1
|
Mumcu A, Sarıdoğan E, Düz SA, Tuncay G, Erdoğan A, Karaer K, Onat T, Karaer A, Doğan B. Multi-omics analysis of placental metabolomics and transcriptomics datasets reveals comprehensive insights into the pathophysiology of preeclampsia. J Pharm Biomed Anal 2025; 256:116701. [PMID: 39883963 DOI: 10.1016/j.jpba.2025.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/24/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Preeclampsia, a life-threatening pregnancy complication, remains a major global health concern. Understanding the complex molecular mechanisms underlying this disorder is crucial for improving both diagnostics and therapeutic strategies. In this study, a multi-omics approach based on NMR metabolomics and RNA-seq transcriptomics analyses was conducted to analyze placental tissue samples obtained from patients with preeclampsia and healthy controls. Metabolomics data analysis results indicated alterations in several metabolite levels including lactate, myo-inositol, glutamate, glutamine, valine, leucine, isoleucine, creatinine, alanine, taurine, choline, phosphocholine, glycerophosphocholine, ethanolamine, and dihydroxyacetone. These alterations cause significant disruptions in the Krebs cycle, energy, lipid, and amino acid metabolisms. Concurrently, transcriptomics data analysis identified 10 upregulated and 37 downregulated genes (|log2FC= > 1 and padj < 0.05) in preeclampsia patients. Identified genes were linked to critical roles such as vasoconstriction, angiogenesis, inflammation, hormonal balance, oxidative stress, and collagen integrity. Multi-omics data analysis revealed the association of certain metabolites with several other genes. A gene interaction network formed by these genes resulted in a lower protein-protein interaction enrichment value (p-value < 1e-16) compared to the network formed with the differentially expressed genes (p-value = 0.0183) which suggests the importance of considering multiple omics levels for a comprehensive understanding of the disease.
Collapse
Affiliation(s)
- Akın Mumcu
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Laboratory of NMR, Scientific and Technological Research Center, Inonu University, Malatya, Türkiye
| | - Erdinç Sarıdoğan
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, Faculty of Medicine, Malatya, Türkiye
| | - Senem Arda Düz
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, Faculty of Medicine, Malatya, Türkiye
| | - Görkem Tuncay
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, Faculty of Medicine, Malatya, Türkiye
| | - Ali Erdoğan
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Biomedical Engineering, Faculty of Engineering, Inonu University, Malatya, Türkiye
| | - Kadri Karaer
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| | - Taylan Onat
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, Faculty of Medicine, Malatya, Türkiye
| | - Abdullah Karaer
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, Faculty of Medicine, Malatya, Türkiye
| | - Berat Doğan
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Biomedical Engineering, Faculty of Engineering, Inonu University, Malatya, Türkiye.
| |
Collapse
|
2
|
Song J, Li M, Tao Y, Li Y, Mai C, Zhang J, Yao L, Shi S, Xu J. Enhanced myofibroblast differentiation of eMSCs in intrauterine adhesions. Stem Cell Res Ther 2025; 16:35. [PMID: 39901307 PMCID: PMC11792338 DOI: 10.1186/s13287-025-04183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Intrauterine adhesions (IUA) is one of the most common gynecological diseases and main causes of uterine infertility. Among proposed hypotheses on IUA development, the reduced endometrial regeneration resulting from loss of functional stem cells has been proposed as the key factor affecting the IUA prognosis. However, the underlying mechanisms mostly remain unclear. Because the eMSCs (endometrial mesenchymal stem/stromal cells) play a critical role in both supporting the gland development and also preparing the environment for embryo implantation through decidualization, the characteristics and functions were compared between the eMSCs derived from IUA and non-IUA patients, to uncover the important roles of eMSCs in IUA and also the underlying mechanisms. METHODS Endometrium biopsies were collected from IUA patients and controls. The fibrosis features and eMSC distributions were investigated with IHC (immunohistochemistry). Then the eMSCs were isolated and their functions and characteristics were analyzed in vitro. RESULTS Our results indicate that the scar tissues in IUA are characterized with hyper-activation of pro-fibrotic fibroblast and myo-differentiation, along with reduced number of eMSCs. The isolated eMSCs from IUA and controls show similar functions from the perspectives of cell morphology, proliferation, colony formation, exosome secretion, positive ratio of eMSC markers and conventional MSC markers, tri-differentiation efficiency, the ability of suppressing lymphocyte proliferation, cell aging, and promoting vascular tube formation. However, the eMSCs from IUA have reduced levels of decidualization and higher levels of cell migration, invasion, and also myofibroblast differentiation. Further investigations indicate that the TGF-β pathway, which is the major inducer of myofibroblast differentiation, is up-regulated and responsible for the enhanced myofibroblast differentiation potential of eMSCs from IUA. CONCLUSIONS In conclusion, we have demonstrated here that the scar tissues in IUA biopsy are characterized with enhanced differentiation of pro-fibrotic fibroblast and myofibroblast. The number of eMSCs is reduced in IUA tissues, and their myofibroblast differentiation capability is increased.
Collapse
Affiliation(s)
- Jun Song
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
| | - Meiqi Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Yuan Tao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
| | - Yumeng Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Canrong Mai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Jingting Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Lan Yao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Shaoquan Shi
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Yue S, Meng J. Role of Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia. Am J Reprod Immunol 2025; 93:e70033. [PMID: 39739937 DOI: 10.1111/aji.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance. Furthermore, it explores how disruptions in these mechanisms and changes in the decidual microenvironment alter dNK cell properties, driving the progression of preeclampsia. Understanding the mechanisms of dNK cells and identifying potential therapeutic targets may provide new insights for clinical intervention.
Collapse
Affiliation(s)
- Shuang Yue
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinlai Meng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
4
|
Carrasco-Wong I, Sanchez JM, Gutierrez JA, Chiarello DI. Trained innate immunity as a potential link between preeclampsia and future cardiovascular disease. Front Endocrinol (Lausanne) 2024; 15:1500772. [PMID: 39741876 PMCID: PMC11685753 DOI: 10.3389/fendo.2024.1500772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Preeclampsia (PE) is a complex pregnancy syndrome characterized by hypertension with or without proteinuria, affecting 2-6% of pregnancies globally. PE is characterized by excessive release of damage-associated molecular patterns (DAMPs) into the maternal circulation. This DAMP-rich milieu acts on innate immune cells, inducing a proinflammatory state characterized by elevated cytokines such as IL-1β and IL-18. This proinflammatory state in the mother and placenta results in the endothelial dysfunction strongly associated with cardiovascular disorders. While the immediate maternal and fetal risks of PE are well-documented, accumulating evidence indicates that PE also confers long-term cardiovascular risks to the mother, including hypertension, coronary heart disease, stroke, and heart failure. The underlying mechanisms connecting PE to these chronic cardiovascular conditions remain unclear. This article explores the potential role of trained innate immunity (TRIM) as a mechanistic link between PE and increased long-term cardiovascular risk. We propose that the persistent exposure to DAMPs during PE may epigenetically reprogram maternal innate immune cells and their progenitors, leading to TRIM. This reprogramming enhances the inflammatory response to subsequent stimuli, potentially contributing to endothelial dysfunction and chronic inflammation that predispose women to cardiovascular diseases later in life. Understanding the role of TRIM in PE could provide novel insights into the pathophysiology of PE-related cardiovascular complications and identify potential targets for therapeutic intervention. Further research is warranted to investigate the epigenetic and metabolic alterations in innate immune cells induced by PE and to determine how these changes may influence long-term maternal cardiovascular health.
Collapse
Affiliation(s)
| | | | - Jaime A. Gutierrez
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia,
Universidad San Sebastián, Santiago, Chile
| | - Delia I. Chiarello
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia,
Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
5
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
6
|
Zhang Y, Yang L, Yang D, Cai S, Wang Y, Wang L, Li Y, Li L, Yin T, Diao L. Understanding the heterogeneity of natural killer cells at the maternal-fetal interface: implications for pregnancy health and disease. Mol Hum Reprod 2024; 30:gaae040. [PMID: 39570646 DOI: 10.1093/molehr/gaae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Natural killer (NK) cells are the most abundant leukocytes located at the maternal-fetal interface; they respond to pregnancy-related hormones and play a pivotal role in maintaining the homeostatic micro-environment during pregnancy. However, due to the high heterogeneity of NK cell subsets, their categorization has been controversial. Here, we review previous studies on uterine NK cell subsets, including the classic categorization based on surface markers, functional molecules, and developmental stages, as well as single-cell RNA sequencing-based clustering approaches. In addition, we summarize the potential pathways by which endometrial NK cells differentiate into decidual NK (dNK) cells, as well as the differentiation pathways of various dNK subsets. Finally, we compared the alterations in the NK cell subsets in various pregnancy-associated diseases, emphasizing the possible contribution of specific subsets to the development of the disease.
Collapse
Affiliation(s)
- Yuying Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Liangtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Dongyong Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Yanjun Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Linlin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| |
Collapse
|
7
|
Tong J, Li H, Zhang L, Zhang C. The landscape of N1-methyladenosine (m 1A) modification in mRNA of the decidua in severe preeclampsia. BIOMOLECULES & BIOMEDICINE 2024; 24:1827-1847. [PMID: 38958464 PMCID: PMC11496874 DOI: 10.17305/bb.2024.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Recent discoveries in mRNA modification have highlighted N1-methyladenosine (m1A), but its role in preeclampsia (PE) pathogenesis remains unclear. In this study, we utilized methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to identify m1A peaks and the expression profile of mRNA in the decidua of humans with early-onset PE (EPE), late-onset PE (LPE), and normal pregnancy (NP). We assessed the m1A modification patterns in preeclamptic decidua using 10 m1A modulators. Our bioinformatic analysis focused on differentially methylated mRNAs (DMGs) and differentially expressed mRNAs (DEGs) in pairwise comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE, as well as m1A-related DEGs. The comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE identified 3110, 2801, and 2818 DMGs, respectively. We discerned three different m1A modification patterns from this data. Further analysis revealed that key PE-related DMGs and m1A-related DEGs predominantly influence signaling pathways critical for decidualization, including cAMP, MAPK, PI3K-Akt, Notch, and TGF-β pathways. Additionally, these modifications impact pathways related to vascular smooth muscle contraction, estrogen signaling, and relaxin signaling, contributing to vascular dysfunction. Our findings demonstrate that preeclamptic decidua exhibits unique mRNA m1A modification patterns and gene expression profiles that significantly alter signaling pathways essential for both decidualization and vascular dysfunction. These differences in m1A modification patterns provide valuable insights into the molecular mechanisms influencing the decidualization process and vascular function in the pathogenesis of PE. These m1A modification regulators could potentially serve as potent biomarkers or therapeutic targets for PE, warranting further investigation.
Collapse
Affiliation(s)
- Jing Tong
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hua Li
- Jinan Maternal and Child Health Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cong Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
Dash P, Nayak S, Koppisetty BK. Maternal Soluble Programmed Death Ligand-1 (sPD-L1) and T-regulatory Cells (Tregs) Alteration in Preeclampsia: A Cross-Sectional Study From Eastern India. Cureus 2024; 16:e67877. [PMID: 39328700 PMCID: PMC11426926 DOI: 10.7759/cureus.67877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Studies have shown that aberrant reactions of the immune system play an important role in the pathogenesis of preeclampsia. The immune checkpoint molecules programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) system and the T-regulatory cells (Tregs) system are decisive in the regulation of immune responses and can be the target molecules in preeclampsia. In this study, an attempt has been made to evaluate the soluble PD-L1 (sPD-L1) in the serum of preeclampsia cases and correlate it with Tregs and inflammatory markers to have an insight into the link between these immunomodulatory molecules in the pathogenesis of preeclampsia. Materials and methods Ten normal fertile women, 20 trimester-matched normal pregnancy cases, and 20 preeclampsia cases were enrolled in the study. Serum sPD-L1, transforming growth factor beta 1 (TGF-β1), and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA). High-sensitive C-reactive protein (hsCRP) was estimated using a clinical biochemistry autoanalyzer. Tregs were evaluated using flow cytometry. Results and discussion The immune checkpoint molecule PD-L1 inversely correlated with Tregs in preeclampsia cases. Associated inflammation was seen by raised IL-6 and hsCRP. The breakdown of immunological tolerance is mainly caused by the dysregulating the Tregs/Th17 balance, which leads to conditions of autoimmunity and chronic inflammatory disorders. PD-L1 can be the link between this immunological misbalance. Conclusion Our study, showing an increase in sPD-L1 and TGF and a decrease in Tregs with an increase in inflammatory markers like IL-6 and hsCRP levels in preeclampsia, has potential implications for early diagnosis and management of the condition. PD-L1 and Tregs can be target molecules for early management of preeclampsia.
Collapse
Affiliation(s)
- Prakruti Dash
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Saurav Nayak
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | | |
Collapse
|
9
|
Gusella A, Martignoni G, Giacometti C. Behind the Curtain of Abnormal Placentation in Pre-Eclampsia: From Molecular Mechanisms to Histological Hallmarks. Int J Mol Sci 2024; 25:7886. [PMID: 39063129 PMCID: PMC11277090 DOI: 10.3390/ijms25147886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Successful human pregnancy needs several highly controlled steps to guarantee an oocyte's fertilization, the embryo's pre-implantation development, and its subsequent implantation into the uterine wall. The subsequent placenta development ensures adequate fetal nutrition and oxygenation, with the trophoblast being the first cell lineage to differentiate during this process. The placenta sustains the growth of the fetus by providing it with oxygen and nutrients and removing waste products. It is not surprising that issues with the early development of the placenta can lead to common pregnancy disorders, such as recurrent miscarriage, fetal growth restriction, pre-eclampsia, and stillbirth. Understanding the normal development of the human placenta is essential for recognizing and contextualizing any pathological aberrations that may occur. The effects of these issues may not become apparent until later in pregnancy, during the mid or advanced stages. This review discusses the process of the embryo implantation phase, the molecular mechanisms involved, and the abnormalities in those mechanisms that are thought to contribute to the development of pre-eclampsia. The review also covers the histological hallmarks of pre-eclampsia as found during the examination of placental tissue from pre-eclampsia patients.
Collapse
Affiliation(s)
- Anna Gusella
- Pathology Unit, Department of Diagnostic Services, ULLS 6 Euganea, 35131 Padova, Italy;
| | - Guido Martignoni
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy
| | - Cinzia Giacometti
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
| |
Collapse
|
10
|
Horvat Mercnik M, Schliefsteiner C, Sanchez-Duffhues G, Wadsack C. TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy. Hum Reprod Update 2024; 30:442-471. [PMID: 38519450 PMCID: PMC11215164 DOI: 10.1093/humupd/dmae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFβ) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFβ signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFβ signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFβ signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFβ is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE This comprehensive review aims to explore and elucidate the roles of the major members of the TGFβ superfamily, including TGFβs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfβ', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfβ signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfβ signalling', 'placental macrophages tgfβ', 'endothelial cells tgfβ', 'endothelium tgfβ signalling', 'trophoblast invasion tgfβ signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfβ', 'tgfβ preeclampsia', 'tgfβ placental development', 'TGFβ placental function', 'endothelial dysfunction preeclampsia tgfβ signalling', 'vascular remodelling placenta TGFβ', 'inflammation pregnancy tgfβ', 'immune response pregnancy tgfβ', 'immune tolerance pregnancy tgfβ', 'TGFβ pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfβ pregnancy tregs', 'TGFβ placenta NK cells', 'TGFβ placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES A comprehensive understanding of TGFβ signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFβ ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFβ signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFβ signalling. WIDER IMPLICATIONS The dysregulation of TGFβ signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFβ signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Tissue-Specific BMP Signalling ISPA-HUCA, Oviedo, Spain
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
11
|
Atta S, Mekky R, Ibrahim M, Abdallah MM, Elbaz MAH, Radwan E. Increased Expression of Neprilysin Is Associated with Inflammation in Preeclampsia. Reprod Sci 2024; 31:1385-1390. [PMID: 38114865 PMCID: PMC11090941 DOI: 10.1007/s43032-023-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Preeclampsia (PE) is associated with a finely tuned equilibrium between trophoblast cell invasion and fetal-maternal immunological tolerance. An imbalance between proinflammatory (IL-6) and anti-inflammatory (IL-10) cytokines is a hallmark of PE. Neprilysin (NEP), a membrane-bound metalloprotease, is vulnerable to the inflammatory environment and plays a significant role in modulating vascular tone. The aim of this study was to determine the correlation between NEP (mRNA and protein) levels and the inflammatory status in PE patients compared to healthy pregnant women and to identify the role of NEP in evaluating the severity of preeclampsia. The study group comprised 52 pregnant women with PE while the control group comprised 47 normotensive pregnant women. After a caesarean section, placental tissue samples from patients and controls were collected to measure the expression levels of IL-6, TGF-β, IL-10, and NEP mRNA. In addition, an enzyme-linked immunosorbent assay was used to assess the quantity of NEP protein in blood samples. Our results revealed a significant positive correlation between NEP (mRNA and protein) and proinflammatory markers IL-6 and TGF-β levels in patients compared to controls and a significant inverse correlation between NEP and anti-inflammatory cytokine IL-10. Moreover, this is the first study to find a strong positive correlation between NEP level and PE severity. In conclusion, in PE patients, there is a substantial relationship between NEP, the degree of inflammation, and PE severity. NEP could act as a potential biomarker for diagnosis and prognosis of PE.
Collapse
Affiliation(s)
- Sara Atta
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rehab Mekky
- Institute for Drug Development and Innovation Research, Assiut University, Assiut, Egypt
| | - Mostafa Ibrahim
- Department of Obstetrics and Gynecology, Assiut University, Assiut, Egypt
| | - Mohamed M Abdallah
- Department of Obstetrics and Gynecology, Assiut University, Assiut, Egypt.
| | - Mona A H Elbaz
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Radwan
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Biochemistry Department, Sphinx University, New Assiut, Assiut, Egypt
| |
Collapse
|
12
|
Li QH, Zhao QY, Yang WJ, Jiang AF, Ren CE, Meng YH. Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion. J Inflamm Res 2024; 17:2697-2710. [PMID: 38707955 PMCID: PMC11070170 DOI: 10.2147/jir.s459263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy requires transition to an immune environment conducive to embryo survival at the maternal-fetal interface. As an important member of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal-fetal interface. This review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA.
Collapse
Affiliation(s)
- Qing-Hui Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Qiu-Yan Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Wei-Jing Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Ai-Fang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
13
|
Long Y, Lu KJ, Xia CS, Feng JH, Li WY, Ma YT, Sun YY, Fan CH, Li C. Altered CD226/TIGIT expressions were associated with NK phenotypes in primary antiphospholipid syndrome and affected by IL-4/JAK pathway. Clin Exp Immunol 2024; 216:132-145. [PMID: 38386917 PMCID: PMC11036109 DOI: 10.1093/cei/uxae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Ke-Jia Lu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Chang-Sheng Xia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jing-Hong Feng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Wen-Yi Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yin-Ting Ma
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yuan-Yuan Sun
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Chun-Hong Fan
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
14
|
Kasimanickam R, Kasimanickam V. MicroRNAs in the Pathogenesis of Preeclampsia-A Case-Control In Silico Analysis. Curr Issues Mol Biol 2024; 46:3438-3459. [PMID: 38666946 PMCID: PMC11048894 DOI: 10.3390/cimb46040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective of this secondary analysis was to elucidate the pathogenesis of PE by probing protein-protein interactions from in silico analysis of transcriptomes between PE and normal placenta from Gene Expression Omnibus (GSE149812). The pathogenesis of PE is apparently determined by associations of miRNA molecules and their target genes and the degree of changes in their expressions with irregularities in the functions of hemostasis, vascular systems, and inflammatory processes at the fetal-maternal interface. These irregularities ultimately lead to impaired placental growth and hypoxic injuries, generally manifesting as placental insufficiency. These differentially expressed miRNAs or genes in placental tissue and/or in blood can serve as novel diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Ramanathan Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Vanmathy Kasimanickam
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
15
|
Kashiwagi H, Mariya T, Umemoto M, Ogawa S, Hirohashi Y, Fujibe Y, Kubo T, Someya M, Baba T, Ishioka S, Torigoe T, Saito T. Pregnancy-specific beta-1-glycoprotein 6 is a potential novel diagnostic biomarker of placenta accreta spectrum. Med Mol Morphol 2024; 57:35-44. [PMID: 37831187 DOI: 10.1007/s00795-023-00371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Early diagnosis is essential for the safer perinatal management of placenta accreta spectrum (PAS). We used transcriptome analysis to investigate diagnostic maternal serum biomarkers and the mechanisms of PAS development. We analyzed eight formalin-fixed paraffin-embedded placental specimens from two placenta increta and three placenta percreta cases who underwent cesarean hysterectomy at Sapporo Medical University Hospital between 2013 and 2019. Invaded placental regions were isolated from the uterine myometrium and RNA was extracted. The transcriptome difference between normal placenta and PAS was analyzed by microarray analysis. The PAS group showed markedly decreased expression of placenta-specific genes such as LGALS13 and the pregnancy-specific beta-1-glycoprotein (PSG) family. Term enrichment analysis revealed changes in genes related to cellular protein catabolic process, female pregnancy, autophagy, and metabolism of lipids. From the highly dysregulated genes in the PAS group, we investigated the expression of PSG family members, which are secreted into the intervillous space and can be detected in maternal serum from the early stage of pregnancy. The gene expression level of PSG6 in particular was progressively decreased from placenta increta to percreta. The PSG family, especially PSG6, is a potential biomarker for PAS diagnosis.
Collapse
Affiliation(s)
- Hazuki Kashiwagi
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tasuku Mariya
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Mina Umemoto
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shiori Ogawa
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology 1st, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuya Fujibe
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Terufumi Kubo
- Department of Pathology 1st, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayuki Someya
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tsuyoshi Baba
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shinichi Ishioka
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology 1st, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
16
|
Katirci E, Kendirci-Katirci R, Korgun ET. Are innate lymphoid cells friend or foe in human pregnancy? Am J Reprod Immunol 2024; 91:e13834. [PMID: 38500395 DOI: 10.1111/aji.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Innate lymphoid cells (ILCs) are involved in the innate immune system because they lack specific antigen receptors and lineage markers. ILCs also display phenotypic and characteristic features of adaptive immune cells. Therefore, ILCs are functional in essential interactions between adaptive and innate immunity. ILCs are found in both lymphoid and nonlymphoid tissues and migrate to the area of inflammation during the inflammatory process. ILCs respond to pathogens by producing a variety of cytokines and are involved in the barrier defense of antigens and in many immunological processes such as allergic events. Recent research has shown that ILCs are functional during human pregnancy and have been suggested to be essential for the healthy progression of pregnancy. In this review, we focus on the role of ILCs in human pregnancy by discussing the relationship between ILCs and the pregnancy microenvironment, specifically summarizing the role of ILCs in physiological and pathological pregnancies.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Remziye Kendirci-Katirci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
17
|
Gothe JP, de Mattos AC, Silveira CF, Malavazi KC. Exploring Natural Killer Cell Testing in Embryo Implantation and Reproductive Failure: An Overview of Techniques and Controversies. Reprod Sci 2024; 31:603-632. [PMID: 37853155 DOI: 10.1007/s43032-023-01372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The blastocyst nidation is the most crucial stage to a successful pregnancy, as the white cells work to promote a favorable endometrial microenvironment for this process. Intriguingly, this implantation window lasts, on average, 6 days in most regular women, and its quality is affected by many pathological conditions. Since the grounds of reproductive failure in healthy couples are still uncharted, studies have widely suggested a potential hostile role of the immune system in the equilibrium of the maternal-fetal interface. In recent years, natural killer cells have been the highlight as they represent the greatest lymphocyte in the uterus and have immune surveillance through cytotoxicity during the implantation window. This review explored the main techniques used for natural killer (NK) cell testing in the implantation window over the last 13 years on the PubMed® database. Of 2167 published articles potentially relevant for the review, only thirty-three were about cell evaluation in healthy women, met the inclusion criteria, and had their methodology critically analyzed. Here, we bring a summary from the study group and sample collection to evidence comments about their findings and correlations. Meanwhile, we also summarize the current relationship between NK cells and endometrial receptivity with reproductive failure to help enhance the possibilities for future research. In conclusion, our overview points out that restricted and unstandardized methods support the controversy between the NK population and unsuccessful embryo implantation, which is an obstacle to studying why healthy eggs do not thrive and finding a solution for one of the most controversial topics in human reproduction.
Collapse
Affiliation(s)
- Juliana Peron Gothe
- Faculdade de Medicina, Pontifícia Universidade Católica de Campinas, Av. John Boyd Dunlop S/N - Jardim Ipaussurama, Campinas, São Paulo, 13034-685, Brazil.
| | - Amílcar Castro de Mattos
- Faculdade de Medicina, Pontifícia Universidade Católica de Campinas, Av. John Boyd Dunlop S/N - Jardim Ipaussurama, Campinas, São Paulo, 13034-685, Brazil
| | | | | |
Collapse
|
18
|
Wu Q, Ying X, Yu W, Li H, Wei W, Lin X, Yang M, Zhang X. Comparison of immune-related gene signatures and immune infiltration features in early- and late-onset preeclampsia. J Gene Med 2024; 26:e3676. [PMID: 38362844 DOI: 10.1002/jgm.3676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Preeclampsia, a severe pregnancy syndrome, is widely accepted divided into early- and late-onset preeclampsia (EOPE and LOPE) based on the onset time of preeclampsia, with distinct pathophysiological origins. However, the molecular mechanism especially immune-related mechanisms for EOPE and LOPE is currently obscure. In the present study, we focused on placental immune alterations between EOPE and LOPE and search for immune-related biomarkers that could potentially serve as potential therapeutic targets through bioinformatic analysis. METHODS The gene expression profiling data was obtained from the Gene Expression Omnibus database. ESTIMATE algorithm and Gene Set Enrichment Analysis were employed to evaluate the immune status. The intersection of differentially expressed genes in GSE74341 series and immune-related genes set screened differentially expressed immune-related genes. Protein-protein interaction network and random forest were used to identify hub genes with a validation by a quantitative real-time PCR. Kyoto Encyclopedia of Genes and Genomes pathways, Gene Ontology and gene set variation analysis were utilized to conduct biological function and pathway enrichment analyses. Single-sample gene set enrichment analysis and CIBERSORTx tools were employed to calculate the immune cell infiltration score. Correlation analyses were evaluated by Pearson correlation analysis. Hub genes-miRNA network was performed by the NetworkAnalyst online tool. RESULTS Immune score and stromal score were all lower in EOPE samples. The immune system-related gene set was significantly downregulated in EOPE compared to LOPE samples. Four hub differentially expressed immune-related genes (IL15, GZMB, IL1B and CXCL12) were identified based on a protein-protein interaction network and random forest. Quantitative real-time polymerase chain reaction validated the lower expression levels of four hub genes in EOPE compared to LOPE samples. Immune cell infiltration analysis found that innate and adaptive immune cells were apparent lacking in EOPE samples compared to LOPE samples. Cytokine-cytokine receptor, para-inflammation, major histocompatibility complex class I and T cell co-stimulation pathways were significantly deficient and highly correlated with hub genes. We constructed a hub genes-miRNA regulatory network, revealing the correlation between hub genes and hsa-miR-374a-5p, hsa-miR-203a-3p, hsa-miR-128-3p, hsa-miR-155-3p, hsa-miR-129-2-3p and hsa-miR-7-5p. CONCLUSIONS The innate and adaptive immune systems were severely impaired in placentas of EOPE. Four immune-related genes (IL15, GZMB, IL1B and CXCL12) were closely correlated with immune-related pathogenesis of EOPE. The result of our study may provide a new basis for discriminating between EOPE and LOPE and acknowledging the role of the immune landscape in the eventual interference and tailored treatment of EOPE.
Collapse
Affiliation(s)
- Quanfeng Wu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases Xiamen, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, China
| | - Xiang Ying
- Department of Gynecology and Obstetrics, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Weiwei Yu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huanxi Li
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Wei
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueyan Lin
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Meilin Yang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases Xiamen, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases Xiamen, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, China
| |
Collapse
|
19
|
Hua Q, Li Z, Zhou Y, Wang Y, Yu Y, Sun L, Ye J, Li L. Single-cell RNA sequencing reveals association of aberrant placental trophoblasts and FN1 reduction in late-onset fetal growth restriction. Placenta 2024; 146:30-41. [PMID: 38160601 DOI: 10.1016/j.placenta.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) can lead to fetal mental development abnormalities, malformations, and even intrauterine death. Defects in the trophoblasts at the maternal-fetal interface may contribute to FGR. However, the impact of trophoblasts on FGR is still not well understood. Therefore, the objective of this study is to characterize the heterogeneity of placental cells at the single-cell level and investigate the role of trophoblast subtypes in the pathogenesis of FGR at the cellular and molecular levels. METHODS Single-cell RNA sequencing was performed on the maternal side of placentas from two normal pregnant women and two pregnant women with FGR. Lentivirus transfection was used to establish a FN1 knockout model in trophoblast HTR-8-Svneo cells. The effect of FN1 knockout on cell migration and invasion of HTR-8-Svneo cells was assessed through wound healing and transwell assays. RESULTS Nine cell types were annotated in 39,161 cells derived from single-cell RNA sequencing. The FGR group exhibited a decrease in the percentage of trophoblasts, especially in subtype of extravillous trophoblasts (EVTs). The expression of FN1 was reduced in trophoblasts and EVTs. Furthermore, the protein expression levels of FN1 in the placentas of FGR patients were significantly lower than those of normal pregnant women. The cell migration and invasion ability of HTR-8-Svneo cells were inhibited after the knockdown of FN1. DISCUSSION The dysregulation of the trophoblast subtype-EVTs is involved in placental dysplasia related to FGR. The association between aberrant placental trophoblasts and reduced FN1 expression may contribute to insufficient remodeling of spiral arteries and the formation of FGR.
Collapse
Affiliation(s)
- Qing Hua
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Zhe Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yadan Zhou
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yangyang Yu
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Lei Sun
- Stem Cell Regenerative Medicine Transformation Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, PR China; Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou, 450007, Henan, PR China.
| | - Li Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China.
| |
Collapse
|
20
|
Zhou W, Chen Y, Zheng Y, Bai Y, Yin J, Wu XX, Hong M, Liang L, Zhang J, Gao Y, Sun N, Li J, Zhang Y, Wu L, Jin X, Niu J. Characterizing immune variation and diagnostic indicators of preeclampsia by single-cell RNA sequencing and machine learning. Commun Biol 2024; 7:32. [PMID: 38182876 PMCID: PMC10770323 DOI: 10.1038/s42003-023-05669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Preeclampsia is a multifactorial and heterogeneous complication of pregnancy. Here, we utilize single-cell RNA sequencing to dissect the involvement of circulating immune cells in preeclampsia. Our findings reveal downregulation of immune response in lymphocyte subsets in preeclampsia, such as reduction in natural killer cells and cytotoxic genes expression, and expansion of regulatory T cells. But the activation of naïve T cell and monocyte subsets, as well as increased MHC-II-mediated pathway in antigen-presenting cells were still observed in preeclampsia. Notably, we identified key monocyte subsets in preeclampsia, with significantly increased expression of angiogenesis pathways and pro-inflammatory S100 family genes in VCAN+ monocytes and IFN+ non-classical monocytes. Furthermore, four cell-type-specific machine-learning models have been developed to identify potential diagnostic indicators of preeclampsia. Collectively, our study demonstrates transcriptomic alternations of circulating immune cells and identifies immune components that could be involved in pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Wenwen Zhou
- BGI Research, Shenzhen, 518103, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yixuan Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Yuhui Zheng
- BGI Research, Shenzhen, 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Bai
- BGI Research, Shenzhen, 518103, China
| | | | - Xiao-Xia Wu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
| | - Jing Zhang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Ya Gao
- BGI Research, Shenzhen, 518103, China
| | - Ning Sun
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | | | - Yiwei Zhang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Linlin Wu
- Department of Obstetrics, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| | - Xin Jin
- BGI Research, Shenzhen, 518103, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Jianmin Niu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China.
| |
Collapse
|
21
|
Fierro JJ, Prins JR, Henning S, Bootsma H, Westra J, de Leeuw K. Endometrial immune profiling as a new tool for preconceptional assessment in patients with systemic autoimmune diseases. Front Immunol 2024; 14:1334231. [PMID: 38250081 PMCID: PMC10797870 DOI: 10.3389/fimmu.2023.1334231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Affiliation(s)
- Juan J Fierro
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Svenja Henning
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Ullah A, Zhao J, Singla RK, Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front Cell Dev Biol 2023; 11:1272536. [PMID: 37928902 PMCID: PMC10620730 DOI: 10.3389/fcell.2023.1272536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Diabetes-related pathophysiological alterations and various female reproductive difficulties were common in pregnant women with gestational diabetes mellitus (GDM), who had 21.1 million live births. Preeclampsia (PE), which increases maternal and fetal morbidity and mortality, affects approximately 3%-5% of pregnancies worldwide. Nevertheless, it is unclear what triggers PE and GDM to develop. Therefore, the development of novel moderator therapy approaches is a crucial advancement. Chemokines regulate physiological defenses and maternal-fetal interaction during healthy and disturbed pregnancies. Chemokines regulate immunity, stem cell trafficking, anti-angiogenesis, and cell attraction. CXC chemokines are usually inflammatory and contribute to numerous reproductive disorders. Fractalkine (CX3CL1) may be membrane-bound or soluble. CX3CL1 aids cell survival during homeostasis and inflammation. Evidence reveals that CXC and CX3CL1 chemokines and their receptors have been the focus of therapeutic discoveries for clinical intervention due to their considerable participation in numerous biological processes. This review aims to give an overview of the functions of CXC and CX3CL1 chemokines and their receptors in the pathophysiology of PE and GDM. Finally, we examined stimulus specificity for CXC and CX3CL1 chemokine expression and synthesis in PE and GDM and preclinical and clinical trials of CXC-based PE and GDM therapies.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Wang X, Shields CA, Ekperikpe U, Amaral LM, Williams JM, Cornelius DC. VASCULAR AND RENAL MECHANISMS OF PREECLAMPSIA. CURRENT OPINION IN PHYSIOLOGY 2023; 33:100655. [PMID: 37009057 PMCID: PMC10062189 DOI: 10.1016/j.cophys.2023.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Preeclampsia (PE) is a multisystem obstetric disorder that affects 2-10% of pregnancies worldwide and it is a leading cause of maternal and fetal morbidity and mortality. The etiology of PE development is not clearly delineated, but since delivery of the fetus and placenta often leads to symptom resolution in the most cases of PE, it is hypothesized that the placenta is the inciting factor of the disease. Current management strategies for PE focus on treating the maternal symptoms to stabilize the mother in an attempt to prolong the pregnancy. However, the efficacy of this management strategy is limited. Therefore, identification of novel therapeutic targets and strategies is needed. Here, we provide a comprehensive overview of the current state of knowledge regarding mechanisms of vascular and renal pathophysiology during PE and discuss potential therapeutic targets directed at improving maternal vascular and renal function.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology, University of Mississippi Medical Center
| | - Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center
| | - Ubong Ekperikpe
- Department of Pharmacology, University of Mississippi Medical Center
| | - Lorena M Amaral
- Department of Pharmacology, University of Mississippi Medical Center
| | | | - Denise C Cornelius
- Department of Pharmacology, University of Mississippi Medical Center
- Department of Emergency Medicine, University of Mississippi Medical Center
| |
Collapse
|
24
|
Ma R, Jin N, Lei H, Dong J, Xiong Y, Qian C, Chen S, Wang X. Ovarian Stimulation in Mice Resulted in Abnormal Placentation through Its Effects on Proliferation and Cytokine Production of Uterine NK Cells. Int J Mol Sci 2023; 24:ijms24065907. [PMID: 36982985 PMCID: PMC10054838 DOI: 10.3390/ijms24065907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Ovarian stimulation is associated with an increased incidence of abnormal placentation. Uterine natural killer (uNK) cells are the major subpopulation of decidual immune cells, which are crucial for placentation. In a previous study, we found that ovarian stimulation impairs uNK cell density on gestation day (GD) 8.5 in mice. However, it was not clear how ovarian stimulation led to a reduction in the density of uNK cells. In this study, we constructed two mouse models, an in vitro mouse embryo transfer model and an estrogen-stimulated mouse model. We used HE and PAS glycogen staining, immunohistochemical techniques, q-PCR, Western blot, and flow cytometry to analyze the mouse decidua and placenta, and the results showed that SO resulted in a fetal weight reduction, abnormal placental morphology, decreased placental vascular density, and abnormal density and function of uNK cells. Our results suggest that ovarian stimulation resulted in aberrant estrogen signaling and may contribute to the disorder of uNK cells caused by ovarian stimulation. Together, these results provide new insights into the mechanisms of aberrant maternal endocrine environments and abnormal placentation.
Collapse
Affiliation(s)
- Rong Ma
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Ni Jin
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Hui Lei
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Jie Dong
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Yujing Xiong
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Chenxi Qian
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
25
|
Wang Y, Li B, Tong F. Global trends in research of immune cells associated with hypertensive disorders of pregnancy: A 20-year bibliometric analyses (from 2001 to 2021). Front Immunol 2023; 13:1036461. [PMID: 36700203 PMCID: PMC9868159 DOI: 10.3389/fimmu.2022.1036461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background A growing evidence suggests that immune cells play a significant role in the pathogenesis of hypertensive disorders of pregnancy (HDP).Over the past 20 years, several studies have been conducted on the role of immune cells in hypertensive disorders of pregnancy. This study used bibliometric analysis to assess research hotspots and future trends in studies on immune cells in hypertensive disorders of pregnancy. Methods We extracted all relevant literature on immune cells and hypertensive disorders of pregnancy from the Web of Science core collection for the period of 2001 to 2021. We used VOS Viewer, CiteSpace, R-bibliometrix and Python for bibliometric analysis. Results We identified 2,388 records published in 593 journals by 9,886 authors from 2,174 universities/institutions in 91 countries/regions. The number of publications tended to increase over time, with the highest number of publications in 2021, up to 205. The USA was the country with the most publications. UNIVERSITY OF MISSISSIPPI was the most influential institution. Lamarca B, Romero R, and Saito S were the most prolific authors. Finally, three research hotspot clusters were identified based on keywords, which reflected the role of immune cells in the development of hypertensive disorders of pregnancy, the current research status,and predicted hot spots for future research. Conclusions Our study systematically analyzed the role of immune cells in the pathogenesis of hypertensive disorders of pregnancy in the last 20 years. Our results indicated that immune cells, such as T cells, natural killer (NK) cells,and macrophages, and the cytokines released such as TNF-α, IFN-γ in the maternal circulation and at the maternal-fetal interface would influence the development of hypertensive disorders of pregnancy and we need further investigate the role of individual immune cells and translational studies to provide new therapeutic perspectives to mitigate adverse perinatal outcomes due to hypertensive disorders of pregnancy. In conclusion, bibliometric studies provide a general overview of immune cells in the study of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baoxuan Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Tong
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Fei Tong,
| |
Collapse
|
26
|
Wei X, Yang X. The central role of natural killer cells in preeclampsia. Front Immunol 2023; 14:1009867. [PMID: 36865565 PMCID: PMC9972679 DOI: 10.3389/fimmu.2023.1009867] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Preeclampsia (PE) is a disease that is unique to pregnancy and affects multiple systems. It can lead to maternal and perinatal mortality. The precise etiology of PE is unclear. Patients with PE may have systemic or local immune abnormalities. A group of researchers has proposed that the immune communication between the fetus and mother is primarily moderated by natural killer (NK) cells as opposed to T cells, since NK cells are the most abundant immune cells in the uterus. This review examines the immunological roles of NK cells in the pathogenesis of PE. Our aim is to provide obstetricians with a comprehensive and updated research progress report on NK cells in PE patients. It has been reported that decidual NK (dNK) cells contribute to the process of uterine spiral artery remodeling and can modulate trophoblast invasion. Additionally, dNK cells can stimulate fetal growth and regulate delivery. It appears that the count or proportion of circulating NK cells is elevated in patients with or at risk for PE. Changes in the number or function of dNK cells may be the cause of PE. The Th1/Th2 equilibrium in PE has gradually shifted to an NK1/NK2 equilibrium based on cytokine production. An improper combination of killer cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA)-C may lead to insufficient activation of dNK cells, thereby causing PE. In the etiology of PE, NK cells appear to exert a central effect in both peripheral blood and the maternal-fetal interface. To maintain immune equilibrium both locally and systemically, it is necessary to take therapeutic measures directed at NK cells.
Collapse
Affiliation(s)
- Xiaoqi Wei
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Navaneethabalakrishnan S, Smith HL, Arenaz CM, Goodlett BL, McDermott JG, Mitchell BM. Update on Immune Mechanisms in Hypertension. Am J Hypertens 2022; 35:842-851. [PMID: 35704473 PMCID: PMC9527774 DOI: 10.1093/ajh/hpac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023] Open
Abstract
The contribution of immune cells in the initiation and maintenance of hypertension is undeniable. Several studies have established the association between hypertension, inflammation, and immune cells from the innate and adaptive immune systems. Here, we provide an update to our 2017 American Journal of Hypertension review on the overview of the cellular immune responses involved in hypertension. Further, we discuss the activation of immune cells and their contribution to the pathogenesis of hypertension in different in vivo models. We also highlight existing gaps in the field of hypertension that need attention. The main goal of this review is to provide a knowledge base for translational research to develop therapeutic strategies that can improve cardiovascular health in humans.
Collapse
Affiliation(s)
| | - Hannah L Smith
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Cristina M Arenaz
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Bethany L Goodlett
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Justin G McDermott
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| |
Collapse
|
28
|
Shojaei Z, Jafarpour R, Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Motallebnezhad M. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: A comprehensive review and update. Pathol Res Pract 2022; 238:154062. [PMID: 35987030 DOI: 10.1016/j.prp.2022.154062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
During pregnancy, complicated connections are formed between a mother and a fetus. In a successful pregnancy, the maternal-fetal interface is affected by dynamic changes, and the fetus is protected against the mother's immune system. Natural killer (NK) cells are one of the immune system cells in the female reproductive system that play an essential role in the physiology of pregnancy. NK cells not only exist in peripheral blood (PB) but also can exist in the decidua. Studies have suggested multiple roles for these cells, including decidualization, control of trophoblast growth and invasion, embryo acceptance and maintenance by the mother, and facilitation of placental development during pregnancy. Natural killer T (NKT) cells are another group of NK cells that play a crucial role in the maintenance of pregnancy and regulation of the immune system during pregnancy. Studies show that NK and NKT cells are not only effective in maintaining pregnancy but also can be involved in infertility-related diseases. This review focuses on NK and NKT cells biology and provides a detailed description of the functions of these cells in implantation, placentation, and immune tolerance during pregnancy and their role in pregnancy complications.
Collapse
Affiliation(s)
- Zeinab Shojaei
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Jafarpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Kaur G, Porter CBM, Ashenberg O, Lee J, Riesenfeld SJ, Hofree M, Aggelakopoulou M, Subramanian A, Kuttikkatte SB, Attfield KE, Desel CAE, Davies JL, Evans HG, Avraham-Davidi I, Nguyen LT, Dionne DA, Neumann AE, Jensen LT, Barber TR, Soilleux E, Carrington M, McVean G, Rozenblatt-Rosen O, Regev A, Fugger L. Mouse fetal growth restriction through parental and fetal immune gene variation and intercellular communications cascade. Nat Commun 2022; 13:4398. [PMID: 35906236 PMCID: PMC9338297 DOI: 10.1038/s41467-022-32171-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.
Collapse
Affiliation(s)
- Gurman Kaur
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Lee
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Aggelakopoulou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Subita Balaram Kuttikkatte
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christiane A E Desel
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- University Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jessica L Davies
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hayley G Evans
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Inbal Avraham-Davidi
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan T Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle A Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas R Barber
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Elizabeth Soilleux
- Department of Pathology, Tennis Court Rd, University of Cambridge, Cambridge, England
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Lars Fugger
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
30
|
Wei XW, Zhang YC, Wu F, Tian FJ, Lin Y. The role of extravillous trophoblasts and uterine NK cells in vascular remodeling during pregnancy. Front Immunol 2022; 13:951482. [PMID: 37408837 PMCID: PMC10319396 DOI: 10.3389/fimmu.2022.951482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 07/07/2023] Open
Abstract
Successful embryo implantation requires both a receptive endometrium and competent blastocysts. After implantation, the maternal decidua undergoes a series of changes, including uterine spiral artery (SA) remodeling to accommodate the fetus and provide nutrients and oxygen for the fetus to survive. Uterine spiral arteries transform from small-diameter, high-resistance arteries to large-diameter and low-resistance arteries during pregnancy. This transformation includes many changes, such as increased permeability and dilation of vessels, phenotypic switching and migration of vascular smooth muscle cells (VSMCs), transient loss of endothelial cells (ECs), endovascular invasion of extravillous trophoblasts (EVTs), and presence of intramural EVT, which are regulated by uterine NK (uNK) cells and EVTs. In this review, we mainly focus on the separate and combined roles of uNK cells and EVTs in uterine SA remodeling in establishing and maintaining pregnancy. New insight into related mechanisms will help us better understand the pathogenesis of pregnancy complications such as recurrent pregnancy loss (RPL) and preeclampsia (PE).
Collapse
Affiliation(s)
- Xiao-Wei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University of Medicine, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fu-Ju Tian
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Dunk CE, Bucher M, Zhang J, Hayder H, Geraghty DE, Lye SJ, Myatt L, Hackmon R. Human Leukocyte Antigen HLA-C, HLA-G, HLA-F and HLA-E placental profiles are altered in Early Severe Preeclampsia and Preterm Birth with Chorioamnionitis. Am J Obstet Gynecol 2022; 227:641.e1-641.e13. [PMID: 35863458 DOI: 10.1016/j.ajog.2022.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The extravillous trophoblast expresses each of the non-classical MHC class I antigens - HLA-E, F, and G and a single classical class I antigen HLA-C. We recently demonstrated dynamic expression patterns of HLA-C, G and F during early EVT invasion and placentation. OBJECTIVE In this study we investigate the hypothesis that the immune inflammatory mediated complications of pregnancy such as early preeclampsia and preterm labor, may show altered expression profiles of non-classical HLA. STUDY DESIGN Real time q-PCR, western blot and immunohistochemistry were performed on placental villous tissues and basal plate sections from term non-laboring deliveries, preterm deliveries and severe early onset preeclampsia both with and without small for gestational age neonates. RESULTS HLA-G is strongly and exclusively expressed by the EVT within the placental basal plate and its levels increase in pregnancies complicated by severe early onset PE with SGA neonates as compared to healthy term controls. HLA-C shows a similar profile in the EVT of PE pregnancies, but significantly decreases in the villous placenta. HLA-F protein levels are decreased in both EVT and villous placenta of severe early onset PE pregnancies both with and without SGA babies as compared to Term and PTB deliveries. HLA-E decreases in blood vessels in placentas from PE pregnancies as compared to Term and PTB deliveries. HLA-F and HLA-C are increased in the placenta of PTBs with chorioamnionitis as compared to idiopathic PTB. CONCLUSION Dysregulation of placental HLA expression at the maternal fetal interface may contribute to the compromised maternal tolerance in PTB with chorioamnionitis and excessive maternal systemic inflammation associated with severe early onset PE.
Collapse
Affiliation(s)
- Caroline E Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Experimental Therapeutics, Toronto General Hospital Research Institute, University Hospital Network, Toronto, Canada
| | - Matthew Bucher
- Department of Obstetrics and Gynecology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Jianhong Zhang
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Heyam Hayder
- Department of Biology, York University, Toronto, Canada
| | | | - Stephen J Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Fred Hutchinson Cancer Research Center, Seattle, USA; Department of Obstetrics and Gynecology and Department of Physiology, University of Toronto, Toronto, Canada
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Rinat Hackmon
- Department of Obstetrics and Gynecology, Oregon Health & Sciences University, Portland, Oregon, USA.
| |
Collapse
|
32
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Devvanshi H, Kachhwaha R, Manhswita A, Bhatnagar S, Kshetrapal P. Immunological Changes in Pregnancy and Prospects of Therapeutic Pla-Xosomes in Adverse Pregnancy Outcomes. Front Pharmacol 2022; 13:895254. [PMID: 35517798 PMCID: PMC9065684 DOI: 10.3389/fphar.2022.895254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stringent balance of the immune system is a key regulatory factor in defining successful implantation, fetal development, and timely parturition. Interference in these primary regulatory mechanisms, either at adolescence or prenatal state led to adverse pregnancy outcomes. Fertility restoration with the help of injectable gonadotrophins/progesterone, ovulation-inducing drugs, immunomodulatory drugs (corticosteroids), and reproductive surgeries provides inadequate responses, which manifest its own side effects. The development of a potential diagnostic biomarker and an effectual treatment for adverse pregnancy outcomes is a prerequisite to maternal and child health. Parent cell originated bi-layered-intraluminal nano-vesicles (30-150 nm) also known as exosomes are detected in all types of bodily fluids like blood, saliva, breast milk, urine, etc. Exosomes being the most biological residual structures with the least cytotoxicity are loaded with cargo in the form of RNAs (miRNAs), proteins (cytokines), hormones (estrogen, progesterone, etc.), cDNAs, and metabolites making them chief molecules of cell-cell communication. Their keen involvement in the regulation of biological processes has portrayed them as the power shots of cues to understand the disease's pathophysiology and progression. Recent studies have demonstrated the role of immunexosomes (immunomodulating exosomes) in maintaining unwavering immune homeostasis between the mother and developing fetus for a healthy pregnancy. Moreover, the concentration and size of the exosomes are extensively studied in adverse pregnancies like preeclampsia, gestational diabetes mellitus (GDM), and preterm premature rupture of membrane (pPROMs) as an early diagnostic marker, thus giving in-depth information about their pathophysiology. Exosomes have also been engineered physically as well as genetically to enhance their encapsulation efficiency and specificity in therapy for cancer and adverse pregnancies. Successful bench to bedside discoveries and interventions in cancer has motivated developmental biologists to investigate the role of immunexosomes and their active components. Our review summarizes the pre-clinical studies for the use of these power-shots as therapeutic agents. We envisage that these studies will pave the path for the use of immunexosomes in clinical settings for reproductive problems that arise due to immune perturbance in homeostasis either at adolescence or prenatal state.
Collapse
Affiliation(s)
- Himadri Devvanshi
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Rohit Kachhwaha
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Anima Manhswita
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Shinjini Bhatnagar
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
34
|
Xu X, Zhao X, Chen L, Liu M, Hu Z, Ke J, Fu B, Zhou Y, Wei H. CD158a + /CD158b + NK cell imbalance correlates with hypertension in patients with pre-eclampsia. Am J Reprod Immunol 2022; 87:e13532. [PMID: 35253311 DOI: 10.1111/aji.13532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Preeclampsia, a pregnancy complication with hypertension and proteinuria, seriously threats the health and lives of the mother and the baby. The pathogenesis of pre-eclampsia remains incompletely understood. The role of peripheral natural killer cells (NK cells) in the pre-eclampsia is unclear. METHOD OF STUDY Flow cytometry was performed to detect the expression of CD158a (KIR2DL1) and CD158b (KIR2DL2/3) in peripheral NK cells of healthy pregnant women (HP) and patients with pre-eclampsia (PE). Differentially expressed genes (DEGs) in CD158a+ and CD158b+ NK cells were identified by RNA-sequencing and real-time PCR. Protein array analysis was used to identify altered protein levels in the serum of study participants. RESULTS CD158a+ NK cell numbers were increased in the peripheral blood of patients while the number of CD158b+ NK cells was reduced. In addition, the percentage of CD158a+ NK cells within the peripheral NK subset was positively correlated with systolic blood pressure while the percentage of CD158b+ NK cells was negatively correlated with systolic blood pressure. RNA-seq and real-time PCR showed that the expression of ERAP2 and GCH1, the genes that regulate blood pressure and angiogenesis, was decreased in CD158a+ compared to CD158b+ NK cells. Consistently, the level of proteins involved in angiogenesis was altered in the serum of pre-eclampsia patients compared to healthy individuals. CONCLUSIONS CD158a+ NK cells increased while CD158b+ NK cells decreased in the peripheral blood of patients with pre-eclampsia compared to healthy individuals. The change in the frequency of CD158a+ /CD158b+ NK cells is related to the increase in blood pressure.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Xirui Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Ling Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Muziying Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, P.R. China
| | - Ziming Hu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Binqing Fu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Yonggang Zhou
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Haiming Wei
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
35
|
Sung DC, Chen X, Chen M, Yang J, Schultz S, Babu A, Xu Y, Gao S, Keller TCS, Mericko-Ishizuka P, Lee M, Yang Y, Scallan JP, Kahn ML. VE-cadherin enables trophoblast endovascular invasion and spiral artery remodeling during placental development. eLife 2022; 11:e77241. [PMID: 35486098 PMCID: PMC9106330 DOI: 10.7554/elife.77241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
During formation of the mammalian placenta, trophoblasts invade the maternal decidua and remodel spiral arteries to bring maternal blood into the placenta. This process, known as endovascular invasion, is thought to involve the adoption of functional characteristics of vascular endothelial cells (ECs) by trophoblasts. The genetic and molecular basis of endovascular invasion remains poorly defined, however, and whether trophoblasts utilize specialized endothelial proteins in an analogous manner to create vascular channels remains untested. Vascular endothelial (VE-)cadherin is a homotypic adhesion protein that is expressed selectively by ECs in which it enables formation of tight vessels and regulation of EC junctions. VE-cadherin is also expressed in invasive trophoblasts and is a prime candidate for a molecular mechanism of endovascular invasion by those cells. Here, we show that VE-cadherin is required for trophoblast migration and endovascular invasion into the maternal decidua in the mouse. VE-cadherin deficiency results in loss of spiral artery remodeling that leads to decreased flow of maternal blood into the placenta, fetal growth restriction, and death. These studies identify a non-endothelial role for VE-cadherin in trophoblasts during placental development and suggest that endothelial proteins may play functionally unique roles in trophoblasts that do not simply mimic those in ECs.
Collapse
Affiliation(s)
- Derek C Sung
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaowen Chen
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mei Chen
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jisheng Yang
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Susan Schultz
- Department of Radiology, Hospital of the University of PennsylvaniaPhiladelphiaUnited States
| | - Apoorva Babu
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yitian Xu
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Siqi Gao
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - TC Stevenson Keller
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Michelle Lee
- University Laboratory Animal Resources, University of PennsylvaniaPhiladelphiaUnited States
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South FloridaTampaUnited States
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South FloridaTampaUnited States
| | - Mark L Kahn
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
36
|
Yan S, Dong J, Qian C, Chen S, Xu Q, Lei H, Wang X. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Function in Early Pregnancy. Front Immunol 2022; 13:771732. [PMID: 35359988 PMCID: PMC8960317 DOI: 10.3389/fimmu.2022.771732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cellular metabolism plays an important role in regulating both human and murine NK cell functions. However, it remains unclear whether cellular metabolic process impacts on the function of decidual NK cells (dNK), essential tissue-resident immune cells maintaining the homeostasis of maternal-fetal interface. Remarkably, we found that glycolysis blockage enhances dNK VEGF-A production but restrains its proliferation. Furthermore, levels of IFN-γ and TNF-α secreted by dNK get decreased when glycolysis or oxidative phosphorylation (OXPHOS) is inhibited. Additionally, glycolysis, OXPHOS, and fatty acid oxidation disruption has little effects on the secretion and the CD107a-dependent degranulation of dNK. Mechanistically, we discovered that the mammalian target of rapamycin complex 1 (mTORC1) signaling inhibition leads to decreased glycolysis and OXPHOS in dNK. These limited metabolic processes are associated with attenuated dNK functions, which include restricted production of cytokines including IFN-γ and TNF-α, diminished CD107a-dependent degranulation, and restrained dNK proliferation. Finally, we reported that the protein levels of several glycolysis-associated enzymes are altered and the mTORC1 activity is significantly lower in the decidua of women with recurrent pregnancy loss (RPL) compared with normal pregnancy, which might give new insights about the pathogenesis of RPL. Collectively, our data demonstrate that glucose metabolism and mTORC1 signaling support dNK functions in early pregnancy.
Collapse
Affiliation(s)
- Song Yan
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Dong
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Chenxi Qian
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Qian Xu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Lei
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
37
|
Chemerin Effect on the Endometrial Proteome of the Domestic Pig during Implantation Obtained by LC-MS/MS Analysis. Cells 2022; 11:cells11071161. [PMID: 35406725 PMCID: PMC8997736 DOI: 10.3390/cells11071161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Chemerin (CHEM) is a hormone mainly expressed in adipocytes involved in the regulation of energy homeostasis and inflammatory response. CHEM expression has been demonstrated in the structures of the porcine hypothalamic-pituitary-gonadal axis, as well as in the uterus, trophoblasts and conceptuses of pigs. In this study, we performed high-throughput proteomic analyses (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the influence of CHEM (400 ng/mL) on differentially regulated proteins (DRPs) in the porcine endometrial tissue explants during implantation (15 to 16 days of gestation). Among all 352 DRPs, 164 were up-regulated and 188 were down-regulated in CHEM-treated group. DRPs were assigned to 47 gene ontology (GO) terms (p-adjusted < 0.05). Validation of four DRPs (IFIT5, TGFβ1, ACO1 and PGRMC1) by Western blot analysis confirmed the veracity and accuracy of the LC-MS/MS method used in the present study. We suggest that CHEM, by modulating various protein expressions, takes part in the endometrial cell proliferation, migration and invasion at the time of implantation. It also regulates the endometrial immune response, sensitivity to P4 and the formation of new blood vessels. Additionally, CHEM appears to be an important factor involved in endothelial cell dysfunction during the pathogenesis of preeclampsia. The identification of a large number of DRPs under the influence of CHEM provides a valuable resource for understanding the molecular mechanisms of this hormone action during implantation, which is a prerequisite for better control of pig reproduction.
Collapse
|
38
|
Alijotas-Reig J, Esteve-Valverde E, Anunciación-Llunell A, Marques-Soares J, Pardos-Gea J, Miró-Mur F. Pathogenesis, Diagnosis and Management of Obstetric Antiphospholipid Syndrome: A Comprehensive Review. J Clin Med 2022; 11:675. [PMID: 35160128 PMCID: PMC8836886 DOI: 10.3390/jcm11030675] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Antiphospholipid syndrome is an autoimmune disorder characterized by vascular thrombosis and/or pregnancy morbidity associated with persistent antiphospholipid antibody positivity. Cases fulfilling the Sydney criteria for obstetric morbidity with no previous thrombosis are known as obstetric antiphospholipid syndrome (OAPS). OAPS is the most identified cause of recurrent pregnancy loss and late-pregnancy morbidity related to placental injury. Cases with incomplete clinical or laboratory data are classified as obstetric morbidity APS (OMAPS) and non-criteria OAPS (NC-OAPS), respectively. Inflammatory and thrombotic mechanisms are involved in the pathophysiology of OAPS. Trophoblasts, endothelium, platelets and innate immune cells are key cellular players. Complement activation plays a crucial pathogenic role. Secondary placental thrombosis appears by clot formation in response to tissue factor activation. New risk assessment tools could improve the prediction of obstetric complication recurrences or thromboses. The standard-of-care treatment consists of low-dose aspirin and prophylactic low molecular weight heparin. In refractory cases, the addition of hydroxychloroquine, low-dose prednisone or IVIG improve pregnancy outcomes. Statins and eculizumab are currently being tested for treating selected OAPS women. Finally, we revisited recent insights and concerns about the pathophysiology, diagnosis and management of OAPS.
Collapse
Affiliation(s)
- Jaume Alijotas-Reig
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Enrique Esteve-Valverde
- Department of Internal Medicine, Althaia Xarxa Assistencial, Carrer Dr Joan Soler 1-3, 08243 Manresa, Spain;
| | - Ariadna Anunciación-Llunell
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
| | - Joana Marques-Soares
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Pardos-Gea
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Francesc Miró-Mur
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
| |
Collapse
|
39
|
Natural killer cells in obstetric antiphospholipid syndrome. Chin Med J (Engl) 2022; 135:790-792. [PMID: 34985021 PMCID: PMC9276402 DOI: 10.1097/cm9.0000000000001908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Role of Natural Killer Cells during Pregnancy and Related Complications. Biomolecules 2022; 12:biom12010068. [PMID: 35053216 PMCID: PMC8773865 DOI: 10.3390/biom12010068] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
A high number of leucocytes reside in the human endometrium and are distributed differentially during the menstrual cycle and pregnancy. During early pregnancy, decidual natural killer (dNK) cells are the most common type of natural killer (NK) cells in the uterus. The increase in the number of uterine NK (uNK) cells during the mid-secretory phase of the menstrual cycle, followed by further increase of dNK cells in early pregnancy, has heightened interest in their involvement during pregnancy. Extensive research has revealed various roles of dNK cells during pregnancy including the formation of new blood vessels, migration of trophoblasts, and immunological tolerance. The present review article is focused on the significance of NK cells during pregnancy and their role in pregnancy-related diseases. The article will provide an in-depth review of cellular and molecular interactions during pregnancy and related disorders, with NK cells playing a pivotal role. Moreover, this study will help researchers to understand the physiology of normal pregnancy and related complications with respect to NK cells, so that future research work can be designed to alleviate the complications.
Collapse
|
41
|
Miller D, Motomura K, Galaz J, Gershater M, Lee ED, Romero R, Gomez-Lopez N. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol 2022; 111:237-260. [PMID: 33847419 PMCID: PMC8511357 DOI: 10.1002/jlb.5ru1120-787rr] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Preeclampsia, defined as new-onset hypertension accompanied by proteinuria occurring at 20 weeks of gestation or later, is a leading cause of perinatal morbidity and mortality worldwide. The pathophysiology of this major multi-systemic syndrome includes defective deep placentation, oxidative stress, endothelial dysfunction, the presence of an anti-angiogenic state, and intravascular inflammation, among others. In this review, we provide a comprehensive overview of the cellular immune responses involved in the pathogenesis of preeclampsia. Specifically, we summarize the role of innate and adaptive immune cells in the maternal circulation, reproductive tissues, and at the maternal-fetal interface of women affected by this pregnancy complication. The major cellular subsets involved in the pathogenesis of preeclampsia are regulatory T cells, effector T cells, NK cells, monocytes, macrophages, and neutrophils. We also summarize the literature on those immune cells that have been less characterized in this clinical condition, such as γδ T cells, invariant natural killer T cells, dendritic cells, mast cells, and B cells. Moreover, we discuss in vivo studies utilizing a variety of animal models of preeclampsia to further support the role of immune cells in this disease. Finally, we highlight the existing gaps in knowledge of the immunobiology of preeclampsia that require further investigation. The goal of this review is to promote translational research leading to clinically relevant strategies that can improve adverse perinatal outcomes resulting from the obstetrical syndrome of preeclampsia.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eun D. Lee
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
42
|
Kniotek M, Roszczyk A, Zych M, Wrzosek M, Szafarowska M, Zagożdżon R, Jerzak M. Sildenafil Citrate Downregulates PDE5A mRNA Expression in Women with Recurrent Pregnancy Loss without Altering Angiogenic Factors-A Preliminary Study. J Clin Med 2021; 10:jcm10215086. [PMID: 34768607 PMCID: PMC8584603 DOI: 10.3390/jcm10215086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
In our previous study, we showed that sildenafil citrate (SC), a selective PDE5A blocker, modulated NK cell activity in patients with recurrent pregnancy loss, which correlated with positive pregnancy outcomes. It was found that NK cells had a pivotal role in decidualization, angiogenesis, spiral artery remodeling, and the regulation of trophoblast invasion. Thus, in the current study, we determined the effects of SC on angiogenic factor expression and production, as well as idNK cell activity in the presence of nitric synthase blocker L-NMMA. Methods: NK cells (CD56+) were isolated from the peripheral blood of 15 patients and 15 fertile women on MACS columns and cultured in transformation media containing IL-15, TGF-β, and AZA—a methylation agent—for 7 days in hypoxia (94% N2, 1% O2, 5% CO2). Cultures were set up in four variants: (1) with SC, (2) without SC, (3) with NO, a synthase blocker, and (4) with SC and NO synthase blocker. NK cell activity was determined after 7 days of culturing as CD107a expression after an additional 4h of stimulation with K562 erythroleukemia cells. The expression of the PDE5A, VEGF-A, PIGF, IL-8, and RENBP genes was determined with quantitative real-time PCR (qRT-PCR) using TaqMan probes and ELISA was used to measure the concentrations of VEGF-A, PLGF, IL-8, Ang-I, Ang-II, IFN–γ proteins in culture supernatants after SC supplementation. Results: SC downregulated PDE5A expression and had no effect on other studied angiogenic factors. VEGF-A expression was increased in RPL patients compared with fertile women. Similarly, VEGF production was enhanced in RPL patients’ supernatants and SC increased the concentration of PIGF in culture supernatants. SC did not affect the expression or concentration of other studied factors, nor idNK cell activity, regardless of NO synthase blockade.
Collapse
Affiliation(s)
- Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland; (M.K.); (A.R.); (M.Z.); (R.Z.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland; (M.K.); (A.R.); (M.Z.); (R.Z.)
| | - Michał Zych
- Department of Clinical Immunology, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland; (M.K.); (A.R.); (M.Z.); (R.Z.)
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
- Laboratory of Biochemistry and Clinical Chemistry, Preclinical Research Center, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- Correspondence:
| | - Monika Szafarowska
- Department of Gynecology and Oncological Gynecology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland;
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland; (M.K.); (A.R.); (M.Z.); (R.Z.)
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland
| | - Małgorzata Jerzak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
- Laboratory of Biochemistry and Clinical Chemistry, Preclinical Research Center, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- m-CLINIC 77/U9 Pulawska St., 02-595 Warsawa, Poland
| |
Collapse
|
43
|
Yang D, Dai F, Yuan M, Zheng Y, Liu S, Deng Z, Tan W, Chen L, Zhang Q, Zhao X, Cheng Y. Role of Transforming Growth Factor-β1 in Regulating Fetal-Maternal Immune Tolerance in Normal and Pathological Pregnancy. Front Immunol 2021; 12:689181. [PMID: 34531852 PMCID: PMC8438197 DOI: 10.3389/fimmu.2021.689181] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is composed of three isoforms, TGF-β1, TGF-β2, and TGF-β3. TGF-β1 is a cytokine with multiple biological functions that has been studied extensively. It plays an important role in regulating the differentiation of immune cells and maintaining immune cell functions and immune homeostasis. Pregnancy is a carefully regulated process. Controlled invasion of trophoblasts, precise coordination of immune cells and cytokines, and crosstalk between trophoblasts and immune cells play vital roles in the establishment and maintenance of normal pregnancy. In this systematic review, we summarize the role of TGF-β1 in regulating fetal-maternal immune tolerance in healthy and pathological pregnancies. During healthy pregnancy, TGF-β1 induces the production of regulatory T cells (Tregs), maintains the immunosuppressive function of Tregs, mediates the balance of M1/M2 macrophages, and regulates the function of NK cells, thus participating in maintaining fetal-maternal immune tolerance. In addition, some studies have shown that TGF-β1 is dysregulated in patients with recurrent spontaneous abortion or preeclampsia. TGF-β1 may play a role in the occurrence and development of these diseases and may be a potential target for the treatment of these diseases.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianjie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomiao Zhao
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Zhang X, Wei H. Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications. Front Immunol 2021; 12:728291. [PMID: 34512661 PMCID: PMC8426434 DOI: 10.3389/fimmu.2021.728291] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Pregnancy is a unique type of immunological process. Healthy pregnancy is associated with a series of inflammatory events: implantation (inflammation), gestation (anti-inflammation), and parturition (inflammation). As the most abundant leukocytes during pregnancy, natural killer (NK) cells are recruited and activated by ovarian hormones and have pivotal roles throughout pregnancy. During the first trimester, NK cells represent up to 50–70% of decidua lymphocytes. Differently from peripheral-blood NK cells, decidual natural killer (dNK) cells are poorly cytolytic, and they release cytokines/chemokines that induce trophoblast invasion, tissue remodeling, embryonic development, and placentation. NK cells can also shift to a cytotoxic identity and carry out immune defense if infected in utero by pathogens. At late gestation, premature activation of NK cells can lead to a breakdown of tolerance of the maternal–fetal interface and, subsequently, can result in preterm birth. This review is focused on the role of dNK cells in normal pregnancy and pathological pregnancy, including preeclampsia, recurrent spontaneous abortion, endometriosis, and recurrent implantation failure. dNK cells could be targets for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Xiuhong Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
45
|
Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol 2021; 18:2101-2113. [PMID: 34426671 PMCID: PMC8429689 DOI: 10.1038/s41423-021-00739-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Tissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.
Collapse
|
46
|
Zhang J, Jin N, Ma Y, Lu J, Wang J, Chen S, Wang X. Ovarian stimulation reduces fetal growth by dysregulating uterine natural killer cells in mice. Mol Reprod Dev 2021; 88:618-627. [PMID: 34409664 DOI: 10.1002/mrd.23528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/27/2021] [Accepted: 07/31/2021] [Indexed: 11/08/2022]
Abstract
Ovarian stimulation is associated with a higher risk of low birth weight. However, the precise mechanisms by which ovarian stimulation increases the chances of low birth weight remain unclear. In this mouse model study, in vivo developed blastocysts that were not exposed to gonadotropins were transferred into pseudopregnant females that had mated naturally (the control group), pseudopregnant females that had been administered a low dose of ovulation-stimulating hormone (the L-SO group) and pseudopregnant females that had been administered a high dose of ovulation-stimulating hormone (the H-SO group). The embryo implantation rate and fetal weight were significantly lower in the L-SO and H-SO groups than in the control group. The density of Dolichos biflorus agglutinin (DBA)+ uterine natural killer (uNK) cells in the decidua basalis was significantly lower in the L-SO and H-SO groups than in the control group. Ovarian stimulation also downregulated a variety of cytokines related to uNK cells that are involved in placental angiogenesis and trophoblast invasion. Collectively, our findings indicate that ovarian stimulation impairs DBA+ uNK cell density in the decidua basalis, which may downregulate uNK-related cytokine secretion and influence placental angiogenesis and restrict fetal growth in mice.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Ni Jin
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yuan Ma
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jingjing Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
47
|
Cao L, Tang Y, Niu X, Guo Q, Huang L. Mifepristone regulates macrophage-mediated natural killer cells function in decidua. Reprod Biol 2021; 21:100541. [PMID: 34365238 DOI: 10.1016/j.repbio.2021.100541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/03/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Mifepristone has been used for first-trimester abortion and contraception. Nevertheless, its functional mechanism still needs to be elucidated. Decidua tissues were collected from 40 pregnant women who received (20 patients) or did not receive (20 patients) mifepristone. Immunofluorescence was used to analyze the effect of mifepristone on the quantity of CD56 and CD206 in decidua. in vitro assay, NK cells were isolated from decidua tissue and macrophages were induced from THP-1 cells. NK cells were co-cultured with macrophages pre-treated different concentrations of mifepristone (0 nmol/L, 200 nmol/L, 1800 nmol/L, and 25000 nmol/L); the cells' cytotoxicity and migration ability were analyzed using MTT assay and transwell assay, respectively. Si-TGF-β1, which was utilized to knock down the TGF-β1 expression in macrophages and human recombinant TGF-β1 were used to verify whether TGF-β1 was involved in the mifepristone regulation of NK cells function. The quantity of CD56 and CD206 decreased after mifepristone treatment. Moreover, the NK cells' cytotoxicity and migration ability were significantly increased by macrophages pre-treated with mifepristone in a dose-dependent manner. Moreover, compared with the si-NC group, the MTT absorbance rate of NK cells was significantly increased in the si-TGF-β1 group and was decreased in the human recombinant TGF-β1 group. Our data suggest that mifepristone, which regulates NK cells function through macrophages, was associated with the changes in TGF-β1 secreted by macrophages. This may be one of the mechanisms of mifepristone acting as contraceptive and abortion drugs at the maternal-fetal interface.
Collapse
Affiliation(s)
- Lili Cao
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yibo Tang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaocen Niu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingyun Guo
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Huang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
48
|
Lai ZZ, Yang HL, Shi JW, Shen HH, Wang Y, Chang KK, Zhang T, Ye JF, Sun JS, Qiu XM, Li MQ. Protopanaxadiol improves endometriosis associated infertility and miscarriage in sex hormones receptors-dependent and independent manners. Int J Biol Sci 2021; 17:1878-1894. [PMID: 34131393 PMCID: PMC8193274 DOI: 10.7150/ijbs.58657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Patients with endometriosis (EMs) have high risks of infertility and spontaneous abortion. How to remodel the fertility of patients with EMs has always been the hot spot and difficulty in the field of reproductive medicine. As an aglycone of ginsenosides, protopanaxadiol (PPD) possesses pleiotropic biological functions and has high medicinal values. We aimed to investigate the effect and potential mechanism of PPD in the treatment of EMs-associated infertility and spontaneous abortion. Methods: The EMs mice models were constructed by allotransplantation. The pregnancy rates, embryo implantation numbers and embryo resorption rates of control and EMs were counted. RNA sequencing, qRT-PCR, enzyme linked immunosorbent assay (ELISA) and FCM analysis were performed to screen and confirm the expression of endometrial receptivity/decidualization-related molecules, inflammation cytokines and NK cell function-related molecules in vitro and/or in vivo. The SWISS Target Prediction, STRING and Cytoscape were carried out to predict the potential cellular sensory proteins, the protein-protein interaction (PPI) network between sensory proteins and fertility-related molecules, respectively. Micro-CT detection, liver and kidney function tests were used to evaluate the safety. Results: Here, we observe that PPD significantly up-regulates endometrial receptivity-related molecules (e.g., Lif, Igfbp1, Mmps, collagens) and restricts pelvic inflammatory response (low levels of IL-12 and IFN-γ) of macrophage, and further remodel and improve the fertility of EMs mice. Additionally, PPD increases the expression of decidualization-related genes and Collagens, and promotes the proliferation, residence, immune tolerance and anagogic functions of decidual NK cells (low levels of CD16 and NKp30, high levels of Ki67, VEGF, TGF-β) in pregnant EMs mice, and further triggers decidualization, decidual NK cell-mediated maternal-fetal immune tolerance and angiogenesis, preventing pregnant EMs mice from miscarriage. Mechanically, these effects should be dependent on ESRs, PGR and other sensory proteins (e.g., AR). Compared with GnRHa (the clinic first-line drug for EMs), PPD does not lead to the decline of serum estrogen and bone loss. Conclusion: These data suggest that PPD prevents EMs-associated infertility and miscarriage in sex hormones receptors-dependent and independent manners possibly, and provides a potential therapeutic strategy with high efficiency and low side effects to remodels the fertility of patients with EMs.
Collapse
Affiliation(s)
- Zhen-Zhen Lai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Jia-Wei Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Yan Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, 229899, Singapore
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 330022 Jiangxi, Nanchang, China
| | - Xue-Min Qiu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| |
Collapse
|
49
|
Comins-Boo A, Cristóbal I, Fernández-Arquero M, Rodríguez de Frías E, Calvo Urrutia M, Pilar Suárez L, Gasca Escorial P, Ángel Herráiz M, Sánchez-Ramón S. Functional NK surrogate biomarkers for inflammatory recurrent pregnancy loss and recurrent implantation failure. Am J Reprod Immunol 2021; 86:e13426. [PMID: 33811416 DOI: 10.1111/aji.13426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/19/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Expansion of circulating NK cells has been related to pregnancy complications. This study aims at investigating several surface NK cell markers to identify a baseline inflammatory profile in women with recurrent pregnancy loss (iRPL) and recurrent implantation failure (iRIF). METHOD OF STUDY Expression of NKp30, TIGIT, NKp46, and DNAM-1 on total peripheral blood NK subsets, regulatory (CD56bright CD16neg ), and cytotoxic (CD56dim CD16pos/neg ) NK cells was measured. RESULTS Eighty-three women were recruited and classified into two groups, 58 women with RPL and 25 with RIF. A control group of 31 fertile women was included. Expression of NKp30 on cytNK was significantly higher in RPL (p = .019) and RIF (p < .001) than HC. TIGIT on cytNK cells was also higher in both RPL (p < .001) and RIF (p < .01). An optimal cutoff of 70% for NKp30+ cytNK disclosed a sensitivity of 82%, a specificity of 55%, and 83% PPV for RPL diagnosis. A cutoff level of 83% for TIGIT+ cytNK was chosen to discriminate between healthy controls and RPL women, with PPV of 84%. CONCLUSION Our preliminary data on this RPL and RIF cohorts suggest a simple diagnostic tool by combining NKp30 and TIGIT on cytNK cells to better identify a subgroup of RPL and RIF patients with a baseline inflammatory profile. A more rigorous selection of these patients through phenotyping peripheral cytNK cells may better define patients that could benefit from an immunomodulatory treatment to prevent further pregnancy losses. The performance of these biomarkers requires further investigation and validation in independent cohorts.
Collapse
Affiliation(s)
- Alejandra Comins-Boo
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| | - Ignacio Cristóbal
- Department of Obstetrics and Gynecology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| | - Edgard Rodríguez de Frías
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| | - Marta Calvo Urrutia
- Department of Obstetrics and Gynecology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Lydia Pilar Suárez
- Department of Obstetrics and Gynecology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Gasca Escorial
- Department of Obstetrics and Gynecology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Miguel Ángel Herráiz
- Department of Obstetrics and Gynecology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
50
|
Jiang M, Shen N, Zhou H, Wang Y, Lin S, Wu J, Di W. The enrichment of neutrophil extracellular traps impair the placentas of systemic lupus erythematosus through accumulating decidual NK cells. Sci Rep 2021; 11:6870. [PMID: 33767298 PMCID: PMC7994714 DOI: 10.1038/s41598-021-86390-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/15/2021] [Indexed: 01/06/2023] Open
Abstract
Despite the advances made in the management of pregnancies in women with systemic lupus erythematosus (SLE), the rate of adverse pregnancy outcomes is still higher than that in the general population. In the last few years, neutrophil extracellular traps (NETs) were proven to be detrimental in both autoimmune diseases and placental injury. We investigated whether NETs could be detected in the placentas of pregnant individuals with SLE and explored the relationship between NETs and decidual natural killer cells (dNKs), which comprise the majority of immune cells at the maternal–fetal interface, using clinical samples and animal models. In this study, we found that the infiltration of NETs and dNKs, especially CD56+CD16+ NK cells, was significantly increased in pregnant individuals with SLE with placental insufficiency. In the murine models of SLE, the number of dNKs was significantly decreased due to the decreased formation of NETs affected by Ly6G. Moreover, the histopathological placental injury was reduced, with a remarkable increase in fetal birth weight. This study shows that NETs may contribute to immunological disorder in the placenta and the pathological changes in pregnancies with SLE, which provides a research basis for further explorations of the mechanism of SLE in placental impairment.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Nan Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Institute of Rheumatology, Shanghai, 200001, China
| | - Haibo Zhou
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Institute of Rheumatology, Shanghai, 200001, China
| | - You Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Sihan Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Jiayue Wu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China.
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|