1
|
Frazer L, Chu T, Shaw P, Boufford C, Naief LT, Ednie M, Ritzert L, Green CP, Good M, Peters D. Detection of an intestinal cell DNA methylation signature in blood samples from neonates with necrotizing enterocolitis. Epigenomics 2025; 17:235-245. [PMID: 39894787 PMCID: PMC11853613 DOI: 10.1080/17501911.2025.2459552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is an often fatal intestinal injury that primarily affects preterm infants for which screening tools are lacking. We performed a pilot analysis of DNA methylation in peripheral blood samples from preterm infants with and without NEC to identify potential NEC biomarkers. METHODS Peripheral blood samples were collected from infants at NEC diagnosis (n = 15) or from preterm controls (n = 13). Targeted genome-wide analysis was performed to identify DNA methylation differences between cases and controls. RESULTS Broad differences between NEC cases and controls were identified in distinct genomic elements. Differences between surgical NEC cases and controls were frequently associated with inflammation. Deconvolution analysis to identify cell type-specific DNA signatures revealed increases in ileal, vascular endothelial, and cardiomyocyte cell type proportions and decreases in colonic and neuronal cell type proportions in blood from NEC cases relative to controls. CONCLUSIONS We identified marked differences in DNA methylation of peripheral blood samples from preterm infants with and without NEC. Increased ileal cell-specific methylation signatures in the blood of infants with NEC relative to controls, with a marked increase seen in surgical cases, provides rationale for further analysis of intestinal DNA methylation signatures as biomarkers of NEC.
Collapse
Affiliation(s)
- Lauren Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianjiao Chu
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia Shaw
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camille Boufford
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lucas Tavares Naief
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michaela Ednie
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laken Ritzert
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin P. Green
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Peters
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Shumate KA, Williams SN, Khatri AB, Knight V. Addition of CD14 improves discrimination of lymphocytes in the TBNK phenotyping panel. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:347-358. [PMID: 38757910 DOI: 10.1002/cyto.b.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Peripheral blood lymphocyte phenotyping panels typically include CD45 for discrimination of the lymphocyte population, and fluorophore-conjugated monoclonal antibodies to identify T, B, and Natural Killer (NK) cells. While CD45 combined with side scatter is generally sufficient to clearly distinguish lymphocytes from monocytes in the majority of peripheral blood samples, it is challenging to accurately gate lymphocytes in samples from patients with monocytosis or significant lymphopenia, or from very young infants. Addition of a monocyte marker to lymphocyte phenotyping panels for monocyte exclusion has previously been evaluated for improved discrimination of lymphocytes, albeit largely in healthy donor adult samples. Here we evaluate the effect of the addition of CD14 to a standard lymphocyte phenotyping panel on total lymphocyte, T, B, and NK cell percentages in a predominantly pediatric population of patients under evaluation chiefly for immunodeficiency, immune-depletion, or immune reconstitution. Addition of CD14 to the standard lymphocyte phenotyping improved discrimination of lymphocytes from monocytes, resulted in decreased NK cell percentages, likely because CD16+ and/or CD56+ monocytes were included in the CD56+CD16+ NK cell gate with conventional gating, and although less significant, resulted in an increased percentage of B cells, since relatively larger B cells were likely gated out by more restrictive light scatter gating used with the conventional gating approach. The change in NK and B cell percentages were more pronounced in samples from patients below a year of age, and in patients who were relatively lymphopenic. These data suggest that addition of CD14 to conventional lymphocyte phenotyping panels that utilize CD45 versus side scatter gating results in significant improvement in the accuracy of lymphocyte gating, and accurate quantification of NK and B cells particularly in samples from infants and lymphopenic individuals.
Collapse
Affiliation(s)
- Kimberly A Shumate
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Samantha N Williams
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Aashish B Khatri
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Vijaya Knight
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Boeckel H, Karsten CM, Göpel W, Herting E, Rupp J, Härtel C, Hartz A. Increased Expression of Anaphylatoxin C5a-Receptor-1 in Neutrophils and Natural Killer Cells of Preterm Infants. Int J Mol Sci 2023; 24:10321. [PMID: 37373467 DOI: 10.3390/ijms241210321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm infants are susceptible to infection and their defense against pathogens relies largely on innate immunity. The role of the complement system for the immunological vulnerability of preterm infants is less understood. Anaphylatoxin C5a and its receptors C5aR1 and -2 are known to be involved in sepsis pathogenesis, with C5aR1 mainly exerting pro-inflammatory effects. Our explorative study aimed to determine age-dependent changes in the expression of C5aR1 and C5aR2 in neonatal immune cell subsets. Via flow cytometry, we analyzed the expression pattern of C5a receptors on immune cells isolated from peripheral blood of preterm infants (n = 32) compared to those of their mothers (n = 25). Term infants and healthy adults served as controls. Preterm infants had a higher intracellular expression of C5aR1 on neutrophils than control individuals. We also found a higher expression of C5aR1 on NK cells, particularly on the cytotoxic CD56dim subset and the CD56- subset. Immune phenotyping of other leukocyte subpopulations revealed no gestational-age-related differences for the expression of and C5aR2. Elevated expression of C5aR1 on neutrophils and NK cells in preterm infants may contribute to the phenomenon of "immunoparalysis" caused by complement activation or to sustained hyper-inflammatory states. Further functional analyses are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Hannah Boeckel
- Department of Pediatrics, University of Lübeck, 23538 Lübeck, Germany
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
| | - Christian M Karsten
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- Institute for Systemic Inflammation Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Wolfgang Göpel
- Department of Pediatrics, University of Lübeck, 23538 Lübeck, Germany
| | - Egbert Herting
- Department of Pediatrics, University of Lübeck, 23538 Lübeck, Germany
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Jan Rupp
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - Christoph Härtel
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
- Interdisciplinary Center of Clinical Research, University of Würzburg, 97080 Würzburg, Germany
- Department of Pediatrics, University of Würzburg, 97080 Würzburg, Germany
| | - Annika Hartz
- Department of Pediatrics, University of Lübeck, 23538 Lübeck, Germany
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- Institute for Systemic Inflammation Medicine, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| |
Collapse
|
4
|
Mercer EM, Arrieta MC. Probiotics to improve the gut microbiome in premature infants: are we there yet? Gut Microbes 2023; 15:2201160. [PMID: 37122152 PMCID: PMC10153018 DOI: 10.1080/19490976.2023.2201160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Gut microbiome maturation in infants born prematurely is uniquely influenced by the physiological, clinical, and environmental factors surrounding preterm birth and early life, leading to altered patterns of microbial succession relative to term infants during the first months of life. These differences in microbiome composition are implicated in acute clinical conditions that disproportionately affect preterm infants, including necrotizing enterocolitis (NEC) and late-onset sepsis (LOS). Probiotic supplementation initiated early in life is an effective prophylactic measure for preventing NEC, LOS, and other clinical concerns relevant to preterm infants. In parallel, reported benefits of probiotics on the preterm gut microbiome, metabolome, and immune function are beginning to emerge. This review summarizes the current literature on the influence of probiotics on the gut microbiome of preterm infants, outlines potential mechanisms by which these effects are exerted, and highlights important clinical considerations for determining the best practices for probiotic use in premature infants.
Collapse
Affiliation(s)
- Emily M. Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Sharma R, Mukhopadhyay K, Rawat A, Suri V, Singh S. Immunoglobulin Profile and Lymphocyte Subsets in Preterm Neonates. Indian Pediatr 2022. [PMID: 34992185 PMCID: PMC8964378 DOI: 10.1007/s13312-022-2470-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective Methods Results Conclusion Electronic Supplementary Material
Collapse
|
6
|
Sampah MES, Hackam DJ. Dysregulated Mucosal Immunity and Associated Pathogeneses in Preterm Neonates. Front Immunol 2020; 11:899. [PMID: 32499778 PMCID: PMC7243348 DOI: 10.3389/fimmu.2020.00899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Many functions of the immune system are impaired in neonates, allowing vulnerability to serious bacterial, viral and fungal infections which would otherwise not be pathogenic to mature individuals. This vulnerability is exacerbated in compromised newborns such as premature neonates and those who have undergone surgery or who require care in an intensive care unit. Higher susceptibility of preterm neonates to infections is associated with delayed immune system maturation, with deficiencies present in both the innate and adaptive immune components. Here, we review recent insights into early life immunity, and highlight features associated with compromised newborns, given the challenges of studying neonatal immunity in compromised neonates due to the transient nature of this period of life, and logistical and ethical obstacles posed by undertaking studies newborns and infants. Finally, we highlight how the unique immunological characteristics of the premature host play key roles in the pathogenesis of diseases that are unique to this population, including necrotizing enterocolitis and the associated sequalae of lung and brain injury.
Collapse
Affiliation(s)
- Maame Efua S Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Vázquez Rodríguez S, Arriaga Pizano LA, Laresgoiti Servitje E, Mancilla Ramirez J, Peralta Méndez OL, Villalobos Alcazar G, Granados Cepeda ML, Hernandez Pelaez MG, Cordero Gonzalez G, Arizmendi Villanueva R, Cruz Ramírez JL, Isibasi A, Lopez Macias C, Flores Romo L, Jimenez Zamudio LA, Cérbulo-Vázquez A. Multiparameter flow cytometry analysis of leukocyte markers for diagnosis in preterm neonatal sepsis. J Matern Fetal Neonatal Med 2019; 34:2323-2333. [PMID: 31537145 DOI: 10.1080/14767058.2019.1666100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Neonatal sepsis is an important public health concern worldwide due to its immediate lethality and long-term morbidity rates, Clinical evaluation and laboratory analyses are indispensable for diagnosis of neonatal sepsis. However, assessing multiple biomarkers in neonates is difficult due to limited blood availability. The aim is to investigate if the neonatal sepsis in preterm could be identified by multiparameter analysis with flow cytometry. MATERIALS AND METHODS The expression of activation-related molecules was evaluated by flow cytometry in newborn with or without risk factors for sepsis. RESULTS Our analysis revealed that several markers could be useful for sepsis diagnosis, such as CD45RA, CD45RO, or CD71 on T cells; HLA-DR on NKT or classic monocytes, and TREM-1 on non-classic monocytes or neutrophils. However, ROC analysis shows that the expression of CD45RO on T lymphocytes is the only useful biomarker for diagnosis of neonatal late-onset sepsis. Also, decision tree analyses showed that CD45RO plus CD27 could help differentiate the preterm septic neonates from those with risk factors. CONCLUSIONS Our study shows a complementary and practical strategy for biomarker assessment in neonatal sepsis.
Collapse
Affiliation(s)
- Stephania Vázquez Rodríguez
- Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Lourdes A Arriaga Pizano
- Medical Research Unit in Immunochemistry, Specialty Hospital - National Medical Center SXXI, Mexico City, Mexico
| | | | - Javier Mancilla Ramirez
- Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico.,Women's Hospital, Ministry of Health, Mexico City, Mexico
| | | | | | | | | | | | | | | | - Armando Isibasi
- Medical Research Unit in Immunochemistry, Specialty Hospital - National Medical Center SXXI, Mexico City, Mexico
| | - Constantino Lopez Macias
- Medical Research Unit in Immunochemistry, Specialty Hospital - National Medical Center SXXI, Mexico City, Mexico
| | - Leopoldo Flores Romo
- Department of Cell Biology, CINVESTAV - National Polytechnic Institute, Mexico City, Mexico
| | - Luis A Jimenez Zamudio
- Department of Cell Biology, CINVESTAV - National Polytechnic Institute, Mexico City, Mexico
| | - Arturo Cérbulo-Vázquez
- Faculty of Medicine, Combined Studies Plan in Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
8
|
Ma M, Yin X, Zhao X, Guo C, Zhu X, Liu T, Yang M, Zhang Z, Fu Y, Liu J, Xu J, Ding H, Han X, Chu Z, Shang H, Jiang Y. CD56 - CD16 + NK cells from HIV-infected individuals negatively regulate IFN-γ production by autologous CD8 + T cells. J Leukoc Biol 2019; 106:1313-1323. [PMID: 31483071 DOI: 10.1002/jlb.3a0819-171rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
The percentage of human CD56- CD16+ NK cells increases during chronic infection with human HIV; however, the biologic role of CD56- CD16+ NK cells in HIV infection is unclear. Our results demonstrate that the percentage of CD56- CD16+ NK cells producing IL-10 and TGF-β was higher than CD56dim CD16+ NK cells. CD56- CD16+ NK cells could inhibit IFN-γ production by autologous CD8+ T cells, and this inhibition could be partially reversed by anti-IL-10, anti-TGF-β, or anti-PD-L1 mAbs. CD56- CD16+ NK cells are potential targets for the development of novel immune therapies against HIV infection.
Collapse
Affiliation(s)
- Meichen Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaowan Yin
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xue Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Chenxi Guo
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyu Zhu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tingting Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Mei Yang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jing Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
9
|
Bahar N, Satar M, Yılmaz M, Büyükkurt S, Özlü F, Yıldızdaş HY, Yaman A. The effects of umblical cord clamping time on lymphocyte subgroups in term and late preterm infants. Turk Arch Pediatr 2019; 53:214-221. [PMID: 30872923 DOI: 10.5152/turkpediatriars.2018.6900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022]
Abstract
Aim To evaluate the effect of umblical cord clamping time on lymphocyte subgroups in term and late preterm infants. Material and Methods Seventy-four infants between 34 and 41 weeks of gestation were included in the study. Of these, 37 were umbilical cord clamped immediately after birth and the remaining 37 were clamped after waiting one minute. Babies were divided into two groups as term and preterm. The prenatal, natal, postnatal characteristics of the infants were recorded. Hematologic and lymphocyte subgroups were investigated in cord blood and venous blood at day 7. Lymphocyte subgroups were evaluated using flow cytometry. Results With the delay of cord clamping, the leucocytes count and the percentage of CD3+T lymphocytes in cord blood of preterm infants decreased and this decrease continued at day 7. On the contrary, CD19+B lymphocyte levels in the cord blood of preterm infants increased, and this increase continued at day 7. Also, the percentage of CD4+T lymphocytes of preterm infants decreased with the delay of cord clamping at day 7. There was no difference between groups for the rate of sepsis development. Conclusion With the delay of cord clamping, the leucocytes count, the percentage of CD3+T, and CD4+T lymphocytes decreased, and the percentage of CD19+B lymphocytes increased in preterm infants. The delay in cord clamping time in term and preterm infants seems to have no impact on the rate of sepsis development. Larger series of studies are needed to assess the effect of these findings on the development of infection in late preterm infants who have delayed cord clamping.
Collapse
Affiliation(s)
- Nilgün Bahar
- Department of Pediatrics, Çukurova University School of Medicine, Adana, Turkey
| | - Mehmet Satar
- Department of Pediatrics, Division of Neonatology, Çukurova University School of Medicine, Adana, Turkey
| | - Mustafa Yılmaz
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Çukurova University School of Medicine, Adana, Turkey
| | - Selim Büyükkurt
- Department of Gynecology and Obstetrics, Çukurova University School of Medicine, Adana, Turkey
| | - Ferda Özlü
- Department of Pediatrics, Division of Neonatology, Çukurova University School of Medicine, Adana, Turkey
| | - Hacer Yapıcıoğlu Yıldızdaş
- Department of Pediatrics, Division of Neonatology, Çukurova University School of Medicine, Adana, Turkey
| | - Akgün Yaman
- Central Laboratory, Çukurova University, Balcalı Hospital, Adana, Turkey
| |
Collapse
|
10
|
Bazacliu C, Neu J. Pathophysiology of Necrotizing Enterocolitis: An Update. Curr Pediatr Rev 2019; 15:68-87. [PMID: 30387398 DOI: 10.2174/1573396314666181102123030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
NEC is a devastating disease that, once present, is very difficult to treat. In the absence of an etiologic treatment, preventive measures are required. Advances in decoding the pathophysiology of NEC are being made but a more comprehensive understanding is needed for the targeting of preventative strategies. A better definition of the disease as well as diagnostic criteria are needed to be able to specifically label a disease as NEC. Multiple environmental factors combined with host susceptibility appear to contribute to enhanced risks for developing this disease. Several different proximal pathways are involved, all leading to a common undesired outcome: Intestinal necrosis. The most common form of this disease appears to involve inflammatory pathways that are closely meshed with the intestinal microbiota, where a dysbiosis may result in dysregulated inflammation. The organisms present in the intestinal tract prior to the onset of NEC along with their diversity and functional capabilities are just beginning to be understood. Fulfillment of postulates that support causality for particular microorganisms is needed if bacteriotherapies are to be intelligently applied for the prevention of NEC. Identification of molecular effector pathways that propagate inflammation, understanding of, even incipient role of genetic predisposition and of miRNAs may help solve the puzzle of this disease and may bring the researchers closer to finding a treatment. Despite recent progress, multiple limitations of the current animal models, difficulties related to studies in humans, along with the lack of a "clear" definition will continue to make it a very challenging disease to decipher.
Collapse
Affiliation(s)
- Catalina Bazacliu
- Department of Pediatrics, Division of Neonatology, University of Florida, FL, United States
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, FL, United States
| |
Collapse
|
11
|
Wang Y, Lu W, Li A, Sun Z, Wang L. Elevated CD3 low double negative T lymphocyte is associated with pneumonia and its severity in pediatric patients. PeerJ 2018; 6:e6114. [PMID: 30588404 PMCID: PMC6302782 DOI: 10.7717/peerj.6114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022] Open
Abstract
Background Previous studies have shown that the adaptive immunity function of T cells in disease states correlates with CD3 surface expression closely. During routine assessment of TBNK subsets in peripheral blood of pediatric patients by flow cytometry, we noticed that variable expression levels of CD3 on CD3+CD4−CD8− double-negative T (DNT) lymphocytes in different patients. The objective of this study was to assess the relationship of CD3 expression levels on DNT cells with disease severity. Methods In this prospective study, we investigated the frequencies of circulating CD4−CD8− DNT cell subsets with CD3low or CD3high phenotype by flow cytometry in 76 pediatric patients with pneumonia, 55 patients with severe pneumonia (SP), and 29 healthy controls (Con). Results The numbers of circulating DNT cells were similar in all groups; however, the frequency of CD3low DNT cell subsets was significantly increased in patients with pneumonia (p < 0.001) and SP (p < 0.001). The elevated CD3low DNT cell frequency showed a positive correlation with the clinical severity of pneumonia. On sub-group analysis, the frequency of CD3low DNT cells was only elevated in children with pneumonia aged <5 years, while no association was observed with the causative pathogen of pneumonia. Conclusions These findings suggest that CD3 expression levels on DNT cell subsets of peripheral lymphocytes may be a valuable biomarker for evaluation of immune response in pediatric infectious disease. CD3low DNT cells were elevated in children with pneumonia aged <5 years, which indicates that it may be an important research target in pediatric infectious diseases.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Wenting Lu
- Department of Molecular Biology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Aipeng Li
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Zhengyi Sun
- Institute of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Liying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Changchun, China.,Department of Molecular Biology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| |
Collapse
|
12
|
Immunogenicity of amino acids 1-150 of Streptococcus GapC displayed on the surface of Escherichia coli. Microb Pathog 2017; 105:288-297. [PMID: 28179116 DOI: 10.1016/j.micpath.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 02/05/2023]
Abstract
Streptococcus is one of the main pathogens that cause bovine mastitis. They includes into S.agalactiae, S.dysgalactiae, and S.uberis. The GapC protein is a virulence factor that is expressed on the surface of Streptococcus species. GapC is highly antigenic and immunization with GapC confers cross-protection against all three species. Our previous data showed that amino acids 1-150 of GapC (GapC1-150) of S. dysgalactiae conferred similar immunoprotection compared to full-length GapC. Thus, the present study aimed to construct a recombinant Escherichia coli XL1-Blue strain that displayed GapC1-150 on its surface, and to investigate the immunogenicity of the surface-localized GapC1-150. To do so, the ompA gene of the E. coli XL1-Blue strain was replaced with the lpp'-ompA-gapC11-150 or lpp'-ompA genes by λ Red recombination, the former of which fused GapC1-150 to an Lpp lipoprotein signal peptide and amino acids 1-159 of OmpA; the recombinant strains were named XL1-Blue/LOG76 and XL1-Blue/LO11, respectively. GapC1-150 was confirmed to localize to the surface of the XL1-Blue/LOG76 strain by an indirect enzyme-linked immunosorbent assay (ELISA), a fluorescence-activated cell sorter analysis, and laser-scanning confocal microscopy. Then, ICR mice were immunized intramuscularly with the XL1-Blue/LOG76 or XL1-Blue/LO11 strains, or recombinant GapC1-150. The sera of the immunized mice were collected and the anti-GapC1-150 antibody levels were detected by ELISA. Lymphocytes secreting interleukin (IL)-4 and interferon-γ were detected by an enzyme-linked ImmunoSpot assay, as was the level of IL-17A level in the supernatant of cultured splenic lymphocytes. The mice immunized with the XL1-Blue/LOG76 strain or GapC1-150 exhibited better cellular and humoral immunity. Lastly, the immunized mice were challenged with S. uberis, S. dysgalactiae, and S. agalactiae strains, and mice that were immunized with the XL1-Blue/LOG76 strain were better protected than those that were immunized with the XL1-Blue/LO11 strain. These results indicate that it is feasible to display GapC1-150 on the E. coli surface as a vaccine against Streptococcus species.
Collapse
|
13
|
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease in premature infants with high case fatality and significant morbidity among survivors. Immaturity of intestinal host defenses predisposes the premature infant gut to injury. An abnormal bacterial colonization pattern with a deficiency of commensal bacteria may lead to a further breakdown of these host defense mechanisms, predisposing the infant to NEC. Here, we review the role of the innate and adaptive immune system in the pathophysiology of NEC.
Collapse
MESH Headings
- Adaptive Immunity
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/physiopathology
- Evidence-Based Medicine
- Humans
- Immunity, Innate
- Infant, Premature
- Infant, Premature, Diseases/immunology
- Infant, Premature, Diseases/microbiology
- Infant, Premature, Diseases/physiopathology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/physiopathology
- Intestines/blood supply
- Intestines/immunology
- Intestines/physiopathology
- Milk, Human/immunology
Collapse
Affiliation(s)
- Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | - Amina M Bhatia
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Andrea F Kane
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ravi M Patel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Patricia W Denning
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
14
|
Cappel C, Huenecke S, Suemmerer A, Erben S, Rettinger E, Pfirrmann V, Heinze A, Zimmermann O, Klingebiel T, Ullrich E, Bader P, Bremm M. Cytotoxic potential of IL-15-activated cytokine-induced killer cells against human neuroblastoma cells. Pediatr Blood Cancer 2016; 63:2230-2239. [PMID: 27433920 DOI: 10.1002/pbc.26147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite advances in therapy, the prognosis is poor and optimized therapies are urgently needed. Therefore, we investigated the antitumor potential of interleukin-15 (IL-15)-activated cytokine-induced killer (CIK) cells against different NB cell lines. PROCEDURE CIK cells were generated from peripheral blood mononuclear cells by the stimulation with interferon-γ (IFN-γ), IL-2, OKT-3 and IL-15 over a period of 10-12 days. The cytotoxic activity against NB cells was analyzed by nonradioactive Europium release assay before and after blocking of different receptor-ligand interactions relevant in CIK cell-mediated cytotoxicity. RESULTS The final CIK cell products consisted in median of 83% (range: 75.9-91.9%) CD3+ CD56- T cells, 14% (range: 5.2-20.7%) CD3+ CD56+ NK-like T cells and 2% (range: 0.9-4.8%) CD3- CD56+ NK cells. CIK cells expanded significantly upon ex vivo stimulation with median rates of 22.3-fold for T cells, 58.3-fold for NK-like T cells and 2.5-fold for NK cells. Interestingly, CD25 surface expression increased from less than equal to 1% up to median 79.7%. Cytotoxic activity of CIK cells against NB cells was in median 34.7, 25.9 and 34.8% against the cell lines UKF-NB-3, UKF-NB-4 and SK-N-SH, respectively. In comparison with IL-2-stimulated NK cells, CIK cells showed a significantly higher cytotoxicity. Antibody-mediated blocking of the receptors NKG2D, TRAIL, FasL, DNAM-1, NKp30 and lymphocyte function-associated antigen-1 (LFA-1) significantly reduced lytic activity, indicating that diverse cytotoxic mechanisms might be involved in CIK cell-mediated NB killing. CONCLUSIONS Unlike the mechanism reported in other malignancies, NKG2D-mediated cytotoxicity does not constitute the major killing mechanism of CIK cells against NB.
Collapse
Affiliation(s)
- Claudia Cappel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| | - Anica Suemmerer
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Stephanie Erben
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Eva Rettinger
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Verena Pfirrmann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Annekathrin Heinze
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Olga Zimmermann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Evelyn Ullrich
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Melanie Bremm
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
15
|
Huenecke S, Fryns E, Wittekindt B, Buxmann H, Königs C, Quaiser A, Fischer D, Bremm M, Klingebiel T, Koehl U, Schloesser R, Bochennek K. Percentiles of Lymphocyte Subsets in Preterm Infants According to Gestational Age Compared to Children and Adolescents. Scand J Immunol 2016; 84:291-298. [DOI: 10.1111/sji.12474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
Affiliation(s)
- S. Huenecke
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - E. Fryns
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - B. Wittekindt
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - H. Buxmann
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - C. Königs
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - A. Quaiser
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - D. Fischer
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - M. Bremm
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - T. Klingebiel
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - U. Koehl
- Institute of Cellular Therapeutics; GMP Development Unit, IFB-TX; Hannover Medical School; Hannover Germany
| | - R. Schloesser
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| | - K. Bochennek
- Clinic for Pediatric and Adolescent Medicine, University Hospital; Frankfurt Germany
| |
Collapse
|
16
|
Inflammatory Response in Preterm and Very Preterm Newborns with Sepsis. Mediators Inflamm 2016; 2016:6740827. [PMID: 27293317 PMCID: PMC4884838 DOI: 10.1155/2016/6740827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 01/23/2023] Open
Abstract
The response of the adaptive immune system is usually less intense in premature neonates than term neonates. The primary objective of this study was to determine whether immunological parameters vary between preterm (PT) neonates (≥32 weeks of gestational age) and very preterm (VPT) neonates (<32 weeks of gestational age). A cross-sectional study was designed to prospectively follow PT and VPT neonates at risk of developing sepsis. Plasma concentrations of IFN-γ, TNF-α, IL-6, IL-4, and IL-10 were detected using flow cytometry. C-reactive protein (C-RP) and the complex SC5b-9 were detected in the plasma using commercial kits. A total of 83 patients were included. The laboratory results and clinical histories showed that 26 patients had sepsis; 14 were VPT, and 12 were PT. The levels of C-RP, SC5b-9 (innate immune response mediators), and IL-10 or IL-4 (anti-inflammatory cytokines) were elevated during sepsis in both groups. IFN-γ, TNF-α, and IL-6 (proinflammatory cytokines) were differentially elevated only in PT neonates. The VPT neonates with sepsis presented increases in C-RP, SC5b-9, and anti-inflammatory cytokines but not in proinflammatory cytokines, whereas PT neonates showed increases in all studied mediators of inflammation.
Collapse
|