1
|
Shukla A, Gupta A, Srivastava S. Bacterial consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and Priestia flexa NDAS28R) and thiourea mediated amelioration of arsenic stress and growth improvement of Oryza sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:14-24. [PMID: 36584629 DOI: 10.1016/j.plaphy.2022.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The present study analyzed the effects of individual microbes and their consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and P. flexa NDAS28R) either alone or in interaction with thiourea (TU) on growth and responses of rice plants subjected to As stress (50 mg kg-1 in soil) in a pot experiment. The bacteria used in the experiment were isolated from As contaminated fields of Nadia, West Bengal and showed significant As removal potential in in vitro experiment. The results revealed significant growth improvement, biomass accumulation, and decline in malondialdehyde levels in rice plants in bacterial and TU treatments as compared to control As treatment. The best results were observed in a bacterial consortium (B1-2-3), which induced a profound increase of 65%, 43%, 127% and 83% in root length, shoot length, leaf width and fresh weight, respectively. Sulfur metabolism and cell wall synthesis were stimulated upon bacterial and TU amendment in plants. The maximum reduction in As concentration was observed in B2 in roots (-55%) and in B1-2-3 in shoot (-83%). The combined treatment of B1-2-3 + TU proved to be less effective as compared to that of B1-2-3 in terms of As reduction and growth improvement. Hence, the usage of bacterial consortium obtained in the present work is a sustainable approach, which might find relevance in field conditions to achieve As reduction in rice grains and to attain higher growth of plants without the need for additional TU supplementation.
Collapse
Affiliation(s)
- Anurakti Shukla
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Ankita Gupta
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India.
| |
Collapse
|
2
|
Joshi H, Mishra SK, Prasad V, Chauhan PS. Bacillus amyloliquefaciens modulate sugar metabolism to mitigate arsenic toxicity in Oryza sativa L. var Saryu-52. CHEMOSPHERE 2023; 311:137070. [PMID: 36334743 DOI: 10.1016/j.chemosphere.2022.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In the current study, plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SN13 (SN13) was evaluated for arsenic (As) toxicity amelioration potential under arsenate (AsV) and arsenite (AsIII) stress exposed to rice (Oryza sativa var Saryu-52) plants for 15 days. The PGPR-mediated alleviation of As toxicity was demonstrated by modulated measures such as proline, total soluble sugar, malondialdehyde content, enzymatic status, relative water content, and electrolytic leakage in treated rice seedlings under arsenic-stressed conditions as compared to the respective control. SN13 inoculation not only improved the agronomic traits but also modulated the micronutrient concentrations (Fe, Mo, Zn, Cu, and Co). The desirable results were obtained due to a significant decrease in the AsIII and AsV accumulation in the shoot (47 and 10 mg kg-1 dw), and the root (62 and 26 mg kg-1 dw) in B. amyloliquefaciens inoculated seedlings as compared to their uninoculated root (98 and 43 mg kg-1 dw) and shoot (57 and 12 mg kg-1 dw), respectively. Further, metabolome (GC-MS) analysis was performed to decipher the underlying PGPR-induced mechanisms under arsenic stress. A total of 67 distinct metabolites were identified, which influence the metabolic and physiological factors to modulate the As stress. The expression analysis of metabolism- and stress-responsive genes further proclaimed the involvement of SN13 through modulating the carbohydrate metabolism in rice seedlings, to enable improved growth and As stress tolerance.
Collapse
Affiliation(s)
- Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Vivek Prasad
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
3
|
Migration and Transformation of Arsenic in Rice and Soil under Different Nitrogen Sources in Polymetallic Sulfide Mining Areas. Life (Basel) 2022; 12:life12101541. [PMID: 36294976 PMCID: PMC9604899 DOI: 10.3390/life12101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 01/25/2023] Open
Abstract
Nitrogen (N) fertilizer affects the migration and transformation of arsenic (As) in soil and rice. We conducted pot experiments and studied the effects of 0.1, 0.2, and 0.4 g∙kg−1 N levels of NH4Cl, (NH4)2SO4, and NH4NO3 fertilizers on the As bioavailability in the As-contaminated inter-rhizosphere soil and As accumulation in the rice organs. The results showed that the concentration of bioavailable As in the rice rhizosphere soil was significantly negatively correlated with pH under the 0.4 g∙kg−1 N level of each fertilizer. At the same N level, while the As concentration was maturity stage > tillering stage in rice stems and leaves treated with NH4Cl and (NH4)2SO4, it was the opposite in roots. This suggests that the transfer of As from roots to stems and leaves mainly occurs in the late stage of rice growth under the condition of only NH4+-N fertilizer applying. The As concentration in rice aboveground organ (grains and stems−leaves) decreased with the increasing N application under the same N fertilizer treatment condition during the mature stage. In addition, the As concentration in rice grains treated with (NH4)2SO4 was the lowest. This result indicated that SO42− and NH4+-N had a significant synergistic inhibition on the As accumulation in rice grains. It was concluded that appropriate (NH4)2SO4 levels for As-contaminated paddy soils with high sulfur (S) contents would obtain rice grains with inorganic As concentrations below 0.2 mg·kg−1.
Collapse
|
4
|
Bano K, Kumar B, Alyemeni MN, Ahmad P. Protective mechanisms of sulfur against arsenic phytotoxicity in Brassica napus by regulating thiol biosynthesis, sulfur-assimilation, photosynthesis, and antioxidant response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:1-11. [PMID: 35963049 DOI: 10.1016/j.plaphy.2022.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The contamination of agricultural soils with Arsenic (As) is a significant environmental stress that restricts plant growth, metabolism, and productivity worldwide. The present study examined the role of elemental sulfur (S0) in protecting Brassica napus plants from Arsenic (As) toxicity. Arsenic (100, and 200 mg As kg-1 soil) in soil caused detrimental effects on five Brassica napus cultivars (Neelam, Teri-Uttam Jawahar, Him Sarson, GSC-101, and NUDB 26-11). The As toxicity inhibited the growth and photosynthesis indices in all cultivars with more deterioration effects in NUDB 26-11. Plant absorption and uptake of As caused the generation of oxidative injury by accumulating the reactive oxygen species (ROS), which simultaneously decreased the plant defence capability and ultimately the photosynthesis. Application of sulfur (S0, 100 or 200 mg S kg-1 soil) alleviated the negative impacts and toxicity of As on the photosynthesis and growth matrices of plants, especially under high S level. S0 also boosted the antioxidant potential of plants and toned-down lipid peroxidation and ROS aggravation such as superoxide anion (O2•-) and H2O2, hydrogen peroxide, in As affected plants. In general, S0 at 200 mg kg-1 soil more perceptibly increased the functionality of antioxidant enzymes, and non-enzymatic antioxidants, metal chelators and non-protein thiols. Further amendment of soil with S0 at fifteen days before seed sowing affected by As-induced toxic effects (added to soil at the time of sowing) considerably intensified the endogenous hydrogen sulfide (H2S) content and its regenerating enzymes D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD) that further strengthened the defense capability of plants to withstand As-stress. Our results suggest the role of H2S in the S-induced defense operation of the B. napus plants in restraining As toxicity. The current study shows that S0 as a source of S might be used to promote the growth of B. napus plants in polluted agricultural soils.
Collapse
Affiliation(s)
- Koser Bano
- Department of Botany, Govt. MVM College, Barkatullah University Bhopal, M.P, 462004, India
| | - Bharty Kumar
- Department of Botany, Govt. MVM College, Barkatullah University Bhopal, M.P, 462004, India
| | | | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India.
| |
Collapse
|
5
|
Arianmehr M, Karimi N, Souri Z. Exogenous supplementation of Sulfur (S) and Reduced Glutathione (GSH) Alleviates Arsenic Toxicity in Shoots of Isatis cappadocica Desv and Erysimum allionii L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64205-64214. [PMID: 35469387 DOI: 10.1007/s11356-022-19477-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The current study was conducted to investigate the role of sulfur (S) and reduced glutathione (GSH) in mitigating arsenic (As) toxicity in Isatis cappadocica and Erysimum allionii. These plants were exposed for 3 weeks to different concentrations (0, 400 and 800 μM) of As to measure fresh weight, total chlorophyll, proline and hydrogen peroxide (H2O2) content, As and S accumulation, and guaiacol peroxidase (POD) and glutathione S-transferase (GST) along with the supplementation of 20 mg L-1 of S and 500 μM of GSH. Results revealed the significant reduction of fresh weight (especially in E. allionii), activities of POD and GST enzymes and proline content as compare to control. However, the application of S and GSH enhanced the fresh weight. Inhibition in H2O2 accumulation and improvement in antioxidant responses were measured with the application of S and GSH. Hence, the supplementation of S and GSH enhanced fresh weight and total chlorophyll in both I. cappadocica and E. allionii by alleviating the adverse effects of As stress via decreased H2O2 content and restricted As uptake.
Collapse
Affiliation(s)
- Mitra Arianmehr
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
6
|
Peralta JM, Bianucci E, Romero-Puertas MC, Furlan A, Castro S, Travaglia C. Targeting redox metabolism of the maize-Azospirillum brasilense interaction exposed to arsenic-affected groundwater. PHYSIOLOGIA PLANTARUM 2021; 173:1189-1206. [PMID: 34331344 DOI: 10.1111/ppl.13514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arsenic in groundwater constitutes an agronomic problem due to its potential accumulation in the food chain. Among the agro-sustainable tools to reduce metal(oid)s toxicity, the use of plant growth-promoting bacteria (PGPB) becomes important. For that, and based on previous results in which significant differences of As translocation were observed when inoculating maize plants with Az39 or CD Azospirillum strains, we decided to decipher the redox metabolism changes and the antioxidant system response of maize plants inoculated when exposed to a realistic arsenate (AsV ) dose. Results showed that AsV caused morphological changes in the root exodermis. Photosynthetic pigments decreased only in CD inoculated plants, while oxidative stress evidence was detected throughout the plant, regardless of the assayed strain. The antioxidant response was strain-differential since only CD inoculated plants showed an increase in superoxide dismutase, glutathione S-transferase (GST), and glutathione reductase (GR) activities while other enzymes showed the same behavior irrespective of the inoculated strain. Gene expression assays reported that only GST23 transcript level was upregulated by arsenate, regardless of the inoculated strain. AsV diminished the glutathione (GSH) content of roots inoculated with the Az39 strain, and CD inoculated plants showed a decrease of oxidized GSH (GSSG) levels. We suggest a model in which the antioxidant response of the maize-diazotrophs system is modulated by the strain and that GSH plays a central role acting mainly as a substrate for GST. These findings generate knowledge for a suitable PGPB selection, and its scaling to an effective bioinoculant formulation for maize crops exposed to adverse environmental conditions.
Collapse
Affiliation(s)
- Juan Manuel Peralta
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Eliana Bianucci
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Ana Furlan
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Claudia Travaglia
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
7
|
Luo Z, Wang Z, Liu A, Yan Y, Wu Y, Zhang X. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44460-44469. [PMID: 32770468 DOI: 10.1007/s11356-020-10396-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Very little information is available on the stressed growth of Microcystis imposed by arsenate (As(V)) under different phosphorus (P) regimes. In this study, we examined the growth characteristics and arsenic transformation of four Microcystis species exposed under As(V) with two P sources involving dissolved inorganic phosphorus (IP) and organophosphate (D-glucose-6-phosphate disodium salt, GP). Results showed that all the four chosen Microcystis species could grow and reproduce with GP as the only P source, and the difference was insignificant when compared with IP. From optical density (OD), chlorophyll a (Chla), and actual quantum yield (Yield), the tolerance to As(V) of the chosen species was following as FACHB 905 > FACHB 1028 > FACHB 1334 > FACHB 912. Specifically, the 96 h EC50 of As(V) for FACHB 905 in IP was approx. 4 orders of magnitude higher than that in GP, but for other three algal species, the 96 h EC50 values were similar under the two given different P conditions. Furthermore, all antioxidant enzyme activities of superoxide dismutase (SOD), peroxide dismutase (POD), glutathione S-transferases (GSTs), and metalloproteinase (MTs) in algal cells were significantly increased in GP conditions. Moreover, the enzyme activities of AKP, GSTs, and MTs were inhibited with increasing As(V) levels under both IP and GP conditions. In addition, arsenite (As(III)) and methylated As of monomethylarsonic acid (MMA) and dimethylthioarsinic acid (DMA) were found in FACHB 912 and FACHB 1334 media, indicating that these Microcystis could detoxify As(V) by As biotransformation under IP and GP conditions. Specifically, As(V) reduction was elevated in media of FACHB 1334 and FACHB 905, but was decreased in media of FACHB 912 under GP conditions. Our results highlight the different P sources that impact the toxic effects of arsenate exposure on Microcystis and subsequent As biotransformation.
Collapse
Affiliation(s)
- Zhuanxi Luo
- College of Chemical Engineering and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China.
- Key Laboratory of Karst Dynamics, MNR & Guangxi, Institute of Karst Geology, CAGS, Guilin, 541004, China.
| | - Zhenhong Wang
- College of Chemistry and Environment and Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Aifen Liu
- College of Chemistry and Environment and Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Yu Yan
- College of Chemical Engineering and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen, 361021, China
| | - Xiaoyong Zhang
- Center of Environmental Emergency Response and Accident Investigation of Jiangsu Province, Nanjing, 210036, China
| |
Collapse
|
8
|
Zhen Z, Yan C, Zhao Y. Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114232. [PMID: 32114122 DOI: 10.1016/j.envpol.2020.114232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/09/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Microbial assemblages such as biofilms around aquatic plants play a major role in arsenic (As) cycling, which has often been overlooked in previous studies. In this study, arsenite (As(III))-oxidizing, arsenate (As(V))-reducing and As(III)-methylating bacteria were found to coexist in the phyllosphere of Hydrilla verticillata, and their relative activities were shown to determine As speciation, accumulation and efflux. When exposed to As(III), As(III) oxidation was not observed in treatment H(III)-B, whereas treatment H(III)+B showed a significant As(III) oxidation ability, thereby indicating that epiphytic bacteria displayed a substantial As(III) oxidation ability. When exposed to As(V), the medium only contained 5.89% As(III) after 48 h of treatment H(V)-B, while an As(III) content of 86.72% was observed after treatment H(V)+B, thereby indicating that the elevated As(III) in the medium probably originated from As(V) reduction by epiphytic bacteria. Our data also indicated that oxidizing bacteria decreased the As accumulation (by approximately 64.44% compared with that of treatment H(III)-B) in plants, while reducing bacteria played a critical role in increasing As accumulation (by approximately 3.31-fold compared with that of treatment H(V)-B) in plants. Regardless of whether As(III) or As(V) was supplied, As(III) was dominant in the plant tissue (over 75%). Furthermore, the presence of epiphytic bacteria enhanced As efflux by approximately 9-fold. Metagenomic analysis revealed highly diverse As metabolism genes in epiphytic bacterial community, particularly those related to energetic metabolism (aioAB), and As resistance (arsABCR, acr3, arsM). Phylogenetic analysis of As metabolism genes revealed evidence of both vertical inheritance and horizontal gene transfer, which might have contributed to the evolution of the As metabolism genes. Taken together, our research suggested that the diversity of As metabolism genes in epiphytic bacterial community is associated with aquatic submerged macrophytes which may play an important role in As biogeochemistry in aquatic environments.
Collapse
Affiliation(s)
- Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yuan Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Naeem M, Nabi A, Aftab T, Khan MMA. Oligomers of carrageenan regulate functional activities and artemisinin production in Artemisia annua L. exposed to arsenic stress. PROTOPLASMA 2020; 257:871-887. [PMID: 31873815 DOI: 10.1007/s00709-019-01475-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Recently, a promising technique has come forward in field of radiation-agriculture in which the natural polysaccharides are modified into useful oligomers after depolymerization. Ionizing radiation technology is a simple, pioneering, eco-friendly, and single step degradation process which is used in exploiting the efficiency of the natural polysaccharides as plant growth promoters. Arsenic (As) is a noxious and toxic to growth and development of medicinal plants. Artemisinin is obtained from the leaves of Artemisia annua L., which is effective in the treatment of malaria. The present study was undertaken to find out possible role of oligomers of irradiated carrageenan (IC) on two varieties viz. 'CIM-Arogya' (As-tolerant) and 'Jeevan Raksha' (As-sensitive) of A. annua exposed to As. The treatments applied were 0 (control), 40 IC (40 mg L-1 IC), 80 IC (80 mg L-1 IC), 45 As (45 mg kg-1 soil As), 40 IC + 45 As (40 mg L-1 IC + 45 mg kg-1 soil As), and 80 IC + 45 As (80 mg L-1 IC + 45 mg kg-1 soil As). The present study was based on various parameters namely plant fresh weight (FW), dry weight (DW), leaf area index (LAI), leaf yield (LY), chlorophyll and carotenoid content, net photosynthetic rate (PN), stomatal conductance (Gs), carbonic anhydrase activity (CA), proline content (PRO), lipid peroxidation (TBARS), endogenous ROS production (H2O2 content), catalase activity (CAT), peroxidase activity (POX), superoxide dismutase activity (SOD), ascorbate peroxidase activity (APX), As content, and artemisinin content in leaves. Plant growth and other physiological and biochemical parameters including enzymatic activities, photosynthetic activity, and its related pigments were negatively affected under As stress. Leaf-applied IC overcame oxidative stress generated due to As in plants by activating antioxidant machinery. Interestingly, leaf-applied IC enhanced the production (content and yield) of artemisinin under high As stress regardless of varieties. The oligomers of IC and As were found to be responsible for the production of endogenous H2O2 which has a pivotal role in the biosynthesis of artemisinin in A. annua.
Collapse
Affiliation(s)
- M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
10
|
Zhang H, Zhang LL, Li J, Chen M, An RD. Comparative study on the bioaccumulation of lead, cadmium and nickel and their toxic effects on the growth and enzyme defence strategies of a heavy metal accumulator, Hydrilla verticillata (L.f.) Royle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9853-9865. [PMID: 31927739 DOI: 10.1007/s11356-019-06968-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The current hydroponic experiment investigated differences in the uptake, physiological response and defence mechanisms of Hydrilla verticillata (L.f.) Royle in response to three representative toxic heavy metals. The results revealed the following: as an excellent heavy metal accumulator, H. verticillata showed an accumulation pattern of Ni > Cd > Pb within experimental scope. Fourteen days (Ni and Cd) and 21 days (Pb) were the time thresholds under the same heavy metal concentration toxicity, while 33.06 μM (Ni) and 40 μM (Cd and Pb) were the concentration thresholds under the same 21-day duration treatment, to accumulate the most amount of metals. Hence, Pb might be accumulated more if it expands the experimental duration and concentration, for it continuously increases throughout the experimental period. Reasons for these uptake differences are that plant physiological response, tolerance and resistance vary under different heavy metal stress. First, the biomass and protein content of H. verticillata were both the highest under Pb stress, indicating the plant largest tolerance to Pb stress. Second, the tolerance thresholds of three antioxidant enzymes (SOD, CAT and POD) were the highest under Pb stress. Third, the three antioxidant enzymes and two other related resistance-causing enzymes (PPO and PAL) revealed that plant resistance was strongest at low Cd concentrations (0-20 μM) and at high Pb stress levels (40 μM). Furthermore, CAT is the most important antioxidant enzyme to combat three metal stresses (average relevance: CAT(0.89) > POD(0.48) > SOD(0.42)), while PAL is more important than PPO (average relevance: PAL (0.77) > PPO(0.72)). In conclusion, Pb-polluted water is best treated with H. verticillata because of the latter's high uptake potential and strong defence capacity. These results provide an accurate, efficient and economical reference for phytoremediation. Graphical abstract.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China
| | - Ling-Lei Zhang
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China.
| | - Jia Li
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China.
| | - Min Chen
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China
| | - Rui-Dong An
- Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Srivastava S, Pathare VS, Sounderajan S, Suprasanna P. Nitrogen supply influences arsenic accumulation and stress responses of rice (Oryza sativa L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:599-606. [PMID: 30641430 DOI: 10.1016/j.jhazmat.2018.12.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
In the present study, the effects of nitrogen supply (low nitrogen: LN and high nitrogen: HN) on As stress (25 μM) responses of rice seedlings were monitored for 7 d. The mean length of primary, adventitious and lateral roots and number of adventitious and lateral roots were significantly improved in LN+As, while further reduced in HN+As, as compared to As alone treatment at 7 d. The LN+As treatment resulted in significant decline in As (848 μg g-1 DW) than that in As alone treatment (1434 μg g-1 DW) in roots but no significant effect was seen in shoot. In contrast, HN+As treatment showed significant increase in shoot As (6.86 μg g-1 DW) as compared to As alone treatment (3.43 μg g-1 DW). The level of nitrate was increased in roots but declined in shoots in As alone treatment. Surprisingly, no improvement in nitrate level was seen in HN+As as compared to that in As alone treatment in both root and shoot. The expression analysis of nitrate transporters (NRT2;1, NRT2;3a, NRT2;4) showed significant differences in expression patterns in As, LN+As and HN+As treatments. In conclusion, nitrogen supply had profound influences on responses of rice plants to As.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P., India.
| | - V S Pathare
- School of Biological Sciences, Post Office Box 646340, Washington State University, Pullman, WA, 99164-6340, USA
| | - Suvarna Sounderajan
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
| | - P Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, Maharashtra, India
| |
Collapse
|
12
|
Lin Y, Fan J, Yu J, Jiang S, Yan C, Liu J. Root activities and arsenic translocation of Avicennia marina (Forsk.) Vierh seedlings influenced by sulfur and iron amendments. MARINE POLLUTION BULLETIN 2018; 135:1174-1182. [PMID: 30301016 DOI: 10.1016/j.marpolbul.2018.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Sulfur and iron are abundant and have close, complex interactions with the biogeochemical cycle of arsenic (As) in mangrove ecosystems. A hydroponic experiment was conducted to investigate the influences of variable SO42- and Fe2+ supplies on radial oxygen loss (ROL), iron plaque formation and As translocation in Avicennia marina upon exposure to As(III). The results indicate that A. marina is an As-tolerant plant, the application of iron and sulfur not only showed positive growth effects but also induced much higher amounts of ROL-induced iron plaque formation on root surfaces. The presence of iron plaque remarkably improved the proportion of As sequestration near this area but consequently reduced the proportion of As translocation in root. Therefore, it is concluded that iron plaque may act as a barrier for protection against As, and iron and sulfur play important roles in controlling the growth and translocation of As in A. marina seedlings.
Collapse
Affiliation(s)
- Yushan Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China
| | - Jin Fan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China
| | - Jinfeng Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China
| | - Shan Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, PR China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China.
| |
Collapse
|
13
|
Feldmann J, Bluemlein K, Krupp EM, Mueller M, Wood BA. Metallomics Study in Plants Exposed to Arsenic, Mercury, Selenium and Sulphur. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:67-100. [DOI: 10.1007/978-3-319-90143-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Srivastava S, Shrivastava M. Zinc supplementation imparts tolerance to arsenite stress in Hydrilla verticillata (L.f.) Royle. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:353-359. [PMID: 27594374 DOI: 10.1080/15226514.2016.1225288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The present study was aimed to analyze the effects of external Zn supply on arsenic (As) toxicity in Hydrilla verticillata (L.f.) Royle. The plants were exposed to arsenite (AsIII; 10 μM) with or without 50 and 100 μM Zn. The level of As accumulation (μg g-1 dw) after 2 and 4 days was not significantly affected by Zn supply. The plants showed a significant stimulation of the thiol metabolism (nonprotein thiols, cysteine, glutathione-S-transferase activity) upon As(III) exposure in the presence of Zn as compared to As(III) alone treatment. Besides, they did not experience significant toxicity, measured in terms of hydrogen peroxide and malondialdehyde accumulation, which are the indicators of oxidative stress. The minus Zn plants suffered from oxidative stress probably due to insufficient increase in thiols to counteract the stress. Stress amelioration by Zn supply was also evident from antioxidant enzyme activities, which came close to control levels with increasing Zn supply as compared to the increase observed in As(III) alone treatment. Variable Zn supply also modulated the level of photosynthetic pigments and restored them to control levels. In conclusion, an improved supply of Zn to plants was found to augment their ability to withstand As toxicity through enhanced thiol metabolism.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- a Institute of Environment and Sustainable Development, Banaras Hindu University , Varanasi , UP , India
| | - Manoj Shrivastava
- b Centre for Environment Science and Climate Resilient Agriculture (CESCRA), Nuclear Research Laboratory (NRL), Indian Agricultural Research Institute , New Delhi , India
| |
Collapse
|
15
|
Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers. BIOMED RESEARCH INTERNATIONAL 2015; 2015:340812. [PMID: 26798635 PMCID: PMC4698539 DOI: 10.1155/2015/340812] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022]
Abstract
The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.
Collapse
Affiliation(s)
- Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Md. Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
16
|
Siddiqui F, Tandon PK, Srivastava S. Arsenite and arsenate impact the oxidative status and antioxidant responses in Ocimum tenuiflorum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:453-8. [PMID: 26261411 PMCID: PMC4524854 DOI: 10.1007/s12298-015-0299-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 05/10/2023]
Abstract
Biochemical responses of Ocimum tenuiflorum plants were studied upon exposure to arsenite (AsIII) and arsenate (AsV) for 1 to 10 d. Plants accumulated significant amounts of As in leaves (662 μg g(-1) dry weight; DW and 412 μg g(-1) DW in response to 100 μM AsIII and AsV exposure, respectively after 10 d). Consequently, fresh weight and growth of plants declined in a concentration dependent manner. Further, total chlorophyll and carotenoid contents also declined while oxidative stress markers increased, particularly on longer durations. Various antioxidant enzymes and thiols (cysteine and glutathione; GSH) showed significant and variable increases upon exposure to AsV and AsIII with the response being comparatively better in response to AsV. Proline increased significantly upon exposure to both AsIII and AsV. Plants thus tolerated high As concentrations through induced antioxidant machinery.
Collapse
Affiliation(s)
- Fauzia Siddiqui
- />Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - P. K. Tandon
- />Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - Sudhakar Srivastava
- />Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005 U.P. India
| |
Collapse
|
17
|
Terzi H, Yıldız M. Interactive effects of sulfur and chromium on antioxidative defense systems and BnMP1 gene expression in canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1171-1182. [PMID: 25956978 DOI: 10.1007/s10646-015-1468-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Plants suffer with combined stress of sulfur (S) deficiency and hexavalent chromium [Cr(VI)] in soils. There are a few reports on the interactive effects of S-deficiency and Cr(VI) stress. Therefore, the interactions between S nutrition and Cr(VI) stress were investigated in hydroponically grown canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance. The relatively Cr(VI)-tolerant (NK Petrol) and Cr(VI)-susceptible (Sary) cultivars were grown in S-sufficient nutrient solution and then exposed to variable S concentrations [deficient (0 mM S, -S) and sufficient (1 mM S, +S)]. The seedlings were then exposed to 100 μM Cr(VI) for 3 days. S-deficiency (-S/-Cr) and combined stress (-S/+Cr) caused a significant decrease in growth parameters of Sary than NK Petrol (P < 0.05). In -S/+Cr treatment, Cr accumulation in Sary was significantly higher than NK Petrol. The higher level of Cr in Sary increased lipid peroxidation and decreased chlorophyll content. The activities of antioxidant enzymes and cysteine content were significantly higher in NK Petrol than in Sary under combined stress. The levels of ascorbate (AsA) and glutathione (GSH) were significantly decreased by S deficiency. The expression level of metallothionein gene (BnMP1) in the tolerant NK Petrol was increased by -S/+Cr treatment. However, expression level of BnMP1 gene in the susceptible Sary was enhanced by +S/+Cr treatment. This result suggests metallothionein (MT) may be involved in Cr(VI) tolerance under S-deficient condition. In conclusion, S nutrition influenced Cr accumulation and enhanced tolerance caused by a positive effect on defense systems and gene expression.
Collapse
Affiliation(s)
- Hakan Terzi
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey,
| | | |
Collapse
|
18
|
Soil as levels and bioaccumulation in Suaeda salsa and Phragmites australis wetlands of the Yellow River Estuary, China. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301898. [PMID: 25685781 PMCID: PMC4317578 DOI: 10.1155/2015/301898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/18/2014] [Accepted: 12/24/2014] [Indexed: 11/17/2022]
Abstract
Little information is available on As contamination dynamics in the soil-plant systems of wetlands. Total arsenic (As) in soil and plant samples from Suaeda salsa and Phragmites australis wetlands was measured in the Yellow River Estuary (YRE) in summer and autumn of 2007 to investigate the seasonal changes in As concentrations in different wetlands. The results showed that soil As levels greatly exceeded the global and regional background values. As levels in soil and the roots and stems of both types of plants were much higher in summer than in autumn, whereas leaf As showed higher level in autumn. Soil sulfur was the main factor influencing As levels in Suaeda salsa wetlands, whereas soil porosity was the most important factor for Phragmites australis wetlands. The contamination factor (CF) showed moderately to considerably polluted levels of As in both wetland soils. Plant roots and leaves of Suaeda salsa had higher As concentrations and biological concentration factors (BCFs) than stems, while the leaves and stems of Phragmites australis showed higher As levels and BCFs than roots. Compared to Phragmites australis, Suaeda salsa generally showed higher translocation factor (TF), while TF values for both plant species were higher in summer than in autumn.
Collapse
|
19
|
Grifoni M, Schiavon M, Pezzarossa B, Petruzzelli G, Malagoli M. Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2423-2433. [PMID: 24677062 DOI: 10.1007/s11356-014-2811-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Arsenic (As) is recognized as a toxic pollutant in soils of many countries. Since phosphorus (P) and sulphur (S) can influence arsenic mobility and bioavailability, as well as the plant tolerance to As, phytoremediation techniques employed to clean-up As-contaminated areas should consider the interaction between As and these two nutrients. In this study, the bioavailability and accumulation of arsenate in the species Brassica juncea were compared between soil system and hydroponics in relation to P and S concentration of the growth substrate. In one case, plants were grown in pots filled with soil containing 878 mg As kg(-1). The addition of P to soil resulted in increased As desorption and significantly higher As accumulation in plants, with no effect on growth. The absence of toxic effects on plants was likely due to high S in soil, which could efficiently mitigate metal toxicity. In the hydroponic experiment, plants were grown with different combinations of As (0 or 100 μM) and P (56 or 112 μM). S at 400 μM was also added to the nutrient solution of control (-As) and As-treated plants, either individually or in combination with P. The addition of P reduced As uptake by plants, while high S resulted in higher As accumulation and lower P content. These results suggest that S can influence the interaction between P and As for the uptake by plants. The combined increase of P and S in the nutrient solution did not lead to higher accumulation of As, but enhanced As translocation from the root to the shoot. This aspect is of relevance for the phytoremediation of As-contaminated sites.
Collapse
Affiliation(s)
- Martina Grifoni
- Department of Agronomy, Food, Natural resources, Animal and Environment, University of Padova, Agripolis-Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | | | | | | | | |
Collapse
|
20
|
Siddiqui F, Tandon PK, Srivastava S. Analysis of arsenic induced physiological and biochemical responses in a medicinal plant, Withania somnifera. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:61-69. [PMID: 25648550 PMCID: PMC4312328 DOI: 10.1007/s12298-014-0278-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 05/29/2023]
Abstract
Withania somnifera has been an important herb in the Ayurvedic and indigenous medical systems for centuries in India. However, these grow as weeds mostly in the wastelands, which receive contaminated water from municipal and industrial sources. In the present investigation, plants of Withania somnifera were exposed to various concentrations of arsenate (AsV) and arsenite (AsIII) (0, 10, 25, 50, 100 μM) for 10 days and analysed for accumulation of arsenic (As) and physiological and biochemical changes. Plants showed more As accumulation upon exposure to AsIII (320 μg g(-1) DW in roots and 161 μg g(-1) DW in leaves) than to AsV (173 μg g(-1) DW in roots and 100 μg g(-1) DW in leaves) after 10 days of treatment. Consequently, AsIII exposure caused more toxicity to plants as compared to that AsV, as evaluated in terms of the level of photosynthetic pigments and oxidative stress parameters (superoxide, hydrogen peroxide and lipid peroxidation), particularly at higher concentrations and on longer durations. Plants could tolerate low concentrations (variable for AsIII and AsV) until longer durations (10 days) and high concentrations for shorter durations (1-5 days) through increase in antioxidant enzymes and by augmented synthesis of thiols. In conclusion, As tolerance potential of Withania plants on one hand advocates its prospective use for remediation under proper supervision and on the other demonstrates possible threat of As entry into humans due to medicinal uses.
Collapse
Affiliation(s)
- Fauzia Siddiqui
- />Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - P. K. Tandon
- />Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - Sudhakar Srivastava
- />Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005 U.P. India
| |
Collapse
|
21
|
Leão GA, Oliveira JA, Farnese FS, Gusman GS, Felipe RTA. Sulfur metabolism: different tolerances of two aquatic macrophytes exposed to arsenic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:36-42. [PMID: 24780231 DOI: 10.1016/j.ecoenv.2014.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/25/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
The toxicity of arsenic (As) and the mechanisms of response to this pollutant were analyzed in two aquatic plant species, one sensitive and one tolerant to the pollutant, Salvinia minima and Lemna gibba, respectively. The plants, grown in nutrient solution at pH 6.5, were exposed to As concentrations of 0.0 and 1.0mgL(-1) for 3 days. Both species accumulated As in their tissues, which resulted in increases in H2O2 production. L. gibba accumulated eleven times more As than S. minima. However, L. gibba was more tolerant, as shown by the absence of cell membrane damage and, despite greater accumulation, smaller growth reduction than S. minima. Indeed, the index of tolerance to As was twenty percent higher in L. gibba than in S. minima, which most likely results from the presence of a more efficient defense system. This defense system in L. gibba is most likely based on sulfate absorption, assimilation and metabolism. L. gibba showed an increase in sulfate absorption and adenosine-5'-triphosphate (ATP) sulfurylase activity (the first enzyme of the inorganic sulfate assimilation pathway) following exposure to As. Consequently, the plant produced greater concentrations of sulfur-containing compounds that are involved in cellular detoxification, such as glutathione and non-protein thiols, and demonstrated greater enzymatic activity of γ-glutamylcysteine synthetase, glutathione S-transferase and glutathione reductase. Therefore, the plant׳s ability to increase absorption, assimilation and metabolism of sulfur are key steps for tolerance to oxidative stress triggered by metals.
Collapse
Affiliation(s)
- G A Leão
- Department of Plant Biology, Federal University of Viçosa, Viçosa, Minas Gerais (MG) 36570-000, Brazil
| | - J A Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais (MG), 36570-000, Brazil.
| | - F S Farnese
- Department of Plant Biology, Federal University of Viçosa, Viçosa, Minas Gerais (MG) 36570-000, Brazil
| | - G S Gusman
- Department of Plant Biology, Federal University of Viçosa, Viçosa, Minas Gerais (MG) 36570-000, Brazil
| | - R T A Felipe
- Department of Plant Biology, Federal University of Viçosa, Viçosa, Minas Gerais (MG) 36570-000, Brazil
| |
Collapse
|
22
|
Watanabe T, Kouho R, Katayose T, Kitajima N, Sakamoto N, Yamaguchi N, Shinano T, Yurimoto H, Osaki M. Arsenic alters uptake and distribution of sulphur in Pteris vittata. PLANT, CELL & ENVIRONMENT 2014; 37:45-53. [PMID: 23611758 DOI: 10.1111/pce.12124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 05/27/2023]
Abstract
Low-molecular-weight thiol (LMWT) synthesis has been reported to be directly induced by arsenic (As) in Pteris vittata, an As hyperaccumulator. Sulphur (S) is a critical component of LMWTs. Here, the effect of As treatment on the uptake and distribution of S in P. vittata was investigated. In P. vittata grown under low S conditions, the presence of As in the growth medium enhanced the uptake of SO4(2-), which was used for LMWT synthesis in fronds. In contrast, As application did not affect SO4(2-) uptake in Nephrolepis exaltata, an As non-hyperaccumulator. Moreover, the isotope microscope system revealed that S absorbed with As accumulated locally in a vacuole-like organelle in epidermal cells, whereas S absorbed alone was distributed uniformly. These results suggest that S is involved in As transport and/or accumulation in P. vittata. X-ray absorption near-edge structure analysis revealed that the major As species in the fronds and roots of P. vittata were inorganic As(III) and As(V), respectively, and that As-LMWT complexes occurred as a minor species. Consequently, in case of As accumulation in P. vittata, S possibly acts as a temporary ligand for As in the form of LMWTs in intercellular and/or intracellular transport (e.g. vacuolar sequestration).
Collapse
Affiliation(s)
- Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang H, Wang T, You L, Zhong G, Shi G. Effects of vanadate supply on plant growth, Cu accumulation, and antioxidant capacities in Triticum aestivum L. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2013; 35:585-592. [PMID: 23824494 DOI: 10.1007/s10653-013-9541-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The effects of normal vanadate (V) supply (40 μM) on copper (Cu) accumulation, plant growth and reduction in Cu toxicity in wheat seedlings (Triticum aestivum L.) were investigated. The results showed Cu accumulation (mg g(-1 )dw) in the applied V treatment was about 10.2 % in shoots and 16.7 % in roots higher up on exposure to excess Cu (300 μM) than that observed only in excess Cu plants. Compared with the treatment of the normal concentration used in Hoagland's culture solution Cu (0.6 μM), excess Cu significantly induced lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (MDA). The seedlings showed apparent symptoms of Cu toxicity and plant growth were significantly inhibited by excess Cu. The applied V significantly decreased lipid peroxidation in roots caused by excess Cu and inhibited the appearance of Cu toxicity symptoms. Moreover, the applied V effectively improved the antioxidant defense system to alleviate the oxidative damage induced by Cu. Although the addition of V could promote superoxide dismutase in both shoots and roots to reduce superoxide radicals, peroxidase and catalase in shoots and ascorbate peroxidase and dehydroascorbate reductase in roots were major enzymes to eliminate H2O2 in wheat seedlings.
Collapse
Affiliation(s)
- Haiou Wang
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | | | | | | | | |
Collapse
|
24
|
Wang H, Xu R, You L, Zhong G. Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 94:1-7. [PMID: 23725675 DOI: 10.1016/j.ecoenv.2013.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 06/02/2023]
Abstract
The effects of Cu-tolerant bacteria strain USTB-O on Cu accumulation, plant growth and reduction of Cu toxicity in wheat seedlings Triticum aestivum L. were investigated. The strain was identified as belonging to Bacillus species and showed a specific tolerance to Cu through binding the Cu ions to the cell walls to reduce their entry into the cells. The bacteria not only increased Cu accumulation in wheat seedlings, but also secreted indole-3-acetic acid (IAA) and therefore promoted plant growth. Moreover, the bacteria effectively improved the antioxidant defence system to alleviate the oxidative damage induced by Cu. The bacteria promoted superoxide dismutase (SOD) in both shoots and roots to reduce superoxide radicals. The bacteria stimulated all enzymes activities under Cu exposure conditions, peroxidase (POD) and catalase (CAT) in shoots and ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) in roots were major enzymes to eliminate H2O2 in wheat seedlings.
Collapse
Affiliation(s)
- Haiou Wang
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | |
Collapse
|
25
|
A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 2013; 14:7405-32. [PMID: 23549272 PMCID: PMC3645693 DOI: 10.3390/ijms14047405] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Collapse
|
26
|
Wu H, Zhang X, Wang Q, Li L, Ji C, Liu X, Zhao J, Yin X. A metabolomic investigation on arsenic-induced toxicological effects in the clam Ruditapes philippinarum under different salinities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:1-6. [PMID: 23374855 DOI: 10.1016/j.ecoenv.2012.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 06/01/2023]
Abstract
Arsenic is an important contaminant in the Bohai marine ecosystem due to the anthropogenic activities. In this work, we investigated the toxicological effects of arsenic in Ruditapes philippinarum under different seawater salinities using NMR-based metabolomics. Under normal salinity (31.1 ppt), arsenic decreased the levels of amino acids (glutamate, β-alanine, etc.), and increased the levels of betaine and fumarate. The metabolic biomarkers including decreased threonine, histidine, ATP and fumarate were found in the muscles of arsenic-treated clams under medium salinity (23.3 ppt). However, only elevated ATP and depleted succinate were detected in the arsenic-exposed clam samples under low salinity (15.6 ppt). These differential metabolic biomarkers indicated that arsenic could induce osmotic stress and disturbance in energy metabolism in clam under normal and medium salinities. However, arsenic caused only disturbance in energy metabolism in clam under low salinity. Overall, our results demonstrated that seawater salinity could influence the toxicological effects of arsenic.
Collapse
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai Shandong 264003, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dave R, Singh PK, Tripathi P, Shri M, Dixit G, Dwivedi S, Chakrabarty D, Trivedi PK, Sharma YK, Dhankher OP, Corpas FJ, Barroso JB, Tripathi RD. Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:235-242. [PMID: 23138651 DOI: 10.1007/s00244-012-9818-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/24/2012] [Indexed: 05/05/2023]
Abstract
Thiol metabolism is the primary detoxification strategy by which rice plants tolerate arsenic (As) stress. In light of this, it is important to understand the importance of harmonised thiol metabolism with As accumulation and tolerance in rice plant. For this aim, tolerant (T) and sensitive (S) genotypes were screened from 303 rice (Oryza sativa) genotypes on exposure to 10 and 25 μM arsenite (As(III)) in hydroponic culture. On further As accumulation estimation, contrasting (13-fold difference) T (IC-340072) and S (IC-115730) genotypes were selected. This difference was further evaluated using biochemical and molecular approaches to understand involvement of thiolic metabolism vis-a-vis As accumulation in these two genotypes. Various phytochelatin (PC) species (PC(2), PC(3) and PC(4)) were detected in both the genotypes with a dominance of PC(3). However, PC concentrations were greater in the S genotype, and it was noticed that the total PC (PC(2) + PC(3 )+ PC(4))-to-As(III) molar ratio (PC-SH:As(III)) was greater in T (2.35 and 1.36 in shoots and roots, respectively) than in the S genotype (0.90 and 0.15 in shoots and roots, respectively). Expression analysis of several metal(loid) stress-related genes showed significant upregulation of glutaredoxin, sulphate transporter, and ascorbate peroxidase in the S genotype. Furthermore, enzyme activity of phytochelatin synthase and cysteine synthase was greater on As accumulation in the S compared with the T genotype. It was concluded that the T genotype synthesizes adequate thiols to detoxify metalloid load, whereas the S genotype synthesizes greater but inadequate levels of thiols to tolerate an exceedingly greater load of metalloids, as evidenced by thiol-to-metalloid molar ratios, and therefore shows a phytotoxicity response.
Collapse
Affiliation(s)
- Richa Dave
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rai AN, Srivastava S, Paladi R, Suprasanna P. Calcium supplementation modulates arsenic-induced alterations and augments arsenic accumulation in callus cultures of Indian mustard (Brassica juncea (L.) Czern.). PROTOPLASMA 2012; 249:725-36. [PMID: 21901307 DOI: 10.1007/s00709-011-0316-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/26/2011] [Indexed: 05/04/2023]
Abstract
In the present study, the effect of arsenate (AsV) exposure either alone or in combination with calcium (Ca) was investigated in callus cultures of Brassica juncea (L.) Czern. cv. Pusa Bold grown for a period up to 24 h. The AsV (250 μM) + Ca (10 mM) treatment resulted in a significantly higher level of As (464 μg g(-1) dry weight (DW)) than AsV without Ca (167 μg g(-1) DW) treatment at 24 h. Furthermore, AsV + Ca-treated calli had a higher percent of AsIII (24-47%) than calli subjected to AsV treatment (12-14%). Despite this, AsV + Ca-treated calli did not show any signs of hydrogen peroxide (H(2)O(2)) accumulation or cell death upon in vivo staining, while AsV-exposed calli had increased H(2)O(2), shrinkage of cytoplasmic contents, and cell death. Thus, AsV treatment induced oxidative stress, which in turn elicited a response of antioxidant enzymes and metabolites as compared with control and AsV + Ca treatment. The positive effects of Ca supplementation were also correlated to an increase in thiolic constituents', viz., cysteine, reduced glutathione, and glutathione reductase in AsV + Ca than in AsV treatment. An analysis of selected signaling related genes, e.g., mitogen-activated protein kinases (MAPK3 and MAPK6) and jasmonate ZIM-domain (JAZ3) suggested that AsV and AsV + Ca followed variable pathways to sense and signal the As stress. In AsV-alone treatment, jasmonate signaling was seemingly activated, while MAPK3 was not involved. In contrast, AsV + Ca treatment appeared to specifically inhibit jasmonate signaling and activate MAPK3. In conclusion, Ca supplementation may hold promise for achieving increased As accumulation in plants without compromising their tolerance.
Collapse
Affiliation(s)
- Archana Neeraj Rai
- Functional Plant Biology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | | | | | | |
Collapse
|
29
|
Castillo-Michel H, Hernandez-Viezcas JA, Servin A, Peralia-Videa JR, Gardea-Torresdey JL. Arsenic localization and speciation in the root-soil interface of the desert plant Prosopis juliflora-velutina. APPLIED SPECTROSCOPY 2012; 66:719-727. [PMID: 22732545 DOI: 10.1366/11-06336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The bioavailability and mobility of arsenic (As) in soils depends on several factors such as pH, organic matter content, speciation, and the concentration of oxides and clay minerals, among others. Plants modify As bioavailability in the rhizosphere; thus, the biogeochemical processes of As in vegetated and non-vegetated soils are different. Changes in As speciation induced by the rhizosphere can be monitored using micro-focused synchrotron-based X-ray fluorescence (μXRF) combined with μX-ray absorption near-edge spectroscopy (μXANES). This research investigated As speciation in the rhizosphere of mesquite (Prosopis juliflora-velutina) plants grown in a sandy clay loam treated with As(III) and As(V) at 40 mg kg(-1). Rhizosphere soil and freeze-dried root tissues of one-month-old plants were analyzed by bulk XAS. Bulk XAS results showed that As(V) was the predominant species in the soil (rhizosphere and non-vegetated), whereas As(III) was dominant in the root tissues from both As(V) and As(III) treated plants. μXAS and μXRF studies of thin sections from resin embedded soil cores revealed the As(III)-S interactions in root tissues and a predominant As-Fe interaction in the soil. This research demonstrated that the combination of bulk XAS and μXAS techniques is a powerful analytical technique for the study of As speciation in soil and plant samples.
Collapse
Affiliation(s)
- Hiram Castillo-Michel
- Environmental Sciences and Engineering Ph.D. Program, The University of Texas at El Paso, Texas 79968, USA
| | | | | | | | | |
Collapse
|
30
|
Srivastava S, Suprasanna P, D'Souza SF. Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. PROTOPLASMA 2011; 248:805-15. [PMID: 21188438 DOI: 10.1007/s00709-010-0256-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/10/2010] [Indexed: 05/15/2023]
Abstract
Arsenic (As) is a potential hazard to plants' health, however the mechanisms of its toxicity are yet to be properly understood. To determine the impact of redox state and energetic in stress imposition, plants of Hydrilla verticillata (L.f.) Royle, which are known to be potential accumulator of As, were exposed to 100 and 500 μM arsenate (AsV) for 4 to 96 h. Plants demonstrated significant As accumulation with the maximum being at 500 μM after 96 h (568 μg g(-1) dry weight, dw). The accumulation of As led to a significant increase in the level of reactive oxygen species, nitric oxide, carbonyl, malondialdehyde, and percentage of DNA degradation. In addition, the activity of pro-oxidant enzymes like NADPH oxidase and ascorbate oxidase also showed significant increases. These parameters collectively indicated oxidative stress, which in turn caused an increase in percentage of cell death. These negative effects were seemingly linked to an altered energetic and redox equilibrium [analyzed in terms of ATP/ADP, NADH/NAD, NADPH/NADP, reduced glutathione/oxidized glutathione, and ascorbate/dehydroascobate ratios]. Although there was significant increase in the levels of phytochelatins, the As chelating ligands, a large amount of As was presumably present as free ion particularly at 500 μM AsV, which supposedly produced toxic responses. In conclusion, the study demonstrated that the magnitude of disturbance to redox and energetic equilibrium of plants upon AsV exposure determines the extent of toxicity to plants.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | | | | |
Collapse
|
31
|
Castillo-Michel H, Hernandez-Viezcas J, Dokken KM, Marcus MA, Peralta-Videa JR, Gardea-Torresdey JL. Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using μXRF and μXANES. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7848-54. [PMID: 21842861 PMCID: PMC3185050 DOI: 10.1021/es200632s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parkinsonia florida is a plant species native to the semidesert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg(-1). Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water-soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys(3). The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil.
Collapse
Affiliation(s)
- Hiram Castillo-Michel
- Environmental Sciences and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968
| | - Jose Hernandez-Viezcas
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968
| | - Kenneth M. Dokken
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968
| | - Matthew A. Marcus
- Advanced Light Source, Beamline 10.3.2, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA
| | - Jose R. Peralta-Videa
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968
| | - Jorge L. Gardea-Torresdey
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968
- Environmental Sciences and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968
- Corresponding author phone: (915)747-5359; fax: (915)747-5748;
| |
Collapse
|
32
|
Gupta DK, Srivastava S, Huang HG, Romero-Puertas MC, Sandalio LM. Arsenic Tolerance and Detoxification Mechanisms in Plants. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-21408-0_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|