1
|
Al Jaf AIA, Peria S, Fabiano T, Ragnini-Wilson A. Remyelinating Drugs at a Crossroad: How to Improve Clinical Efficacy and Drug Screenings. Cells 2024; 13:1326. [PMID: 39195216 PMCID: PMC11352944 DOI: 10.3390/cells13161326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Axons wrapped around the myelin sheath enable fast transmission of neuronal signals in the Central Nervous System (CNS). Unfortunately, myelin can be damaged by injury, viral infection, and inflammatory and neurodegenerative diseases. Remyelination is a spontaneous process that can restore nerve conductivity and thus movement and cognition after a demyelination event. Cumulative evidence indicates that remyelination can be pharmacologically stimulated, either by targeting natural inhibitors of Oligodendrocyte Precursor Cells (OPCs) differentiation or by reactivating quiescent Neural Stem Cells (qNSCs) proliferation and differentiation in myelinating Oligodendrocytes (OLs). Although promising results were obtained in animal models for demyelination diseases, none of the compounds identified have passed all the clinical stages. The significant number of patients who could benefit from remyelination therapies reinforces the urgent need to reassess drug selection approaches and develop strategies that effectively promote remyelination. Integrating Artificial Intelligence (AI)-driven technologies with patient-derived cell-based assays and organoid models is expected to lead to novel strategies and drug screening pipelines to achieve this goal. In this review, we explore the current literature on these technologies and their potential to enhance the identification of more effective drugs for clinical use in CNS remyelination therapies.
Collapse
Affiliation(s)
- Aland Ibrahim Ahmed Al Jaf
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Peria
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Tommaso Fabiano
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
2
|
Marangon D, Castro e Silva JH, Cerrato V, Boda E, Lecca D. Oligodendrocyte Progenitors in Glial Scar: A Bet on Remyelination. Cells 2024; 13:1024. [PMID: 38920654 PMCID: PMC11202012 DOI: 10.3390/cells13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Juliana Helena Castro e Silva
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| |
Collapse
|
3
|
Mwema A, Muccioli GG, des Rieux A. Innovative drug delivery strategies to the CNS for the treatment of multiple sclerosis. J Control Release 2023; 364:435-457. [PMID: 37926243 DOI: 10.1016/j.jconrel.2023.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Disorders of the central nervous system (CNS), such as multiple sclerosis (MS) represent a great emotional, financial and social burden. Despite intense efforts, great unmet medical needs remain in that field. MS is an autoimmune, chronic inflammatory demyelinating disease with no curative treatment up to date. The current therapies mostly act in the periphery and seek to modulate aberrant immune responses as well as slow down the progression of the disease. Some of these therapies are associated with adverse effects related partly to their administration route and show some limitations due to their rapid clearance and inability to reach the CNS. The scientific community have recently focused their research on developing MS therapies targeting different processes within the CNS. However, delivery of therapeutics to the CNS is mainly limited by the presence of the blood-brain barrier (BBB). Therefore, there is a pressing need to develop new drug delivery strategies that ensure CNS availability to capitalize on identified therapeutic targets. Several approaches have been developed to overcome or bypass the BBB and increase delivery of therapeutics to the CNS. Among these strategies, the use of alternative routes of administration, such as the nose-to-brain (N2B) pathway, offers a promising non-invasive option in the scope of MS, as it would allow a direct transport of the drugs from the nasal cavity to the brain. Moreover, the combination of bioactive molecules within nanocarriers bring forth new opportunities for MS therapies, allowing and/or increasing their transport to the CNS. Here we will review and discuss these alternative administration routes as well as the nanocarrier approaches useful to deliver drugs for MS.
Collapse
Affiliation(s)
- Ariane Mwema
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium.
| | - Anne des Rieux
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| |
Collapse
|
4
|
Gruchot J, Lewen I, Dietrich M, Reiche L, Sindi M, Hecker C, Herrero F, Charvet B, Weber-Stadlbauer U, Hartung HP, Albrecht P, Perron H, Meyer U, Küry P. Transgenic expression of the HERV-W envelope protein leads to polarized glial cell populations and a neurodegenerative environment. Proc Natl Acad Sci U S A 2023; 120:e2308187120. [PMID: 37695891 PMCID: PMC10515160 DOI: 10.1073/pnas.2308187120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Isabel Lewen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Mustafa Sindi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
| | | | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
- Neuroscience Center Zurich, University of Zürich and ETH Zürich, CH-8057Zürich, Switzerland
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, NSW 2050Sydney, Australia
- Department of Neurology, Palacky University Olomouc, 77146Olomouc, Czech Republic
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | | | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
- Neuroscience Center Zurich, University of Zürich and ETH Zürich, CH-8057Zürich, Switzerland
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
- Department of Neurology, University of Bern, CH-3010Bern, Switzerland
| |
Collapse
|
5
|
Werner L, Gliem M, Rychlik N, Pavic G, Reiche L, Kirchhoff F, Silva Oliveira Junior M, Gruchot J, Meuth SG, Küry P, Göttle P. A Novel Ex Vivo Model to Study Therapeutic Treatments for Myelin Repair following Ischemic Damage. Int J Mol Sci 2023; 24:10972. [PMID: 37446147 DOI: 10.3390/ijms241310972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Stroke is a major reason for persistent disability due to insufficient treatment strategies beyond reperfusion, leading to oligodendrocyte death and axon demyelination, persistent inflammation and astrogliosis in peri-infarct areas. After injury, oligodendroglial precursor cells (OPCs) have been shown to compensate for myelin loss and prevent axonal loss through the replacement of lost oligodendrocytes, an inefficient process leaving axons chronically demyelinated. Phenotypic screening approaches in demyelinating paradigms revealed substances that promote myelin repair. We established an ex vivo adult organotypic coronal slice culture (OCSC) system to study repair after stroke in a resource-efficient way. Post-photothrombotic OCSCs can be manipulated for 8 d by exposure to pharmacologically active substances testing remyelination activity. OCSCs were isolated from a NG2-CreERT2-td-Tomato knock-in transgenic mouse line to analyze oligodendroglial fate/differentiation and kinetics. Parbendazole boosted differentiation of NG2+ cells and stabilized oligodendroglial fate reflected by altered expression of associated markers PDGFR-α, CC1, BCAS1 and Sox10 and GFAP. In vitro scratch assay and chemical ischemia confirmed the observed effects upon parbendazole treatment. Adult OCSCs represent a fast, reproducible, and quantifiable model to study OPC differentiation competence after stroke. Pharmacological stimulation by means of parbendazole promoted OPC differentiation.
Collapse
Affiliation(s)
- Luisa Werner
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Rychlik
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66424 Homburg, Germany
| | | | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Bayraktar A, Li X, Kim W, Zhang C, Turkez H, Shoaie S, Mardinoglu A. Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer's disease patients. J Transl Med 2023; 21:332. [PMID: 37210557 DOI: 10.1186/s12967-023-04192-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Despite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies. METHODS Here, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved. RESULTS We identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool. CONCLUSIONS This study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.
Collapse
Affiliation(s)
- Abdulahad Bayraktar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Xiangyu Li
- Bash Biotech Inc, 600 West Broadway, Suite 700, San Diego, CA, 92101, USA
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121, Stockholm, Sweden.
| |
Collapse
|
7
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
8
|
Baldassarro VA, Stanzani A, Giardino L, Calzà L, Lorenzini L. Neuroprotection and neuroregeneration: roles for the white matter. Neural Regen Res 2022; 17:2376-2380. [PMID: 35535874 PMCID: PMC9120696 DOI: 10.4103/1673-5374.335834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Efficient strategies for neuroprotection and repair are still an unmet medical need for neurodegenerative diseases and lesions of the central nervous system. Over the last few decades, a great deal of attention has been focused on white matter as a potential therapeutic target, mainly due to the discovery of the oligodendrocyte precursor cells in the adult central nervous system, a cell type able to fully repair myelin damage, and to the development of advanced imaging techniques to visualize and measure white matter lesions. The combination of these two events has greatly increased the body of research into white matter alterations in central nervous system lesions and neurodegenerative diseases and has identified the oligodendrocyte precursor cell as a putative target for white matter lesion repair, thus indirectly contributing to neuroprotection. This review aims to discuss the potential of white matter as a therapeutic target for neuroprotection in lesions and diseases of the central nervous system. Pivot conditions are discussed, specifically multiple sclerosis as a white matter disease; spinal cord injury, the acute lesion of a central nervous system component where white matter prevails over the gray matter, and Alzheimer's disease, where the white matter was considered an ancillary component until recently. We first describe oligodendrocyte precursor cell biology and developmental myelination, and its regulation by thyroid hormones, then briefly describe white matter imaging techniques, which are providing information on white matter involvement in central nervous system lesions and degenerative diseases. Finally, we discuss pathological mechanisms which interfere with myelin repair in adulthood.
Collapse
Affiliation(s)
| | - Agnese Stanzani
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna; Fondazione IRET, Ozzano Emilia, Italy
| | - Laura Calzà
- Fondazione IRET, Ozzano Emilia; Department of Pharmacy and Biotechnology, University of Bologna, Bologna; Montecatone Rehabilitation Institute, Imola, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Silva Oliveira Junior M, Schira-Heinen J, Reiche L, Han S, de Amorim VCM, Lewen I, Gruchot J, Göttle P, Akkermann R, Azim K, Küry P. Myelin repair is fostered by the corticosteroid medrysone specifically acting on astroglial subpopulations. EBioMedicine 2022; 83:104204. [PMID: 35952494 PMCID: PMC9385547 DOI: 10.1016/j.ebiom.2022.104204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/22/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background Multiple sclerosis is characterised by inflammation, oligodendrocyte loss and axonal demyelination and shows an additional impact on astrocytes, and their polarization. Although a certain degree of spontaneous myelin repair can be observed, disease progression, and aging impair regeneration efforts highlighting the need to better understand glial cell dynamics to establish specific regenerative treatments. Methods Applying a chronic demyelination model, we here analysed demyelination and remyelination related effects on astrocytes and stem cell niches and studied the consequences of medrysone application on myelin repair, and astrocyte polarization. Findings Medrysone induced recovery of mature oligodendrocytes, myelin expression and node formation. In addition, C3d/S100a10 co-expression in astrocytes was enhanced. Moreover, Timp1 expression in C3d positive astrocytes revealed another astrocytic phenotype with a myelination promoting character. Interpretation Based on these findings, specific astrocyte subpopulations are suggested to act in a myelin regenerative way and manner the regulation of which can be positively modulated by this corticosteroid. Funding This work was supported by the Jürgen Manchot Stiftung, the Research Commission of the medical faculty of the Heinrich-Heine-University of Düsseldorf, the Christiane and Claudia Hempel Foundation for clinical stem cell research and the James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung.
Collapse
|
10
|
Caprariello AV, Adams DJ. The landscape of targets and lead molecules for remyelination. Nat Chem Biol 2022; 18:925-933. [PMID: 35995862 PMCID: PMC9773298 DOI: 10.1038/s41589-022-01115-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Remyelination, or the restoration of myelin sheaths around axons in the central nervous system, is a multi-stage repair process that remains a major need for millions of patients with multiple sclerosis and other diseases of myelin. Even into adulthood, rodents and humans can generate new myelin-producing oligodendrocytes, leading to the therapeutic hypothesis that enhancing remyelination could lessen disease burden in multiple sclerosis. Multiple labs have used phenotypic screening to identify dozens of drugs that enhance oligodendrocyte formation, and several hit molecules have now advanced to clinical evaluation. Target identification studies have revealed that a large majority of these hits share the ability to inhibit a narrow range of cholesterol pathway enzymes and thereby induce cellular accumulation of specific sterol precursors to cholesterol. This Perspective surveys the recent fruitful intersection of chemical biology and remyelination and suggests multiple approaches toward new targets and lead molecules to promote remyelination.
Collapse
Affiliation(s)
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
11
|
Göttle P, Tsigaras T, Küry P. There is more than one route to achieve myelin repair. Regen Med 2022; 17:699-703. [PMID: 35815390 DOI: 10.2217/rme-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Peter Göttle
- Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Thanos Tsigaras
- Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Patrick Küry
- Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| |
Collapse
|
12
|
Early-Onset Glaucoma in egl1 Mice Homozygous for Pitx2 Mutation. Biomedicines 2022; 10:biomedicines10030516. [PMID: 35327318 PMCID: PMC8945683 DOI: 10.3390/biomedicines10030516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations in PITX2 cause Axenfeld–Rieger syndrome, with congenital glaucoma as an ocular feature. The egl1 mouse strain carries a chemically induced Pitx2 mutation and develops early-onset glaucoma. In this study, we characterized the glaucomatous features in egl1 mice. The eyes of egl1 and C57BL/6J control mice were assessed by slit lamp examination, total aqueous humor outflow facility, intraocular pressure (IOP) measurement, pattern electroretinography (PERG) recording, and histologic and immunohistochemistry assessment beginning at 3 weeks and up to 12 months of age. The egl1 mice developed elevated IOP as early as 4 weeks old. The IOP elevation was variable and asymmetric within and between the animals. The aqueous humor outflow facility was significantly reduced in 12-month-old animals. PERG detected a decreased response at 2 weeks after the development of IOP elevation. Retinal ganglion cell (RGC) loss was detected after 8 weeks of IOP elevation. Slit lamp and histologic evaluation revealed corneal opacity, iridocorneal adhesions (anterior synechiae), and ciliary body atrophy in egl1 mice. Immunohistochemistry assessment demonstrated glial cell activation and RGC axonal injury in response to IOP elevation. These results show that the eyes of egl1 mice exhibit anterior segment dysgenesis and early-onset glaucoma. The egl1 mouse strain may represent a useful model for the study of congenital glaucoma.
Collapse
|
13
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
14
|
Göttle P, Schichel K, Reiche L, Werner L, Zink A, Prigione A, Küry P. TLR4 Associated Signaling Disrupters as a New Means to Overcome HERV-W Envelope-Mediated Myelination Deficits. Front Cell Neurosci 2021; 15:777542. [PMID: 34887730 PMCID: PMC8650005 DOI: 10.3389/fncel.2021.777542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
Myelin repair in the adult central nervous system (CNS) is driven by successful differentiation of resident oligodendroglial precursor cells (OPCs) and thus constitutes a neurodegenerative process capable to compensate for functional deficits upon loss of oligodendrocytes and myelin sheaths as it is observed in multiple sclerosis (MS). The human endogenous retrovirus type W (HERV-W) represents an MS-specific pathogenic entity, and its envelope (ENV) protein was previously identified as a negative regulator of OPC maturation—hence, it is of relevance in the context of diminished myelin repair. We here focused on the activity of the ENV protein and investigated how it can be neutralized for improved remyelination. ENV-mediated activation of toll like receptor 4 (TLR4) increases inducible nitric oxide synthase (iNOS) expression, prompts nitrosative stress, and results in myelin-associated deficits, such as decreased levels of oligodendroglial maturation marker expression and morphological alterations. The intervention of TLR4 surface expression represents a potential means to rescue such ENV-dependent deficits. To this end, the rescue capacity of specific substances, either modulating V-ATPase activity or myeloid differentiation 2 (MD2)-mediated TLR4 glycosylation status, such as compound 20 (C20), L48H437, or folimycin, was analyzed, as these processes were demonstrated to be relevant for TLR4 surface expression. We found that pharmacological treatment can rescue the maturation arrest of oligodendroglial cells and their myelination capacity and can prevent iNOS induction in the presence of the ENV protein. In addition, downregulation of TLR4 surface expression was observed. Furthermore, mitochondrial integrity crucial for oligodendroglial cell differentiation was affected in the presence of ENV and ameliorated upon pharmacological treatment. Our study, therefore, provides novel insights into possible means to overcome myelination deficits associated with HERV-W ENV-mediated myelin deficits.
Collapse
Affiliation(s)
- Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kira Schichel
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Luisa Werner
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Annika Zink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
15
|
Motavaf M, Piao X. Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Front Cell Neurosci 2021; 15:764486. [PMID: 34803612 PMCID: PMC8599582 DOI: 10.3389/fncel.2021.764486] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Perinatal white matter injury (WMI) is the most common brain injury in premature infants and can lead to life-long neurological deficits such as cerebral palsy. Preterm birth is typically accompanied by inflammation and hypoxic-ischemic events. Such perinatal insults negatively impact maturation of oligodendrocytes (OLs) and cause myelination failure. At present, no treatment options are clinically available to prevent or cure WMI. Given that arrested OL maturation plays a central role in the etiology of perinatal WMI, an increased interest has emerged regarding the functional restoration of these cells as potential therapeutic strategy. Cell transplantation and promoting endogenous oligodendrocyte function are two potential options to address this major unmet need. In this review, we highlight the underlying pathophysiology of WMI with a specific focus on OL biology and their implication for the development of new therapeutic targets.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Small molecule screening as an approach to encounter inefficient myelin repair. Curr Opin Pharmacol 2021; 61:127-135. [PMID: 34753035 DOI: 10.1016/j.coph.2021.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
While current multiple sclerosis therapies are focused on immunomodulation, thereby slowing down disease progression, scientific interest has nowadays been shifted toward regenerative therapies aiming at reversing already existing deficits. The application of chemical compounds was proven to be valuable for the understanding of oligodendrogenesis and for exposing mechanisms that can boost remyelination. However, sufficient myelin repair has not been achieved yet, thus underscoring the need for more studies toward this unmet clinical goal. In this regard, many research groups have significantly contributed to the field via developing compound screening approaches or using single substances. We, here, present an overview of recent studies addressing the identification of myelin repair drugs and provide insights into technical aspects and identified substances.
Collapse
|
17
|
Wei W, Ma D, Li L, Zhang L. Progress in the Application of Drugs for the Treatment of Multiple Sclerosis. Front Pharmacol 2021; 12:724718. [PMID: 34326775 PMCID: PMC8313804 DOI: 10.3389/fphar.2021.724718] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and chronic inflammatory demyelinating disease of the central nervous system (CNS), which gives rise to focal lesion in CNS and cause physical disorders. Although environmental factors and susceptibility genes are reported to play a role in the pathogenesis of MS, its etiology still remains unclear. At present, there is no complete cure, but there are drugs that decelerate the progression of MS. Traditional therapies are disease-modifying drugs that control disease severity. MS drugs that are currently marketed mainly aim at the immune system; however, increasing attention is being paid to the development of new treatment strategies targeting the CNS. Further, the number of neuroprotective drugs is presently undergoing clinical trials and may prove useful for the improvement of neuronal function and survival. In this review, we have summarized the recent application of drugs used in MS treatment, mainly introducing new drugs with immunomodulatory, neuroprotective, or regenerative properties and their possible treatment strategies for MS. Additionally, we have presented Food and Drug Administration-approved MS treatment drugs and their administration methods, mechanisms of action, safety, and effectiveness, thereby evaluating their treatment efficacy.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
18
|
p57kip2 nuclear export as a marker of oligodendrocytes differentiation: Towards an innovative phenotyping screening for the identification of myelin repair drugs. EBioMedicine 2021; 66:103298. [PMID: 33774331 PMCID: PMC8024904 DOI: 10.1016/j.ebiom.2021.103298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
|