cells were engineered for GFPT2 overexpression. Following these manipulations, we assessed the cellular responses to paclitaxel treatment. Results demonstrated a correlation between GFPT2 levels and paclitaxel resistance; those with high GFPT2 (SKOV3 and HEY) expression were less sensitive compared to the cells with low GFPT2 expression (A2780). Downregulating GFPT2 enhanced drug sensitivity in HEY cells, whereas its overexpression impaired drug sensitivity in A2780 cells. Mechanistically, GFPT2's role in facilitating paclitaxel resistance was linked to the activation of the nuclear factor-κB (NF-κB) signaling pathway, possibly influenced by NK3 Homeobox 2. Our findings suggest that GFPT2 is a critical mediator of paclitaxel resistance through NF-κB pathway activation in EOC, providing potential targets for improving therapeutic efficacy against this challenging malignancy.
Collapse
Affiliation(s)
- Zi-Jun Xu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bin Liu
- Department of Pathology, The Basic Medical School of Chongqing Medical University, Chongqing, 400016, China
| | - Ruo-Nan Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hua Linghu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
9
|
Tao W, Jiang C, Velu P, Lv C, Niu Y. Rosmanol Suppresses Nasopharyngeal Carcinoma Cell Proliferation and Enhances Apoptosis, the Regulation of MAPK/NF-κB Signaling Pathway. Biotechnol Appl Biochem 2025:e2750. [PMID: 40170441 DOI: 10.1002/bab.2750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
Nasopharyngeal Carcinoma (NPC) is a major public health problem in endemic zones. NPC is correlated with substantial illness and death; thus, superior treatment is desired. Rosmanol (RM) is a phenolic diterpene antioxidant extracted from the medicinal herb Rosemary (Rosmarinus officinalis). RM has been investigated for its anti-inflammatory and anti-tumor properties by numerous signaling cascades. However, the fundamental anticancer latent mechanism of RM persists as unidentified. Hence, this present research proposes to search for the anti-cancer efficacy of RM on human NPC cells CNE2 using an in vitro approach. To assess the possible molecular mechanisms of proliferation, apoptosis, cell-cycle regulatory proteins, and MAPKs/NF-κB signaling of NPC cells were administered RM (20 and 30 µM) and assayed through MTT, DCFH-DA, Rh-123 staining, AO/EB, PI, Rh-123/DAPI merge form staining, RT-PCR, and Western blot. The result was recognized that RM could reduce NPC cell viability by elevated intracellular ROS, MMP damage, and generate apoptosis. RM inhibits the Cyclin-D1, Bax, TNF-α, and NF-κB, and induces BCl-2 analyzed via RT PCR. RM attenuates the cell cycle mechanism by repressing NPC cell cycle-related proteins: CDK4/CDK6, pRB, cyclin-D1, and MAPKs/NF-κB signaling. These data established that the MAPKs/NF-κB pathway is a potential target for the remedial action of RM. In summary, RM may be an effective conventional chemotherapy drug in preventing the progression of NPC.
Collapse
Affiliation(s)
- Weiping Tao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Fourth Hospital of Changsha, Changsha, China
| | - Chaowu Jiang
- Department I of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt Ltd, Nagapattinam, Tamil Nadu, India
| | - Cao Lv
- Department of Otolaryngology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Niu
- Department of Otolaryngology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Teng C, Chen JW, Shen LS, Chen S, Chen GQ. Research advances in natural sesquiterpene lactones: overcoming cancer drug resistance through modulation of key signaling pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:13. [PMID: 40201307 PMCID: PMC11977367 DOI: 10.20517/cdr.2024.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Cancer remains a significant global health challenge, with current chemotherapeutic strategies frequently limited by the emergence of resistance. In this context, natural compounds with the potential to overcome resistance have garnered considerable attention. Among these, sesquiterpene lactones, primarily derived from plants in the Asteraceae family, stand out for their potential anticancer properties. This review specifically focuses on five key signaling pathways: PI3K/Akt/mTOR, NF-κB, Wnt/β-catenin, MAPK/ERK, and STAT3, which play central roles in the mechanisms of cancer resistance. For each of these pathways, we detail their involvement in both cancer development and the emergence of drug resistance. Additionally, we investigate how sesquiterpene lactones modulate these pathways to overcome resistance across diverse cancer types. These insights highlight the potential of sesquiterpene lactones to drive the advancement of novel therapies that can effectively combat both cancer progression and drug resistance.
Collapse
Affiliation(s)
- Chi Teng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Jia-Wen Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guo-Qing Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| |
Collapse
|
11
|
Wang M, Li G, Xu N, Wang L, Cai J, Huang R, Yang Y, Chen G, Liu Z, Zhang Y, Wang H, Huang X. Discovery of a Novel EF24 Analogue-Conjugated Pt(IV) Complex as Multi-Target Pt(IV) Prodrugs Aims to Enhance Anticancer Activity and Overcome Cisplatin Resistance. J Med Chem 2025; 68:5597-5615. [PMID: 39976582 DOI: 10.1021/acs.jmedchem.4c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Acquired resistance in cancer remains a significant challenge in oncology, posing obstacles to the efficacy of diverse therapeutic approaches. The nuclear factor-kappa B (NF-κB) signaling pathway plays an important role in the development of drug resistance in tumor cells. Herein, we employed NF-κB inhibitors and cisplatin to synthesize multitarget Pt(IV) antitumor prodrugs. Among them, the antiproliferation activity of complex 8 demonstrated a remarkable 146.92-time increase compared to cisplatin against A549/CDDP cells. Moreover, complex 8 could effectively induce DNA damage, promote ROS generation, induce autophagy, trigger the mitochondrial apoptosis pathway, and suppress cell proliferation through the NF-κB signaling pathway. Furthermore, complex 8 effectively downregulated the levels of VEGF and HIF-1α and exerted antiproliferative activity through the PI3K/AKT and STAT-3 pathway in A549/CDDP cells. Interestingly, complex 8 showed a superior in vivo antitumor activity than cisplatin, 5a, or their combination, suggesting its potential as a promising candidate for further drug development in lung cancer treatment.
Collapse
Affiliation(s)
- Meng Wang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guimei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Nan Xu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lang Wang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jinyuan Cai
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yong Yang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Guiping Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhikun Liu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Xiaochao Huang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
12
|
Fernandez-Muñoz KV, Sánchez-Barrera CÁ, Meraz-Ríos M, Reyes JL, Pérez-Yépez EA, Ortiz-Melo MT, Terrazas LI, Mendoza-Rodriguez MG. Natural Alternatives in the Treatment of Colorectal Cancer: A Mechanisms Perspective. Biomolecules 2025; 15:326. [PMID: 40149862 PMCID: PMC11940303 DOI: 10.3390/biom15030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest neoplasia. Intrinsic or acquired resistance is the main cause of failure of therapy regimens that leads to relapse and death in CRC patients. The widely used chemotherapeutic agent 5-fluorouracil (5-FU) remains the mainstay for therapeutic combinations. Unfortunately, chemotherapeutic resistance and side effects are frequent events that compromise the success of these therapies; the dysregulation of enzymes that regulate 5-FU metabolism increases the expression and activity of efflux pumps. Additional tumor cell adaptations such as epithelial-mesenchymal transition (EMT), autophagy shaping of the tumor microenvironment, and inflammation contribute to chemoresistance. Finding new strategies and alternatives to enhance conventional chemotherapies has become necessary. Recently, the study of natural compounds has been gaining strength as an alternative to chemotherapeutics in different cancers. Curcumin, trimethylglycine, resveratrol, artemisinin, and some helminth-derived molecules, among others, are some natural compounds studied in the context of CRC. This review discusses the main benefits, mechanisms, advances, and dark side of conventional chemotherapeutics currently evaluated in CRC treatment. We also analyzed the landscape of alternative non-conventional compounds and their underlying mechanisms of action, which could, in the short term, provide fundamental knowledge to harness their anti-tumor effects and allow them to be used as alternative adjuvant therapies.
Collapse
Affiliation(s)
- Karen Vanessa Fernandez-Muñoz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (K.V.F.-M.); (C.Á.S.-B.); (M.T.O.-M.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Cuauhtémoc Ángel Sánchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (K.V.F.-M.); (C.Á.S.-B.); (M.T.O.-M.)
| | - Marco Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Jose Luis Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (K.V.F.-M.); (C.Á.S.-B.); (M.T.O.-M.)
| | | | - Maria Teresa Ortiz-Melo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (K.V.F.-M.); (C.Á.S.-B.); (M.T.O.-M.)
| | - Luis I. Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (K.V.F.-M.); (C.Á.S.-B.); (M.T.O.-M.)
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Monica Graciela Mendoza-Rodriguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (K.V.F.-M.); (C.Á.S.-B.); (M.T.O.-M.)
| |
Collapse
|
13
|
Bhat AM, Bhat IA, Malik MA, Kaiser P, Ramajayan P, Rayees SR, Ahmed Z, Tasduq SA. Inhibition of IKK complex by (2 methyl butyryl) Shikonin, a naturally occurring naphthoquinone, abrogates melanoma growth and progression via modulation of the IKK/NFκB /EMT signaling axis. Int Immunopharmacol 2025; 148:114026. [PMID: 39823792 DOI: 10.1016/j.intimp.2025.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Melanoma is an aggressive form of malignancy that originates from melanin-producing cells known as melanocytes underlying the basal layer of the epidermis with a poor prognosis, low survival rates, and limited treatment options. Although several specific and effective systematic strategies for treating melanoma have been established, the underlying molecular mechanism of melanoma progression, mortality and the promising therapeutic options remain elusive. Shikonin (SK), a natural naphthoquinone derived from a medicinal herbaceous plant, has been shown to inhibit the proliferation of several cancer cells. However, its role in the context of melanoma is poorly understood. In the present study, the anti-melanoma activity of (2-methylbutyryl) Shikonin was assessed under in vitro and in vivo models. In vitro findings revealed that (2-methylbutyryl) Shikonin significantly reduced the viability and promoted apoptosis in the B16F10 melanoma cells. Additionally (2-methylbutyryl) Shikonin significantly suppressed migration and invasion of melanoma cells by regulating IKK/NFκB/EMT signalling axis thereby attenuating nuclear translocation and subsequent transcription of NF-κB downstream target genes. Furthermore, (2-methylbutyryl) Shikonin administration significantly reduced tumor size and weight in the xenograft melanoma mice model. Our data presents novel insights that justify additional preclinical and clinical validations of (2-methylbutyryl) Shikonin for melanoma therapy.
Collapse
Affiliation(s)
- Aalim Maqsood Bhat
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Irshad Ahmad Bhat
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mushtaq Ahmad Malik
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Peerzada Kaiser
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - P Ramajayan
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sheikh R Rayees
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Zabeer Ahmed
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sheikh Abdullah Tasduq
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
14
|
Keresztes D, Kerestély M, Szarka L, Kovács BM, Schulc K, Veres DV, Csermely P. Cancer drug resistance as learning of signaling networks. Biomed Pharmacother 2025; 183:117880. [PMID: 39884030 DOI: 10.1016/j.biopha.2025.117880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Drug resistance is a major cause of tumor mortality. Signaling networks became useful tools for driving pharmacological interventions against cancer drug resistance. Signaling datasets now cover the entire human cell. Recently, network adaptation became understood as a learning process. We review rapidly increasing evidence showing that the development of cancer drug resistance can be described as learning of signaling networks. During drug adaptation, the network forgets drug-affected pathways by desensitization and relearns by strengthening alternative pathways. Thus, resistant cancer cells develop a drug resistance memory. We show that all key players of cellular learning (i.e., IDPs, protein translocation, microRNAs/lncRNAs, scaffolding proteins and epigenetic/chromatin memory) have important roles in the development of cancer drug resistance. Moreover, all of them are central components of the epithelial-mesenchymal transition leading to metastases and resistance. Phenotypic plasticity was recently listed as a hallmark of cancer. We review how network plasticity induces rare, pre-existent drug-resistant cells in the absence of drug treatment. Key network methods assessing the development of drug resistance and network pharmacological interventions against drug resistance are summarized. Finally, we highlight the class of cellular memory drugs affecting cellular learning and forgetting, and we summarize current challenges to prevent or break drug resistance using network models.
Collapse
Affiliation(s)
- Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Levente Szarka
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
15
|
Wnuk M, Del Sol-Fernández S, Błoniarz D, Słaby J, Szmatoła T, Żebrowski M, Martínez-Vicente P, Litwinienko G, Moros M, Lewińska A. Design of a Magnetic Nanoplatform Based on CD26 Targeting and HSP90 Inhibition for Apoptosis and Ferroptosis-Mediated Elimination of Senescent Cells. ACS Biomater Sci Eng 2025; 11:280-297. [PMID: 39631769 PMCID: PMC11733919 DOI: 10.1021/acsbiomaterials.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The accumulation of senescent cells, a hallmark of aging and age-related diseases, is also considered as a side effect of anticancer therapies, promoting drug resistance and leading to treatment failure. The use of senolytics, selective inducers of cell death in senescent cells, is a promising pharmacological antiaging and anticancer approach. However, more studies are needed to overcome the limitations of first-generation senolytics by the design of targeted senolytics and nanosenolytics and the validation of their usefulness in biological systems. In the present study, we have designed a nanoplatform composed of iron oxide nanoparticles functionalized with an antibody against a cell surface marker of senescent cells (CD26), and loaded with the senolytic drug HSP90 inhibitor 17-DMAG (MNP@CD26@17D). We have documented its action against oxidative stress-induced senescent human fibroblasts, WI-38 and BJ cells, and anticancer drug-induced senescent cutaneous squamous cell carcinoma A431 cells, demonstrating for the first time that CD26 is a valid marker of senescence in cancer cells. A dual response to MNP@CD26@17D stimulation in senescent cells was revealed, namely, apoptosis-based early response (2 h treatment) and ferroptosis-based late response (24 h treatment). MNP@CD26@17D-mediated ferroptosis might be executed by ferritinophagy as judged by elevated levels of the ferritinophagy marker NCOA4 and a decreased pool of ferritin. As 24 h treatment with MNP@CD26@17D did not induce hemolysis in human erythrocytes in vitro, this newly designed nanoplatform could be considered as an optimal multifunctional tool to target and eliminate senescent cells of skin origin, overcoming their apoptosis resistance.
Collapse
Affiliation(s)
- Maciej Wnuk
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Susel Del Sol-Fernández
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Dominika Błoniarz
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Julia Słaby
- Doctoral
School, University of Rzeszow, Rejtana 16C, Rzeszow 35-959, Poland
| | - Tomasz Szmatoła
- Center of
Experimental and Innovative Medicine, University
of Agriculture in Krakow, al. Mickiewicza 24/28, Cracow 30-059, Poland
| | - Michał Żebrowski
- Faculty of
Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Pablo Martínez-Vicente
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | | | - María Moros
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro de
Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Anna Lewińska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| |
Collapse
|
16
|
Matos P, Jordan P. Alternative Splicing at the Crossroad of Inflammatory Bowel Diseases and Colitis-Associated Colon Cancer. Cancers (Basel) 2025; 17:219. [PMID: 39858001 PMCID: PMC11764256 DOI: 10.3390/cancers17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The risk of developing colorectal cancer (CRC) is increased in ulcerative colitis patients compared to the general population. This increased risk results from the state of chronic inflammation, a well-known tumour-promoting condition. This review explores the pathologic and molecular characteristics of colitis-associated colon cancer (CAC), emphasizing the distinct features from sporadic CRC. We focus on the key signalling pathways involved in the transition to CAC, highlighting the emerging role of alternative splicing in these processes, namely on how inflammation-induced alternative splicing can significantly contribute to the increased CRC risk observed among UC patients. This review calls for more transcriptomic studies to elucidate the molecular mechanisms through which inflammation-induced alternative splicing drives CAC pathogenesis. A better understanding of these splicing events is crucial as they may reveal novel biomarkers for disease progression and have the potential to target changes in alternative splicing as a therapeutic strategy.
Collapse
Affiliation(s)
- Paulo Matos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
17
|
Wen Z, Song ZZ, Cai MZ, Zhang NY, Li HZ, Yang Y, Wang QT, Ghafoor MH, An HW, Wang H. Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70005. [PMID: 39895019 DOI: 10.1002/wnan.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 02/04/2025]
Abstract
Cancer remains the leading cause of patient death worldwide and its incidence continues to rise. Immunotherapy is rapidly developing due to its significant differences in the mechanism of action from conventional radiotherapy and targeted antitumor drugs. In the past decades, many biomaterials have been designed and prepared to construct therapeutic platforms that modulate the immune system against cancer. Immunotherapeutic platforms utilizing biomaterials can markedly enhance therapeutic efficacy by optimizing the delivery of therapeutic agents, minimizing drug loss during circulation, and amplifying immunomodulatory effects. The intricate physiological barriers of tumors, coupled with adverse immune environments such as inadequate infiltration, off-target effects, and immunosuppression, have emerged as significant obstacles impeding the effectiveness of oncology drug therapy. However, most of the current studies are devoted to the development of complex immunomodulators that exert immunomodulatory functions by loading drugs or adjuvants, ignoring the complex physiological barriers and adverse immune environments of tumors. Compared with conventional biomaterials, biomimetic nanomaterials based on peptide in situ self-assembly with excellent functional characteristics of biocompatibility, biodegradability, and bioactivity have emerged as a novel and effective tool for cancer immunotherapy. This article presents a comprehensive review of the latest research findings on biomimetic nanomaterials based on peptide in situ self-assembly in tumor immunotherapy. Initially, we categorize the structural types of biomimetic peptide nanomaterials and elucidate their intrinsic driving forces. Subsequently, we delve into the in situ self-assembly strategies of these peptide biomimetic nanomaterials, highlighting their advantages in immunotherapy. Furthermore, we detail the applications of these biomimetic nanomaterials in antigen presentation and modulation of the immune microenvironment. In conclusion, we encapsulate the challenges and prospective developments of biomimetic nanomaterials based on peptide in situ self-assembly for clinical translation in immunotherapy.
Collapse
Affiliation(s)
- Zhuan Wen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Zhang-Zhi Song
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Ming-Ze Cai
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Ze Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Yang Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Qian-Ting Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Muhammad Hamza Ghafoor
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Xiao S, Yu T, Yang F, Yuan H, Ni J. LMAN2 interacts with HEATR3 to expedite HER2-positive breast cancer advancement and inflammation and Akt/ERK/NF-κB signaling. Biochem Cell Biol 2025; 103:1-11. [PMID: 39772898 DOI: 10.1139/bcb-2024-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The paper aimed to reveal the impacts and the possible mechanism of action of lectin mannose-binding 2 protein (LMAN2) in HER2-positive breast cancer (BC). The expression, prognostic potential of LMAN2, and the correlation between LMAN2 and HEAT repeat containing 3 (HEATR3) in BC were analyzed in TCGA database. Intact, Mentha, and BioGrid databases predicted LMAN2-HEATR3 interactions. Reverse transcription-quantitative PCR and Western blot examined LMAN2 expression. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays, respectively, detected the aggressive cellular biological behaviors including proliferation, migration, and invasion. Western blot analyzed the expression of matrix metalloproteinases, HEATR3, and protein kinase B (Akt)/extracellular signal-regulated kinase (ERK)/nuclear factor-kappaB (NF-κB) signaling-related proteins. Co-immunoprecipitation assay was used to prove the relationship of LMAN2 with HEATR3. Enzyme-linked immunosorbent assay detected inflammatory cytokine levels. LMAN2 was overexpressed in HER2-positive BC tissues and cells and indicated unfavorable prognosis of BC patients. LMAN2 knockdown suppressed HER2-positive BC cell proliferation, migration, and invasion. LMAN2 interacted with and had a positive correlation with HEATR3. HEATR3 up-regulation reversed the repressive role of LMAN2 interference in the progression of HER2-positive BC, Akt/ERK/NF-κB signaling, and inflammatory response. Altogether, LMAN2 silencing might exert anti-tumor and anti-inflammatory properties and inactivate Akt/ERK/NF-κB signaling in HER2-positive BC via binding to HEATR3.
Collapse
Affiliation(s)
- Sujian Xiao
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Tong Yu
- Blood Transfusion Department, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Fulan Yang
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Huozhong Yuan
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Jun Ni
- Department of Breast Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
19
|
Kannan G, Paul BM, Thangaraj P. Stimulation, regulation, and inflammaging interventions of natural compounds on nuclear factor kappa B (NF-kB) pathway: a comprehensive review. Inflammopharmacology 2025; 33:145-162. [PMID: 39776026 DOI: 10.1007/s10787-024-01635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Nuclear factor kappa B (NF-kB) is a kind of transcription factor which resides in cytoplasm of each cell and on activation, it translocates to the nucleus. It is activated by a many inducible agents including endotoxins, inflammatory stimuli, carcinogens, pathogens, nicotine, and tumour promoters, etc. NF-kB is activated by canonical and non-canonical signalling pathways which has different signalling compounds and its biological functions. It controls the expression of 400 different genes including various enzymes, cytokines, viral proteins, regulatory molecules involved in the cell cycle etc. This pathway is linked with various ailments including respiratory diseases, inflammatory diseases, auto immune diseases, cancer and diabetes. NF-kB factor and signalling pathway are the mainstream of the innate and adaptive immune responses. Human subjects have been able to curb inflammation through inflammaging with the help of the phytomolecules interacting with the NF-κB pathway by adjusting the inflammation processes and alleviating aging stresses in cells. They successfully inhibit the activation of NF-κB, thereby curtailing chronic low-grade inflammation underlying both ageing and age-related disease processes. These phytocompounds discussed herewith not only down-regulate NF-κB-dependent pro-inflammatory pathways but also help build resilience at cellular levels, therefore, offering enhanced healthspan with late commencement of inflammaging pathogenesis. This review describes what stimulation and regulation of the Nuclear Factor kappa B (NF-kB) Pathway and its roles in the pathogenesis of human age related diseases. We also review the recent progress in attenuating the molecular mechanisms of the NF-kB Pathway by phytochemicals, which may open up novel therapeutic avenues.
Collapse
Affiliation(s)
- Gowtham Kannan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
20
|
Dyachenko EI, Bel’skaya LV. Transmembrane Amino Acid Transporters in Shaping the Metabolic Profile of Breast Cancer Cell Lines: The Focus on Molecular Biological Subtype. Curr Issues Mol Biol 2024; 47:4. [PMID: 39852119 PMCID: PMC11763447 DOI: 10.3390/cimb47010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Amino acid metabolism in breast cancer cells is unique for each molecular biological subtype of breast cancer. In this review, the features of breast cancer cell metabolism are considered in terms of changes in the amino acid composition due to the activity of transmembrane amino acid transporters. In addition to the main signaling pathway PI3K/Akt/mTOR, the activity of the oncogene c-Myc, HIF, p53, GATA2, NF-kB and MAT2A have a direct effect on the amino acid metabolism of cancer cells, their growth and proliferation, as well as the maintenance of homeostatic equilibrium. A distinctive feature of luminal subtypes of breast cancer from TNBC is the ability to perform gluconeogenesis. Breast cancers with a positive expression of the HER2 receptor, in contrast to TNBC and luminal A subtype, have a distinctive active synthesis and consumption of fatty acids. It is interesting to note that amino acid transporters exhibit their activity depending on the pH level inside the cell. In the most aggressive forms of breast cancer or with the gradual progression of the disease, pH will also change, which will directly affect the metabolism of amino acids. Using the cell lines presented in this review, we can trace the characteristic features inherent in each of the molecular biological subtypes of breast cancer and develop the most optimal therapeutic targets.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
21
|
Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between inflammation and male fertility. FEBS J 2024. [PMID: 39702986 DOI: 10.1111/febs.17366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility. Inflammation is one of the factors that contribute to male infertility. In the testes, it can be brought on by varicocele, obesity, gonadal infections, leukocytospermia, physical obstructions or traumas, and consumption of toxic substances. As a result of prolonged or untreated inflammation, the testicular resident cells that sustain spermatogenesis can suffer DNA damage, lipid and protein oxidation, and mitochondrial dysfunction consequently leading to loss of function in affected Sertoli cells (SCs) and Leydig cells (LCs), and the formation of morphologically abnormal dysfunctional sperm cells that lay in the basis of male infertility and subfertility. This is due mainly to the production and secretion of pro-inflammatory mediators, including cytokines, chemokines, and reactive oxygen species (ROS) by local immune cells (macrophages, lymphocytes T, mast cells) and tissue-specific cells [SCs, LCs, peritubular myoid cells (PMCs) and germ cells (GCs)]. Depending on the location, duration, and intensity of inflammation, these mediators can exert their toxic effect on different elements of the testes. In this review, we discuss the most prevalent inflammatory factors that negatively affect male fertility and describe the different ways inflammation can impair male reproductive function.
Collapse
Affiliation(s)
- Oleksandra Fomichova
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Portugal
| | - Raquel L Bernardino
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Portugal
| |
Collapse
|
22
|
Ghiasi M. Investigating the NF-κB signaling pathway in heart failure: Exploring potential therapeutic approaches. Heliyon 2024; 10:e40812. [PMID: 39717608 PMCID: PMC11664283 DOI: 10.1016/j.heliyon.2024.e40812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Heart failure (HF) syndrome is of great interest as an emerging epidemic. Due to the increasing elderly population worldwide, the total number of HF patients is increasing every day. This disease places a significant economic burden on the healthcare and treatment systems of developing societies, and this situation is very concerning. Despite many advances in the diagnosis and treatment of cardiovascular diseases, HF is still the main cause of death worldwide. This clinical syndrome has many cellular and molecular complications, which are often aggravated by increased levels of pro-inflammatory cytokines, which lead to adverse clinical outcomes. Nuclear factor kappa B (NF-κB), a pivotal family of transcription factors, plays a crucial role in various biological processes, particularly in inflammation, immune response, cell proliferation, and cell survival. Studies show that the NF-κB signaling pathway plays a role in modulating cardiac regeneration, apoptosis, and myocardial fibrosis. It has been found that the NF-κB signaling pathway can affect heart function and HF through the regulation of matrix metalloproteinases and fibrotic mediators. Also, the NF-κB pathway regulates cell activities in cardiac cardiomyocytes and regulates the function of this organ by establishing a precise interaction between apoptosis and pyroptosis. However, the exact molecular mechanisms of this influence have not been well defined and there are many scientific gaps in this matter. This review tries to highlights potential therapeutic strategies to target NF-κB, including the use of anti-inflammatory agents and genetic modulation, which may provide new ways to reduce cardiac fibrosis and improve outcomes in HF patients. Certainly, increasing understanding of the multifaceted role of NF-κB in HF can lead to innovative treatments aimed at reducing the growing number of patients worldwide.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Tong L, Zha ML, Hu J, Li HY, Kuai L, Li B, Dang Y, Zhao Q, Liao R, Lin GQ, He QL. Adenanthin exhibits anti-inflammatory effects by covalently targeting the p65 subunit in the NF-κB signaling pathway. Eur J Med Chem 2024; 280:116946. [PMID: 39383653 DOI: 10.1016/j.ejmech.2024.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Adenanthin is a structurally unique ent-kaurane diterpenoid isolated from Rabdosia adenantha, a traditional Chinese medicinal plant with potent anti-cancer and anti-inflammatory activities. However, its anti-inflammatory molecular mechanism remains largely elusive to date. Here, we developed an affinity-based label-free protein profiling (ALFPP) to identify potential covalent targets of electrophilic natural products with ketone or aldehyde groups. Using ALFPP, we identified 27 potential covalent targets of adenanthin, among which p65 (RelA) has been associated with its anti-inflammatory activities. Through a series of experiments, including LC-MS/MS, molecular docking, electrophoretic mobility shift assays (EMSA), and genome editing, we demonstrated that adenanthin could covalently modify the Cys38 residue of p65 to affect the binding of DNA to p65, thereby inhibiting the NF-κB signaling pathway. ALFPP will facilitate the target identification of electrophilic carbonylated natural products, especially those containing α, β-unsaturated keto groups. Furthermore, the elucidation of the molecular mechanism of adenanthin will contribute to new drug development of adenanthin to treat inflammations and cancers, enhancing the possibility for its clinical application.
Collapse
Affiliation(s)
- Lu Tong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Meng-Li Zha
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Hai-Yang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
24
|
Devaraja K, Singh M, Sharan K, Aggarwal S. Coley's Toxin to First Approved Therapeutic Vaccine-A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment. Biomedicines 2024; 12:2746. [PMID: 39767654 PMCID: PMC11726767 DOI: 10.3390/biomedicines12122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer immunobiology is one of the hot topics of discussion amongst researchers today, and immunotherapeutic modalities are among the selected few emerging approaches to cancer treatment that have exhibited a promising outlook. However, immunotherapy is not a new kid on the block; it has been around for centuries. The origin of cancer immunotherapy in modern medicine can be traced back to the initial reports of spontaneous regression of malignant tumors in some patients following an acute febrile infection, at the turn of the twentieth century. This review briefly revisits the historical accounts of immunotherapy, highlighting some of the significant developments in the field of cancer immunobiology, that have been instrumental in bringing back the immunotherapeutic approaches to the forefront of cancer research. Some of the topics covered are: Coley's toxin-the first immunotherapeutic; the genesis of the theory of immune surveillance; the discovery of T lymphocytes and dendritic cells and their roles; the role of tumor antigens; relevance of tumor microenvironment; the anti-tumor (therapeutic) ability of Bacillus Calmette- Guérin; Melacine-the first therapeutic vaccine engineered; theories of immunoediting and immunophenotyping of cancer; and Provenge-the first FDA-approved therapeutic vaccine. In this review, head and neck cancer has been taken as the reference tumor for narrating the progression of cancer immunobiology, particularly for highlighting the advent of immunotherapeutic agents.
Collapse
Affiliation(s)
- K. Devaraja
- Department of Head and Neck Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Manisha Singh
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Krishna Sharan
- Department of Radiation Oncology, K S Hegde Medical College, Nitte University, Mangalore 574110, India;
| | - Sadhna Aggarwal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Sorriento D. Oxidative Stress and Inflammation in Cancer. Antioxidants (Basel) 2024; 13:1403. [PMID: 39594545 PMCID: PMC11591256 DOI: 10.3390/antiox13111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Reactive oxygen species (ROS) are important signaling molecules, physiologically synthesized by oxygen metabolism [...].
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Napoli, Italy
| |
Collapse
|
26
|
Bi Y, Xie Z, Cao X, Ni H, Xia S, Bao X, Huang Q, Xu Y, Zhang Q. Cedrol attenuates acute ischemic injury through inhibition of microglia-associated neuroinflammation via ERβ-NF-κB signaling pathways. Brain Res Bull 2024; 218:111102. [PMID: 39414157 DOI: 10.1016/j.brainresbull.2024.111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Microglia-associated neuroinflammation plays essential roles in pathology of acute stroke. Cedrol, a natural compound extracted from ginger, has been shown to confer inhibitory effects on inflammation in various diseases. However, whether Cedrol suppresses neuroinflammation and protects brains from acute ischemic injury still remains unclear. In this study, we found that Cedrol inhibited microglia activation and the production of inflammatory factors in LPS-challenged microglia and the penumbra region of middle cerebral artery occlusion (MCAO) mice. We also found that Cedrol reduced the infarct size and mNSS scores and improved acute cerebral ischemia-induced behavioral outcomes, suggesting remarked neuroprotection of Cedrol. Molecular docking analysis showed that Cedrol bound to estrogen receptor β (ERβ) with moderate-strong affinity. Intriguingly, treatment with fulvestrant, an ER blocker, abolished the anti-inflammatory effects of Cedrol. Cedrol significantly reversed the LPS- and MCAO-induced increases in phosphorylation levels of IκB and NF-κB P65 in primary microglia and MCAO mice, respectively. Additionally, Cedrol was observed to rescue LPS-induced shuttling of NF-κB P65 from cytoplasm to nuclei in primary microglia, indicating inhibitory effects of Cedrol on NF-κB signaling. These results suggest microglia associated neuroinflammation may be mediated by ERβ-NF-κB signaling pathway. Together, our study reveals that Cedrol protected brain function from acute cerebral ischemia through inhibition of microglia-associated neuroinflammation via ERβ-NF-κB signaling pathways, and Cedrol may serve as an alternative option for treatment of acute stroke injury.
Collapse
Affiliation(s)
- Yu Bi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ziyi Xie
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Huanyu Ni
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qinyue Huang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
28
|
Mitea G, Schröder V, Iancu IM, Mireșan H, Iancu V, Bucur LA, Badea FC. Molecular Targets of Plant-Derived Bioactive Compounds in Oral Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3612. [PMID: 39518052 PMCID: PMC11545343 DOI: 10.3390/cancers16213612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND With a significant increase in both incidence and mortality, oral cancer-particularly oral squamous cell carcinoma (OSCC)-is one of the main causes of death in developing countries. Even though there is evidence of advances in surgery, chemotherapy, and radiotherapy, the overall survival rate for patients with OSCC has improved, but by a small percentage. This may be due, on the one hand, to the fact that the disease is diagnosed when it is at a too-advanced stage, when metastases are already present. METHODS This review explores the therapeutic potential of natural herbal products and their use as adjuvant therapies in the treatment of oral cancer from online sources in databases (PubMed, Web of Science, Google Scholar, Research Gate, Scopus, Elsevier). RESULTS Even if classic therapies are known to be effective, they often produce many serious side effects and can create resistance. Certain natural plant compounds may offer a complementary approach by inducing apoptosis, suppressing tumor growth, and improving chemotherapy effectiveness. The integration of these compounds with conventional treatments to obtain remarkable synergistic effects represents a major point of interest to many authors. This review highlights the study of molecular mechanisms and their efficiency in in vitro and in vivo models, as well as the strategic ways in which drugs can be administered to optimize their use in real contexts. CONCLUSIONS This review may have a significant impact on the oncology community, creating new inspirations for the development of more effective, safer cancer therapies with less toxic potential.
Collapse
Affiliation(s)
- Gabriela Mitea
- Department of Pharmacology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Irina Mihaela Iancu
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Horațiu Mireșan
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Valeriu Iancu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Laura Adriana Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Florin Ciprian Badea
- Department of Dental Medicine, Faculty of Dental Medicine, Ovidius University of Constanta, 900684 Constanta, Romania;
| |
Collapse
|
29
|
Ameer SF, Mohamed MY, Elzubair QA, Sharif EAM, Ibrahim WN. Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment? Front Oncol 2024; 14:1438040. [PMID: 39507759 PMCID: PMC11537944 DOI: 10.3389/fonc.2024.1438040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Despite advances in medical treatments, current therapeutic strategies, including radiotherapy, chemotherapy, targeted therapy, and surgical resection, have not significantly reduced the global incidence and mortality rates of cancer. Oncologists face considerable challenges in devising effective treatment plans due to the adverse side effects associated with standard therapies. Therefore, there is an urgent need for more effective and well-tolerated cancer treatments. Curcumin, a naturally occurring compound, has garnered significant attention for its diverse biological properties. Both preclinical studies and clinical trials have highlighted curcumin's potential in cancer treatment, demonstrating its ability to inhibit the proliferation of various cancer cell types through multiple cellular and molecular pathways. This paper examines the antineoplastic properties, and the therapeutic mechanisms including cell signalling pathways targeted by curcumin that are implicated in cancer development and explores the challenges in advancing curcumin as a viable anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
30
|
Yu Y, Zhang C, Dong B, Zhang Z, Li X, Huang S, Tang D, Jing X, Yu S, Zheng T, Wu D, Tai S. Neutrophil extracellular traps promote immune escape in hepatocellular carcinoma by up-regulating CD73 through Notch2. Cancer Lett 2024; 598:217098. [PMID: 38969159 DOI: 10.1016/j.canlet.2024.217098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Immune escape is the main reason that immunotherapy is ineffective in hepatocellular carcinoma (HCC). Here, this study illustrates a pathway mediated by neutrophil extracellular traps (NETs) that can promote immune escape of HCC. Mechanistically, we demonstrated that NETs up-regulated CD73 expression through activating Notch2 mediated nuclear factor kappa B (NF-κB) pathway, promoting regulatory T cells (Tregs) infiltration to mediate immune escape of HCC. In addition, we found the similar results in mouse HCC models by hydrodynamic plasmid transfection. The treatment of deoxyribonuclease I (DNase I) could inhibit the action of NETs and improve the therapeutic effect of anti-programmed cell death protein 1 (PD-1). In summary, our results revealed that targeting of NETs was a promising treatment to improve the therapeutic effect of anti-PD-1.
Collapse
Affiliation(s)
- Yang Yu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Congyi Zhang
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Bowen Dong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Daowei Tang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaowei Jing
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Tongsen Zheng
- Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| |
Collapse
|
31
|
Li Z, Liu J, Cui H, Qi W, Tong Y, Wang T. Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer. Cancer Manag Res 2024; 16:909-919. [PMID: 39081698 PMCID: PMC11287463 DOI: 10.2147/cmar.s466633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024] Open
Abstract
The rising global morbidity and mortality rates of non-small cell lung cancer (NSCLC) underscore the urgent need for more effective treatments. Current therapeutic modalities-including surgery, radiotherapy, chemotherapy, and targeted therapy-face several limitations. Recently, Astragalus membranaceus, a traditional Chinese medicine (TCM), has captured significant attention due to its broad pharmacological properties, such as immune regulation, anti-inflammatory effects, and the modulation of reactive oxygen species (ROS) and enzyme activities. This review delivers a comprehensive summary of the most recent advancements and ongoing applications of Astragalus membranaceus in NSCLC treatment, underlining its potential for integration into existing treatment protocols. It also highlights essential areas for future research, including the elucidation of its molecular mechanisms, optimization of dosage and administration, and evaluation of its efficacy and safety alongside standard therapies, all of which could potentially improve therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Zhenyu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Jimin Liu
- Department of Respiratory, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Haishan Cui
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Wenlong Qi
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Yangyang Tong
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| |
Collapse
|
32
|
Wei H, Li W, Zeng L, Ding N, Li K, Yu H, Jiang F, Yin H, Xia Y, Deng C, Cai N, Chen X, Gu L, Chen H, Zhang F, He Y, Li J, Zhang C. OLFM4 promotes the progression of intestinal metaplasia through activation of the MYH9/GSK3β/β-catenin pathway. Mol Cancer 2024; 23:124. [PMID: 38849840 PMCID: PMC11157765 DOI: 10.1186/s12943-024-02016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Intestinal metaplasia (IM) is classified into complete intestinal metaplasia (CIM) and incomplete intestinal metaplasia (IIM). Patients diagnosed with IIM face an elevated susceptibility to the development of gastric cancer, underscoring the critical need for early screening measures. In addition to the complexities associated with diagnosis, the exact mechanisms driving the progression of gastric cancer in IIM patients remain poorly understood. OLFM4 is overexpressed in several types of tumors, including colorectal, gastric, pancreatic, and ovarian cancers, and its expression has been associated with tumor progression. METHODS In this study, we used pathological sections from two clinical centers, biopsies of IM tissues, precancerous lesions of gastric cancer (PLGC) cell models, animal models, and organoids to explore the role of OLFM4 in IIM. RESULTS Our results show that OLFM4 expression is highly increased in IIM, with superior diagnostic accuracy of IIM when compared to CDX2 and MUC2. OLFM4, along with MYH9, was overexpressed in IM organoids and PLGC animal models. Furthermore, OLFM4, in combination with Myosin heavy chain 9 (MYH9), accelerated the ubiquitination of GSK3β and resulted in increased β-catenin levels through the Wnt signaling pathway, promoting the proliferation and invasion abilities of PLGC cells. CONCLUSIONS OLFM4 represents a novel biomarker for IIM and could be utilized as an important auxiliary means to delimit the key population for early gastric cancer screening. Finally, our study identifies cell signaling pathways involved in the progression of IM.
Collapse
Affiliation(s)
- Hongfa Wei
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenchao Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- The Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Leli Zeng
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
| | - Ni Ding
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
- The Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kuan Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Yu
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fei Jiang
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haofan Yin
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Laboratory Medicine, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yu Xia
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China
| | - Cuncan Deng
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Nan Cai
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiancong Chen
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Liang Gu
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Huanjie Chen
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China
| | - Feiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong, 515041, P.R. China.
| | - Yulong He
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Jia Li
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Scientific Research Center, The Biobank, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, P.R. China.
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
33
|
Li X, Pan YF, Chen YB, Wan QQ, Lin YK, Shang TY, Xu MY, Jiang TY, Pei MM, Tan YX, Dong LW, Wan XY. Arsenic trioxide augments immunogenic cell death and induces cGAS-STING-IFN pathway activation in hepatocellular carcinoma. Cell Death Dis 2024; 15:300. [PMID: 38684648 PMCID: PMC11058202 DOI: 10.1038/s41419-024-06685-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The treatment of hepatocellular carcinoma (HCC) is particularly challenging due to the inherent tumoral heterogeneity and easy resistance towards chemotherapy and immunotherapy. Arsenic trioxide (ATO) has emerged as a cytotoxic agent effective for treating solid tumors, including advanced HCC. However, its effectiveness in HCC treatment remains limited, and the underlying mechanisms are still uncertain. Therefore, this study aimed to characterize the effects and mechanisms of ATO in HCC. By evaluating the susceptibilities of human and murine HCC cell lines to ATO treatment, we discovered that HCC cells exhibited a range of sensitivity to ATO treatment, highlighting their inherent heterogeneity. A gene signature comprising 265 genes was identified to distinguish ATO-sensitive from ATO-insensitive cells. According to this signature, HCC patients have also been classified and exhibited differential features of ATO response. Our results showed that ATO treatment induced reactive oxygen species (ROS) accumulation and the activation of multiple cell death modalities, including necroptosis and ferroptosis, in ATO-sensitive HCC cells. Meanwhile, elevated tumoral immunogenicity was also observed in ATO-sensitive HCC cells. Similar effects were not observed in ATO-insensitive cells. We reported that ATO treatment induced mitochondrial injury and mtDNA release into the cytoplasm in ATO-sensitive HCC tumors. This subsequently activated the cGAS-STING-IFN axis, facilitating CD8+ T cell infiltration and activation. However, we found that the IFN pathway also induced tumoral PD-L1 expression, potentially antagonizing ATO-mediated immune attack. Additional anti-PD1 therapy promoted the anti-tumor response of ATO in ATO-sensitive HCC tumors. In summary, our data indicate that heterogeneous ATO responses exist in HCC tumors, and ATO treatment significantly induces immunogenic cell death (ICD) and activates the tumor-derived mtDNA-STING-IFN axis. These findings may offer a new perspective on the clinical treatment of HCC and warrant further study.
Collapse
Affiliation(s)
- Xin Li
- Department of Integrated Chinese and Western Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yu-Fei Pan
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Yi-Bin Chen
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Qian-Qian Wan
- Department of Integrated Chinese and Western Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yun-Kai Lin
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Tai-Yu Shang
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Meng-You Xu
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- Peking University Cancer Hospital, Beijing, China
| | - Tian-Yi Jiang
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Meng-Miao Pei
- Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ye-Xiong Tan
- National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Li-Wei Dong
- National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Xu-Ying Wan
- Department of Integrated Chinese and Western Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
34
|
Damiescu R, Yücer R, Klauck SM, Bringmann G, Efferth T, Dawood M. Jozimine A 2, a Dimeric Naphthylisoquinoline (NIQ) Alkaloid, Shows In Vitro Cytotoxic Effects against Leukemia Cells through NF-κB Inhibition. Int J Mol Sci 2024; 25:3087. [PMID: 38542061 PMCID: PMC10970593 DOI: 10.3390/ijms25063087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Naphthylisoquinoline (NIQ) alkaloids are rising as a promising class of secondary metabolites with pharmaceutical potential. NF-κB has already been recognized as a significant modulator of cancer proliferation and drug resistance. We have previously reported the mechanisms behind the cytotoxic effect of dioncophylline A, an NIQ monomer, in leukemia cells. In the current study, we have investigated the cytotoxic effect of jozimine A2, an NIQ dimer, on leukemia cells in comparison to a second, structurally unsymmetric dimer, michellamine B. To this end, molecular docking was applied to predict the binding affinity of the dimers towards NF-κB, which was then validated through microscale thermophoresis. Next, cytotoxicity assays were performed on CCRF-CEM cells and multidrug-resistant CEM/ADR5000 cells following treatment. Transcriptome analysis uncovered the molecular networks affected by jozimine A2 and identified the cell cycle as one of the major affected processes. Cell death modes were evaluated through flow cytometry, while angiogenesis was measured with the endothelial cell tube formation assay on human umbilical vein endothelial cells (HUVECs). The results indicated that jozimine A2 bound to NF-κB, inhibited its activity and prevented its translocation to the nucleus. In addition, jozimine A2 induced cell death through apoptosis and prevented angiogenesis. Our study describes the cytotoxic effect of jozimine A2 on leukemia cells and explains the interactions with the NF-κB signaling pathway and the anticancer activity.
Collapse
Affiliation(s)
- Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany (R.Y.); (T.E.)
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany (R.Y.); (T.E.)
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and University Hospital, 69120 Heidelberg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany (R.Y.); (T.E.)
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany (R.Y.); (T.E.)
| |
Collapse
|