1
|
Bajetto G, Scutera S, Menotti F, Banche G, Chiaradia G, Turesso C, De Andrea M, Vallino M, Es DSV, Biolatti M, Dell’Oste V, Musso T. Antimicrobial Efficacy of a Vegetable Oil Plasticizer in PVC Matrices. Polymers (Basel) 2024; 16:1046. [PMID: 38674966 PMCID: PMC11054656 DOI: 10.3390/polym16081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The growing prevalence of bacterial and viral infections, highlighted by the recent COVID-19 pandemic, urgently calls for new antimicrobial strategies. To this end, we have synthesized and characterized a novel fatty acid epoxy-ester plasticizer for polymers, named GDE. GDE is not only sustainable and user-friendly but also demonstrates superior plasticizing properties, while its epoxy components improve the heat stability of PVC-based matrices. A key feature of GDE is its ability to confer antimicrobial properties to surfaces. Indeed, upon contact, this material can effectively kill enveloped viruses, such as herpes simplex virus type 1 (HSV-1) and the β-coronavirus prototype HCoV-OC43, but it is ineffective against nonenveloped viruses like human adenovirus (HAdV). Further analysis using transmission electron microscopy (TEM) on HSV-1 virions exposed to GDE showed significant structural damage, indicating that GDE can interfere with the viral envelope, potentially causing leakage. Moreover, GDE demonstrates antibacterial activity, albeit to a lesser extent, against notorious pathogens such as Staphylococcus aureus and Escherichia coli. Overall, this newly developed plasticizer shows significant potential as an antimicrobial agent suitable for use in both community and healthcare settings to curb the spread of infections caused by microorganisms contaminating physical surfaces.
Collapse
Affiliation(s)
- Greta Bajetto
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, 28100 Novara, Italy
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | - Francesca Menotti
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | | | | | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, 28100 Novara, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Centre (CNR), 10135 Turin, Italy;
| | - Daan S. Van Es
- Wageningen Food & Biobased Research, 6708 WG Wageningen, The Netherlands;
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | - Tiziana Musso
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| |
Collapse
|
2
|
Palsania P, Singhal K, Dar MA, Kaushik G. Food grade plastics and Bisphenol A: Associated risks, toxicity, and bioremediation approaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133474. [PMID: 38244457 DOI: 10.1016/j.jhazmat.2024.133474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Bisphenols' widespread use in day to day life has enabled its existence in various compartments of the environment. Bisphenol A (BPA) is utilized as a monomer in manufacturing polycarbonate plastics, epoxy resins, as well as flame retardants and is also considered as an endocrine disruptor. This study focuses on determining BPA concentration in daily-use food-grade plastic containers, in addition to its toxicity evaluation in environmental samples contaminated by BPA leachates. The highest concentration of BPA was observed in black poly bags (42.78 ppm), followed by slice juice bottles and infant milk bottles. Toxicity tests revealed significant impacts on Rhizobium and Chlorella sp. as a representative species of soil and aquatic environment respectively. To biodegrade the BPA, two potential strains, Brucella sp. and Brevibacillus parabrevis, were isolated from a landfill site. Qualitative and quantitative evaluation of biodegraded BPA through U-HPLC and GC-MSMS showed various metabolites of BPA. Results indicate the native bacterial isolates as potential candidates for BPA degradation while transforming this contaminant to a less toxic and hazardous form. The study also proposes the risk associated with food-grade plastic containers and recommends to establish a sustainable way for plastic waste management.
Collapse
Affiliation(s)
- Preksha Palsania
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Kirti Singhal
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Mohd Ashaf Dar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
3
|
Reyes-Cruz E, Rojas-Castañeda JC, Landero-Huerta DA, Hernández-Jardón N, Reynoso-Robles R, Juárez-Mosqueda MDL, Medrano A, Vigueras-Villaseñor RM. Disruption of gonocyte development following neonatal exposure to di (2-ethylhexyl) phthalate. Reprod Biol 2024; 24:100877. [PMID: 38461794 DOI: 10.1016/j.repbio.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/15/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Pre- and/or post-natal administrations of di(2-ethylhexyl) phthalate (DEHP) in experimental animals cause alterations in the spermatogenesis. However, the mechanism by which DEHP affects fertility is unknown and could be through alterations in the survival and differentiation of the gonocytes. The aim of the present study was to evaluate the effect of a single administration of DEHP in newborn mice on gonocytic proliferation, differentiation and survival and its long-term effects on seminiferous epithelium and sperm quality. BALB/c mice distributed into Control and DEHP groups were used. Each animal in the DEHP group was given a single dose of 500 mg/Kg at birth. The animals were analyzed at 1, 2, 4, 6, 8, 10 and 70 days postpartum (dpp). Testicular tissues were processed for morphological analysis to determine the different types of gonocytes, differentiation index, seminiferous epithelial alterations, and immunoreactivity to Stra8, Pcna and Vimentin proteins. Long-term evaluation of the seminiferous epithelium and sperm quality were carried out at 70 dpp. The DEHP animal group presented gonocytic degeneration with delayed differentiation, causing a reduction in the population of spermatogonia (Stra8 +) in the cellular proliferation (Pcna+) and disorganization of Vimentin filaments. These events had long-term repercussions on the quality of the seminiferous epithelium and semen. Our study demonstrates that at birth, there is a period that the testes are extremely sensitive to DEHP exposure, which leads to gonocytic degeneration and delay in their differentiation. This situation can have long-term repercussions or permanent effects on the quality of the seminiferous epithelium and sperm parameters.
Collapse
Affiliation(s)
- Estefanía Reyes-Cruz
- Programa Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Norma Hernández-Jardón
- Programa Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Reynoso-Robles
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, SS, Mexico City, Mexico
| | - María de Lourdes Juárez-Mosqueda
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Medrano
- Laboratorio de Reproducción Animal, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | | |
Collapse
|
4
|
Štefánik P, Morová M, Herichová I. Impact of Long-Lasting Environmental Factors on Regulation Mediated by the miR-34 Family. Biomedicines 2024; 12:424. [PMID: 38398026 PMCID: PMC10887245 DOI: 10.3390/biomedicines12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The present review focuses on the interactions of newly emerging environmental factors with miRNA-mediated regulation. In particular, we draw attention to the effects of phthalates, electromagnetic fields (EMFs) and a disrupted light/dark cycle. miRNAs are small non-coding RNA molecules with a tremendous regulatory impact, which is usually executed via gene expression inhibition. To address the capacity of environmental factors to influence miRNA-mediated regulation, the miR-34 family was selected for its well-described oncostatic and neuro-modulatory properties. The expression of miR-34 is in a tissue-dependent manner to some extent under the control of the circadian system. There is experimental evidence implicating that phthalates, EMFs and the circadian system interact with the miR-34 family, in both lines of its physiological functioning. The inhibition of miR-34 expression in response to phthalates, EMFs and light contamination has been described in cancer tissue and cell lines and was associated with a decline in oncostatic miR-34a signalling (decrease in p21 expression) and a promotion of tumorigenesis (increases in Noth1, cyclin D1 and cry1 expressions). The effects of miR-34 on neural functions have also been influenced by phthalates, EMFs and a disrupted light/dark cycle. Environmental factors shifted the effects of miR-34 from beneficial to the promotion of neurodegeneration and decreased cognition. Moreover, the apoptogenic capacity of miR-34 induced via phthalate administration in the testes has been shown to negatively influence germ cell proliferation. To conclude, as the oncostatic and positive neuromodulatory functions of the miR-34 family can be strongly influenced by environmental factors, their interactions should be taken into consideration in translational medicine.
Collapse
Affiliation(s)
- Peter Štefánik
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martina Morová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
5
|
You Z, Yu M, Fu R, Nie X, Chen J. Synthesis and Properties of a Novel Levulinic Acid-Based Environmental Auxiliary Plasticizer for Poly(vinyl chloride). Polymers (Basel) 2024; 16:361. [PMID: 38337249 DOI: 10.3390/polym16030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024] Open
Abstract
Herein, a bio-based plasticizer ketalized tung oil butyl levulinate (KTBL) was developed using methyl eleostearate, a derivative of tung oil, and butyl levulinate. KTBL can be used as an auxiliary plasticizer to partially replace traditional plasticizer. The plasticizer has a ketone structure, an ester base, and a long linear chain. It was mixed with dioctyl phthalate (DOP), and the effect of the plasticizer KTBL as an auxiliary plasticizer on the plasticization of poly(vinyl chloride) (PVC) was studied. Their compatibility and plasticizing effect were evaluated using dynamic-mechanical thermal analysis (DMA), mechanical property analysis, and thermogravimetric analysis (TGA). The results demonstrate that when the KTBL to DOP ratio is 1:1, the blended sample with KTBL exhibits superior mechanical performance compared to pure DOP, resulting in an increased elongation at break from 377.47% to 410.92%. Moreover, with the increase in KTBL content, the durability is also significantly improved. These findings suggest that KTBL can serve as an effective auxiliary plasticizer for PVC, thereby reducing the reliance on DOP.
Collapse
Affiliation(s)
- Zeyu You
- Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Min Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Renli Fu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaoan Nie
- Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Jie Chen
- Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| |
Collapse
|
6
|
Cui H, Culty M. Do macrophages play a role in the adverse effects of endocrine disrupting chemicals (EDCs) on testicular functions? FRONTIERS IN TOXICOLOGY 2023; 5:1242634. [PMID: 37720385 PMCID: PMC10501733 DOI: 10.3389/ftox.2023.1242634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
During the past decades, several endocrine disrupting chemicals (EDCs) have been confirmed to affect male reproductive function and fertility in animal studies. EDCs are suspected to exert similar effects in humans, based on strong associations between levels of antiandrogenic EDCs in pregnant women and adverse reproductive effects in infants. Testicular macrophages (tMΦ) play a vital role in modulating immunological privilege and maintaining normal testicular homeostasis as well as fetal development. Although tMΦ were not historically studied in the context of endocrine disruption, they have emerged as potential targets to consider due to their critical role in regulating cells such as spermatogonial stem cells (SSCs) and Leydig cells. Few studies have examined the impact of EDCs on the ability of testicular cells to communicate and regulate each other's functions. In this review, we recapitulate what is known about tMΦ functions and interactions with other cell types in the testis that support spermatogenesis and steroidogenesis. We also surveyed the literature for reports on the effects of the EDCs genistein and DEHP on tMΦ, SSCs, Sertoli and Leydig cells. Our goal is to explore the possibility that EDC disruption of tMΦ interactions with other cell types may play a role in their adverse effects on testicular developmental programming and functions. This approach will highlight gaps of knowledge, which, once resolved, should improve the risk assessment of EDC exposure and the development of safeguards to protect male reproductive functions.
Collapse
Affiliation(s)
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Jagarlapudi SS, Cross HS, Das T, Goddard WA. Thermomechanical Properties of Nontoxic Plasticizers for Polyvinyl Chloride Predicted from Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24858-24867. [PMID: 37167600 DOI: 10.1021/acsami.3c02354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Environmental and toxicity concerns dictate replacement of di(2-ethylhexyl) phthalate (DEHP) plasticizer used to impart flexibility and thermal stability to polyvinyl chloride (PVC). Potential alternatives to DEHP in PVC include diheptyl succinate (DHS), diethyl adipate (DEA), 1,4-butanediol dibenzoate (1,4-BDB), and dibutyl sebacate (DBS). To examine whether that these bio-based plasticizers can compete with DEHP, we need to compare their tensile, mechanical, and diffusional properties. This work focuses on predicting the effect these plasticizers have on Tg, Young's modulus, shear modulus, fractional free volume, and diffusion for PVC-plasticizer systems. Where data was available, the results from this study are in good agreement with the experiment; we conclude that DBS and DHS are most promising green plasticizers for PVC, since they have properties comparable to DEHP but not the environmental and toxicity concerns.
Collapse
Affiliation(s)
- Snigdha S Jagarlapudi
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - Heaven S Cross
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - Tridip Das
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Marimuthu T, Sidat Z, Kumar P, Choonara YE. An Imidazolium-Based Ionic Liquid as a Model to Study Plasticization Effects on Cationic Polymethacrylate Films. Polymers (Basel) 2023; 15:polym15051239. [PMID: 36904480 PMCID: PMC10006978 DOI: 10.3390/polym15051239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Ionic liquids (ILs) have been touted as effective and environmentally friendly agents, which has driven their application in the biomedical field. The study compares the effectiveness of an IL agent, 1-hexyl-3-methyl imidazolium chloride ([HMIM]Cl), to current industry standards for plasticizing a methacrylate polymer. Industrial standards glycerol, dioctyl phthalate (DOP) and the combination of [HMIM]Cl with a standard plasticizer was also evaluated. Plasticized samples were evaluated for stress-strain, long-term degradation, thermophysical characterizations, and molecular vibrational changes within the structure, and molecular mechanics simulations were performed. Physico-mechanical studies showed that [HMIM]Cl was a comparatively good plasticizer than current standards reaching effectiveness at 20-30% w/w, whereas plasticizing of standards such as glycerol was still inferior to [HMIM]Cl even at concentrations up to 50% w/w. Degradation studies show HMIM-polymer combinations remained plasticized for longer than other test samples, >14 days, compared to glycerol <5 days, while remaining more pliable. The combination of [HMIM]Cl-DOP was effective at concentrations >30% w/w, demonstrating remarkable plasticizing capability and long-term stability. ILs used as singular agents or in tandem with other standards provided equivalent or better plasticizing activity than the comparative free standards.
Collapse
|
9
|
Screening of Potential Plasticizer Alternatives for Their Toxic Effects on Male Germline Stem Cells. Biomedicines 2022; 10:biomedicines10123217. [PMID: 36551973 PMCID: PMC9776359 DOI: 10.3390/biomedicines10123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Plasticizers give flexibility to a wide range of consumer and medical plastic products. Among them, phthalate esters are recognized as endocrine disruptors that target male reproductive functions. With this notion, past studies designed and produced alternative plasticizers that could replace phthalates with limited toxicity to the environment and to male reproductive functions. Here, we focused on one reproductive cell type that was not investigated in past studies-spermatogonial stem cells (SSCs)-and examined in vitro the effects on 22 compounds (seven plasticizers currently in use and 15 newly synthesized potential alternative plasticizers) for their effects on SSCs. Our in vitro compound screening analyses showed that a majority of the compounds examined had a limited level of toxicity to SSCs. Yet, some commercial plasticizers and their derivatives, such as DEHP (di-(2-ethylhexyl) phthalate) and MEHP (mono-(2-ethylhexyl) phthalate), were detrimental at 10-5 to 10-4 M. Among new compounds, some of maleate- and fumarate-derivatives showed toxic effects. In contrast, no detrimental effects were detected with two new compounds, BDDB (1,4 butanediol dibenzoate) and DOS (dioctyl succinate). Furthermore, SSCs that were exposed to BDDB and DOS in vitro successfully established spermatogenic colonies in testes of recipient mice after transplantation. These results demonstrate that SSC culture acts as an effective platform for toxicological tests on SSC function and provide novel information that two new compounds, BDDB and DOS, are alternative plasticizers that do not have significant negative impacts on SSC integrity.
Collapse
|
10
|
In utero di-(2-ethylhexyl) phthalate-induced testicular dysgenesis syndrome in male newborn rats is rescued by taxifolin through reducing oxidative stress. Toxicol Appl Pharmacol 2022; 456:116262. [PMID: 36198370 DOI: 10.1016/j.taap.2022.116262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Testicular dysgenesis syndrome in male neonates manifests as cryptorchidism and hypospadias, which can be mimicked by in utero phthalate exposure. However, the underlying phthalate mediated mechanism and therapeutic effects of taxifolin remain unclear. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundantly used phthalate and can induce testicular dysgenesis syndrome in male rats. To explore the mechanism of DEHP mediated effects and develop a therapeutic drug, the natural phytomedicine taxifolin was used. Pregnant Sprague-Dawley female rats were daily gavaged with 750 mg/kg/d DEHP or 10 or 20 mg/kg/d taxifolin alone or in combination from gestational day 14 to 21, and male pup's fetal Leydig cell function, testicular MDA, and antioxidants were examined. DEHP significantly reduced serum testosterone levels of male pups, down-regulated the expression of SCARB1, CYP11A1, HSD3B1, HSD17B3, and INSL3, reduced the cell size of fetal Leydig cells, decreased the levels of antioxidant and related signals (SOD2 and CAT, SIRT1, and PGC1α), induced abnormal aggregation of fetal Leydig cells, and stimulated formation of multinucleated gonocytes and MDA levels. Taxifolin alone (10 and 20 mg/kg/d) did not affect these parameters. However, taxifolin significantly rescued DEHP-induced alterations. DEHP exposure in utero can induce testicular dysgenesis syndrome by altering the oxidative balance and SIRT1/PGC1α levels, and taxifolin is an ideal phytomedicine to prevent phthalate induced testicular dysgenesis syndrome.
Collapse
|
11
|
Halloran MW, Nicell JA, Leask RL, Marić M. Bio‐based glycerol plasticizers for flexible poly(vinyl chloride) blends. J Appl Polym Sci 2022. [DOI: 10.1002/app.52778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jim A. Nicell
- Department of Civil Engineering McGill University Montréal Quebec Canada
| | - Richard L. Leask
- Department of Chemical Engineering McGill University Montréal Quebec Canada
| | - Milan Marić
- Department of Chemical Engineering McGill University Montréal Quebec Canada
| |
Collapse
|
12
|
Zhang YJ, Guo JL, Xue JC, Bai CL, Guo Y. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118106. [PMID: 34520948 DOI: 10.1016/j.envpol.2021.118106] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are plasticizers in various products and regarded as endocrine disruptors due to their anti-androgen effects. Environmental occurrence and toxicities of parent phthalates have been widely reported, while the current state of knowledge on their metabolites is rarely summarized. Based on the available literature, the present review mainly aims to 1) characterize the potential metabolites of phthalates (mPAEs) using the pharmacokinetics evidences acquired via animal or human models; 2) examine the molecular and cellular mechanism involved in toxicity for mPAEs; 3) investigate the exposure levels of mPAEs in different human specimens (e.g., urine, blood, seminal fluid, breast milk, amniotic fluid and others) across the globe; 4) discuss the models and related parameters for phthalate exposure assessment. We suggest there is subtle difference in toxic mechanisms for mPAEs compared to their parent phthalates due to their alternative chemical structures. Human monitoring studies performed in Asia, America and Europe have provided the population exposure baseline levels for typical phthalates in different regions. Urine is the preferred matrix than other specimens for phthalate exposure study. Among ten urinary mPAEs, the largest proportions of di-(2-ethylhexyl) phthalate (DEHP) metabolites (40%), monoethyl phthalate (mEP) (43%) and DEHP metabolites/mEP (both 29%) were observed in Asia, America and Europe respectively, and mono-5-carboxy-2-ethypentyl phthalate was the most abundant compounds among DEHP metabolites. Daily intakes of phthalates can be accurately calculated via urinary mPAEs if the proper exposure parameters were determined. Further work should focus on combining epidemiological and biological evidences to establish links between phthalates exposure and biological phenotypes. More accurate molar fractions (FUE) of the urinary excreted monoester related to the ingested diesters should be collected in epidemiological or pharmacokinetic studies for different population.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jia-Liang Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jing-Chuan Xue
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cui-Lan Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Hales BF, Robaire B. Phthalates and Alternative Plasticizers Differentially affect Phenotypic Parameters in Gonadal Somatic and Germ Cell Lines. Biol Reprod 2021; 106:613-627. [PMID: 34792101 DOI: 10.1093/biolre/ioab216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The developmental and reproductive toxicity associated with exposure to phthalates has motivated a search for alternatives. However, there is limited knowledge regarding the adverse effects of some of these chemicals. We used high-content imaging to compare the effects of mono (2-ethylhexyl) phthalate (MEHP) with six alternative plasticizers: di-2-ethylhexyl terephthalate (DEHTP); diisononyl-phthalate (DINP); di-isononylcyclohexane-1,2-dicarboxylate (DINCH); 2-ethylhexyl adipate (DEHA); 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB) and di-iso-decyl-adipate (DIDA). A male germ spermatogonial cell line (C18-4), a Sertoli cell line (TM4) and two steroidogenic cell lines (MA-10 Leydig and KGN granulosa) were exposed for 48h to each chemical (0.001-100 μM). Cell images were analyzed to assess cytotoxicity and effects on phenotypic endpoints. Only MEHP (100 μM) was cytotoxic and only in C18-4 cells. However, several plasticizers had distinct phenotypic effects in all four cell lines. DINP increased Calcein intensity in C18-4 cells, whereas DIDA induced oxidative stress. In TM4 cells, MEHP, and DINCH affected lipid droplet numbers, while DEHTP and DINCH increased oxidative stress. In MA-10 cells, MEHP increased lipid droplet areas and oxidative stress; DINP decreased the number of lysosomes, while DINP, DEHA and DIDA altered mitochondrial activity. In KGN cells, MEHP, DINP and DINCH increased the number of lipid droplets, whereas DINP decreased the number of lysosomes, increased oxidative stress and affected mitochondria. The Toxicological Priority Index (ToxPi) provided a visual illustration of the cell line specificity of the effects on phenotypic parameters. The lowest administered equivalent doses were observed for MEHP. We propose that this approach may assist in screening alternative plasticizers.
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada, KIA 0K9
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada, KIA 0K9
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada. H3G 1Y6
| |
Collapse
|
14
|
Enangue Njembele AN, Tremblay JJ. Mechanisms of MEHP Inhibitory Action and Analysis of Potential Replacement Plasticizers on Leydig Cell Steroidogenesis. Int J Mol Sci 2021; 22:ijms222111456. [PMID: 34768887 PMCID: PMC8584274 DOI: 10.3390/ijms222111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.
Collapse
Affiliation(s)
- Annick N. Enangue Njembele
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46254)
| |
Collapse
|
15
|
Alhanish A, Abu Ghalia M. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review. Biotechnol Prog 2021; 37:e3210. [PMID: 34499430 DOI: 10.1002/btpr.3210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The demand for biobased materials for various end-uses in the bioplastic industry is substantially growing due to increasing awareness of health and environmental concerns, along with the toxicity of synthetic plasticizers such as phthalates. This fact has stimulated new regulations requiring the replacement of synthetic conventional plasticizers, particularly for packaging applications. Biobased plasticizers have recently been considered as essential additives, which may be used during the processing of compostable polymers to enormously boost biobased packaging applications. The development and utilization of biobased plasticizers derived from epoxidized soybean oil, castor oil, cardanol, citrate, and isosorbide have been broadly investigated. The synthesis of biobased plasticizers derived from renewable feedstocks and their impact on packaging material performance have been emphasized. Moreover, the effect of biobased plasticizer concentration, interaction, and compatibility on the polymer properties has been examined. Recent developments have resulted in the replacement of synthetic plasticizers by biobased counterparts. Particularly, this has been the case for some biodegradable thermoplastics-based packaging applications.
Collapse
Affiliation(s)
- Atika Alhanish
- Department of Chemical Engineering, Faculty of Petroleum and Natural Gas Engineering, University of Zawia, Zawia, Libya
| | | |
Collapse
|
16
|
Räägel H, Turley A, Fish T, Franson J, Rollins T, Campbell S, Jorgensen MR. Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores. Biomed Instrum Technol 2021. [PMID: 34043008 DOI: 10.2345/0890-8205-55.2.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).
Collapse
|
17
|
Räägel H, Turley A, Fish T, Franson J, Rollins T, Campbell S, Jorgensen MR. Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores. Biomed Instrum Technol 2021; 55:69-84. [PMID: 34043008 PMCID: PMC8641414 DOI: 10.2345/0899-8205-55.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).
Collapse
Affiliation(s)
- Helin Räägel
- Helin Räägel, PhD, is a senior biocompatibility expert at Nelson Laboratories in Salt Lake City, UT.
| | - Audrey Turley
- Audrey Turley, BS, is a senior biocompatibility expert at Nelson Laboratories in Salt Lake City, UT.
| | - Trevor Fish
- Trevor Fish, MS, is a toxicologist at Nelson Laboratories in Salt Lake City, UT.
| | - Jeralyn Franson
- Jeralyn Franson, MS, is an associate technical consultant at Nelson Laboratories in Salt Lake City, UT.
| | - Thor Rollins
- Thor Rollins, BS, is a director of toxicology and E&L consulting at Nelson Laboratories in Salt Lake City, UT.
| | - Sarah Campbell
- Sarah Campbell, PhD, DABT, is a principal toxicologist at Nelson Laboratories in Salt Lake City, UT, and a title in the College of Pharmacy at the University of Utah, in Salt Lake City, UT.
| | - Matthew R. Jorgensen
- Matthew R Jorgensen, PhD, DABT, is a chemist, materials scientist, and toxicologist at Nelson Laboratories in Salt Lake City, UT.
| |
Collapse
|
18
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Robaire B, Hales BF. Elucidation of the Effects of Bisphenol A and Structural Analogs on Germ and Steroidogenic Cells Using Single Cell High-Content Imaging. Toxicol Sci 2021; 180:224-238. [PMID: 33501994 DOI: 10.1093/toxsci/kfab012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Concerns about the potential adverse effects of bisphenol A (BPA) have led to an increase in the use of replacements, yet the toxicity data for several of these chemicals are limited. Using high-content imaging, we compared the effects of BPA, BPAF, BPF, BPS, BPM, and BPTMC in germ (C18-4 spermatogonial) and steroidogenic (MA-10 Leydig and KGN granulosa) cell lines. Effects on cell viability and phenotypic markers were analyzed to determine benchmark concentrations (BMCs) and estimate administered equivalent doses (AEDs). In all 3 cell lines, BPA was one of the least cytotoxic bisphenol compounds tested, whereas BPM and BPTMC were the most cytotoxic. Interestingly, BPF and BPS were cytotoxic only in MA-10 cells. Effects on phenotypic parameters, including mitochondria, lysosomes, lipid droplets, and oxidative stress, were both bisphenol- and cell-line specific. BPA exposure affected mitochondria (BMC: 1.2 μM; AED: 0.09 mg/kg/day) in C18-4 cells. Lysosome numbers were increased in MA-10 cells exposed to BPA or BPAF but decreased in KGN cells exposed to BPAF or BPM. Lipid droplets were decreased in C18-4 cells exposed to BPF and in MA-10 cells exposed to BPTMC but increased in BPF, BPM, and BPTMC-exposed KGN cells. BPA and BPM exposure induced oxidative stress in MA-10 and KGN cells, respectively. In summary, structurally similar bisphenols displayed clear cell-line-specific differences in BMC and AED values for effects on cell viability and phenotypic endpoints. This approach, together with additional data on human exposure, may aid in the selection and prioritization of responsible replacements for BPA. .
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
19
|
Maydanova IO, Lakeev SN, Ishalina OV, Nikitina AP. Synthesis of a New Benzoate Plasticizer for Polyvinyl Chloride Based on a 2-Ethylhexanol By-Product. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427220120101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Comparison of In Vitro Endocrine Activity of Phthalates and Alternative Plasticizers. J Toxicol 2021; 2021:8815202. [PMID: 33628236 PMCID: PMC7886589 DOI: 10.1155/2021/8815202] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
Because of the deleterious effects of phthalates, regulations have been taken to decrease their use, and the needs for alternatives are increasing. Due to the concerns about the endocrine-disrupting properties of phthalates, it was deemed necessary to particularly investigate these effects for potential substitutes. In this study, we compared the in vitro endocrine activity of several already used potential alternative plasticizers (DEHT, DINCH, and TOTM) or new substitutes (POLYSORB® isosorbide and POLYSORB® ID 46) to one of 2 phthalates, DEHP and DINP. Effects of these chemicals on 3 common mechanisms of endocrine disruption, i.e., interaction with estrogen receptors (ER), androgen receptors (AR), or steroidogenesis, were studied using extensively used in vitro methods. In the E-Screen assay, only DEHP moderately induced MCF-7 cell proliferation; none of the other tested substances were estrogenic or antiestrogenic. No androgenic or antiandrogenic activity in MDA-kb2 cells was shown for any of the tested phthalates or alternatives. On the other hand, both DEHP and DINP, as well as DEHT, DINCH, and TOTM, disrupted steroidogenesis in the H295R assay, mainly by inducing an increase in estradiol synthesis; no such effect was observed for POLYSORB® isosorbide and POLYSORB® ID 46.
Collapse
|
21
|
Yu Z, Wang F, Han J, Lu R, Li Q, Cai L, Li B, Chen J, Wang K, Lin W, Lin Q, Chen G, Wen J. Opposite effects of high- and low-dose di-(2-ethylhexyl) phthalate (DEHP) exposure on puberty onset, oestrous cycle regularity and hypothalamic kisspeptin expression in female rats. Reprod Fertil Dev 2021; 32:610-618. [PMID: 32209209 DOI: 10.1071/rd19024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is ubiquitous in the environment and has been proposed to lead to reproductive disruption. In this study, we systematically investigated the effects of different doses of DEHP exposure on female hypothalamic-pituitary-gonadal axis development. Female Sprague-Dawley rats were gavaged with vehicle (corn oil) or DEHP (5 or 500mgkg-1 day-1) during postnatal Days (PNDs) 22-28 or PNDs 22-70. Results demonstrated that the low and high doses of DEHP exerted opposite effects on puberty onset, circulating luteinising hormone, serum oestradiol and progesterone levels, with the low dose (5mgkg-1) promoting and the high dose (500mgkg-1) inhibiting these parameters. Significant dose-related differences were also found in the D500 group with longer oestrous cycle duration, lower ovarian/bodyweight ratio, fewer corpus lutea and more abnormal ovarian stromal tissue in comparison with the oil or D5 groups. Molecular data showed that the hypothalamic Kiss1 mRNA expression in the anteroventral periventricular but not in the arcuate nucleus significantly decreased in the D500 rats and increased in the D5 rats relative to the rats in the oil group. These findings suggested that the kisspeptin system is a potential target for DEHP to disrupt reproductive development and function.
Collapse
Affiliation(s)
- Zhen Yu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Fan Wang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Rongmei Lu
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qian Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Liangchun Cai
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Bishuang Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Jinyan Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Kun Wang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Wenjin Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Qinghua Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Gang Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China; and Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China; and Corresponding authors: Emails: ;
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China; and Corresponding authors: Emails: ;
| |
Collapse
|
22
|
Park CG, Sung B, Ryu CS, Kim YJ. Mono-(2-ethylhexyl) phthalate induces oxidative stress and lipid accumulation in zebrafish liver cells. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108704. [PMID: 31927120 DOI: 10.1016/j.cbpc.2020.108704] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
The purpose of the present study was to examine the antioxidant and oxidative stress changes in zebrafish liver (ZFL) cells in the presence of mono-(2-ethylhexyl) phthalate (MEHP). When reactive oxygen species (ROS) and antioxidant levels were measured by immunoassay, significant differences were observed between MEHP-treated and control cells, while catalase levels did not change in any group. MEHP-treated cells had higher levels of ROS, glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione, and superoxide dismutase (SOD) than control cells. However, lower levels of lipid peroxidation were observed in MEHP-treated cells compared to control cells. After 24 h of MEHP treatment, ROS, SOD, GPx, and GST activity increased in a dose-dependent manner. Cellular lipid droplet formation and endoplasmic reticulum stress were both induced in the presence of MEHP. These findings demonstrated the potential impacts of the association of MEHP with adverse outcomes in fish liver. Future studies will focus on clarifying the molecular mechanism of phthalate toxicity via oxidative stress and peroxisome proliferator activated receptor as the major mechanistic pathway.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, JRC-APT, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Baeckkyoung Sung
- Environmental Safety Group, JRC-APT, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science and Technology, 34113 Daejeon, Korea
| | - Chang Seon Ryu
- Environmental Safety Group, JRC-APT, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany.
| | - Young Jun Kim
- Environmental Safety Group, JRC-APT, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science and Technology, 34113 Daejeon, Korea.
| |
Collapse
|
23
|
Kabakci R, Yigit AA. Effects of bisphenol A, diethylhexyl phthalate and pentabrominated diphenyl ether 99 on steroid synthesis in cultured bovine luteal cells. Reprod Domest Anim 2020; 55:683-690. [PMID: 32125030 DOI: 10.1111/rda.13665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Bisphenol A (BPA), diethylhexyl phthalate (DEHP) and pentabrominated diphenyl ether 99 (PBDE 99) are environmental toxicants belonging to the endocrine disrupting compounds (EDCs). They exert adverse effects on the various physiological systems, especially the reproductive system of humans and animals. The aim of this study was to investigate the effects of BPA, DEHP and PBDE 99 on progesterone (P4) synthesis in cultured bovine luteal cells. The bovine luteal cells isolated from the mid-luteal corpora lutea were exposed to different concentrations of BPA (1, 3, 10 and 30 µM), DEHP (1, 3, 10 and 30 µM) and PBDE 99 (0.1, 0.3, 1 and 3 µM) in a serum-free culture media for 48 and 96 hr. At 48 hr, the P4 level in the luteal cells decreased after treatment with all concentrations of BPA; 3, 10 and 30 µM of DEHP; and 3 µM of PBDE 99 compared to the control (p < .05). Treatment of cells with 3-30 µM of BPA, 1-30 µM of DEHP and 1-3 µM of PBDE 99 for 96 hr resulted in reduction in P4 synthesis (p < .05). However, lower concentrations of PBDE 99 (0.1 and 0.3 µM) increased P4 levels at 48 and 96 hr. Synthesis of P4 was lower at 96 hr compared to the 48 hr in the groups treated with BPA (30 µM), DEHP (1-30 µM), PBDE 99 (0.3-3 µM) and control group. Our results showed that BPA, DEHP and PBDE 99 are able to alter luteal steroidogenesis in bovine cells and can disrupt hormonal balance in the ovary. However, it is necessary to evaluate the exact mechanism underlying these effects in future studies.
Collapse
Affiliation(s)
- Ruhi Kabakci
- Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - A Arzu Yigit
- Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
24
|
Kida M, Ziembowicz S, Koszelnik P. Study on the suitability of using low-frequency ultrasonic field for removing di(2-ethylhexyl) phthalate from bottom sediments. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Pelletier G, Rigden M, Wang GS, Caldwell D, Siddique S, Leingartner K, Kosarac I, Cakmak S, Kubwabo C. Comparison of tris(2-ethylhexyl) phosphate and di(2-ethylhexyl) phosphoric acid toxicities in a rat 28-day oral exposure study. J Appl Toxicol 2019; 40:600-618. [PMID: 31884710 PMCID: PMC7216891 DOI: 10.1002/jat.3930] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tris(2-ethylhexyl) phosphate (TEHP, CAS no. 78-42-2) is a plasticizer and a flame retardant, while di(2-ethylhexyl) phosphoric acid (DEHPA, CAS no. 298-07-7) is an oil additive and extraction solvent. Publicly-available information on repeated exposure to these two related organophosphate compounds is fragmentary. Hence, adult male and female Fischer rats were exposed to TEHP (300, 1000 and 3000 mg/kg body weight [BW]/day) or DEHPA (20, 60 and 180 mg/kg BW/day) by gavage for 28 consecutive days, to assess and compare their toxicities. Although significantly impaired BW gains and evidence of TEHP enzymatic hydrolysis to DEHPA were observed only in males, exposures to the highest TEHP and DEHPA doses often resulted in similar alterations of hematology, serum clinical chemistry and liver enzymatic activities in both males and females. The squamous epithelial hyperplasia and hyperkeratosis observed in the non-glandular forestomach of rats exposed to the middle and high DEHPA doses were most likely caused by the slightly corrosive nature of this chemical. Although tubular degeneration and spermatid retention were observed only in the testes of males exposed to the highest TEHP dose, numerous periodic acid-Schiff stained crystalline inclusions were observed in testis interstitial cells at all TEHP dose levels. No-observed-adverse-effect levels for TEHP and DEHPA are proposed, but the lower serum pituitary hormone levels resulting from TEHP and DEHPA exposures and the perturbations of testicular histology observed in TEHP-treated males deserve further investigation. Improved characterization of the toxicity of flame retardants will contribute to better informed substitution choices for legacy flame retardants phased-out over health concerns.
Collapse
Affiliation(s)
- Guillaume Pelletier
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Marc Rigden
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Gen Sheng Wang
- Scientific Service Division, Health Product and Food Branch, Health Canada, Ottawa, Canada
| | - Don Caldwell
- Scientific Service Division, Health Product and Food Branch, Health Canada, Ottawa, Canada
| | - Shabana Siddique
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Karen Leingartner
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Ivana Kosarac
- Research Division, Tobacco Control Directorate, Health Canada, Ottawa, Canada
| | - Sabit Cakmak
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Cariton Kubwabo
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
26
|
Wakayama T, Ito Y, Sakai K, Miyake M, Shibata E, Ohno H, Kamijima M. Comprehensive review of 2-ethyl-1-hexanol as an indoor air pollutant. J Occup Health 2019; 61:19-35. [PMID: 30698348 PMCID: PMC6499367 DOI: 10.1002/1348-9585.12017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
Objectives 2‐Ethyl‐1‐hexanol (2EH), a fragrance ingredient and a raw material for the production of plasticizer di(2‐ethylhexyl) phthalate, is responsible for sick building syndrome (SBS). This review aims to clarify the 2EH characteristics as an indoor air pollutant such as indoor air concentration, emission mechanism, toxicity, and clinical effects. Methods Scientific publications in English that has been made available on PubMed as of June 2018 and ad hoc publications in regional languages were reviewed. Results Inhalation exposure to 2EH caused mucous membrane irritation in the eyes, nose, and throat in experimental animals. Studies in human volunteers revealed an increase in olfactory irritation and eye discomfort. There has been increasing evidence of 2EH being present in indoor air in buildings. The primary sources of 2EH emissions are not building materials themselves, but instead the hydrolysis of plasticizers and flooring adhesives. In particular, compounds like di(2‐ethylhexyl) phthalate present in polyvinyl chloride flooring materials are hydrolyzed upon contact with alkaline moisture‐containing concrete floors. That being said, it may be observed that indoor concentrations of 2EH increased every year during summer. Conclusions Unlike other volatile organic compounds that cause SBS, 2EH can be retained in indoor air for long durations, increasing the likelihood of causing undesirable health effects in building occupants exposed to it. As a precautionary measure, it is important to use flooring materials that do not emit 2EH by hydrolysis, or to dry concrete before covering with flooring materials.
Collapse
Affiliation(s)
- Takanari Wakayama
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Mio Miyake
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Eiji Shibata
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroyuki Ohno
- Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
27
|
Zhu M, Wu J, Ma X, Huang C, Wu R, Zhu W, Li X, Liang Z, Deng F, Zhu J, Xie W, Yang X, Jiang Y, Wang S, Geng S, Xie C, Zhong C. Butyl benzyl phthalate promotes prostate cancer cell proliferation through miR-34a downregulation. Toxicol In Vitro 2019; 54:82-88. [PMID: 30243731 DOI: 10.1016/j.tiv.2018.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 07/09/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
Prostate cancer is the most common malignancy in men. Phthalate esters are a class of environmental endocrine disruptors and were reported to be cancer promoting agents, however the potential role of phthalate esters in prostate cancer has been rarely reported. Mounting evidence has shown that miR-34a is a master tumor suppressor miRNA in cancer. The aim of this study was to investigate the role of butyl benzyl phthalate (BBP), one of the typical phthalate esters, in cell proliferation of prostate cancer cells. Human prostate cancer LNCaP and PC-3 cells were exposed to low dose of BBP for 6 days. The results showed that 10-6 and 10-7 mol/L BBP increased the expression of cyclinD1 and PCNA, decreased p21 expression, and induced cell growth in both LNCaP and PC-3 cells. Furthermore, we found that BBP significantly downregulated the expression of miR-34a, along with upregulation of miR-34a target gene c-myc. Using cell tranfection of miR-34a mimic and inhibitor, we demonstrated that BBP promoted cell proliferation through miR-34a/c-myc axis in prostate cancer cells. Findings from this study could provide new insight into the involvement and the molecular mechanism of phthalate esters on prostate cancer.
Collapse
Affiliation(s)
- Mingming Zhu
- Department of Nutrition, The Second School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Huang
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Wu
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiwei Zhu
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaofeng Liang
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Feifei Deng
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianyun Zhu
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Xie
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Yang
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ye Jiang
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shijia Wang
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
28
|
Wang R, Wang Q, Ma C, Li S, Han R. Phthalates in soft glass (a soft transparent PVC plastic sheet used extensively in household and public place in developing countries in recent years): Implication for oral exposure to young children. CHEMOSPHERE 2018; 211:861-866. [PMID: 30103141 DOI: 10.1016/j.chemosphere.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
It has been several years that a soft transparent polyvinyl chloride (PVC) plastic sheet, commonly known as "soft glass", or "crystal plate" in China and other developing countries, has quietly and gradually found extensive applications. This material has widely replaced cloth and glass as table cover in household and office, and replaced cloth as door drape in public place in China. In this study, the concentration of plasticizer used in soft glass and the migration of the plasticizer from soft glass to olive oil and porcine skin during contact were determined. The oral exposure of young children to the plasticizer from soft glass was estimated for the first time. Two exposure routes, one via ingestion of contaminated food, the other via mouthing of contaminated hand, were considered. It is found that Di(2-ethylhexyl) phthalate (DEHP) is the major plasticizer used in soft glass, which could leach out of the material and migrate easily to the olive oil and porcine skin during contact. A rough estimation of oral exposure for young children to DEHP from soft glass was 126 μg/person/d, which would be converted to 12.6 μg/kg bw/d and 7.9 μg/kg bw/d, for body weight of 10 kg and 16 kg, respectively. The estimated exposure dosages would not pose immediate health hazard to the children. The implications of these dosages were also discussed.
Collapse
Affiliation(s)
- Rong Wang
- Zhengzhou University, College of Chemistry and Molecular Engineering, Zhengzhou, Kexue Dadao #100, 450001, China.
| | - Qing Wang
- Zhengzhou University, College of Chemistry and Molecular Engineering, Zhengzhou, Kexue Dadao #100, 450001, China
| | - Chenghui Ma
- Zhengzhou University, College of Chemistry and Molecular Engineering, Zhengzhou, Kexue Dadao #100, 450001, China
| | - Shengjiao Li
- Zhengzhou University, College of Chemistry and Molecular Engineering, Zhengzhou, Kexue Dadao #100, 450001, China
| | - Runping Han
- Zhengzhou University, College of Chemistry and Molecular Engineering, Zhengzhou, Kexue Dadao #100, 450001, China
| |
Collapse
|
29
|
Jamarani R, Erythropel HC, Nicell JA, Leask RL, Marić M. How Green is Your Plasticizer? Polymers (Basel) 2018; 10:E834. [PMID: 30960759 PMCID: PMC6403783 DOI: 10.3390/polym10080834] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 01/16/2023] Open
Abstract
Plasticizers are additives that are used to impart flexibility to polymer blends and improve their processability. Plasticizers are typically not covalently bound to the polymers, allowing them to leach out over time, which results in human exposure and environmental contamination. Phthalates, in particular, have been the subject of increasing concern due to their established ubiquity in the environment and their suspected negative health effects, including endocrine disrupting and anti-androgenic effects. As there is mounting pressure to find safe replacement compounds, this review addresses the design and experimental elements that should be considered in order for a new or existing plasticizer to be considered green. Specifically, a multi-disciplinary and holistic approach should be taken which includes toxicity testing (both in vitro and in vivo), biodegradation testing (with attention to metabolites), as well as leaching studies. Special consideration should also be given to the design stages of producing a new molecule and the synthetic and scale-up processes should also be optimized. Only by taking a multi-faceted approach can a plasticizer be considered truly green.
Collapse
Affiliation(s)
- Roya Jamarani
- Department of Chemical Engineering, McGill University, 3610 University St, Montréal, QC H3A 0C5, Canada.
| | - Hanno C Erythropel
- Department of Chemical Engineering, McGill University, 3610 University St, Montréal, QC H3A 0C5, Canada.
- Center for Green Chemistry and Green Engineering, Yale University, 370 Prospect St, New Haven, CT 06511, USA.
| | - James A Nicell
- Department of Civil Engineering & Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada.
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, 3610 University St, Montréal, QC H3A 0C5, Canada.
| | - Milan Marić
- Department of Chemical Engineering, McGill University, 3610 University St, Montréal, QC H3A 0C5, Canada.
| |
Collapse
|
30
|
Erythropel HC, Börmann A, Nicell JA, Leask RL, Maric M. Designing Green Plasticizers: Linear Alkyl Diol Dibenzoate Plasticizers and a Thermally Reversible Plasticizer. Polymers (Basel) 2018; 10:polym10060646. [PMID: 30966680 PMCID: PMC6404088 DOI: 10.3390/polym10060646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 12/04/2022] Open
Abstract
Several linear alkyl diol dibenzoate compounds, ranging from C3 to C6 in central diol length, were evaluated for their plasticizing effectiveness in blends with poly(vinyl chloride) (PVC). The results were compared to blends of PVC/di(2-ethylhexyl) phthalate (DEHP), the most commonly used commercial plasticizer. DEHP has come under scrutiny, due to its suspected endocrine-disrupting behaviour, and the proposed diol dibenzoates have previously been shown to have the potential to be green, safe candidates for DEHP replacement. The thermal and mechanical properties of PVC/dibenzoate blends were determined, and include glass transition temperature (Tg), the elongation at break, maximum stress, apparent moduli, torsional modulus, and surface hardness. The C3, C5, and C6 dibenzoates performed as well as or better than DEHP, with the exception of torsional modulus, further supporting their use as green plasticizers. For blends with 1,4-butanediol dibenzoate, differential scanning calorimetry and torsional temperature sweeps suggested that the compound partly crystallizes within PVC blends over the course of two days, thereby losing the ability to effectively plasticize PVC. However, upon heating to temperatures above 60 °C, effective plasticization was again observed. 1,4-Butanediol dibenzoate is thereby a reversible heat-activated plasticizer or processing aid with excellent plasticizer properties at mildly elevated temperatures.
Collapse
Affiliation(s)
- Hanno C Erythropel
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
- Department of Chemical and Environmental Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT 06511, USA.
| | - Aurélie Börmann
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
| | - Jim A Nicell
- Department of Civil Engineering & Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada.
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
| | - Milan Maric
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
| |
Collapse
|
31
|
Wu CT, Wang CC, Huang LC, Liu SH, Chiang CK. Plasticizer Di-(2-Ethylhexyl)Phthalate Induces Epithelial-to-Mesenchymal Transition and Renal Fibrosis In Vitro and In Vivo. Toxicol Sci 2018; 164:363-374. [DOI: 10.1093/toxsci/kfy094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Cheng-Tien Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Chen Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Integrated Diagnostics & Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Li N, Liu T, Guo K, Zhu J, Yu G, Wang S, Ye L. Effect of mono-(2-ethylhexyl) phthalate (MEHP) on proliferation of and steroid hormone synthesis in rat ovarian granulosa cells in vitro. J Cell Physiol 2018; 233:3629-3637. [PMID: 29034469 DOI: 10.1002/jcp.26224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/09/2017] [Indexed: 11/06/2022]
Abstract
This study aimed to examine the proliferation of and secretion by rat ovarian granulosa cells (GCs) treated with mono-(2-ethylhexyl) phthalate (MEHP). Ovarian GCs were incubated with MEHP at concentration of 0, 25, 50, 100, and 200 µM for 24 hr. Cell viability was determined using the MTT Cell Proliferation Assay. Progesterone and estradiol production was evaluated by radioimmunoassay (RIA) and the expression of FSHR, PR, and ER was measured by immunocytochemistry. StAR, P450scc, 3β-HSD, 17β-HSD, and P450 arom mRNA levels were determined by RT-PCR. MEHP markedly attenuated proliferation of GCs, increased expression of sex hormone receptors and key enzymes in progesterone production, and stimulated steroid hormone secretion. The result of these analyses demonstrates that MEHP exposure of GCs may have effects on rat ovarian functions.
Collapse
Affiliation(s)
- Na Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
- Department of Disciplines and Research Management, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| | - Te Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Guo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jian Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Guangyan Yu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Shuyue Wang
- Department of Emergency, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Lin Ye
- Department of Disciplines and Research Management, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
33
|
Kougias DG, Cortes LR, Moody L, Rhoads S, Pan YX, Juraska JM. Effects of Perinatal Exposure to Phthalates and a High-Fat Diet on Maternal Behavior and Pup Development and Social Play. Endocrinology 2018; 159:1088-1105. [PMID: 29300916 PMCID: PMC5793791 DOI: 10.1210/en.2017-03047] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/21/2017] [Indexed: 01/28/2023]
Abstract
Humans are ubiquitously exposed to many phthalates, a class of endocrine-disrupting chemicals commonly used in many consumer goods, and diet, especially fatty food, is presumed to be a major source of exposure. Here, we use a rat model of human prenatal exposure to investigate the potential interactive effects of an environmentally relevant mixture of phthalates and a maternal high-fat diet (HFD). From gestation through postnatal day (P)10, dams consumed the mixture of phthalates (0, 200, or 1000 μg/kg/d) and were fed a control diet or HFD. In males, perinatal exposure to the mixture of phthalates decreased prepubertal body weight and, in a dose-specific manner, periadolescent social play behavior. A dose-specific effect from phthalates with HFD was also seen in increased time alone in females during social play. HFD resulted in dams consuming more calories, having greater gestational weight gain, and licking and nursing their pups more, such that an early postnatal HFD generally increased pup body weight. There also was a tendency for increased oxidative stress markers at P10 within the medial prefrontal cortex of males exposed to the relatively high dose of phthalates and HFD. Effects on gene expression were inconsistent at P10 and P90 in both the medial prefrontal cortex and hypothalamus. Overall, this study demonstrates that phthalates and a maternal HFD only rarely interacted, except in oxidative stress markers in males. Additionally, perinatal exposure to an environmentally relevant mixture of phthalates can have a modest, but lasting, impact on social behaviors in both males and females.
Collapse
Affiliation(s)
- Daniel G. Kougias
- Neuroscience Program, University of Illinois, Champaign, Illinois 61820
| | - Laura R. Cortes
- Department of Psychology, University of Illinois, Champaign, Illinois 61820
| | - Laura Moody
- Division of Nutritional Sciences, University of Illinois, Champaign, Illinois 61820
| | - Steven Rhoads
- Department of Psychology, University of Illinois, Champaign, Illinois 61820
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois, Champaign, Illinois 61820
- Department of Food Science and Human Nutrition, University of Illinois, Champaign, Illinois 61820
| | - Janice M. Juraska
- Neuroscience Program, University of Illinois, Champaign, Illinois 61820
- Department of Psychology, University of Illinois, Champaign, Illinois 61820
| |
Collapse
|
34
|
Engeli RT, Fürstenberger C, Kratschmar DV, Odermatt A. Currently available murine Leydig cell lines can be applied to study early steps of steroidogenesis but not testosterone synthesis. Heliyon 2018; 4:e00527. [PMID: 29560447 PMCID: PMC5857625 DOI: 10.1016/j.heliyon.2018.e00527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Androgen biosynthesis in males occurs to a large extent in testicular Leydig cells. This study focused on the evaluation of three murine Leydig cell lines as potential screening tool to test xenobiotics interfering with gonadal androgen synthesis. The final step of testosterone (T) production in Leydig cells is catalyzed by the enzyme 17β-hydroxysteroid dehydrogenase 3 (17β-hsd3). The endogenous 17β-hsd3 mRNA expression and Δ4-androstene-3,17-dione (AD) to T conversion were determined in the murine cell lines MA-10, BLTK1 and TM3. Additionally, effects of 8-Br-cAMP and forskolin stimulation on steroidogenesis and T production were analyzed. Steroids were quantified in supernatants of cells using liquid chromatography–tandem mass spectrometry. Unstimulated cells incubated with AD produced only very low T but substantial amounts of the inactive androsterone. Stimulated cells produced low amounts of T, moderate amounts of AD, but high amounts of progesterone. Gene expression analyses revealed barely detectable 17β-hsd3 levels, absence of 17β-hsd5 (Akr1c6), but substantial 17β-hsd1 expression in all three cell lines. Thus, MA-10, BLTK1 and TM3 cells are not suitable to study the expression and activity of the gonadal T synthesizing enzyme 17β-hsd3. The low T production reported in stimulated MA-10 cells are likely a result of the expression of 17β-hsd1. This study substantiates that the investigated Leydig cell lines MA-10, BLTK1, and TM3 are not suitable to study gonadal androgen biosynthesis due to altered steroidogenic pathways. Furthermore, this study emphasizes the necessity of mass spectrometry-based steroid quantification in experiments using steroidogenic cells such as Leydig cells.
Collapse
Affiliation(s)
- Roger T Engeli
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Cornelia Fürstenberger
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Denise V Kratschmar
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Svechnikov K, Savchuk I, Morvan ML, Antignac JP, Le Bizec B, Söder O. Phthalates Exert Multiple Effects on Leydig Cell Steroidogenesis. Horm Res Paediatr 2018; 86:253-263. [PMID: 26559938 DOI: 10.1159/000440619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Humans are significantly exposed to phthalates via food packaging, cosmetics and medical devices such as tubings and catheters. Testicular Leydig cells (LCs) are suggested to be among the main targets of phthalate toxicity in the body. However, their sensitivity to phthalates is species-dependent. This paper describes the response of the LCs from different species (mouse, rat and human) to phthalate exposure in different experimental paradigms (in vivo, ex vivo and in vitro), with particular focus on mechanisms of phthalate action on LC steroidogenesis. A comprehensive analysis of the impact of phthalate diesters and phthalate monoesters on LCs in different stages of their development is presented and possible mechanisms of phthalates action are discussed. Finally novel, not yet fully elucidated sites of action of phthalate monoesters on the backdoor pathway of 5α-dihydrotestosterone biosynthesis in immature mouse LCs and their effects on steroidogenesis and redox state in adult mouse LCs are reported.
Collapse
Affiliation(s)
- Konstantin Svechnikov
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Karolinska Institute and University Hospital, Q2:08, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Zhang Y, Li X, Gao J, Wang H. Influence of DEHP on thyroid, sex steroid-related genes and gonadal differentiation in Rana chensinensis tadpoles. ENVIRONMENTAL TOXICOLOGY 2018; 33:112-121. [PMID: 29098770 DOI: 10.1002/tox.22504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/08/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
In the present study, responses of the Chinese brown frog (Rana chensinensis) to exposure to di-2-ethylhexyl phthalate (DEHP), a common plasticizer, during the larval period were characterized. The effects of DEHP on metamorphosis rate, thyroid hormone, thyroid histology and the expression of genes involved in the steroid hormone synthesis in gonad were investigated. Metamorphosis rate and 50 percent of the tadpoles to reach Gosner stage 42 (T0.5 ) were significantly slower in all DEHP groups. The thyroid glands of the tadpoles exposed to DEHP clearly exhibited colloid depletion. In addition, decreased concentrations of T4 and T3 were observed in the tadpoles exposed to DEHP. Moreover, the highest DEHP exposure (10 µmol/L DEHP) showed increased ratio of females significantly. Also, up-regulation significantly of transcripts of cytochrome P450 aromatase (CYP19) gene was detected in male tadpoles exposed to DEHP. The present results indicate that this increase in estrogens could lead to female-biased sex ratio in DEHP exposure group. Taken together, the present study indicates that DEHP disrupt thyroid hormone and sex steroid signaling in R. chensinensis tadpoles. Our present observations support evidence of a crosstalk between TH and sex steroids in gonad differentiation.
Collapse
Affiliation(s)
- Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinshu Gao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
37
|
Li X, Nie X, Chen J, Wang Y. Preparation of epoxidized cardanol butyl ether as a novel renewable plasticizer and its application for poly(vinyl chloride). POLYM INT 2016. [DOI: 10.1002/pi.5280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoying Li
- Institute of Chemical Industry of Forestry Products, CAF; Nanjing 210042 PR China
| | - Xiaoan Nie
- Institute of Chemical Industry of Forestry Products, CAF; Nanjing 210042 PR China
- Institute of New Technology of Forestry, CAF; Beijing 10091 PR China
| | - Jie Chen
- Institute of Chemical Industry of Forestry Products, CAF; Nanjing 210042 PR China
| | - Yigang Wang
- Institute of Chemical Industry of Forestry Products, CAF; Nanjing 210042 PR China
| |
Collapse
|
38
|
RIFM fragrance ingredient safety assessment, 2-ethyl-1-butanol, CAS Registry Number 97-95-0. Food Chem Toxicol 2016; 97S:S157-S167. [PMID: 27658323 DOI: 10.1016/j.fct.2016.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/16/2016] [Indexed: 11/23/2022]
Abstract
The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the suitable read across analog 2-ethylhexanol (CAS # 104-76-7) show that this material is not genotoxic. Data from the suitable read across analog isopropyl alcohol (CAS # 67-63-0) show that this material does not have skin sensitization potential. The local respiratory toxicity endpoint was completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (1.4 mg/day). The repeated dose toxicity endpoint was completed using 2-ethylhexanol (CAS # 104-76-7) and 1-heptanol, 2-propyl (CAS # 10042-59-8) as suitable read across analogs, which provided a MOE > 100. The developmental and reproductive toxicity endpoint was completed using 2-ethyl-hexanol (CAS # 104-76-7) and isobutyl alcohol (CAS # 78-83-1) as suitable read across analogs, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework.
Collapse
|
39
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Penning TM, Politano VT, Ritacco G, Salvito D, Schultz TW, Shen J, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, 2-ethyl-1-hexanol, CAS registry number 104-76-7. Food Chem Toxicol 2016; 97S:S147-S156. [PMID: 27600295 DOI: 10.1016/j.fct.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/26/2022]
Abstract
The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic. Data from the suitable read across analog 2-butyloctan-1-ol (CAS # 3913-02-8) show that this material does not have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 and 1.4 mg/day, respectively). The developmental and repeat dose toxicity endpoints were completed data on the target material which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - P Calow
- Member RIFM Expert Panel, Humphrey School of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN, 55455, USA
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - T M Penning
- Member of RIFM Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996-4500, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
40
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Penning TM, Politano VT, Ritacco G, Salvito D, Schultz TW, Shen J, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, 2-methylundecanol, CAS Registry Number 10522-26-6. Food Chem Toxicol 2016; 97S:S119-S128. [PMID: 27475044 DOI: 10.1016/j.fct.2016.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
This material was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the suitable read across analogs 2-butyloctan-1-ol (CAS # 3913-02-8) and 2-ethyl-1-hexanol (CAS # 104-76-7) show that this material is not genotoxic nor does it have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 and 1.4 mg/day, respectively). The repeated dose toxicity endpoint was completed using 2-ethyl-1-hexanol (CAS # 104-76-7) and 1-heptanol, 2-propyl (CAS # 10042-59-8) as suitable read across analogs, which provided a MOE > 100. The developmental toxicity endpoint was completed using 2-ethyl-1-hexanol (CAS # 104-76-7) as a suitable read across analog, which provided a MOE > 100 The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - D Belsito
- Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - P Calow
- Humphrey School of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN, 55455, USA
| | - M L Dagli
- University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - A D Fryer
- Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - T M Penning
- University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
41
|
Jones S, Boisvert A, Naghi A, Hullin-Matsuda F, Greimel P, Kobayashi T, Papadopoulos V, Culty M. Stimulatory effects of combined endocrine disruptors on MA-10 Leydig cell steroid production and lipid homeostasis. Toxicology 2016; 355-356:21-30. [PMID: 27181934 DOI: 10.1016/j.tox.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/20/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Previous work in our laboratory demonstrated that in-utero exposure to a mixture of the phytoestrogen Genistein (GEN), and plasticizer DEHP, induces short- and long-term alterations in testicular gene and protein expression different from individual exposures. These studies identified fetal and adult Leydig cells as sensitive targets for low dose endocrine disruptor (ED) mixtures. To further investigate the direct effects and mechanisms of toxicity of GEN and DEHP, MA-10 mouse tumor Leydig cells were exposed in-vitro to varying concentrations of GEN and MEHP, the principal bioactive metabolite of DEHP. Combined 10μM GEN+10μM MEHP had a stimulatory effect on basal progesterone production. Consistent with increased androgenicity, the mRNA of steroidogenic and cholesterol mediators Star, Cyp11a, Srb1 and Hsl, as well as upstream orphan nuclear receptors Nr2f2 and Sf1 were all significantly increased uniquely in the mixture treatment group. Insl3, a sensitive marker of Leydig endocrine disruption and cell function, was significantly decreased by combined GEN+MEHP. Lipid analysis by high-performance thin layer chromatography demonstrated the ability of combined 10μM combined GEN+MEHP, but not individual exposures, to increase levels of several neutral lipids and phospholipid classes, indicating a generalized deregulation of lipid homeostasis. Further investigation by qPCR analysis revealed a concomitant increase in cholesterol (Hmgcoa) and phospholipid (Srebp1c, Fasn) mediator mRNAs, suggesting the possible involvement of upstream LXRα agonism. These results suggest a deregulation of MA-10 Leydig function in response to a combination of GEN+MEHP. We propose a working model for GEN+MEHP doses relevant to human exposure involving LXR agonism and activation of other transcription factors. Taken more broadly, this research highlights the importance of assessing the impact of ED mixtures in multiple toxicological models across a range of environmentally relevant doses.
Collapse
Affiliation(s)
- Steven Jones
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrada Naghi
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, RIKEN Institute, Wakoshi, Saitama, Japan; INSERM UMR1060, University Lyon 1, Villeurbanne, France
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN Institute, Wakoshi, Saitama, Japan
| | | | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Odermatt A, Strajhar P, Engeli RT. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J Steroid Biochem Mol Biol 2016; 158:9-21. [PMID: 26807866 DOI: 10.1016/j.jsbmb.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Strajhar
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Roger T Engeli
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
43
|
Designing green plasticizers: Influence of molecule geometry and alkyl chain length on the plasticizing effectiveness of diester plasticizers in PVC blends. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Schang G, Robaire B, Hales BF. Organophosphate Flame Retardants Act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells. Toxicol Sci 2016; 150:499-509. [PMID: 26794138 DOI: 10.1093/toxsci/kfw012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The organophosphate flame retardants (OPFRs) have emerged as alternatives to banned brominated flame retardants but little is known about their possible activity as endocrine disruptors. Our goal was to compare the effects of 7 commonly used OPFRsin vitroon MA-10 mouse Leydig tumor cells to those of a major brominated flame retardant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). The effects of OPFRs and BDE-47 on mitochondrial activity, cell counts, oxidative stress, steroid secretion and gene expression were investigated. BDE-47 and all 7 OPFRs tested significantly reduced MA-10 cell mitochondrial activity (concentrations ≥50 μM) and cell number (concentrations ≥10 μM). All of the OPFRs significantly increased (10 μM, 1.7-4.4-fold) superoxide production whereas BDE-47 had no significant effect. Basal progesterone production was significantly increased (10 μM, 1.5 to 3-fold) by 2-ethylhexyl diphenyl phosphate, isodecyl diphenyl phosphate, isopropylated triphenyl phosphate, tert-butylphenyl diphenyl phosphate, and tricresyl phosphate, while BDE-47, triphenyl phosphate and tri-o-cresyl phosphate had no effect. Interestingly, isopropylated triphenyl phosphate enhanced dbcAMP-stimulated steroid production (∼2-fold), while tri-o-cresyl phosphate decreased (∼2/3) LH-stimulated steroid production. Several OPFRs affected the expression of genes involved in the biosynthesis of progesterone. In conclusion, all the OPFRs tested affected mitochondrial activity, cell survival, and superoxide production. Basal or stimulated steroid secretion was affected by all of the OPFRs except triphenyl phosphate; BDE-47 had no effect. Hence, the OPFRs currently used as alternatives affect Leydig cells to a greater extent than the brominated flame retardants that they have replaced.
Collapse
Affiliation(s)
| | - Bernard Robaire
- *Department of Pharmacology and Therapeutics and Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
45
|
Toxicogenomic Screening of Replacements for Di(2-Ethylhexyl) Phthalate (DEHP) Using the Immortalized TM4 Sertoli Cell Line. PLoS One 2015; 10:e0138421. [PMID: 26445464 PMCID: PMC4596883 DOI: 10.1371/journal.pone.0138421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/29/2015] [Indexed: 12/04/2022] Open
Abstract
Phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) are being phased out of many consumer products because of their endocrine disrupting properties and their ubiquitous presence in the environment. The concerns raised from the use of phthalates have prompted consumers, government, and industry to find alternative plasticizers that are safe, biodegradable, and have the versatility for multiple commercial applications. We examined the toxicogenomic profile of mono(2-ethylhexyl) phthalate (MEHP, the active metabolite of DEHP), the commercial plasticizer diisononyl cyclohexane-1,2-dicarboxylate (DINCH), and three recently proposed plasticizers: 1,4-butanediol dibenzoate (BDB), dioctyl succinate (DOS), and dioctyl maleate (DOM), using the immortalized TM4 Sertoli cell line. Results of gene expression studies revealed that DOS and BDB clustered with control samples while MEHP, DINCH and DOM were distributed far away from the control-DOS-BDB cluster, as determined by principle component analysis. While no significant changes in gene expression were found after treatment with BDB and DOS, treatment with MEHP, DINCH and DOM resulted in many differentially expressed genes. MEHP upregulated genes downstream of PPAR and targeted pathways of cholesterol biosynthesis without modulating the expression of PPAR’s themselves. DOM upregulated genes involved in glutathione stress response, DNA repair, and cholesterol biosynthesis. Treatment with DINCH resulted in altered expression of a large number of genes involved in major signal transduction pathways including ERK/MAPK and Rho signalling. These data suggest DOS and BDB may be safer alternatives to DEHP/MEHP than DOM or the commercial alternative DINCH.
Collapse
|
46
|
Erythropel HC, Brown T, Maric M, Nicell JA, Cooper DG, Leask RL. Designing greener plasticizers: Effects of alkyl chain length and branching on the biodegradation of maleate based plasticizers. CHEMOSPHERE 2015; 134:106-112. [PMID: 25917507 DOI: 10.1016/j.chemosphere.2015.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
The ubiquitous presence of the plasticizer di (2-ethylhexyl) phthalate (DEHP) in the environment is of concern due to negative biological effects associated with it and its metabolites. In particular, the metabolite mono (2-ethylhexyl) phthalate (MEHP) is a potential endocrine disruptor. Earlier work had identified the diester di (2-ethylhexyl) maleate (DEHM) as a potential greener candidate plasticizer to replace DEHP, yet its biodegradation rate was reported to be slow. In this study, we modified the side chains of maleate diesters to be linear (i.e., unbranched) alkyl chains that varied in length from ethyl to n-octyl. The plasticization efficiency of these compounds blended into PVC at 29 wt.% increased with the overall length of the molecule, but all compounds performed as well as or better than comparable samples with DEHP. Tests conducted with the equally long DEHM and dihexyl maleate (DHM) showed that branching has no effect on glass transition temperature (Tg) reduction efficiency. Biodegradation experiments with the common soil bacterium Rhodococcus rhodocrous in the presence of the plasticizer showed acceptable hydrolysis rates of maleates with unbranched side chains, while the branched DEHM showed almost no degradation. The addition of hexadecane as auxiliary carbon source improved hydrolysis rates. Temporary buildup of the respective monoester of the compounds were observed, but only in the case of the longest molecule, dioctyl maleate (DOM), did this buildup lead to growth inhibition of the bacteria. Maleates with linear side chains, if designed and tested properly, show promise as potential candidate plasticizers as replacements for DEHP.
Collapse
Affiliation(s)
- Hanno C Erythropel
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Tobin Brown
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Milan Maric
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Jim A Nicell
- Department of Civil Engineering & Applied Mechanics, McGill University, Montréal, Québec, Canada
| | - David G Cooper
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
47
|
Qu R, Feng M, Sun P, Wang Z. A comparative study on antioxidant status combined with integrated biomarker response in Carassius auratus fish exposed to nine phthalates. ENVIRONMENTAL TOXICOLOGY 2015; 30:1125-1134. [PMID: 24616073 DOI: 10.1002/tox.21985] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 02/23/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
Laboratory experiments were performed to determine the antioxidant responses to nine phthalates (PAEs) in the liver of the goldfish Carassius auratus. The fish were injected with 10 mg/kg body weight of each PAE for 1 day and 4, 8, and 15 days. The potential biotoxicity of the PAEs were examined using the antioxidase and lipid peroxide indices. We determined that the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels displayed different trends following prolonged treatment, suggesting that metabolism generated either less toxic or more active substances. Based on the intensity of enzymes inhibition, MDA content, and the calculated integrated biomarker response (IBR), the toxicity order was determined as follows: dibutyl phthalate (DBP) > diethyl phthalate (DEP) > diisodecyl phthalate (DIDP) > diphenyl phthalate (DPP) > butyl benzyl phthalate (BBP) > diallyl phthalate (DAP) > dicyclohexyl phthalate (DCHP) > dimethyl phthalate (DMP) > di(2-ethylhexyl) phthalate (DEHP). In particular, DBP, which exhibited significant inhibition of enzyme activity and the greatest decrease in MDA content, may be a highly toxic contaminant. Furthermore, our results suggest that the IBR may be a general marker of pollution.
Collapse
Affiliation(s)
- Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
48
|
Martinez-Arguelles DB, Papadopoulos V. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland. Front Endocrinol (Lausanne) 2015; 6:29. [PMID: 25788893 PMCID: PMC4349159 DOI: 10.3389/fendo.2015.00029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/18/2015] [Indexed: 12/18/2022] Open
Abstract
Humans are continuously exposed to hundreds of man-made chemicals that pollute the environment in addition to multiple therapeutic drug treatments administered throughout life. Some of these chemicals, known as endocrine disruptors (EDs), mimic endogenous signals, thereby altering gene expression, influencing development, and promoting disease. Although EDs are eventually removed from the market or replaced with safer alternatives, new evidence suggests that early-life exposure leaves a fingerprint on the epigenome, which may increase the risk of disease later in life. Epigenetic changes occurring in early life in response to environmental toxicants have been shown to affect behavior, increase cancer risk, and modify the physiology of the cardiovascular system. Thus, exposure to an ED or combination of EDs may represent a first hit to the epigenome. Only limited information is available regarding the effect of ED exposure on adrenal function. The adrenal gland controls the stress response, blood pressure, and electrolyte homeostasis. This endocrine organ therefore has an important role in physiology and is a sensitive target of EDs. We review herein the effect of ED exposure on the adrenal gland with particular focus on in utero exposure to the plasticizer di(2-ethylehyl) phthalate. We discuss the challenges associated with identifying the mechanism mediating the epigenetic origins of disease and availability of biomarkers that may identify individual or population risks.
Collapse
Affiliation(s)
- Daniel B. Martinez-Arguelles
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Daniel B. Martinez-Arguelles and Vassilios Papadopoulos, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montréal, QC H3G 1A4, Canada e-mail: ;
| | - Vassilios Papadopoulos
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Daniel B. Martinez-Arguelles and Vassilios Papadopoulos, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montréal, QC H3G 1A4, Canada e-mail: ;
| |
Collapse
|
49
|
Kelley KM, Stenson AC, Dey R, Whelton AJ. Release of drinking water contaminants and odor impacts caused by green building cross-linked polyethylene (PEX) plumbing systems. WATER RESEARCH 2014; 67:19-32. [PMID: 25259680 DOI: 10.1016/j.watres.2014.08.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/26/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Green buildings are increasingly being plumbed with crosslinked polyethylene (PEX) potable water pipe. Tap water quality was investigated at a six month old plumbing system and chemical and odor quality impacts of six PEX pipe brands were examined. Eleven PEX related contaminants were found in the plumbing system; one regulated (toluene) and several unregulated: Antioxidant degradation products, resin solvents, initiator degradation products, or manufacturing aides. Water chemical and odor quality was monitored for new PEX-a, -b and -c pipes with (2 mg/L free chlorine) and without disinfectant over 30 days. Odor and total organic carbon (TOC) levels decreased for all pipes, but odor remained greater than the USA's Environmental Protection Agency's (USEPA) secondary maximum contaminant level. Odors were not attributed to known odorants ethyl-tert-butyl ether (ETBE) or methyl-tert-butyl ether (MTBE). Free chlorine caused odor levels for PEX-a1 pipe to increase from 26 to 75 threshold odor number (TON) on day 3 and affected the rate at which TOC changed for each brand over 30 days. As TOC decreased, the ultraviolet absorbance at 254 nm increased. Pipes consumed as much as 0.5 mg/L as Cl2 during each 3 day stagnation period. Sixteen organic chemicals were identified, including toluene, pyridine, methylene trichloroacetate and 2,4-di-tert-butylphenol. Some were also detected during the plumbing system field investigation. Six brands of PEX pipes sold in the USA and a PEX-a green building plumbing system impacted chemical and drinking water odor quality.
Collapse
Affiliation(s)
- Keven M Kelley
- Department of Civil Engineering, University of South Alabama, Mobile, AL, USA
| | | | - Rajarashi Dey
- Department of Statistics and Mathematics, University of South Alabama, Mobile, AL, USA
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Environmental and Ecological Engineering Division, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
50
|
Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Appl Microbiol Biotechnol 2014; 98:9967-81. [PMID: 25376446 DOI: 10.1007/s00253-014-6183-8] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 01/19/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is a widely used plasticizer to render poly(vinyl chloride) (PVC) soft and malleable. Plasticized PVC is used in hospital equipment, food wrapping, and numerous other commercial and industrial products. Unfortunately, plasticizers can migrate within the material and leach out of it over time, ending up in the environment and, frequently, the human body. DEHP has come under increased scrutiny as its breakdown products are believed to be endocrine disruptors and more toxic than DEHP itself. DEHP and its breakdown products have been identified as ubiquitous environmental contaminants, and daily human exposure is estimated to be in the microgram per kilogram level. The objective of this review is to summarize and comment on published sources of DEHP exposure and to give an overview of its environmental fate. Exposure through bottled water was examined specifically, as this concern is raised frequently, yet only little exposure to DEHP occurs through bottled water, and DEHP exposure is unlikely to stem from the packaging material itself. Packaged food was also examined and showed higher levels of DEHP contamination compared to bottled water. Exposure to DEHP also occurs in hospital environments, where DEHP leaches directly into liquids that passed through PVC/DEHP tubing and equipment. The latter exposure is at considerably higher levels compared to food and bottled water, specifically putting patients with chronic illnesses at risk. Overall, levels of DEHP in food and bottled water were below current tolerable daily intake (TDI) values. However, our understanding of the risks of DEHP exposure is still evolving. Given the prevalence of DEHP in our atmosphere and environment, and the uncertainty revolving around it, the precautionary principle would suggest its phaseout and replacement. Increased efforts to develop viable replacement compounds, which necessarily includes rigorous leaching, toxicity, and impact assessment studies, are needed before alternative plasticizers can be adopted as viable replacements.
Collapse
|