1
|
Wei X, Jiang Y, Xia T, Du J. Oncogenic role and prognostic significance of PIMREG in melanoma. Transl Cancer Res 2025; 14:1070-1084. [PMID: 40104736 PMCID: PMC11912051 DOI: 10.21037/tcr-24-1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/19/2024] [Indexed: 03/20/2025]
Abstract
Background Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) plays a significant role in metaphase-to-anaphase transition in cell cycle. Its aberrant expression has been reported to be in correlation with the development of several tumors. However, its role in melanoma remains unknown. This study aimed to investigate the diagnostic and prognostic roles of PIMREG in skin cutaneous melanoma (SKCM). Methods The expression levels of PIMREG were analyzed in SKCM using datasets downloaded from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO). The diagnostic accuracy was assessed using the receiver operating characteristic (ROC) curve. PIMREG was correlated to the functional states of SKCM cells using CancerSEA. Additionally, a protein-protein interaction network was constructed using STRING (https://cn.string-db.org), and hub genes were identified using Cytoscape. Enrichment analysis through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) was utilized to explore the potential functions of PIMREG. The single-sample GSEA (ssGSEA) method was employed to investigate the correlation between PIMREG expression and the level of immune infiltration in SKCM. Drug sensitivity and resistance were analyzed using GSCALite and Cellminer. Results The expression of PIMREG was significantly higher in SKCM tissues. Its overexpression correlated with poor survival outcome in melanoma patients. ROC analysis also revealed that PIMREG had high diagnostic potential, with area under the ROC curve (AUC) value of 0.874. Multivariate regression also identified PIMREG could serve as an independent diagnostic indicator for SKCM. Using the web tool of CancerSEA, we demonstrated that PIMREG is involved in cell cycle, DNA repair, DNA damage, epithelial-mesenchymal transition (EMT), invasion, and proliferation. Functional enrichment analysis revealed that PIMREG might be correlated with some biological processes (BPs) and important pathways related to cancer, including Wnt signaling and epidermis development. Conclusions PIMREG is a promising diagnostic and prognostic biomarker and may be regarded as a possible therapeutic target for SKCM.
Collapse
Affiliation(s)
- Xiao Wei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yujia Jiang
- Stomatological College, Nanjing Medical University, Nanjing, China
| | - Tianxiang Xia
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Purohit S, Mandal G, Biswas S, Dalui S, Gupta A, Chowdhury SR, Bhattacharyya A. AXL/GAS6 signaling governs differentiation of tumor-associated macrophages in breast cancer. Exp Cell Res 2025; 444:114324. [PMID: 39510154 DOI: 10.1016/j.yexcr.2024.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Most epithelial cancers are infiltrated by prognostically relevant myelomonocytic cells. Immunosuppressive tumor associated macrophages (TAMs) and their precursor monocytic myeloid-derived suppressor cells (MDSCs) have previously been associated with worse outcomes in human breast cancer (BCa), yet the mechanism of immunosuppressive TAMs-polarization from myelomonocytic precursors is not completely understood. In this study, we show that persuaded AXL/GAS6 pathway alters macrophage phenotype from HLA-DRhighCD206lowCD163low classical phagocytic into HLA-DRlowCD206highCD163high immunosuppressive ones with accelerated BCa progression, and increased angiogenesis signature and invasion ability of cancer cells at tumor beds. Notably, both AXL and GAS6 expressions are upregulated in human invasive breast carcinoma, with maximum expression in triple negative histology type. Mechanistically, we demonstrate that AXL/GAS6 signaling drives immunosuppression by governing increased immunosuppressive IL10 production while dampening IL-1β expression within the tumor microenvironment (TME) of BCa. Further, AXL/GAS6 signaling promotes angiogenesis through the activation of PI3K/AKT and NF-κB signaling pathways. Our results unveil role of AXL/GAS6 axis in the differentiation of TAMs, which governs malignant growth, and suggest that therapies that uncouple AXL/GAS6 axis may exhibit therapeutic opportunity for otherwise undruggable Triple Negative Breast Cancer (TNBC) patients.
Collapse
Affiliation(s)
- Suman Purohit
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Department of Zoology, Gurudas College, 1/1, Suren Sarkar Road, Phool Bagan, Kolkata, 700054, West Bengal, India
| | - Gunjan Mandal
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Division of Cancer Biology, DBT-Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Subir Biswas
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, Maharashtra, India
| | - Shauryabrota Dalui
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Arnab Gupta
- Department of Surgical Oncology, Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Kolkata, 700063, West Bengal, India
| | - Sougata Roy Chowdhury
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Translational Immunology Laboratory, Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
3
|
Zhang L, Peng K, Gao A. Clinical diagnostic value of PIMREG on liver cancer cell phenotype and tumorigenic ability in nude mice. Am J Transl Res 2024; 16:7994-8007. [PMID: 39822525 PMCID: PMC11733372 DOI: 10.62347/yvee7827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES In vitro experiments were manipulated to investigate the effect of the PIMREG (PICALM-interacting mitotic regulator gene) expression level on the malignant phenotype of liver cancer cells and their tumorigenesis ability in nude mice, and bioinformatics were used to analyze the clinical diagnostic and prognostic value in liver cancer. METHODS After liver cancer-related data were obtained from the TCGA database and GTEx database, the differences in PIMREG expression in liver cancer and normal liver tissue were compared using bioinformatics, and their correlation with the clinical pathological characteristics of liver cancer and the prognosis value were analyzed. A knockdown and overexpression model of PIMREG was constructed using Huh7 cells. The effect of the PIMREG expression level on the malignant phenotype of Huh7 cells was tested through CCK-8 and Transwell experiments. At the same time, animal knockdown and overexpression models were constructed to study the effect of the PIMREG expression level on the tumorigenesis ability in nude mice. RESULTS Bioinformatics analysis showed that PIMREG mRNA was significantly overexpressed in liver cancer tissue (P<0.001). There were differences in T-staging (P<0.001), pathological staging (P=0.002), vascular infiltration (P<0.001), histological grading (P<0.001), and AFP levels (P<0.001) between the high- and low-expression groups. A high expression of PIMREG is associated with a poor prognosis, manifested as a significant decrease in the overall survival, disease-specific survival, and progression-free survival rates of patients (P values of 0.006, 0.014, and 0.002, respectively). In the PIMREG overexpression model, the proliferation rate and invasion ability of Huh7 cells were significantly increased, and the tumorigenesis ability of nude mice was significantly enhanced. In the knockdown model, the opposite results were observed. CONCLUSIONS The PIMREG gene is highly expressed in hepatocellular carcinoma, and increasing its expression level can significantly promote the malignant phenotype of liver cancer cells and their tumorigenesis ability in nude mice. Knocking down its expression level has the opposite effect. The expression level of PIMREG is related to the pathological stages of liver cancer patients, and its elevated expression is a risk factor for poor prognosis. PIMREG may become a new target for the clinical diagnosis, treatment, and prognosis evaluation of liver cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medical Laboratory Technology, Medical College, Yangzhou Polytechnic CollegeYangzhou 225009, Jiangsu, PR China
| | - Kaiyun Peng
- Clinical Laboratory, Yangzhou Hospital of TCMYangzhou 225009, Jiangsu, PR China
| | - Aijun Gao
- Department of Medical Laboratory Technology, Medical College, Yangzhou Polytechnic CollegeYangzhou 225009, Jiangsu, PR China
| |
Collapse
|
4
|
A N, Lyu P, Yu Y, Liu M, Cheng S, Chen M, Liu Y, Cao X. PICALM as a Novel Prognostic Biomarker and Its Correlation with Immune Infiltration in Breast Cancer. Appl Biochem Biotechnol 2024; 196:6011-6027. [PMID: 38175412 DOI: 10.1007/s12010-023-04840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
PICALM (phosphatidylinositol-binding clathrin assembly protein) mutations have been linked to a number of human disorders, including leukemia, Alzheimer's disease, and Parkinson's disease. Nevertheless, the effect of PICALM on cancer, particularly on prognosis and immune infiltration in individuals with BRCA, is unknown. We obtained the data of breast cancer patients from The Cancer Genome Atlas (TCGA) database, and analyzed the expression of PICALM in breast cancer, its impact on survival' and its role in tumor immune invasion. Finally, in vitro cellular experiments were performed to validate the results. Research has found that PICALM expression was shown to be downregulated in BRCA and to be substantially linked with clinical stage, histological type, PAM50, and age. PICALM downregulation was linked to a lower overall survival (OS) and disease-specific survival (DSS) in BRCA patients. A multivariate Cox analysis revealed that PICALM is an independent predictor of OS. The enriched pathways revealed by functional enrichment analysis included oxidative phosphorylation, angiogenesis, the TGF signaling pathway, and the IL-6/JAK/STAT3 signaling system. Furthermore, the amount of immune cell infiltration by B cells, eosinophils, mast cells, neutrophils, and T cells was positively linked with PICALM expression. Finally, we experimentally verified that low expression of PICALM can reduce proliferation, migration, and invasion in tumor cells. This evidence shows that PICALM expression impacts prognosis, immune infiltration, and pathway expression in breast cancer patients, and it might be a potential predictive biomarker for the disease.
Collapse
Affiliation(s)
- Naer A
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Pengfei Lyu
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Meiling Liu
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Shaohua Cheng
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Meiyan Chen
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Yunhong Liu
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Xuchen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
5
|
Li K, Lin H, Liu A, Qiu C, Rao Z, Wang Z, Chen S, She X, Zhu S, Li P, Liu L, Wu Q, Wang G, Xu F, Li S. SOD1-high fibroblasts derived exosomal miR-3960 promotes cisplatin resistance in triple-negative breast cancer by suppressing BRSK2-mediated phosphorylation of PIMREG. Cancer Lett 2024; 590:216842. [PMID: 38582395 DOI: 10.1016/j.canlet.2024.216842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Platinum-based neoadjuvant therapy represented by cisplatin is widely employed in treating Triple-Negative Breast Cancer (TNBC), a particularly aggressive subtype of breast cancer. Nevertheless, the emergence of cisplatin resistance presents a formidable challenge to clinical chemotherapy efficacy. Herein, we revealed the critical role of tumor microenvironment (TME) derived exosomal miR-3960 and phosphorylation at the S16 site of PIMREG in activating NF-κB signaling pathway and promoting cisplatin resistance of TNBC. Detailed regulatory mechanisms revealed that SOD1-upregulated fibroblasts secrete miR-3960 and are then transported into TNBC cells via exosomes. Within TNBC cells, miR-3960 targets and inhibits the expression of BRSK2, an AMPK protein kinase family member. Furthermore, we emphasized that BRSK2 contributes to ubiquitination degradation of PIMREG and modulates subsequent activation of the NF-κB signaling pathway by mediating PIMREG phosphorylation at the S16 site, ultimately affects the cisplatin resistance of TNBC. In conclusion, our research demonstrated the crucial role of SOD1high fibroblast, exosomal miR-3960 and S16 site phosphorylated PIMREG in regulating the NF-κB signaling pathway and cisplatin resistance of TNBC. These findings provided significant potential as biomarkers for accurately diagnosing cisplatin-resistant TNBC patients and guiding chemotherapy strategy selection.
Collapse
Affiliation(s)
- Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Han Lin
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng Qiu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zejun Rao
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengyu Zhu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lang Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shaotang Li
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
6
|
Yun WJ, Zhang L, Yang N, Cui ZG, Jiang HM, Ha MW, Yu DY, Zhao MZ, Zheng HC. FAM64A aggravates proliferation, invasion, lipid droplet formation, and chemoresistance in gastric cancer: A biomarker for aggressiveness and a gene therapy target. Drug Dev Res 2023; 84:1537-1552. [PMID: 37571819 DOI: 10.1002/ddr.22105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
FAM64A is a mitogen-induced regulator of the metaphase and anaphase transition. Here, we found that FAM64A messenger RNA (mRNA) and protein expression levels were higher in gastric cancer tissue than in normal mucosa (p < .05). FAM64A methylation was negatively correlated with FAM64A mRNA expression (p < .05). The differentially expressed genes of FAM64A were mainly involved in digestion, potassium transporting or exchanging ATPase, contractile fibers, endopeptidase, and pancreatic secretion (p < .05). The FAM64A-related genes were principally categorized into ubiquitin-mediated proteolysis, cell cycle, chromosome segregation and mitosis, microtubule binding and organization, metabolism of amino acids, cytokine receptors, lipid droplet, central nervous system, and collagen trimer (p < .05). FAM64A protein expression was lower in normal gastric mucosa than intestinal metaplasia, adenoma, and primary cancer (p < .05), negatively correlated with older age, T stage, lymphatic and venous invasion, tumor, node, metastasis stage, and dedifferentiation (p < .05), and associated with a favorable overall survival of gastric cancer patients. FAM64A overexpression promoted proliferation, antiapoptosis, migration, invasion, and epithelial-mesenchymal transition via the EGFR/Akt/mTOR/NF-κB, while the opposite effect was observed for FAM64A knockdown. FAM64A also induced chemoresistance directly or indirectly through lipid droplet formation via ING5. These results suggested that upregulation of FAM64A expression might induce aggressive phenotypes, leading to gastric carcinogenesis and its subsequent progression. Thus, FAM64A could be regarded as a prognosis biomarker and a target for gene therapy.
Collapse
Affiliation(s)
- Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Li Zhang
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ning Yang
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, Japan
| | - Hua-Mao Jiang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Min-Wen Ha
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Da-Yong Yu
- Department of Cell Biology, Basic Medical College of Chengde Medical University, Chengde, China
| | - Ming-Zhen Zhao
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
7
|
Zhao W, Chang Y, Wu Z, Jiang X, Li Y, Xie R, Fu D, Sun C, Gao J. Identification of PIMREG as a novel prognostic signature in breast cancer via integrated bioinformatics analysis and experimental validation. PeerJ 2023; 11:e15703. [PMID: 37483962 PMCID: PMC10358341 DOI: 10.7717/peerj.15703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) expression is upregulated in a variety of cancers. However, its potential role in breast cancer (BC) remains uncertain. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to gather relevant information. The expression of PIMREG and its clinical implication in BC were assessed by using Wilcoxon rank-sum test. The prognostic value of PIMREG in BC was evaluated through the Cox regression model and nomogram, and visualized by Kaplan-Meier survival curves. Genes/proteins that interact with PIMREG in BC were also identified through GeneMANIA and MaxLink. Gene set enrichment analysis (GSEA) was then performed. The correlations of the immune cell infiltration and immune checkpoints with the expression of PIMREG in BC were explored via TIMER, TISIDB, and GEPIA. Potential drugs that interact with PIMREG in BC were explored via Q-omic. The siRNA transfection, CCK-8, and transwell migration assay were conducted to explore the function of PIMREG in cell proliferation and migration. Results PIMREG expression was significantly higher in infiltrating ductal carcinoma, estrogen receptor negative BC, and progestin receptor negative BC. High expression of PIMREG was associated with poor overall survival, disease-specific survival, and progression-free interval. A nomogram based on PIMREG was developed with a satisfactory prognostic value. PIMREG also had a high diagnostic ability, with an area under the curve of 0.940. Its correlations with several immunomodulators were also observed. Immune checkpoint CTLA-4 was significantly positively associated with PIMREG. HDAC2 was found as a potentially critical link between PIMREG and BRCA1/2. In addition, PIMREG knockdown could inhibit cell proliferation and migration in BC. Conclusions The high expression of PIMREG is associated with poor prognosis and immune checkpoints in BC. HDAC2 may be a critical link between PIMREG and BRCA1/2, potentially a therapeutic target.
Collapse
Affiliation(s)
- Wenjing Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuanjin Chang
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Zhaoye Wu
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Xiaofan Jiang
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Yong Li
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruijin Xie
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Deyuan Fu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenyu Sun
- Department of General Surgery, The second Affiliated Hospital of Anhui Medical University, Anhui, China
- Department of Medicine, AMITA Health Saint Joseph Hospital, Chicago, IL, USA
| | - Ju Gao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Zheng W, Wang X, Yu Y, Ji C, Fang L. CircRNF10-DHX15 interaction suppressed breast cancer progression by antagonizing DHX15-NF-κB p65 positive feedback loop. Cell Mol Biol Lett 2023; 28:34. [PMID: 37101128 PMCID: PMC10131429 DOI: 10.1186/s11658-023-00448-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a common threat to women. The continuous activation of nuclear factor kappa B (NF-κB) signaling pathway contributes to the development of BC. This study aimed to investigate the role of a circular RNA (circRNF10) in BC progression and regulating NF-κB signaling pathway. METHODS Bioinformatics analysis, RT-qPCR, subcellular fractionation, FISH, RNase R treatment, and actinomycin D assay were used to explore the expression and characteristics of circRNF10 in BC. The biological functions of circRNF10 in BC were analyzed by MTT assay, colony formation assay, wound healing assay, and Transwell assay. RNA pulldown and RIP assay were used to identify the interaction between circRNF10 and DEAH (Asp-Glu-Ala-His) box helicase 15 (DHX15). The impact of circRNF10-DHX15 interaction on NF-κB signaling pathway was explored by western blot, IF, and co-IP. Furthermore, dual-luciferase reporter assay, ChIP, and EMSA were performed to assess the effect of NF-κB p65 on DHX15 transcription. RESULTS CircRNF10 was downregulated in BC, and lower expression of circRNF10 was related to poor prognosis of patients with BC. CircRNF10 inhibited the proliferation and migration of BC. Mechanically, circRNF10-DHX15 interaction sequestered DHX15 from NF-κB p65, thereby inhibiting the activation of NF-κB signaling pathway. On the other hand, NF-κB p65 enhanced DHX15 transcription by binding to the promoter of DHX15. Altogether, circRNF10 impaired the DHX15-NF-κB p65 positive feedback loop and suppressed the progression of BC. CONCLUSION CircRNF10-DHX15 interaction suppressed the DHX15-NF-κB p65 positive feedback loop, thereby inhibiting BC progression. These findings provide new insights in the continuous activation of NF-κB signaling pathway and raised potential therapeutic approach for BC treatment.
Collapse
Affiliation(s)
- Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchangzhong Road, Shanghai, 200072, People's Republic of China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchangzhong Road, Shanghai, 200072, People's Republic of China
| | - Yunhe Yu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchangzhong Road, Shanghai, 200072, People's Republic of China
| | - Changle Ji
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchangzhong Road, Shanghai, 200072, People's Republic of China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchangzhong Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
9
|
Bu Y, Hao J, He J, Li X, Liu Y, Ma L. Tumor-promoting properties of enolase-phosphatase 1 in breast cancer via activating the NF-κB signaling pathway. Mol Biol Rep 2023; 50:993-1004. [PMID: 36378417 DOI: 10.1007/s11033-022-08066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evidence suggests that enolase-phosphatase 1 (ENOPH1) is involved in the progression of some certain types of cancers and acts as an oncogenic factor in tumor progression. The present study aimed to identify the central role of ENOPH1 in the progression of breast cancer (BC), a highly proliferative and aggressive disease. METHODS AND RESULTS ENOPH1 expression in BC tissues was explored based on the online resource and 40 paired fresh BC and para-carcinoma samples. Functional assays were performed to evaluate the biological effect of ENOPH1 on cell proliferation and migration in ENOPH1-silenced or overexpressing BC cell lines. Blockade of NF-κB by BAY11-7082 was performed to evaluate whether ENOPH1 exerted tumor-promoting properties via regulating the NF-κB signaling pathway. Results of the present study demonstrated that ENOPH1 expression was profoundly upregulated in BC tissues compared with adjacent breast tissues, and ENOPH1 expression was associated with cancer stage, node metastasis status, and overall survival. Functional assays demonstrated that ENOPH1 overexpression significantly accelerated BC cell proliferation, migration, and invasion, while genetic knockdown of ENOPH1 yielded the opposite effects. Mechanistically, ENOPH1 activated the NF-κB pathway, as evidenced by increased expression of NF-κB downstream genes and enhanced NF-κB p65 nuclear translocation. Furthermore, the oncogenic properties of ENOPH1 in proliferation, migration, and invasion were restrained following inhibition of the NF-κB signaling pathway. CONCLUSIONS These findings indicated the significance of ENOPH1 in promoting cell proliferation and invasion, mainly through activating the NF-κB pathway, suggesting that ENOPH1 might be an attractive prognostic factor and a potential target for BC therapy.
Collapse
Affiliation(s)
- Yuhui Bu
- Breast Center, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, China.,Breast Center, Cangzhou People's Hospital, Cangzhou, Hebei, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianchao He
- Department of Breast Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Xiaolong Li
- Department of Breast Surgery, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yinfeng Liu
- Department of Breast Surgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Li Ma
- Breast Center, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, China.
| |
Collapse
|
10
|
Tang C, Qiu S, Mou W, Xu J, Wang P. Excessive activation of HOXB13/PIMREG axis promotes hepatocellular carcinoma progression and drug resistance. Biochem Biophys Res Commun 2022; 623:81-88. [PMID: 35878427 DOI: 10.1016/j.bbrc.2022.07.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
The transcription factor HOXB13 is bound up with the occurrence, progression and drug fast of many kinds of cancer. Nevertheless, the specific molecular mechanism of HOXB13 in hepatocellular carcinoma (HCC) is still unknown. This provides an obstacle to the exploration of HCC treatments targeting HOXB13. This study found that HOXB13 was up-regulated in HCC tissues. HOXB13 enhanced the multiplication and metastasis of HCC cells. It enhanced HCC cell drug and anoikis resistance. The analysis of HCC RNA seq data indicated that the expression of HOXB13 and PIMREG were positively correlated. Luciferase report assay showed that HOXB13 could activate PIMREG promoter transcription. The results of RT-qPCR and western blot showed that HOXB13 regulated the transcription of PIMREG. Western blot proved that high expression of PIMREG participated in DNA damage repair and cell cycle regulation by up-regulating RAD51, BRCA1, CDC25A, CDC25B and CDC25C and down-regulating HIPK2. This led to a significant increase in DNA repair capacity, accelerated cell cycle progression, and insensitive to DNA damage. Down-regulation of PIMREG in Hep3B cells overexpressing HOXB13 attenuated the phenotype induced by HOXB13. Therefore, HOXB13 functioned through PIMREG instead of directly regulating the transcription of RAD51, BRCA1, CDC25A, CDC25B and CDC25C. The same results were obtained in vivo. It was concluded that HOXB13 affected the expression of cell cycle and DNA repair related factors by up-regulating the transcription of PIMREG, thereby promoting the progression of HCC and enhancing the resistance of HCC to chemotherapeutics.
Collapse
Affiliation(s)
- Cui Tang
- Department of Radiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Shixiong Qiu
- Department of Radiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Wenying Mou
- Department of Radiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Jinming Xu
- Department of Radiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
11
|
Zhu H, Hu X, Feng S, Gu L, Jian Z, Zou N, Xiong X. Predictive value of PIMREG in the prognosis and response to immune checkpoint blockade of glioma patients. Front Immunol 2022; 13:946692. [PMID: 35928818 PMCID: PMC9344140 DOI: 10.3389/fimmu.2022.946692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary brain tumor in the human brain. The present study was designed to explore the expression of PIMREG in glioma and its relevance to the clinicopathological features and prognosis of glioma patients. The correlations of PIMREG with the infiltrating levels of immune cells and its relevance to the response to immunotherapy were also investigated. PIMREG expression in glioma was analyzed based on the GEO, TCGA, and HPA databases. Kaplan–Meier survival analysis was used to examine the predictive value of PIMREG for the prognosis of patients with glioma. The correlation between the infiltrating levels of immune cells in glioma and PIMREG was analyzed using the CIBERSORT algorithm and TIMRE database. The correlation between PIMREG and immune checkpoints and its correlation with the patients’ responses to immunotherapy were analyzed using R software and the GEPIA dataset. Cell experiments were conducted to verify the action of PIMREG in glioma cell migration and invasion. We found that PIMREG expression was upregulated in gliomas and positively associated with WHO grade. High PIMREG expression was correlated with poor prognosis of LGG, prognosis of all WHO grade gliomas, and prognosis of recurrent gliomas. PIMREG was related to the infiltration of several immune cell types, such as M1 and M2 macrophages, monocytes and CD8+ T cells. Moreover, PIMREG was correlated with immune checkpoints in glioma and correlated with patients’ responses to immunotherapy. KEGG pathway enrichment and GO functional analysis illustrated that PIMREG was related to multiple tumor- and immune-related pathways. In conclusion, PIMREG overexpression in gliomas is associated with poor prognosis of patients with glioma and is related to immune cell infiltrates and the responses to immunotherapy.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Ning Zou, ; Xiaoxing Xiong,
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- *Correspondence: Ning Zou, ; Xiaoxing Xiong,
| |
Collapse
|
12
|
Hashimoto K, Kodama A, Ohira M, Kimoto M, Nakagawa R, Usui Y, Ujihara Y, Hanashima A, Mohri S. Postnatal expression of cell cycle promoter Fam64a causes heart dysfunction by inhibiting cardiomyocyte differentiation through repression of Klf15. iScience 2022; 25:104337. [PMID: 35602953 PMCID: PMC9118685 DOI: 10.1016/j.isci.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction of fetal cell cycle genes into damaged adult hearts has emerged as a promising strategy for stimulating proliferation and regeneration of postmitotic adult cardiomyocytes. We have recently identified Fam64a as a fetal-specific cell cycle promoter in cardiomyocytes. Here, we analyzed transgenic mice maintaining cardiomyocyte-specific postnatal expression of Fam64a when endogenous expression was abolished. Despite an enhancement of cardiomyocyte proliferation, these mice showed impaired cardiomyocyte differentiation during postnatal development, resulting in cardiac dysfunction in later life. Mechanistically, Fam64a inhibited cardiomyocyte differentiation by repressing Klf15, leading to the accumulation of undifferentiated cardiomyocytes. In contrast, introduction of Fam64a in differentiated adult wildtype hearts improved functional recovery upon injury with augmented cell cycle and no dedifferentiation in cardiomyocytes. These data demonstrate that Fam64a inhibits cardiomyocyte differentiation during early development, but does not induce de-differentiation in once differentiated cardiomyocytes, illustrating a promising potential of Fam64a as a cell cycle promoter to attain heart regeneration. Overexpression of cell cycle promoter Fam64a in cardiomyocytes causes heart failure Fam64a inhibits cardiomyocyte differentiation during development by repressing Klf15 Transient and local induction of Fam64a in adult hearts improves recovery upon injury Fam64a activates cardiomyocyte cell cycle without dedifferentiation upon injury
Collapse
Affiliation(s)
- Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Momoko Ohira
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Misaki Kimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
13
|
Serafim RB, Cardoso C, Arfelli VC, Valente V, Archangelo LF. PIMREG expression level predicts glioblastoma patient survival and affects temozolomide resistance and DNA damage response. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166382. [DOI: 10.1016/j.bbadis.2022.166382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
|
14
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
15
|
Zhang W, Wang H, Qi Y, Li S, Geng C. Epigenetic study of early breast cancer (EBC) based on DNA methylation and gene integration analysis. Sci Rep 2022; 12:1989. [PMID: 35132081 PMCID: PMC8821628 DOI: 10.1038/s41598-022-05486-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women. The purpose of this study is to identify key molecular markers related to the diagnosis and prognosis of early breast cancer (EBC). The data of mRNA, lncRNA and DNA methylation were downloaded from The Cancer Genome Atlas (TCGA) dataset for identification of differentially expressed mRNAs (DEmRNAs), differentially expressed lncRNAs (DElncRNAs) and DNA methylation analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyzes were used to identify the biological functions of DEmRNAs. The correlation analysis between DNA methylation and DEmRNAs was carried out. Then, diagnostic analysis and prognostic analysis of identified DEmRNAs and DElncRNAs were also performed in the TCGA database. Subsequently, methylation state verification for identified DEmRNAs was performed in the GSE32393 dataset. In addition, real-time polymerase chain reaction (RT-PCR) in vitro verification of genes was performed. Finally, AC093110.1 was overexpressed in human BC cell line MCF-7 to verify cell proliferation and migration. In this study, a total of 1633 DEmRNAs, 750 DElncRNAs and 8042 differentially methylated sites were obtained, respectively. In the Venn analysis, 11 keys DEmRNAs (ALDH1L1, SPTBN1, MRGPRF, CAV2, HSPB6, PITX1, WDR86, PENK, CACNA1H, ALDH1A2 and MME) were we found. ALDH1A2, ALDH1L1, HSPB6, MME, MRGPRF, PENK, PITX1, SPTBN1, WDR86 and CAV2 may be considered as potential diagnostic gene biomarkers in EBC. Strikingly, CAV2, MME, AC093110.1 and AC120498.6 were significantly actively correlated with survival. Methylation state of identified DEmRNAs in GSE32393 dataset was consistent with the result in TCGA. AC093110.1 can affect the proliferation and migration of MCF-7. ALDH1A2, ALDH1L1, HSPB6, MME, MRGPRF, PENK, PITX1, SPTBN1, WDR86 and CAV2 may be potential diagnostic gene biomarkers of EBC. Strikingly, CAV2, MME, AC093110.1 and AC120498.6 were significantly actively correlated with survival. The identification of these genes can help in the early diagnosis and treatment of EBC. In addition, AC093110.1 can regulate SPTBN1 expression and play an important role in cell proliferation and migration, which provides clues to clarify the regulatory mechanism of EBC.
Collapse
Affiliation(s)
- Wenshan Zhang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, Hebei, 050011, People's Republic of China.,Gland Surgery, Shijiazhuang People's Hospital, Shijiazhuang, People's Republic of China
| | - Haoqi Wang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Yixin Qi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Sainan Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, Hebei, 050011, People's Republic of China.
| |
Collapse
|
16
|
Patel A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI, Bhattacharya A. Gene-Level Germline Contributions to Clinical Risk of Recurrence Scores in Black and White Patients with Breast Cancer. Cancer Res 2022; 82:25-35. [PMID: 34711612 PMCID: PMC8732329 DOI: 10.1158/0008-5472.can-21-1207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023]
Abstract
Continuous risk of recurrence scores (CRS) based on tumor gene expression are vital prognostic tools for breast cancer. Studies have shown that Black women (BW) have higher CRS than White women (WW). Although systemic injustices contribute substantially to breast cancer disparities, evidence of biological and germline contributions is emerging. In this study, we investigated germline genetic associations with CRS and CRS disparity using approaches modeled after transcriptome-wide association studies (TWAS). In the Carolina Breast Cancer Study, using race-specific predictive models of tumor expression from germline genetics, we performed race-stratified (N = 1,043 WW, 1,083 BW) linear regressions of three CRS (ROR-S: PAM50 subtype score; proliferation score; ROR-P: ROR-S plus proliferation score) on imputed tumor genetically regulated tumor expression (GReX). Bayesian multivariate regression and adaptive shrinkage tested GReX-prioritized genes for associations with tumor PAM50 expression and subtype to elucidate patterns of germline regulation underlying GReX-CRS associations. At FDR-adjusted P < 0.10, 7 and 1 GReX prioritized genes among WW and BW, respectively. Among WW, CRS were positively associated with MCM10, FAM64A, CCNB2, and MMP1 GReX and negatively associated with VAV3, PCSK6, and GNG11 GReX. Among BW, higher MMP1 GReX predicted lower proliferation score and ROR-P. GReX-prioritized gene and PAM50 tumor expression associations highlighted potential mechanisms for GReX-prioritized gene to CRS associations. Among patients with breast cancer, differential germline associations with CRS were found by race, underscoring the need for larger, diverse datasets in molecular studies of breast cancer. These findings also suggest possible germline trans-regulation of PAM50 tumor expression, with potential implications for CRS interpretation in clinical settings. SIGNIFICANCE: This study identifies race-specific genetic associations with breast cancer risk of recurrence scores and suggests mediation of these associations by PAM50 subtype and expression, with implications for clinical interpretation of these scores.
Collapse
Affiliation(s)
- Achal Patel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, United Kingdom
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Michael I Love
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California.
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, Carolina
| |
Collapse
|
17
|
Wu H, Liang J. Contributions of NFKB1 -94insertion/deletion ATTG polymorphism to the susceptibility of gastrointestinal cancers: A meta-analysis. J Cell Mol Med 2021; 25:10674-10683. [PMID: 34672421 PMCID: PMC8581328 DOI: 10.1111/jcmm.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor-kappa B1 (NF-κB1), a pleiotropic transcription factor, functions as a critical contributor to tumorigenesis. Growing numbers of case-control studies were carried out to analyse the potential contribution of NF-κB1 gene variants to gastrointestinal cancer risk, yet remains conflicting conclusions. Therefore, we conducted this most up-to-date meta-analysis to evaluate the relationship between NF-κB1 gene insertion (I)/deletion (D) polymorphism, namely -94ins/delATTG or rs28362491, and the susceptibility to gastrointestinal cancers. We searched PubMed, EMBASE and MEDLINE databases updated in April 2021 for relevant studies. Meta-analysis was carried out by software Stata11.0. The quantification of the relationship was determined by computing the combined odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). Sensitivity analysis, the funnel plot and Begg's rank correlation test were also applied. Our findings indicate that -94ins/delATTG polymorphism could not significantly impact the susceptibility to gastrointestinal cancers. Under any five genetic models, -94ins/delATTG polymorphism was not remarkedly linked to the risk of colorectal, gastric and oesophageal cancer, respectively. The significant role of -94ins/delATTG was only observed in some certain subgroups. Findings here suggest that NF-κB1 gene -94ins/delATTG polymorphism may not predispose to gastrointestinal cancer susceptibility.
Collapse
Affiliation(s)
- Hanqiang Wu
- Department of Gastrointestinal SurgeryThe First People’s Hospital of ZhaoqingZhaoqingChina
| | - Jianrong Liang
- Department of Gastrointestinal SurgeryThe First People’s Hospital of ZhaoqingZhaoqingChina
| |
Collapse
|
18
|
Zhu H, Hu X, Ye Y, Jian Z, Zhong Y, Gu L, Xiong X. Pan-Cancer Analysis of PIMREG as a Biomarker for the Prognostic and Immunological Role. Front Genet 2021; 12:687778. [PMID: 34594356 PMCID: PMC8477005 DOI: 10.3389/fgene.2021.687778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) localizes to the nucleus and can significantly elevate the nuclear localization of clathrin assembly lymphomedullary leukocythemia gene. Although there is some evidence to support an important action for PIMREG in the occurrence and development of certain cancers, currently no pan-cancer analysis of PIMREG is available. Therefore, we intended to estimate the prognostic predictive value of PIMREG and to explore its potential immune function in 33 cancer types. By using a series of bioinformatics approaches, we extracted and analyzed datasets from Oncomine, The Cancer Genome Atlas, Cancer Cell Lineage Encyclopedia (CCLE) and the Human Protein Atlas (HPA), to explore the underlying carcinogenesis of PIMREG, including relevance of PIMREG to prognosis, microsatellite instability (MSI), tumor mutation burden (TMB), tumor microenvironment (TME) and infiltration of immune cells in various types of cancer. Our findings indicate that PIMREG is highly expressed in at least 24 types of cancer, and is negatively correlated with prognosis in major cancer types. In addition, PIMREG expression was correlated with TMB in 24 cancers and with MSI in 10 cancers. We revealed that PIMREG is co-expressed with genes encoding major histocompatibility complex, immune activation, immune suppression, chemokine and chemokine receptors. We also found that the different roles of PIMREG in the infiltration of different immune cell types in different tumors. PIMREG can potentially influence the etiology or pathogenesis of cancer by acting on immune-related pathways, chemokine signaling pathway, regulation of autophagy, RIG-I like receptor signaling pathway, antigen processing and presentation, FC epsilon RI pathway, complement and coagulation cascades, T cell receptor pathway, NK cell mediated cytotoxicity and other immune-related pathways. Our study suggests that PIMREG can be applied as a prognostic marker in a variety of malignancies because of its role in tumorigenesis and immune infiltration.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Tumor-promoting function of PIMREG in glioma by activating the β-catenin pathway. 3 Biotech 2021; 11:380. [PMID: 34458056 DOI: 10.1007/s13205-021-02922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022] Open
Abstract
Glioma is the most common primary brain tumor in adults with an adverse prognosis and obscure pathogenesis. PICALM interacting mitotic regulator protein (PIMREG) functions as an oncogene in multiple types of cancer, but its function in glioma remains unknown. The Gene Expression Profiling Interactive Analysis 2 (GEPIA2, http://gepia2.cancer-pku.cn/#index) showed that PIMREG expression in the glioma tissues was higher than that in normal brain tissues. Herein, cell counting kit-8 assay and flow cytometry analysis exhibited that overexpression of PIMREG significantly promoted the proliferation of glioma cells and the transition from G1 phase of the cell cycle to S phase. Wound-healing and transwell assays showed that overexpression of PIMREG markedly enhanced the migration and invasion of glioma cells. Western blot analysis revealed that overexpression of PIMREG increased the expression of cyclin D1, cyclin E, Vimentin, matrix metalloproteinase (MMP)-2, and MMP-9, but reduced the expression of E-cadherin. In addition, overexpression of PIMREG activated the β-catenin signaling pathway, as evidenced by the increased total and nuclear expression of β-catenin and the up-regulated expression of its downstream target c-myc. Furthermore, immunofluorescence staining further indicated the increased nuclear translocation of β-catenin in PIMREG-overexpressing cells. However, knockdown of PIMREG exerted opposite effects on glioma cells. Blockade of the β-catenin signaling by ICG-001 markedly impeded the promoting effects of PIMREG on glioma cell proliferation and invasion. In conclusion, PIMREG acts as a tumor promoter in glioma at least partly via activating the β-catenin signaling pathway. This study provides new insights into the molecular mechanism for glioma pathogenesis and treatment.
Collapse
|
20
|
Wang Y, Zhou C, Luo H, Cao J, Ma C, Cheng L, Yang Y. Prognostic implications of immune-related eight-gene signature in pediatric brain tumors. ACTA ACUST UNITED AC 2021; 54:e10612. [PMID: 34008756 PMCID: PMC8130135 DOI: 10.1590/1414-431x2020e10612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/04/2021] [Indexed: 02/14/2023]
Abstract
Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors (PBT) that may lead to novel therapeutic strategies. Participants of the cohort Pediatric Brain Tumor Atlas: CBTTC (CBTTC cohort), were randomly divided into training and validation cohorts. In the training cohort, Kaplan-Meier analysis and univariate Cox regression model were applied to preliminary screening of prognostic genes. The LASSO Cox regression model was implemented to build a multi-gene signature, which was then validated in the validation and CBTTC cohorts through Kaplan-Meier, Cox, and receiver operating characteristic curve (ROC) analyses. Also, gene set enrichment analysis (GSEA) and immune infiltrating analyses were conducted to understand function annotation and the role of the signature in the tumor microenvironment. An eight-gene signature was built, which was examined by Kaplan-Meier analysis, revealing that a significant overall survival difference was seen, either in the training or validation cohorts. The eight-gene signature was further proven to be independent of other clinic-pathologic parameters via the Cox regression analyses. Moreover, ROC analysis demonstrated that this signature owned a better predictive power of PBT prognosis. Furthermore, GSEA and immune infiltrating analyses showed that the signature had close interactions with immune-related pathways and was closely related to CD8 T cells and monocytes in the tumor environment. Identifying the eight-gene signature (CBX7, JADE2, IGF2BP3, OR2W6P, PRAME, TICRR, KIF4A, and PIMREG) could accurately identify patients' prognosis and the signature had close interactions with the immunodominant tumor environment, which may provide insight into personalized prognosis prediction and new therapies for PBT patients.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neonatology and Neonatal Intensive Care, Zhumadian Central Hospital, Zhumadian, China
| | - Chuan Zhou
- Neonatal Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Chao Ma
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
| | - Lulu Cheng
- Digital Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| | - Yang Yang
- Digital Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| |
Collapse
|
21
|
Wang L, Liu W, Liu J, Wang Y, Tai J, Yin X, Tan J. Identification of Immune-Related Therapeutically Relevant Biomarkers in Breast Cancer and Breast Cancer Stem Cells by Transcriptome-Wide Analysis: A Clinical Prospective Study. Front Oncol 2021; 10:554138. [PMID: 33718103 PMCID: PMC7945036 DOI: 10.3389/fonc.2020.554138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) represent a subset of tumor cells that are responsible for recurrence and metastasis of tumors. These cells are resistant to radiotherapy and chemotherapy. Immunotherapeutic strategies that target CSCs specifically have provided initial results; however, the mechanism of action of these strategies is unclear. The data were requested from The Cancer Genome Atlas and Genotype-Tissue Expression, followed with the survival analysis and weighted gene co-expression network analysis to detect survival and stemness related genes. Patients were divided into three groups based on their immune status by applying single sample GSEA (ssGSEA) with proven dependability by ESTIMATE analysis. The filtered key genes were analyzed using oncomine, GEPIA, HPA, qRT-PCR, and functional analysis. Patients in a group with a higher stemness and a lower immune infiltration showed a worse overall survival probability, stemness and immune infiltration characteristics of breast cancer progressed in a non-linear fashion. Thirteen key genes related to stemness and immunity were identified and the functional analysis indicated their crucial roles in cell proliferation and immune escape strategies. The qRT-PCR results showed that the expression of PIMREG and MTFR2 differed in different stages of patients. Our study revealed a promising potential for CSC-target immunotherapy in the early stage of cancer and a probable value for PIMREG and MTFR2 as biomarkers and targets for immunotherapy.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuedong Yin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxiang Tan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Yang Y, Li L. Depleting microRNA-146a-3p attenuates lipopolysaccharide-induced acute lung injury via up-regulating SIRT1 and mediating NF-κB pathway. J Drug Target 2021; 29:420-429. [PMID: 33185125 DOI: 10.1080/1061186x.2020.1850738] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The role of microRNAs (miRs) in acute lung injury (ALI) has been discussed. This study is to uncover the effects of miR-146a-3p/Sirtuin-1 (SIRT1)/Nuclear factor-kappa B (NF-κB) axis on ALI. METHODS Human normal lung epithelial cell line BEAS-2B was exposed to lipopolysaccharide (LPS) to establish an in vitro model of ALI. NF-κB expression, cell activity, apoptosis, inflammatory factors, oxidative stress indices were detected in LPS-induced BEAS-2B cells after miR-146a-3p was down-regulated or SIRT1 was up-regulated. ALI rat model was established and the NF-κB expression, wet/dry weight (W/D) ratio, pathological changes, pneumonocyte apoptosis, inflammatory factors, oxidative stress indices were detected in ALI rats after miR-146a-3p was down-regulated or SIRT1 was up-regulated. The target relationship between miR-146a-3p and SIRT1 was confirmed. RESULTS Reduced SIRT1 and raised miR-146a-3p were found in LPS-induced BEAS-2B cells and ALI rats. SIRT1-overexpressing or miR-146a-3p-underexpressing up-regulated NF-κB expression, promoted viability and inhibited apoptosis of LPS-induced BEAS-2B cells in vitro, and increased NF-κB expression, down-regulated the W/D ratio, attenuated pathological changes, suppressed apoptosis, and alleviated inflammatory response and oxidative stress in the lung of ALI rats. MiR-146a-3p directly binds to the 3'UTR of SIRT1 mRNA. CONCLUSION Depleting miR-146a-3p improves ALI through up-regulating SIRT1 and mediating NF-κB pathway.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Zang W, Zheng X. Structure and functions of cellular redox sensor HSCARG/NMRAL1, a linkage among redox status, innate immunity, DNA damage response, and cancer. Free Radic Biol Med 2020; 160:768-774. [PMID: 32950687 PMCID: PMC7497778 DOI: 10.1016/j.freeradbiomed.2020.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023]
Abstract
NmrA-like proteins are NAD(P) (H) interacting molecules whose structures are similar to that of short-chain dehydrogenases. In this review, we focus on an NADP(H) sensor, HSCARG (also named NMRAL1), which is a NmrA-like protein that is widely present in mammals, and provide a comprehensive overview of the current knowledge of its structure and physiological functions. HSCARG selectively binds to the reduced form of type II coenzyme NADPH via its Rossmann fold domain. In response to reduction of intracellular NADPH concentration, HSCARG transforms from homodimer to monomer and exhibits enhanced interactions with its binding partners. In the cytoplasm, HSCARG negatively regulates innate immunity through impairing the activities of NF-κB and RLR pathways. Besides, HSCARG regulates redox homeostasis via suppression of ROS and NO generation. Intensive and persistent oxidative stress leads to translocation of HSCARG from the cytoplasm to the nucleus, where it regulates the DNA damage response. Taken together, HSCARG functions as a linkage between cellular redox status and other signaling pathways and fine-tunes cellular response to redox changes.
Collapse
Affiliation(s)
- Weicheng Zang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
24
|
Shinden Y, Hirashima T, Nohata N, Toda H, Okada R, Asai S, Tanaka T, Hozaka Y, Ohtsuka T, Kijima Y, Seki N. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes. J Hum Genet 2020; 66:519-534. [PMID: 33177704 DOI: 10.1038/s10038-020-00865-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Our recent research has revealed that passenger strands of certain microRNAs (miRNAs) function as tumor-suppressive miRNAs in cancer cells, e.g., miR-101-5p, miR-143-5p, miR-144-5p, miR-145-3p, and miR-150-3p. Thus, they are important in cancer pathogenesis. Analysis of the miRNA expression signature of breast cancer (BrCa) showed that the expression levels of two miRNAs derived from pre-miR-99a (miR-99a-5p and miR-99a-3p) were suppressed in cancerous tissues. The aim of this study was to identify oncogenic genes controlled by pre-miR-99a that are closely involved in the molecular pathogenesis of BrCa. A total of 113 genes were identified as targets of pre-miR-99a regulation (19 genes modulated by miR-99a-5p, and 95 genes regulated by miR-99a-3p) in BrCa cells. Notably, FAM64A was targeted by both of the miRNAs. Among these targets, high expression of 16 genes (C5orf22, YOD1, SLBP, F11R, C12orf49, SRPK1, ZNF250, ZNF695, CDK1, DNMT3B, TRIM25, MCM4, CDKN3, PRPS, FAM64A, and DESI2) significantly predicted reduced survival of BrCa patients based upon The Cancer Genome Atlas (TCGA) database. In this study, we focused on FAM64A and investigated the relationship between FAM64A expression and molecular pathogenesis of BrCa subtypes. The upregulation of FAM64A was confirmed in BrCa clinical specimens. Importantly, the expression of FAM64A significantly differed between patients with Luminal-A and Luminal-B subtypes. Our data strongly suggest that the aberrant expression of FAM64A is involved in the malignant transformation of BrCa. Our miRNA-based approaches (identification of tumor-suppressive miRNAs and their controlled targets) will provide novel information regarding the molecular pathogenesis of BrCa.
Collapse
Affiliation(s)
- Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tadahiro Hirashima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Hiroko Toda
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
25
|
The interplay between EBV and KSHV viral products and NF-κB pathway in oncogenesis. Infect Agent Cancer 2020; 15:62. [PMID: 33072180 PMCID: PMC7559203 DOI: 10.1186/s13027-020-00317-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023] Open
Abstract
Among the DNA tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV), account for a considerable percentage of virus-associated cancers. Deregulation of transcription factors signaling pathways is one of the most significant oncogenic characteristics of EBV and KSHV. NF-κB is a transcription factor that play a remarkable role in oncogenesis because of its function as a master regulator of a spectrum of genes involved in physiological and pathophysiological process. Constitutive activation of NF-κB is a frequent and well-described event in many human malignancies. Compelling evidence represent EBV and KSHV are capable of targeting different components of NF-κB cascade. Here, we summarized recent findings to clarify the precise relationship between dysregulation of NF-κB and EBV and KSHV-related malignancies. This essay also emphasizes on contribution of various viral products in developing cancer through alteration of NF-κB signaling pathway.
Collapse
|
26
|
RASSF1A inhibits PDGFB-driven malignant phenotypes of nasopharyngeal carcinoma cells in a YAP1-dependent manner. Cell Death Dis 2020; 11:855. [PMID: 33057010 PMCID: PMC7560678 DOI: 10.1038/s41419-020-03054-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor characterized by distant metastasis. Deletion or down-regulation of the tumor suppressor protein ras-association domain family protein1 isoform A (RASSF1A) has been confirmed to be a key event in NPC progression; however, little is known about the effects or underlying mechanism of RASSF1A on the malignant phenotype. In the present study, we observed that RASSF1A expression inhibited the malignant phenotypes of NPC cells. Stable silencing of RASSF1A in NPC cell lines induced self-renewal properties and tumorigenicity in vivo/in vitro and the acquisition of an invasive phenotype in vitro. Mechanistically, RASSF1A inactivated Yes-associated Protein 1 (YAP1), a transcriptional coactivator, through actin remodeling, which further contributed to Platelet Derived Growth Factor Subunit B (PDGFB) transcription inhibition. Treatment with ectopic PDGFB partially increased the malignancy of NPC cells with transient knockdown of YAP1. Collectively, these findings suggest that RASSF1A inhibits malignant phenotypes by repressing PDGFB expression in a YAP1-dependent manner. PDGFB may serve as a potential interest of therapeutic regulators in patients with metastatic NPC.
Collapse
|
27
|
FAM64A: A Novel Oncogenic Target of Lung Adenocarcinoma Regulated by Both Strands of miR-99a ( miR-99a-5p and miR-99a-3p). Cells 2020; 9:cells9092083. [PMID: 32932948 PMCID: PMC7564711 DOI: 10.3390/cells9092083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most aggressive cancer and the prognosis of these patients is unfavorable. We revealed that the expression levels of both strands of miR-99a (miR-99a-5p and miR-99a-3p) were significantly suppressed in several cancer tissues. Analyses of large The Cancer Genome Atlas (TCGA) datasets showed that reduced miR-99a-5p or miR-99a-3p expression is associated with worse prognoses in LUAD patients (disease-free survival (DFS): p = 0.1264 and 0.0316; overall survival (OS): p = 0.0176 and 0.0756, respectively). Ectopic expression of these miRNAs attenuated LUAD cell proliferation, suggesting their tumor-suppressive roles. Our in silico analysis revealed 23 putative target genes of pre-miR-99a in LUAD cells. Among these targets, high expressions of 19 genes were associated with worse prognoses in LUAD patients (OS: p < 0.05). Notably, FAM64A was regulated by both miR-99a-5p and miR-99a-3p in LUAD cells, and its aberrant expression was significantly associated with poor prognosis in LUAD patients (OS: p = 0.0175; DFS: p = 0.0276). FAM64A knockdown using siRNAs suggested that elevated FAM64A expression contributes to cancer progression. Aberrant FAM64A expression was detected in LUAD tissues by immunostaining. Taken together, our miRNA-based analysis might be effective for identifying prognostic and therapeutic molecules in LUAD.
Collapse
|
28
|
Wang K, Xu J, Zhao L, Liu S, Liu C, Zhang L. Prognostic lncRNA, miRNA, and mRNA Signatures in Papillary Thyroid Carcinoma. Front Genet 2020; 11:805. [PMID: 32849806 PMCID: PMC7417634 DOI: 10.3389/fgene.2020.00805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The current focus in the treatment of papillary thyroid carcinoma (PTC) is tumor progression. The aim of this study was to build RNA-based classifiers and develop a comprehensive model to provide progression-free interval (PFI) risk prediction for PTC. The RNAseq data, miRNAseq data, and clinical information of PTC were downloaded from The Cancer Genome Atlas database. Based on the differently expressed RNAs, the least absolute shrinkage and selection operator (LASSO) Cox regression model was utilized to build the RNA-based classifiers for PFI of the patients with PTC. A 6-messenger RNA (mRNA)-based classifier, a 5-long non-coding RNA (lncRNA)-based classifier, and a 4-microRNA (miRNA)-based classifier were constructed to predict the PFI. Patients with high risk based on the constructed RNA-based classifiers had worse prognosis in Kaplan–Meier curve analysis with log-rank test. The areas under the curves of the first, third, and fifth years in the training and testing set were 0.83, 0.82, and 0.82 and 0.67, 0.72, and 0.73 for the 6-mRNA-based classifier, respectively; 0.75, 0.84, and 0.85 and 0.71, 0.67, and 0.71 for the 5-lncRNA-based classifier, respectively; and 0.70, 0.77, and 0.79 and 0.74, 0.67, and 0.66 for the 4-miRNA-based classifier, respectively. The prediction capability of the three RNA-based classifiers was superior to the TNM stage system. Furthermore, a nomogram based on the verified independent prognostic factors was established for the prognostic prediction. The C-index and calibration plots indicated good predictive accuracy of the nomogram. In summary, the 6-mRNA-based classifier and 5-lncRNA-based classifier constructed in this study were independent prognostic factors for PTC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhao
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenguang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Liang CY, Huang ZG, Tang ZQ, Xiao XL, Zeng JJ, Feng ZB. FOXO1 and hsa-microRNA-204-5p affect the biologic behavior of MDA-MB-231 breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1146-1158. [PMID: 32509089 PMCID: PMC7270695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
RNA molecules and targeting microRNA (miRNA) have been reported as novel focuses in recent research on breast cancer. This study aimed to probe the expression of FOXO1 in the MDA-MB-231 cell line and to explore the target effects of FOXO1 with hsa-microRNA-204-5p (miR-204) on the biologic behavior of MDA-MB-231 cells. The expression of FOXO1 mRNA and protein in MDA-MB-231 cells were derived and verified from the public databases, literature, and experimental assays, then the downregulation of FOXO1 was confirmed in the MDA-MB-231 cell line. The target binding of FOXO1 and miR-204 was predicted by miRWalk and confirmed by luciferase reporter assays. MiR-204 targeted the 3' untranslated region of FOXO1 and reduced FOXO1 expression in miR-204-transfected cells, resulting in cell growth amplification but inhibition of cell migration and apoptosis, which were assessed using the MTT method, wound healing assays, and flow cytometry, respectively. The protein levels of serine-threonine kinase (AKT), c-jun N-terminal kinase (JNK), extracellular regulatory protein kinase (ERK), and the phosphorylated protein kinases (P-AKT, P-JNK, and P-ERK) were measured by western blot. It was found that AKT, JNK, and ERK remained constant, but P-AKT, P-JNK, and P-ERK were upregulated after miR-204 transfection. In summary, the expression of FOXO1 was downregulated in MDA-MB-231 cells; and the target binding of miR-204 and FOXO1 affected phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signal pathways, leading to different alterations of cellular activity in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhong-Qing Tang
- Department of Pathology, Gongren Hospital of WuzhouWuzhou, Guangxi, P. R. China
| | - Xiao-Ling Xiao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| |
Collapse
|
30
|
Jiang ZM, Li HB, Chen SG. PIMREG, a Marker of Proliferation, Facilitates Aggressive Development of Cholangiocarcinoma Cells Partly Through Regulating Cell Cycle-Related Markers. Technol Cancer Res Treat 2020; 19:1533033820979681. [PMID: 33356974 PMCID: PMC7768323 DOI: 10.1177/1533033820979681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) is a protein associated with cell proliferation. Its aberrant expression was reported to be correlated with the development in multiple tumors. However, its role in cholangiocarcinoma (CAA) has not yet been evaluated in detail. METHODS Data were acquired from the public TCGA database for evaluating the expression pattern of PIMREG and assessing its clinical relevance as well as its correlation with overall survival. RBE and HUH28 cell lines were selected to perform loss- and gain-of-function of PIMREG assays respectively. Quantitative real-time PCR (RT-qPCR) and western blot analyses were used to measure the mRNA and protein levels of PIMREG. Cell Counting Kit-8, colony formation tests, and Transwell assays served to measure the effect of PIMREG on the proliferative, invasive and migratory capacities of CAA cells, appropriately. Gene set enrichment analysis (GSEA) was conducted to identify PIMREG associated gene set, which was further confirmed by western blot. RESULTS PIMREG was found to be highly expressed in CAA tissues and cell lines according to the public dataset and RT-qPCR analysis, and negatively related to the prognosis of patients with CAA. Moreover, knockdown of PIMREG suppressed and overexpression of PIMREG promoted the proliferation, invasion and migration of CAA cells. Furthermore, GSEA revealed that high PIMREG expression was positively associated with cell cycle signaling. And the next western blot analysis demonstrated that silencing PIMREG resulted in a reduction on the levels of p-CDK1, CCNE1, and CCNB1, whereas PIMREG overexpression led to an opposite result. CONCLUSION The results suggested that PIMREG facilitates the growth, invasion and migration of CAA cells partly by regulating the cell cycle relative biomarkers, revealing that PIMREG may be a crucial molecule in the progression of CAA.
Collapse
Affiliation(s)
- Zhao-Ming Jiang
- Department of General Surgery, Mengyin County People’s Hospital,
Mengyin, People’s Republic of China
| | - Hong-Bin Li
- Second Department of Surgery, Menglianggu Branch of Mengyin County
People’s Hospital, Duozhuang Town, Mengyin, People’s Republic of China
| | - Shu-Guo Chen
- Department of General Surgery, Mengyin County People’s Hospital,
Mengyin, People’s Republic of China
| |
Collapse
|
31
|
Dong HT, Liu Q, Zhao T, Yao F, Xu Y, Chen B, Wu Y, Zheng X, Jin F, Li J, Xing P. Long Non-coding RNA LOXL1-AS1 Drives Breast Cancer Invasion and Metastasis by Antagonizing miR-708-5p Expression and Activity. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:696-705. [PMID: 31945728 PMCID: PMC6965509 DOI: 10.1016/j.omtn.2019.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
LOXL1-AS1, a recently characterized long non-coding RNA (lncRNA), has been reported to modulate tumor progression in several types of cancer. However, the expression and role of LOXL1-AS1 in breast cancer remain unclear. In this study, we sought to identify novel lncRNA regulators engaged in breast cancer metastasis. To this end, we examined 42 cancer-related lncRNAs between MCF7 (with low metastatic potential) and MDA-MB-231 (with high metastatic potential) cells. These lncRNAs have been found to affect the invasiveness of several cancer types, but they are still undefined in breast cancer. Among the 42 candidates, LOXL1-AS1 is significantly increased in MDA-MB-231 cells relative to MCF7 cells. We also show that LOXL1-AS1 is upregulated in breast cancer tissues and cells compared to noncancerous counterparts. Increased LOXL1-AS1 expression is correlated with tumor stage and lymph node metastasis in breast cancer patients. Biologically, overexpression of LOXL1-AS1 enhances and knockdown of LOXL1-AS1 suppresses breast cancer cell migration and invasion. In vivo studies demonstrate that depletion of LOXL1-AS1 inhibits breast cancer metastasis. Mechanistically, LOXL1-AS1 sponges miR-708-5p to increase nuclear factor κB (NF-κB) activity. LOXL1-AS1 can also interact with EZH2 protein to enhance EZH2-mediated transcriptional repression of miR-708-5p. Rescue experiments indicate that co-expression of miR-708-5p attenuates LOXL1-AS1-induced invasiveness in breast cancer. In addition, there is a negative correlation between LOXL1-AS1 and miR-708-5p expression in breast cancer specimens. Overall, LOXL1-AS1 upregulation facilitates breast cancer invasion and metastasis by blocking miR-708-5p expression and activity. LOXL1-AS1 serves as a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Hui-Ting Dong
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qun Liu
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tingting Zhao
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fan Yao
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingying Xu
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Chen
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yunfei Wu
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Zheng
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiguang Li
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Xing
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
32
|
Wang Q, Fu C, Zhao Z, Fu A. Targeted Theranostic of Cryptococcal Encephalitis by a Novel Polypyridyl Ruthenium Complex. Mol Pharm 2019; 17:145-154. [PMID: 31800255 DOI: 10.1021/acs.molpharmaceut.9b00848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cryptococcus neoformans (C. neoformans) is one of the most well-known zoonotic fungal pathogens. Cryptococcal encephalitis remains a major cause of morbidity and mortality in immunocompromised hosts. Effective and targeting killing of C. neoformans in the brain is an essential approach to prevent and treat cryptococcal encephalitis. In this study, a fluorescent polypyridyl ruthenium complex RC-7, {[phen2Ru(bpy-dinonyl)](PF6)2 (phen = 1,10-phenanthroline, bpy-dinonyl = 4,4'-dinonyl-2,2'-bipyridine)}, was screened out, which showed a highly fungicidal effect on C. neoformans. The values of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) in antifungal activities were significantly lower than fluconazole as the control. Moreover, RC-7 was prepared as a brain-targeting nanoliposome (RDP-liposome; RDP is a peptide derived from rabies virus glycoprotein) for in vivo application. The results revealed that the liposomes could accumulate in the encephalitis brain and play an antifungal role. Compared with the cryptococcal encephalitis model mice, the RDP-liposomes remarkably prolonged the survival days of the encephalitis-bearing mice from 10 days to 24 days. Here, we introduce a polypyridyl ruthenium complex that could be used as a novel antifungal agent, and this study may have a broad impact on the development of targeted delivery based on ruthenium complex-loaded liposomes for theranostics of cryptococcal encephalitis.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , China.,College of Animal Science , Southwest University , Chongqing 402460 , China
| | - Chen Fu
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , China
| | - Zizhen Zhao
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , China
| | - Ailing Fu
- College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , China
| |
Collapse
|
33
|
Parkin facilitates proteasome inhibitor-induced apoptosis via suppression of NF-κB activity in hepatocellular carcinoma. Cell Death Dis 2019; 10:719. [PMID: 31558697 PMCID: PMC6763437 DOI: 10.1038/s41419-019-1881-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
The ubiquitin–proteasome system (UPS) is a tight homeostatic control mechanism of intracellular protein degradation and turnover involved in many human diseases. Proteasome inhibitors were initially developed as anticancer agents with potential benefits in the suppression of tumor growth. However, clinical trials of patients with solid tumors fail to demonstrate the same efficacy of these proteasome inhibitors. Here, we show that Parkin, an E3 ubiquitin ligase, is implicated in tumorigenesis and therapy resistance of hepatocellular carcinoma (HCC), the most common type of primary liver cancer in adults. Lower Parkin expression correlates with poor survival in patients with HCC. Ectopic Parkin expression enhances proteasome inhibitor-induced apoptosis and tumor suppression in HCC cells in vitro and in vivo. In contrast, knockdown of Parkin expression promotes apoptosis resistance and tumor growth. Mechanistically, Parkin promotes TNF receptor-associated factor (TRAF) 2 and TRAF6 degradation and thus facilitates nuclear factor-kappa-B (NF-κB) inhibition, which finally results in apoptosis. These findings reveal a direct molecular link between Parkin and protein degradation in the control of the NF-κB pathway and may provide a novel UPS-dependent strategy for the treatment of HCC by induction of apoptosis.
Collapse
|
34
|
Bhatti MZ, Pan L, Wang T, Shi P, Li L. REGγ potentiates TGF-β/Smad signal dependent epithelial-mesenchymal transition in thyroid cancer cells. Cell Signal 2019; 64:109412. [PMID: 31491459 DOI: 10.1016/j.cellsig.2019.109412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
Thyroid cancer is the most common endocrine cancer with an increasing incidence and mortality. Epithelial-mesenchymal transition (EMT) is a biological process contributing to tumor progression, metastasis, and the acquisition of chemotherapy resistance. The impact of the REGγ proteasome activator on EMT in human thyroid cancer cells and the molecular mechanism is still unclear. Here, we found silencing REGγ in thyroid cancer cells inhibited cell migration and invasion, with concurrent upregulation of E-cadherin and Smurf2 expression. Mechanistically, REGγ dependent regulation of Smurf2, an E3 ligase for Smad3, contributed to alteration of Zeb1/2, Snail, Slug, and Twist. Consistently, TGF-β mediated suppression of E-cadherin was attenuated in REGγ deficient cells, coupled with changes in cell morphology, migration and invasion. Furthermore, xenograft metastasis mouse model showed a reduced E-cadherin expression at both mRNA and protein levels, and decreased cell migration. Taken together, our findings provided an important evidence for the role of REGγ in tumor suppression, thereby implicating REGγ as a potential anti-cancer strategy in thyroid cancer therapy.
Collapse
Affiliation(s)
- Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Linian Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Tianzhen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Peilin Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|