1
|
Wang Y, Dong J, Yu G, Liu L, Fan M, Kang Y, Guo Z, Zhang J. Efficient remediation of Hg in soils by iron-based materials: Environmental variable effect and regulatory mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125361. [PMID: 40233617 DOI: 10.1016/j.jenvman.2025.125361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
The effectiveness of iron-based materials in soil remediation has gained significant attention. The mechanisms underlying the methylation and demethylation of mercury (Hg) by iron materials were still elusive. In this study, the effect of typical iron materials (pyrrhotite, hematite, and zero-valent iron (ZVI)) on the transformation of Hg were investigated. The supplementation of various iron-based material increased the THg removal efficiency in soil, particularly with ZVI, which was 5.6-14.2 % higher than that of the control. The iron-based materials also reduced the stress of Hg on plants and soil by decreasing the transformation and translocation of Hg and increasing oxidative enzyme activity of plants. The ZVI decreased the MeHg content in plants (0.1 mg/kg) compared to the control group (0.3 mg/kg). The relative abundances of genes that encoded Hg transportation (e.g. merA), glycolysis, TCA, and iron reduction were increased with the addition of iron materials. Iron-based materials also increased the complexity of the bacterial network, thereby enhancing the robustness of the microbial environmental systems that against Hg stress. The present study provided a comprehensive assessment of the efficacy of iron-based materials in remediating Hg-contaminated soils.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiahao Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Guangzhou Yu
- Shandong Huankeyuan Environmental Engineering Co., Ltd., Jinan, 250000, China
| | - Lixin Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Minghao Fan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
2
|
Ghassemi Toussi A, Rafati SS, Einafshar E. Reducing lead toxicity with advanced nanotechnology methods. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04170-3. [PMID: 40272519 DOI: 10.1007/s00210-025-04170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Lead exposure remains a pressing global health concern, particularly due to its pervasive nature in our environment and the associated toxicological risks. This review article explores the multifaceted aspects of lead, including its physical and chemical properties, the epidemiological prevalence of lead poisoning, and the pathophysiological mechanisms underlying its toxicity. Clinical manifestations, particularly in occupational settings, highlight the significant health impacts on vulnerable populations. We will discuss current methodologies for the identification and detection of lead, emphasizing the importance of prevention and treatment strategies to mitigate exposure. Given the growing interest in sustainable remediation approaches, microbial remediation techniques are evaluated for their effectiveness in addressing lead contamination. Furthermore, this review underscores the potential of nanoparticles in modifying lead toxicity. Focusing on their role in both in vitro and in vivo conditions, we examine how nanoparticles can influence lead bioavailability and toxicity in various environments, including wastewater, soil, and plants. Our findings suggest that nanoparticles offer innovative solutions for reducing lead's harmful effects, thus providing a pathway for enhanced environmental and public health protection. This comprehensive review aims to inform researchers, healthcare professionals, and policymakers about the potential of cutting-edge nanotechnology methods in combating lead toxicity and improving health outcomes.
Collapse
Affiliation(s)
- Alireza Ghassemi Toussi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadaf Sadat Rafati
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Einafshar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Sreelatha L, Ambili AL, Sreedevi SC, Achuthavarier D. Metallothioneins: an unraveling insight into remediation strategies of plant defense mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:405-427. [PMID: 39704973 DOI: 10.1007/s11356-024-35790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Phytoremediation is an eco-friendly, sustainable way to clean up the environment using green plants that effectively remove and degrade pollutants from soil, water, or air. Certain hyperaccumulator plants can effectively mitigate heavy metals, organic compounds, and radioactive substances through absorption, adsorption, and transformation. This method offers a cost-effective and esthetically pleasing alternative to traditional remediation techniques, contributing to the restoration of contaminated ecosystems. Nanophytoremediation entails combining nanotechnology with phytoremediation techniques to improve plant-based environmental cleanup efficiency. Nanoparticles (NPs) or engineered NPs are applied to improve plants' absorption and transport of contaminants. This approach addresses limitations in traditional phytoremediation, offering increased remediation rates and effectiveness, particularly in removing pollutants like heavy metals. This review paper compares traditional phytoremediation and emerging nanophytoremediation, emphasizing their impact on metallothionein proteins in plants. The work reveals how plants get rid of unwanted foreign substances that build up on their bodies and keep homeostasis by using metallothionein proteins. These proteins effectively reduce the effects of these substances without affecting the plant's normal growth. The efficiency, cost-effectiveness, and ecological implications of the phytoremediation technologies in the light of the metallothionein protein action provide insights into optimizing contaminant detoxification strategies for polluted environments.
Collapse
Affiliation(s)
- Lekshmi Sreelatha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Ardra Lekshmi Ambili
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | | | - Deepthi Achuthavarier
- Modelling Program Division, Office of Science and Technology Integration, National Weather Service, NOAA, Silver Spring, MD, USA
| |
Collapse
|
4
|
Banda MF, Matabane DL, Munyengabe A. A phytoremediation approach for the restoration of coal fly ash polluted sites: A review. Heliyon 2024; 10:e40741. [PMID: 39691195 PMCID: PMC11650309 DOI: 10.1016/j.heliyon.2024.e40741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Coal fly ash (CFA) is a predominant waste by-product of coal combustion which is disposed of in open ash dams that utilize large pieces of land. This waste material is classified as a hazardous substance in South Africa as well as in other countries due to its fine particles that are easily blown to the atmosphere and the unacceptable levels of heavy metals and persistent organic pollutants. Contaminants in CFA can pollute surface and ground water, agricultural sites, soil and therefore pose risks to the health of humans and the environment. More than 500 million tons of CFA is produced yearly and over 200 million tons remain unused globally. The production will continue due to high consumer energy demands, especially in countries with heavy reliance on coal for power generation. Despite a significant progress made on the application of phytoremediation approach for decontamination of polluted sites, there is very limited evidence for its potential in the rehabilitation of CFA dumps. Low organic carbon, microbial activities and availability of nutrients including nitrogen contribute to restricted plant growth in CFA, and therefore converting ash dumps to barren lands devoid of vegetation. Leguminous plant species can fix atmospheric nitrogen through symbiotic association with bacteria. Therefore, their intercropping mixture development can improve the chemistry of the substrate and facilitate nutrients availability to the companion plants. This approach can enhance the performance of phytoremediation and promote sustainable practices. The paper provides an overview of the ongoing burden of CFA disposal and discusses the ecological and economic benefits of using legumes, aromatic and bioenergy plants. We identify knowledge gaps to establishing vegetation in ash dumping sites, and provide insights to encourage continued research that will enhance the applicability of phytoremediation in restoration programs.
Collapse
Affiliation(s)
- Maria Fezile Banda
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| | - Dithobolong Lovia Matabane
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| | - Alexis Munyengabe
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| |
Collapse
|
5
|
Xing G, Chen Q, Sun Y, Wang J, Zhou J, Sun L, Shu Q, Zhang J, Yan M. Synergistic promotion mechanism and structure-function relationship of nonmetallic atoms doped carbon nanodots driving Tagetes patula L. to remediate cadmium-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136479. [PMID: 39549400 DOI: 10.1016/j.jhazmat.2024.136479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/23/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Phytoremediation is an economical and effective strategy to remove cadmium (Cd) from polluted environments. To improve its efficiency, nanotechnology has been proposed to collaborate with hyperaccumulators in the remediation of Cd-polluted soils. However, the intricate structure-function relationship and the underlying regulatory mechanisms by which nanomaterials regulate Cd migration and conversion within the soil-plant system remained unrevealed. In this study, functional carbon nanodots (FCNs) were modified by doping with nitrogen and (or) sulfur elements. The synthesized nonmetallic atoms-doped FCNs were utilized to investigate their structure-function relationship and the regulatory mechanisms underlying their role in the phytoremediation of Cd-polluted soils by Tagetes patula L. FCNs-based nanomaterials can regulate the migration and bioaccumulation of Cd in the soil-plant system, which exhibits an obvious structural dependency. Specifically, the synergistic application of sulfur doped FCNs and Tagetes patula L. had the highest Cd removal efficiency of 53.2 %, which was 20.1 % higher than Tagetes patula L. alone. The uptake and migration of Cd in the soil-plant system are regulated by FCNs-based nanomaterials through both direct and indirect mechanisms, involving interfacial reactions, plant physiology regulation and environmental influence. This study not only sheds light on the fate of FCNs-based nanomaterials and Cd in the soil-plant system, but also provides innovative nanotools for reinforcing phytoremediation efficiency in contaminated soils.
Collapse
Affiliation(s)
- Guling Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qiong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Yiwen Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jianquan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Junbo Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lanxuan Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Quyu Shu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Collaborative Innovation Center of Yellow River Basin Pharmaceutical Green Manufacturing and Engineering Equipment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
6
|
Alghanem SMS, Alsudays IM, Farid M, Sarfraz W, Ishaq HK, Farid S, Zubair M, Khalid N, Aslam MA, Abbas M, Abeed AHA. Evaluation of heavy metal accumulation and tolerance in oxalic acid-treated Phragmites australis wetlands for textile effluent remediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2048-2063. [PMID: 38963119 DOI: 10.1080/15226514.2024.2372849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Water contamination with metals poses significant environmental challenges. The occurrence of heavy metals (HMs) prompts modifications in plant structures, emphasizing the necessity of employing focused safeguarding measures. Cadmium (Cd), lead (Pb), and chromium (Cr) emerge as particularly menacing toxins due to their high accumulation potential. Increasing the availability of organic acids is crucial for optimizing toxic metal removal via phytoremediation. This constructed wetland system (CWs) was used to determine how oxalic acid (OA) treatments of textile wastewater (WW) effluents affected morpho-physiological characteristics, antioxidant enzyme activity, oxidative stress, and HM concentrations in Phragmites australis. Multiple treatments, comprising the application of OA at a concentration of 10 mM and WW at different dilutions (25%, 50%, 75%, and 100%), were employed, with three replications of each treatment. WW stress decreased chlorophyll and carotenoid content, and concurrently enhanced HMs adsorption and antioxidant enzyme activities. Furthermore, the application of WW was found to elevate oxidative stress levels, whereas the presence of OA concurrently mitigated this oxidative stress. Similarly, WW negatively affected soil-plant analysis development (SPAD) and the total soluble proteins (SP) in both roots and shoots. Conversely, these parameters showed improvement with OA treatments. P. australis showed the potential to enhance HM accumulation under 100% WW stress. Specifically, there is an increase in root SP ranging from 9% to 39%, an increase in shoot SP from 6% to 91%, and an elevation in SPAD values from 4% to 64% compared to their respective treatments lacking OA inclusion. The OA addition resulted in decreased EL contents in the root and shoot by 10%-19% and 13%-15%, MDA by 9%-14% and 9%-20%, and H2O2 by 14%-21% and 9%-17%, in comparison to the respective treatments without OA. Interestingly, the findings further revealed that the augmentation of OA also contributed to an increased accumulation of Cr, Cd, and Pb. Specifically, at 100% WW with OA (10 mM), the concentrations of Cr, Pb, and Cd in leaves rose by 164%, 447%, and 350%, in stems by 213%, 247%, and 219%, and in roots by 155%, 238%, and 195%, respectively. The chelating agent oxalic acid effectively alleviated plant toxicity induced by toxins. Overall, our findings demonstrate the remarkable tolerance of P. australis to elevated concentrations of WW stress, positioning it as an eco-friendly candidate for industrial effluent remediation. This plant exhibits efficacy in restoring contaminants present in textile effluents, and notably, oxalic acid emerges as a promising agent for the phytoextraction of HMs.
Collapse
Affiliation(s)
| | | | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Wajiha Sarfraz
- Department of Botany, Government College Women University, Sialkot, Pakistan
- Australia Rivers Institute and School of Environment and Science, Griffith University, Nathan, Australia
| | - Hafiz Khuzama Ishaq
- Department of Engineering, Unversità degli studi della compania LuigiVanvitelli, Caserta, Italy
| | - Sheharyaar Farid
- Earth and Life Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Muhammad Arslan Aslam
- Department of Biological and Environment Sciences, University of Basque Country, Bilbao, Spain
| | - Mohsin Abbas
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amany H A Abeed
- Department of Botany and Microbiology, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
8
|
Ding S, Liang Y, Wang M, Hu R, Song Z, Xu X, Zheng L, Shen Z, Chen C. Less is more: A new strategy combining nanomaterials and PGPB to promote plant growth and phytoremediation in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134110. [PMID: 38522194 DOI: 10.1016/j.jhazmat.2024.134110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Novel combination strategies of nanomaterials (NMs) and plant growth-promoting bacteria (PGPB) may facilitate soil remediation and plant growth. However, the efficiency of the NM-PGPB combination and interactions among NMs, PGPB, and plants are still largely unknown. We used multiwalled carbon nanotubes (MWCNTs) and zero-valent iron (nZVI) combined with Bacillus sp. PGP5 to enhance the phytoremediation efficiency of Solanum nigrum on heavy metal (HM)-contaminated soil. The NM-PGPB combination showed the best promoting effect on plant growth, which also had synergistic effects on the bioaccumulation of HMs in S. nigrum. The MWCNT-PGP5 combination increased the Cd, Pb, and Zn removal efficiency of S. nigrum by 62.03%, 69.44%, and 61.31%, respectively. The underlining causes of improved plant growth and phytoremediation by NMs-PGPB combination were further elucidated. NM application promoted PGPB survival in soil. Compared with each single application, the combined application minimized disturbance to plant transcription levels and rhizosphere microbial community, resulting in the best performance on soil remediation and plant growth. The NM-PGPB-induced changes in the microbial community and root gene expression were necessary for plant growth promotion. This work reveals the "less is more" advantage of the NM-PGPB combination in soil remediation, providing a new strategy for soil management.
Collapse
Affiliation(s)
- Shifeng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinping Liang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingshuo Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoning Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, Guangdong, China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Kambhu A, Satapanajaru T, Somsamak P, Pengthamkeerati P, Chokejaroenrat C, Muangkaew K, Nonthamit K. Green cleanup of styrene-contaminated soil by carbon-based nanoscale zero-valent iron and phytoremediation: Sunn hemp ( Crotalaria juncea), zinnia ( Zinnia violacea Cav.), and marigold ( Tagetes erecta L. ). Heliyon 2024; 10:e27499. [PMID: 38496887 PMCID: PMC10944241 DOI: 10.1016/j.heliyon.2024.e27499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Accidental chemical spills can result in styrene-contaminated soil. Styrene negatively affects human health and the environment. The objective of this study was to remediate styrene-contaminated soil using a combination of activated carbon-based nanoscale zero-valent iron (nZVI-AC) and phytoremediation by sunn hemp (Crotalaria juncea), zinnia (Zinnia violacea Cav.) and marigolds (Tagetes erecta L.). The results showed that all three plant types could potentially increase the removal efficiency of styrene-contaminated soil. At 28 days, all three plants showed complete removal of styrene from the soil with 1 g/kg of nZVI-AC, activated carbon-based nZVI synthesized by tea leaves (Camellia sinensis) (T-nZVI-AC), or activated carbon-based nZVI synthesized by red Thai holy basil (Ocimum tenuiflorum L.) (B-nZVI-AC). However, styrene removal efficiencies of sunn hemp, zinnia, and marigold without carbon-based nZVI were 30%, 67%, and 56%, respectively. Statistical analysis (ANOVA) revealed that the removal efficiencies differed significantly from those of phytoremediation alone. With the same removal efficiency (100%), the biomass of sunn hemp in nano-phytoremediation treatments differed by approximately 55%, whereas the biomass of zinnia differed by >67%, compared with that of the control experiment. For marigold, the difference in biomass was only 30%. Styrene was adsorbed on surface of soil and AC and then further oxidized under air-water-nZVI environment, while phytovolatilization played an important role in transporting the remaining styrene from the contaminated soil to the air. Marigold was used as an alternative plant for the nano-phytoremediation of styrene-contaminated soil because of its sturdy nature, high biomass, tolerance to toxic effects, and ease of cultivation. Remediation of one cubic meter of styrene-contaminated soil by a combination of carbon-based nanoscale zero-valent iron and phytoremediation by marigolds emitted 0.0027 kgCO2/m3.
Collapse
Affiliation(s)
- Ann Kambhu
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Tunlawit Satapanajaru
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Piyapawn Somsamak
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Patthra Pengthamkeerati
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Kanitchanok Muangkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Kanthika Nonthamit
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| |
Collapse
|
10
|
Komal, Shabaan M, Ali Q, Asghar HN, Zahir ZA, Yousaf K, Aslam N, Zulfiqar U, Ejaz M, Alwahibi MS, Ali MA. Exploring the synergistic effect of chromium (Cr) tolerant Pseudomonas aeruginosa and nano zero valent iron (nZVI) for suppressing Cr uptake in Aloe Vera. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1474-1485. [PMID: 38488053 DOI: 10.1080/15226514.2024.2327838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Chromium (Cr) contamination of soil has substantially deteriorated soil health and has interfered with sustainable agricultural production worldwide and therefore, its remediation is inevitable. Inoculation of plant growth promoting rhizobacteria (PGPR) in association with nanotechnology has exerted broad based impacts in agriculture, and there is an urgent need to exploit their synergism in contaminated soils. Here, we investigated the effect of co-application of Cr-tolerant "Pseudomonas aeruginosa CKQ9" strain and nano zerovalent iron (nZVI) in improving the phytoremediation potential of aloe vera (Aloe barbadensis L.) under Cr contamination. Soil was contaminated by using potassium dichromate (K2Cr2O7) salt and 15 mg kg-1 contamination level in soil was maintained via spiking and exposure to Cr lasted throughout the duration of the experiment (120 days). We observed that the co-application alleviated the adverse impacts of Cr on aloe vera, and improved various plant attributes such as plant height, root area, number of leaves and gel contents by 51, 137, 67 and 49% respectively as compared to control treatment under Cr contamination. Similarly, significant boost in the activities of various antioxidants including catalase (124%), superoxide dismutase (87%), ascorbate peroxidase (36%), peroxidase (89%) and proline (34%) was pragmatic under contaminated soil conditions. In terms of soil Cr concentration and its plant uptake, co-application of P. aeruginosa and nZVI also reduced available Cr concentration in soil (50%), roots (77%) and leaves (84%), while simultaneously increasing the relative production index by 225% than un-inoculated control. Hence, integrating PGPR with nZVI can be an effective strategy for enhancing the phytoremediation potential of aloe vera.
Collapse
Affiliation(s)
- Komal
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shabaan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Qasim Ali
- Department of Soil Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kashmala Yousaf
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Noreen Aslam
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mukkaram Ejaz
- Institute of Physics-Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Gliwice, Poland
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Khoshyomn S, Heidari A, Farzam M, Shariatmadari Z, Karimian Z. Integrated approaches for heavy metal-contaminated soil remediation: harnessing the potential of Paulownia elongata S. Y. Hu, Oscillatoria sp., arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices), and iron nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19595-19614. [PMID: 38366318 DOI: 10.1007/s11356-024-32380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
In recent years, researchers have extensively investigated the remediation of heavy metal-contaminated soil using plants, microorganisms, and iron nanoparticles. The objective of this study was to investigate and compare the individual and simultaneous effects of Paulownia elongata S. Y. Hu, cyanobacteria (Oscillatoria sp.), arbuscular mycorrhizal fungi (AMF) including Glomus mosseae and Glomus intraradices, and zero-valent iron nanoparticles (nZVI) on the remediation of heavy metal-contaminated soil containing chromium (Cr VI and Cr III) and nickel (Ni). The study found significant variations in parameters such as pH (acidity), electrical conductivity (EC), nitrogen (N), phosphorus (P), potassium (K), and organic carbon (OC) among different treatments. The addition of cyanobacteria, AMF, and nZVI influenced these properties, resulting in both increases and decreases compared to the control treatment. The treatment involving a combination of cyanobacteria, AMF, and nZVI (CCAN25) exhibited the highest increase in growth parameters, such as total dry mass, root length, stem diameter, and leaf area, while other treatments showed varied effects on plant growth. Moreover, the CCAN25 treatment demonstrated the highest increase in chlorophyll a, chlorophyll b, and carotenoid levels, whereas other treatments displayed reductions in these pigments compared to the control. Moderate phytoaccumulation of Cr and Ni in P. elongata samples across all treatments was observed, as indicated by the bioconcentration factor and bioaccumulation coefficient values being less than 1.0 for both metals. The findings provide insights into the potential application of these treatments for soil remediation and plant growth enhancement in contaminated environments.
Collapse
Affiliation(s)
- Sara Khoshyomn
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ava Heidari
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Farzam
- Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Zahra Karimian
- Department of Ornamental Plants, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Hou D, Cui X, Liu M, Qie H, Tang Y, Xu R, Zhao P, Leng W, Luo N, Luo H, Lin A, Wei W, Yang W, Zheng T. The effects of iron-based nanomaterials (Fe NMs) on plants under stressful environments: Machine learning-assisted meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120406. [PMID: 38373376 DOI: 10.1016/j.jenvman.2024.120406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.
Collapse
Affiliation(s)
- Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenpeng Leng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Nan Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Huilong Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| | - Wenjie Yang
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| | - Tianwen Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| |
Collapse
|
13
|
Singh CK, Sodhi KK, Singh DK. Understanding the bacterial community structure associated with the Eichhornia crassipes rootzone. Mol Biol Rep 2023; 51:35. [PMID: 38157124 DOI: 10.1007/s11033-023-08979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Plant microbiome acts as an interface between plants and their environment, aiding in the functioning of the ecosystem, such as protection against abiotic and biotic stress along with improving nutrient uptake. The rhizosphere is an essential interface for the interaction between plants and microbes and plays a substantial part in the removal as well as uptake of heavy metals and antibiotics from contaminated locations. Eichhornia crassipes is a promising plant that contains a rich community of microbes in its rhizosphere. Microorganism's association with plants embodies a crucial pathway via which humans can also be exposed to antibiotic-resistant genes and bacteria. METHODS AND RESULTS In our earlier study enhanced removal of ciprofloxacin was observed by plant growth-promoting Microbacterium sp. WHC1 in the presence of E. crassipes root exudates. Therefore, the V3-V4, hypervariable region of the 16 S rRNA gene was studied to assess the bacterial diversity and functional profiles of the microbiota associated with plant roots. Using the QIIME software program, 16 S rRNA data from the Next Generation Sequencing (NGS) platform was examined. Alpha diversity including Chao1, Observed Shannon, and Simpson index denote significantly higher bacterial diversity. Proteobacteria (79%) was the most abundant phylum which was present in the root samples followed by Firmicutes (8%) and Cyanobacteria (8%). Sulfuricurvum (36%) is the most abundant genus belonging to the family Helicobacteraceae and the species kujiense in the genus Sulfuricurvum is the most abundant species present in the root sample. Also, the bacterial communities in the rhizoplane of Eichhornia crassipes harbor the genes conferring resistance to beta-lactams, tetracycline, fluoroquinolones, and penams. CONCLUSION Metagenomic studies on the E. crassipes microbiome showed that the bacterial communities constituting the root exudates of the Eichhornia aid them to survive in a polluted environment.
Collapse
Affiliation(s)
| | - Kushneet Kaur Sodhi
- Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, 110007, India.
| | | |
Collapse
|
14
|
Mohammadi H, Kazemi Z, Aghaee A, Hazrati S, Golzari Dehno R, Ghorbanpour M. Unraveling the influence of TiO 2 nanoparticles on growth, physiological and phytochemical characteristics of Mentha piperita L. in cadmium-contaminated soil. Sci Rep 2023; 13:22280. [PMID: 38097718 PMCID: PMC10721648 DOI: 10.1038/s41598-023-49666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Among the metals contaminants, cadmium (Cd) is one of the most toxic elements in cultivated soils, causing loss of yield and productivity in plants. Recently, nanomaterials have been shown to mitigate the negative consequences of environmental stresses in different plants. However, little is known about foliar application of titanium dioxide nanoparticles (TiO2 NPs) to alleviate Cd stress in medicinal plants, and their dual interactions on essential oil production. The objective of this study was to investigate the effects of foliar-applied TiO2 NPs on growth, Cd uptake, chlorophyll fluorescence, photosynthetic pigments, malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, total phenols, anthocyanins, flavonoids, antioxidant enzymes (SOD, CAT and POD) activity and essential oil content of Mentha piperita L. (peppermint) under Cd stress. For this purpose, plants were grown in Cd-contaminated (0, 20, 40, and 60 mg L-1) soil, and different concentrations of TiO2 NPs (0, 75, and 150 mg L-1) were foliar sprayed at three times after full establishment until the beginning of flowering. Exposure to TiO2 NPs significantly (P < 0.01) increased shoot dry weight (37.8%) and the number of lateral branches (59.4%) and decreased Cd uptake in plant tissues as compared to the control. Application of TiO2 NPs increased the content of plastid pigments, and the ratio Fv/Fm (13.4%) as compared to the control. Additionally, TiO2 NPs reduced the stress markers, MDA and H2O2 contents and enhanced the activity of the phenylalanine ammonia-lyase (PAL) enzyme (60.5%), total phenols (56.1%), anthocyanins (42.6%), flavonoids (25.5%), and essential oil content (52.3%) in Cd-stressed peppermint compared to the control. The results also demonstrated that foliar spray of TiO2 NPs effectively improved the growth and chlorophyll fluorescence parameters and reduced Cd accumulation in peppermint, which was mainly attributed to the reduction of oxidative burst and enhancement of the enzymatic (SOD, CAT, and POD) antioxidant defense system due to the uptake of NPs. The findings provide insights into the regulatory mechanism of TiO2 NPs on peppermint plants growth, physiology and secondary metabolites production in Cd-contaminated soil.
Collapse
Affiliation(s)
- Hamid Mohammadi
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Zahra Kazemi
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | - Saeid Hazrati
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Rosa Golzari Dehno
- Department of Agriculture, Chalus Branch, Islamic Azad University, Chalus, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
15
|
Rajput VD, Kumari A, Minkina T, Barakhov A, Singh S, Mandzhieva SS, Sushkova S, Ranjan A, Rajput P, Garg MC. A practical evaluation on integrated role of biochar and nanomaterials in soil remediation processes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9435-9449. [PMID: 36070110 DOI: 10.1007/s10653-022-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Soil decontamination and restoration continue to be a key environmental concern around the globe. The degradation of soil resources due to the presence of potentially toxic elements (PTEs) has a substantial influence on agricultural production, food security, and human well-being, and as a result, urgent action is required. PTEs pollution is not a threat to the agroecosystems but also a serious concern to human health; thereby, it needs to be addressed timely and effectively. Hence, the development of improved and cost-effective procedures to remove PTEs from polluted soils is imperative. With this context in mind, current review is designed to distinctly envisage the PTEs removal potential by the single and binary applications of biochar (BC) and nanomaterials (NMs).2 Recently, BC, a product of high-temperature biomass pyrolysis with high specific surface area, porosity, and distinctive physical and chemical properties has become one of the most used and economic adsorbent materials. Also, biochar's application has generated interest in a variety of fields and environments as a modern approach against the era of urbanization, industrialization, and climate change. Likewise, several NMs including metals and their oxides, carbon materials, zeolites, and bimetallic-based NMs have been documented as having the potential to remediate PTEs-polluted environments. However, both techniques have their own set of advantages and disadvantages, therefore combining them can be a more effective strategy to address the growing concern over the rapid accumulation and release of PTEs into the environment.
Collapse
Affiliation(s)
- Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Anatoly Barakhov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Shraddha Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, 400085, India
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh, 201313, India
| |
Collapse
|
16
|
Liberati D, Ahmed SW, Samad N, Mugnaioni R, Shaukat S, Muddasir M, Marinari S, De Angelis P. Biochar amendment for reducing the environmental impacts of reclaimed polluted sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118623. [PMID: 37481915 DOI: 10.1016/j.jenvman.2023.118623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/03/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Dredging activities produce large amounts of polluted sediments that require adequate management strategies. Sediment reuse and relocation can involve several environmental issues, such as the release of CO2 and nitrogen compounds in the environment, the transfer of metals to plant tissues and the persistence of phytotoxic compounds. In this framework, the aim of the present work is to evaluate the use of biochar at different doses, in combination with plant growth, to reduce the environmental impacts polluted dredged sediments. Irrespective to the plant treatment, the amendment of the sediment with the lowest dose of biochar (3%) reduced by 25% the CO2 emissions of the substrate, by 89% the substrate carbon loss and by 35% the amount of nitrogen released into the environment (average values of the three plant treatments). The negative priming effect of biochar on organic matter mineralization can be responsible for the beneficial reduction of carbon and nitrogen release in the environment. The lack of similar effects observed at the higher biochar doses can depend on the low albedo of the biochar particles, causing the substrate warming (+1 °C for highest biochar dose) and accelerating the organic matter mineralization. Finally, shrub growth in combination with 3% biochar was able to offset the CO2 emission of the sediment and to reduce the amount of nitrogen lost. This work provides new insight on the potential benefit related to the biochar amendment of organic matter-rich dredged sediments, suggesting that the use of moderate dose of wood biochar in combination with shrub plantation can reduce the release of CO2 and nitrogen compounds in the environment.
Collapse
Affiliation(s)
- Dario Liberati
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.
| | - Syed Wasif Ahmed
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Nafeesa Samad
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy; Euro-Mediterranean Center on Climate Change (CMCC), Italy
| | - Roberta Mugnaioni
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Sundas Shaukat
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Italy
| | - Muhammad Muddasir
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Sara Marinari
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| | - Paolo De Angelis
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy
| |
Collapse
|
17
|
Nawaz A, Rehman HU, Usman M, Wakeel A, Shahid MS, Alam S, Sanaullah M, Atiq M, Farooq M. Nanobiotechnology in crop stress management: an overview of novel applications. DISCOVER NANO 2023; 18:74. [PMID: 37382723 PMCID: PMC10214921 DOI: 10.1186/s11671-023-03845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/30/2023]
Abstract
Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnology in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nanoparticles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration with other technologies, and a better understanding of their fate in agricultural systems.
Collapse
Affiliation(s)
- Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Sardar Alam
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
18
|
Kumari T, Shukla V. Exploring the multipotentiality of plant extracts for the green synthesis of iron nanoparticles: A study of adsorption capacity and dye degradation efficiency. ENVIRONMENTAL RESEARCH 2023; 229:116025. [PMID: 37127105 DOI: 10.1016/j.envres.2023.116025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
The goal of the project was to create environmentally friendly and economically viable materials for thoroughly purifying contaminated water. An affordable, phytogenic, and multifunctional plant-based nanomaterial was prepared in this context. The work demonstrates an effective green synthesis method for producing iron nanoparticles (FeNPs) using six different plant extracts as a reducing agent. The characterization of green synthesized catalysts was concluded via Spectroscopy (tauc plot), XRD, FE-SEM, and FT-IR. The produced nanomaterial, which had an X-ray diffractogram (XRD) peak at 43.33⁰ and a size range of 1.82-63.63 nm, functioned as a highly effective nano-photocatalyst for the degradation of cationic dye. Due to the presence of a lower overall secondary metabolites quota, Ocimum sanctum plant extract reduced iron precursor produced the highest yield of dried NPs, followed by Azadirachta indica, Prosopis cineraria, Syzygium cumini, Citrus limon, and Salvadora oleoides. Further, the synthesized catalyst was tested for its effectiveness against gentian violet dye degradation. Ocimum sanctum plant extract reduced iron precursor produced the highest yield of dried NPs, followed by Azadirachta indica, Prosopis cineraria, Syzygium cumini, Citrus limon, and Salvadora oleoides, in that order. The dye removal efficiency of nanoparticles was 51% (Azadirachta indica), 83% (Ocimum sanctum), 59% (Syzygium cumini), 40% (Salvadora oleoides), 59% (Prosopis cineraria), and 63% (Citrus limon) after 12 h of visible light irradiation. The key factor in the process of deterioration is •O2-. As a result, the nanoparticles can be used in antibacterial and photocatalytic processes. The reduced band gap was responsible for the increased photocatalytic quantity. The maximum adsorption capacity at the time of equilibrium was obtained in order as Ocimum sanctum > Citrus limon > Prosopis cineraria > Syzygium cumini > Azadirachta indica > Salvadora oleoides. The simplicity of production, low cost, magnetic property, and high adsorption capacity will increase the efficacy of the water treatment method. This article reports on the creation of unique iron nanoparticles and their use in the purification of water.
Collapse
|
19
|
Saldarriaga JF, López JE, Díaz-García L, Montoya-Ruiz C. Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49498-49511. [PMID: 36781665 PMCID: PMC10104932 DOI: 10.1007/s11356-023-25501-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 04/16/2023]
Abstract
The contamination of soil and water by metals such as mercury (Hg) and cadmium (Cd) has been increasing in recent years, because of anthropogenic activities such as mining and agriculture, respectively. In this work, the changes in the rhizosphere microbiome of Lolium perenne L. during the phytoremediation of soils contaminated with Hg and Cd were evaluated. For this, two soil types were sampled, one inoculated with mycorrhizae and one without. The soils were contaminated with Hg and Cd, and L. perenne seeds were sown and harvested after 30 days. To assess changes in the microbiome, DNA isolation tests were performed, for which samples were subjected to two-step PCR amplification with specific 16S rDNA V3-V4 primers (337F and 805R). With mycorrhizae, changes had been found in the absorption processes of metals and a new distribution. While with respect to microorganisms, families such as the Enterobacteriaceae have been shown to have biosorption and efflux effects on metals such as Hg and Cd. Mycorrhizae then improve the efficiency of removal and allow the plant to better distribute the absorbed concentrations. Overall, L. perenne is a species with a high potential for phytoremediation of Cd- and Hg-contaminated soils in the tropics. Inoculation with mycorrhizae modifies the phytoremediation mechanisms of the plant and the composition of microorganisms in the rhizosphere. Mycorrhizal inoculation and changes in the microbiome were associated with increased plant tolerance to Cd and Hg. Microorganism-assisted phytoremediation is an appropriate alternative for L. perenne.
Collapse
Affiliation(s)
- Juan F Saldarriaga
- Dept. of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este, #19A-40, 111711, Bogotá, Colombia.
| | - Julián E López
- Facultad de Arquitectura E Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Laura Díaz-García
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Carolina Montoya-Ruiz
- Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín Calle, 59A #63-20, 050034, Medellín, Colombia
| |
Collapse
|
20
|
Pandey AK, Gautam A, Singh AK. Insight to chromium homeostasis for combating chromium contamination of soil: Phytoaccumulators-based approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121163. [PMID: 36736817 DOI: 10.1016/j.envpol.2023.121163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chromium (Cr) is a naturally occurring, carcinogenic heavy metal that has become a pressing concern in recent decades for environmentalists. Due to high anthropogenic activities, the concentration of Cr has crossed the environmental threshold levels and consequently contaminated soil and water. The high solubility of Cr ions in the groundwater results in its high uptake by the plants leading to phytotoxicity and yield loss. The dearth of efficient and cost-effective treatment methods has resulted in massive chromium pollution. However, some phytoaccumulators capable of accumulating Cr in high amounts in their shoots and then performing their metabolic activity typically have been identified. Chromium bioremediation using phytoaccumulators is very contemplative due to its eco-friendly and cost-effective outcome. These accumulators possess several mechanisms, such as biosorption, reduction, efflux, or bioaccumulation, naturally or acquired to counter the toxicity of chromium. This review focuses on the detoxification mechanism of Cr by the phytoaccumulator species, their responses against Cr toxicity, and the scope for their application in bioremediation. Besides, Cr bioavailability, uptake, distribution, impairment of redox homeostasis, oxidative stress, and phytotoxicity imposed on the plants are also summarized. Further, the knowledge gap and prospects are also discussed to fill these gaps and overcome the problem associated with the real-time applicability of phytoaccumulator-based bioremediation.
Collapse
Affiliation(s)
- Akhilesh Kumar Pandey
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; Department of Biotechnology, Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, 243123, Uttar Pradesh, India.
| | - Arti Gautam
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India; Model Rural Health Research Unit, Datia, Indian Council of Medical Research-National Institute of Research in Tribal Health (ICMR-NIRTH), Jabalpur, 482003, India
| |
Collapse
|
21
|
Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, Ibrahim M, Ashraf S, Liew RK, Lam SS, Irshad MK. An assessment of the efficacy of biochar and zero-valent iron nanoparticles in reducing lead toxicity in wheat (Triticum aestivum L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120979. [PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
Collapse
Affiliation(s)
| | - Sihang Zhu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Agricultural Management Institute, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sana Ashraf
- College of Earth and Environmental Sciences, University of the Punjab, Lahore Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Gansu, China
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sobia Ashraf
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Rock Keey Liew
- NV Western PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan.
| |
Collapse
|
22
|
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q. Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205924. [PMID: 36509680 DOI: 10.1002/smll.202205924] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Glucose monitoring is essential to evaluate the degree of glucose metabolism disorders. The enzymatic determination has been the most widely used method in glucose detection because of its high efficiency, accuracy, and sensitivity. Noble metal nanomaterials (NMs, i.e., Au, Ag, Pt, and Pd), inheriting their excellent electronic, optical, and enzyme-like properties, are classified as noble metal nanozymes (NMNZs). As the NMNZs are often involved in two series of reactions, the oxidation of glucose and the chromogenic reaction of peroxide, here the chemical mechanism by employing NMNZs with glucose oxidase (GOx) and peroxidase (POD) mimicking activities is briefly summarized first. Subsequently, the regulation strategies of the GOx-like, POD-like and tandem enzyme-like activities of NMNZs are presented in detail, including the materials, size, morphology, composition, and the reaction condition of the representative NMs. In addition, in order to further mimic the enantioselectivity of enzyme, the design of NMNZs with enantioselective recognition of d-glucose and l-glucose by using different chiral compounds (DNA, amino acids, and cyclodextrins) and molecular imprinting is further described in this review. Finally, the feasible solutions to the existing challenges and a vision for future development possibilities are discussed.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Xiaoyang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jian Gao
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jianbo Liu
- College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
23
|
Saman RU, Shahbaz M, Maqsood MF, Lili N, Zulfiqar U, Haider FU, Naz N, Shahzad B. Foliar Application of Ethylenediamine Tetraacetic Acid (EDTA) Improves the Growth and Yield of Brown Mustard ( Brassica juncea) by Modulating Photosynthetic Pigments, Antioxidant Defense, and Osmolyte Production under Lead (Pb) Stress. PLANTS (BASEL, SWITZERLAND) 2022; 12:115. [PMID: 36616244 PMCID: PMC9824091 DOI: 10.3390/plants12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb) toxicity imposes several morphological and biochemical changes in plants grown in Pb-contaminated soils. Application of ethylenediamine tetraacetic acid (EDTA) in mitigating heavy metal stress has already been studied. However, the role of EDTA in mitigating heavy metal stress, especially in oilseed crops, is less known. Therefore, the study aimed to explore the potential effect of foliar application of 2.5 mM EDTA on two different varieties of Brassica juncea L., i.e., Faisal (V1) and Rohi (V2), with and without 0.5 mM Lead acetate [Pb(C2H3O2)2] treatment. Statistical analysis revealed that Pb stress was harmful to the plant. It caused a considerable decrease in the overall biomass (56.2%), shoot and root length (21%), yield attributes (20.16%), chlorophyll content (35.3%), total soluble proteins (12.9%), and calcium (61.7%) and potassium (40.9%) content of the plants as compared to the control plants. However, the foliar application of EDTA alleviated the adverse effects of Pb in both varieties. EDTA application improved the morphological attributes (67%), yield (29%), and photosynthetic pigments (80%). Positive variations in the antioxidant activity, ROS, and contents of total free amino acid, anthocyanin, flavonoids, and ascorbic acid, even under Pb stress, were prominent. EDTA application further improved their presence in the brown mustard verifying it as a more stress-resistant plant. It was deduced that the application of EDTA had significantly redeemed the adverse effects of Pb, leaving room for further experimentation to avoid Pb toxification in the mustard oil and the food chain.
Collapse
Affiliation(s)
- Rafia Urooj Saman
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Nian Lili
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
24
|
Jafari A, Hatami M. Foliar-applied nanoscale zero-valent iron (nZVI) and iron oxide (Fe 3O 4) induce differential responses in growth, physiology, antioxidative defense and biochemical indices in Leonurus cardiaca L. ENVIRONMENTAL RESEARCH 2022; 215:114254. [PMID: 36096173 DOI: 10.1016/j.envres.2022.114254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The impacts of nZVI and iron oxides on growth, physiology and elicitation of bioactive antioxidant metabolites in medicinal aromatic plants must be critically assessed to ensure their safe utilization within the food chain and achieve nutritional gains. The present study investigated and compared the morpho-physiological and biochemical changes of Leonurus cardiaca L. plants as affected by various concentrations (0, 250, 500 and 1000 mg L-1) of nZVI and Fe3O4. The foliar uptake of nZVI was verified through Scanning Electron Microscopy (SEM) images and Energy Dispersive X-ray (EDX) analytical spectra. Plants exposed to nZVI at low concentration showed comparatively monotonic deposition of NPs on the surface of leaves, however, the agglomerate size of nZVI was raised as their doses increased, leading to remarkable changes in anatomical and biochemical traits. 250 mg L-1 nZVI and 500 mg L-1 Fe3O4 significantly (P < 0.05) increased plant dry matter accumulation by 37.8 and 27% over the control, respectively. The treatments of nZVI and Fe3O4 at 250 mg L-1 significantly (P < 0.01) improved chlorophyll a content by 22.4% and 15.3% as compared to the control, and then a rapid decrease (by 14.8% and 4.1%) followed at 1000 mg L-1, respectively. Both nZVI and Fe3O4 at 250 mg L-1 had no significant impact on malondialdehyde (MDA) formation, however, at an exposure of 500-1000 mg L-1, the MDA levels and cellular electrolyte leakage were increased. Although nZVI particles could be utilized by plants and enhanced the synthesis of chlorophylls and secondary metabolites, they appeared to be more toxic than Fe3O4 at 1000 mg L-1. Exposure to nZVI levels showed positive, negative and or neutral impacts on leaf water content compared to control, while no significant difference was observed with Fe3O4 treatments. Soluble sugar, total phenolics and hyperoside content were significantly increased upon optimum concentrations of employed treatments-with 250 mg L-1 nZVI being most superior. Among the extracts, those obtained from plants treated with 250-500 mg L-1 nZVI revealed the strong antioxidant activity in terms of scavenging free radical (DPPH) and chelating ferrous ions. These results suggest that nZVI (at lower concentration) has alternative and additional benefits both as nano-fertilizer and nano-elicitor for biosynthesis of antioxidant metabolites in plants, but at high concentrations is more toxic than Fe3O4.
Collapse
Affiliation(s)
- Abbas Jafari
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
25
|
Rahman SU, Wang X, Shahzad M, Bashir O, Li Y, Cheng H. A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119916. [PMID: 35944778 DOI: 10.1016/j.envpol.2022.119916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Trace elements (TEs) from various natural and anthropogenic activities contaminate the agricultural water and soil environments. The use of nanoparticles (NPs) as nano-fertilizers or nano-pesticides is gaining popularity worldwide. The NPs-mediated fertilizers encourage the balanced availability of essential nutrients to plants compared to traditional fertilizers, especially in the presence of excessive amounts of TEs. Moreover, NPs could reduce and/or restrict the bioavailability of TEs to plants due to their high sorption ability. In this review, we summarize the potential influence of NPs on plant physiological attributes, mineral absorption, and TEs sorption, accumulation, and translocation. It also unveils the NPs-mediated TE scavenging-mechanisms at plant and soil interface. NPs immobilized TEs in soil solution effectively by altering the speciation of TEs and modifying the physiological, biochemical, and biological properties of soil. In plants, NPs inhibit the transfer of TEs from roots to shoots by inducing structural modifications, altering gene transcription, and strengthening antioxidant defense mechanisms. On the other hand, the mechanisms underpinning NPs-mediated TEs absorption and cytotoxicity mitigation differ depending on the NPs type, distribution strategy, duration of NP exposure, and plants (e.g., types, varieties, and growth rate). The review highlights that NPs may bring new possibilities for resolving the issue of TE cytotoxicity in crops, which may also assist in reducing the threats to the human dietary system. Although the potential ability of NPs in decontaminating soils is just beginning to be understood, further research is needed to uncover the sub-cellular-based mechanisms of NPs-induced TE scavenging in soils and absorption in plants.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Muhammad Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Owais Bashir
- Division of Soil Science and Agricultural Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 190025, Kashmir, India
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
26
|
Vanzetto GV, Thomé A. Toxicity of nZVI in the growth of bacteria present in contaminated soil. CHEMOSPHERE 2022; 303:135002. [PMID: 35597456 DOI: 10.1016/j.chemosphere.2022.135002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The use of nano zero-valent iron (nZVI) for the remediation of degraded areas is a consolidated practice. However, the long-term reactions that occur in the environment remain unknown. This study aimed to evaluate the potential toxic effects on the growth of colony-forming units (CFUs) of Bacillus cereus and Pseudomona aeruginosa present in soil contaminated with hexavalent chromium (Cr6+) and pentachlorophenol (PCP) nanoremediated with nZVI. The treatments were natural soil (control), soil contaminated by Cr6+, soil contaminated by PCP, and soil contaminated by Cr6+ and PCP (Cr6+ and PCP), all in duplicate. The concentration of contaminants used was 100 mg/kg of soil. One of the drums of the duplicate received an injection of nZVI solution with a concentration of 50 g/kg. Analysis was performed 7, 15, 21, 30, 60, and 90 days after the nZVI injection. Temporary oscillations in the abundance of the microbiological community were observed, characterizing the adaptation of bacteria to the contaminants. The bacteria showed similar behavior. Ninety days after the injection of nZVI, the averages of the CFUs were statistically equal, with the lowest coefficient of variation and the highest concentration of CFUs occurring. The strains of B. cereus and P. aeruginosa were resistant to the concentrations of nZVI, Cr6+, and PCP. The nanoremediation of nZVI in soil contaminated by Cr6+ and PCP had no toxic effects on the population of the bacteria evaluated and did not present major disturbances in temperature, electrical conductivity, pH, and humidity over time.
Collapse
Affiliation(s)
| | - Antonio Thomé
- Professor Graduate Program in Engineering, University of Passo Fundo, Brazil
| |
Collapse
|
27
|
Daryabeigi Zand A, Vaezi Heir A, Khodaei H. Integrated remediation approach for metal polluted soils using plants, nanomaterials and root-associated bacteria. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.1878900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ali Daryabeigi Zand
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Azar Vaezi Heir
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamidreza Khodaei
- Islamic Azad University, Golpayegan Branch, Golpayegan, Isfahan, Iran
| |
Collapse
|
28
|
Baragaño D, Forján R, Álvarez N, Gallego JR, González A. Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128748. [PMID: 35405586 DOI: 10.1016/j.jhazmat.2022.128748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Zero valent iron nanoparticles (nZVI) attract interest given their effectiveness in soil remediation. However, little attention has been given to their impacts on plants. Likewise, although fertilizers are commonly used to enhance phytoremediation, their effects on As mobilization, resulting in potential toxic effects, require further study. In this context, we examined the impact of As and Hg accumulation on the antioxidative system of Medicago sativa grown in a soil amended with organic fertilizer and/or nZVI. The experiment consisted of 60 pots. Plants were pre-grown and transferred to pots, which were withdrawn along time for monitoring purposes. As and Hg were monitored in the soil-plant system, and parameters related to oxidative stress, photosynthetic pigments, and non-protein thiol compounds (NPTs) were measured. In general, the application of nZVI immobilized As in soil and increased Hg accumulation in the plant, although it surprisingly decreased oxidative stress. Plants in nZVI-treated soil also showed an increase in NPT content in roots. In contrast, the application of the fertilizer mobilized As, thereby improving bioaccumulation factors. However, when combining fertilizer with nZVI, the As accumulation is mitigated. This observation reveals that simultaneous amendments are a promising approach for soil stabilization and the phytomanagement of As/Hg-polluted soils.
Collapse
Affiliation(s)
- D Baragaño
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain.
| | - R Forján
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - N Álvarez
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - A González
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| |
Collapse
|
29
|
Gulzar ABM, Mazumder PB. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40319-40341. [PMID: 35316490 DOI: 10.1007/s11356-022-19756-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals (HMs) are not destroyable or degradable and persist in the environment for a long duration. Thus, eliminating and counteracting the HMs pollution of the soil environment is an urgent task to develop a safe and sustainable environment. Plants are in close contact with the soil and can play an important role in soil clean-up, and the process is known as phytoremediation. However, under HM contaminated conditions, plants suffer from several complications, like nutrient and mineral deficiencies, alteration of various physiological and biological processes, which reduces the plant's growth rate. On the other hand, the bioavailability of HMs is another factor for reduced phytoremediation, as most of the HMs are not bioavailable to plants for efficient phytoremediation. The altered plant growth and reduced bioavailability of HMs could be overcome and enhance the phytoremediation efficiency by incorporating either nanotechnology, i.e., nanoparticles (NPs) or plant growth promoting rhizobacteria (PGPR) along with phytoremediation. Single incorporation of NPs and PGPR might improve the growth rate in plants by enhancing nutrient availability and uptake and also by regulating plant growth regulators under HM contaminated conditions. However, there are certain limitations, like a high dose of NPs that might have toxic effects on plants. Thus, the combination of two techniques such as PGPR and NPs-based remediation can conquer the limitations of individual techniques and consequently enhance phytoremediation efficiency. Considering the negative impacts of HMs on the environment and living organisms, this review is aimed at highlighting the concept of phytoremediation, the single or combined integration of NPs and PGPR to help plants deal with HMs and their basic mechanisms involved in the process of phytoremediation. Additionally, the complications of using NPs and PGPR in the phytoremediation process are discussed to determine future research questions and this will assist to stimulate further research in this field and increase its effectiveness in practical application.
Collapse
Affiliation(s)
- Abu Barkat Md Gulzar
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India.
| |
Collapse
|
30
|
Rodríguez-Seijo A, Soares C, Ribeiro S, Amil BF, Patinha C, Cachada A, Fidalgo F, Pereira R. Nano-Fe 2O 3 as a tool to restore plant growth in contaminated soils - Assessment of potentially toxic elements (bio)availability and redox homeostasis in Hordeum vulgare L. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127999. [PMID: 34896708 DOI: 10.1016/j.jhazmat.2021.127999] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
This work aimed to evaluate the potential of Fe2O3 nanoparticles (nano-Fe2O3) to alleviate potentially toxic elements (PTEs) - induced stress in barley plants (Hordeum vulgare L.), focusing on bioaccumulation patterns and on plant growth and redox homeostasis. To achieve this goal, plants grew in two agricultural soils, contaminated by different levels of PTEs, collected from an industrial area, previously amended, or not, with 1% (w/w) nano-Fe2O3. After 14 d of growth, biometric parameters were evaluated, along with the analysis of PTEs bioaccumulation and biochemical endpoints. After exposure to contaminated soils, plant development was greatly affected, as evidenced by significant decreases in root length and biomass production. However, upon co-treatment with nano-Fe2O3, lower inhibitory effects on biometric parameters were observed. Regarding the oxidative damage, both soils led to increases in lipid peroxidation and superoxide anion concentration, though hydrogen peroxide levels were only increased in the most contaminated soil. In general, these changes in the oxidative stress markers were accompanied by an upregulation of different antioxidant mechanisms, whose efficiency was even more powerful upon soil amendment with nano-Fe2O3, thus lowering PTEs-induced oxidative damage. Altogether, the present study revealed that nano-Fe2O3 can protect the growth of barley plants under contaminated soils.
Collapse
Affiliation(s)
- Andrés Rodríguez-Seijo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal.
| | - Cristiano Soares
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal; GreenUPorto-Sustainable Agrifood Production Research Centre and INOV4AGRO, Rua do Campo Alegre s/n, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal.
| | - Sónia Ribeiro
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal; GreenUPorto-Sustainable Agrifood Production Research Centre and INOV4AGRO, Rua do Campo Alegre s/n, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Berta Ferreiro Amil
- GreenUPorto-Sustainable Agrifood Production Research Centre and INOV4AGRO, Rua do Campo Alegre s/n, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal; Faculdade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carla Patinha
- Department of Geosciences & GEOBIOTEC, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal
| | - Anabela Cachada
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal; GreenUPorto-Sustainable Agrifood Production Research Centre and INOV4AGRO, Rua do Campo Alegre s/n, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Ruth Pereira
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal; GreenUPorto-Sustainable Agrifood Production Research Centre and INOV4AGRO, Rua do Campo Alegre s/n, Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| |
Collapse
|
31
|
Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, Naz I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. CHEMOSPHERE 2022; 291:132979. [PMID: 34801572 DOI: 10.1016/j.chemosphere.2021.132979] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 05/22/2023]
Abstract
Phytoremediation is an effective, green and economical technique. Different types of phytoremediation methods can be used for the reduction of heavy metal contaminations, such as phytoextraction, phytovolatilization, phytostabilization and phytofiltration. The biomass of plants and the bioavailability of heavy metals in soil are the key factors affecting the efficiency of phytoremediation. It's worth noting that the low remediation efficiency and the lack of effective disposal methods for contaminated biomass have limited its development and application. At present, biological, physical, chemical, agronomic and genetic approaches have been used to enhance phytoremediation. Disposal methods of contaminated biomass usually include pyrolysis, incineration, composting and compaction. They are effective, but are costly and have security problems. Improper disposal of contaminated biomass can lead to leaching of heavy metals. The leaching possibility of different forms of heavy metal in plants is different. Hence, it has great significance to explore the different forms of heavy metals in plants which can help to explore appropriate disposal methods. According to the challenges of phytoremediation, we put forward some views and recommendations for the sustainable and rapid development of phytoremediation technology.
Collapse
Affiliation(s)
- Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiawei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Lin Sun
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Imran Ali
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452, Saudi Arabia.
| |
Collapse
|
32
|
Hao S, Wang P, Ge F, Li F, Deng S, Zhang D, Tian J. Enhanced Lead (Pb) immobilization in red soil by phosphate solubilizing fungi associated with tricalcium phosphate influencing microbial community composition and Pb translocation in Lactuca sativa L. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127720. [PMID: 34810010 DOI: 10.1016/j.jhazmat.2021.127720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Phosphate (P) minerals and phosphate solubilizing fungi (PSF) play essential roles in lead (Pb) immobilization, but their roles in driving Pb bioavailability and ecological risks in red soil remains poorly understood. In this study, the inoculation of P. oxalicum and TCP successfully enhanced available P (AP) and urease concentrations in artificially Pb contaminated red soil. Combined P. oxalicum and TCP inoculation significantly reduced Pb bioavailability, bioaccessibility, leachability and mobility by increasing soil AP concentration and forming stable Pb-P compounds during the 21-day experiment. Soil AP and Pb bioavailability play an important role in shifting soil microbial communities induced by co-occurrence of P. oxalicum and TCP. Combined P. oxalicum and TCP could notably promote the relative abundances of predominant soil genus to enhance microbial resistance to soil Pb. Likewise, coexistence of P. oxalicum and TCP showed the highest biomass and better branch root development of Pb-stressed in lettuces (Lactuca sativa L.) in pot experiment, and significantly reduced up to 88.1% of Pb translocation from soil to root over control. The reductions of Pb translocation and accumulation in root in P. oxalicum + TCP treatment could enhance the oxidase activities and alleviate the oxidative damages of H2O2 and O2.- in shoot tissues. Our study provided strong evidence to use PSF associated with P materials for the stable and eco-friendly soil Pb remediation.
Collapse
Affiliation(s)
- Shaofen Hao
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peiying Wang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
33
|
Majumdar A, Upadhyay MK, Ojha M, Afsal F, Giri B, Srivastava S, Bose S. Enhanced phytoremediation of Metal(loid)s via spiked ZVI nanoparticles: An urban clean-up strategy with ornamental plants. CHEMOSPHERE 2022; 288:132588. [PMID: 34662638 DOI: 10.1016/j.chemosphere.2021.132588] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The increasing industrialization and urbanization are also triggering environmental pollution, mostly unnoticed, in the case of soil pollution due to uncontrolled contamination by toxic elemental dispersion. The present study focused on this aspect and studied the clean-up of urban soil in a low-cost and eco-friendly way to restrict arsenic (As), lead (Pb) and mercury (Hg) contamination. Four potential ornamental plants, Catharanthus roseus (vinca), Cosmos bipinnatus (cosmos), Gomphrena globose (globosa) and Impatiens balsamina (balsamina) were used along with zero valent iron (ZVI) nanoparticles (Fe NPs) for remediation of the soil spiked with As (70 mg kg-1), Pb (600 mg kg-1) and Hg (15 mg kg-1) in a 60 d pot experiment. All plants were divided into four groups viz. control, spiked, spiked+20 mg kg-1 ZVI NP and spiked+50 mg kg-1 ZVI NP. FTIR and SEM were used for ZVI NP characterization. Soil and plant analyses and elemental assessments were done using ICP-MS, XRF and SEM. Among the four plants, cosmos showed the maximum accumulation of toxic elements (41.24 ± 0.022 mg kg-1 As, 139.15 ± 11.2 mg kg-1 Pb and 15.57 ± 0.27 mg kg-1 Hg) at 60 d. The application of ZVI NP at 20 mg kg-1 dosage was found to further augment plants' potential for metal(loid)s accumulation without negatively hampering their growth. Cosmos were observed to reduce soil As from 81.35 ± 1.34 mg kg-1 to 28.16 ± 1.38 mg kg-1 (65.38%), Pb from 1132.47 ± 4.66 to 516.09 ± 3.15 mg kg-1 (54.42%) and Hg from 17.35 ± 0.88 to 6.65 ± 0.4 mg kg-1 (61.67%) at 60 d in spiked + 20 mg kg-1 ZVI NP treatment. Balsamina was the most sensitive plant and showed the least metal(loid)s accumulation. In conclusion, three of these plants are potent enough to use together for a better and enhanced removal of toxic elements from the contaminated soil with cosmos to be the best amongst these in urban areas.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246.
| | - Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Megha Ojha
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246; Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan, Maharashtra, 411008, India
| | - Fathima Afsal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246; Department of Civil Engineering, McGill University, 845 Rue Sherbrooke O, Montréal, QC H3A 0G4, Canada
| | - Biswajit Giri
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246
| |
Collapse
|
34
|
Sardar R, Ahmed S, Yasin NA. Titanium dioxide nanoparticles mitigate cadmium toxicity in Coriandrum sativum L. through modulating antioxidant system, stress markers and reducing cadmium uptake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118373. [PMID: 34662592 DOI: 10.1016/j.envpol.2021.118373] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 05/12/2023]
Abstract
Anthropogenic activities are the foremost reason of metal pollution in soils of the cultivated areas, resulting abnormal physiochemical processes in plants. Among metals contaminants, cadmium (Cd) is one of the most injurious contaminants that deleteriously affect physiological activities, growth and yield of the crop plants. Keeping in view the stress mitigation potential of titanium dioxide (TiO2), the existing research work was premeditated to inspect the beneficial role of seed priming with titanium dioxide nanoparticles (TiO2-NPs) on biochemical, morphological and physiological characteristics of Coriandrum sativum L. (coriander) plants under Cd stress. For this purpose, C. sativum seeds were primed with 0, 40, 80 and 160 mg L-1 TiO2-NPs. Cadmium stress triggered a significant decrease in chlorophyll a content (49%), chlorophyll b content (44%), photosynthetic rate (62%) and plant growth (51%) as compared with control. Tanium dioxide nanoparticles treated seedlings exhibited reduced Cd contents besides improved agronomic traits (seedlings biomass, number of seeds and yield). The TiO2-NPs treatment declined the magnitude of EL and MDA by 1.5 fold and 1.71 fold, respectively. Furthermore, TiO2-NPs diminished oxidative injuries in plants exposed to Cd stress. Additionally, TiO2-NPs enhanced the biosynthesis of osmatic regulators (proline) by 47% which helped in the mitigation of Cd persuaded toxicity in plants. Briefly, treatment of 80 mg L-1 TiO2-NPs perhaps ameliorates the deleterious influence of Cd stress and enhance the yield of coriander.
Collapse
Affiliation(s)
- Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
35
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Wang W, Lu Y, Li J, Zhang X, Hu F, Zhao Y, Zhou DX. SnRK1 stimulates the histone H3K27me3 demethylase JMJ705 to regulate a transcriptional switch to control energy homeostasis. THE PLANT CELL 2021; 33:3721-3742. [PMID: 34498077 PMCID: PMC8643663 DOI: 10.1093/plcell/koab224] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/01/2021] [Indexed: 05/04/2023]
Abstract
Plant SNF1-Related Kinase1 (SnRK1) is an evolutionarily conserved energy-sensing protein kinase that orchestrates transcriptional networks to maintain cellular energy homeostasis when energy supplies become limited. However, the mechanism by which SnRK1 regulates this gene expression switch to gauge cellular energy status remains largely unclear. In this work, we show that the rice histone H3K27me3 demethylase JMJ705 is required for low energy stress tolerance in rice plants. The genetic inactivation of JMJ705 resulted in similar effects as those of the rice snrk1 mutant on the transcriptome, which impairs not only the promotion of the low energy stress-triggered transcriptional program but also the repression of the program under an energy-sufficient state. We show that the α-subunit of OsSnRK1 interacts with and phosphorylates JMJ705 to stimulate its H3K27me3 demethylase activity. Further analysis revealed that JMJ705 directly targets a set of low energy stress-responsive transcription factor genes. These results uncover the chromatin mechanism of SnRK1-regulated gene expression in both energy-sufficient and -limited states in plants and suggest that JMJ705 functions as an upstream regulator of the SnRK1α-controlled transcriptional network.
Collapse
Affiliation(s)
- Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangfang Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay 91405, France
| |
Collapse
|
37
|
Babu SMOF, Hossain MB, Rahman MS, Rahman M, Ahmed ASS, Hasan MM, Rakib A, Emran TB, Xiao J, Simal-Gandara J. Phytoremediation of Toxic Metals: A Sustainable Green Solution for Clean Environment. APPLIED SCIENCES 2021; 11:10348. [DOI: 10.3390/app112110348] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Contamination of aquatic ecosystems by various sources has become a major worry all over the world. Pollutants can enter the human body through the food chain from aquatic and soil habitats. These pollutants can cause various chronic diseases in humans and mortality if they collect in the body over an extended period. Although the phytoremediation technique cannot completely remove harmful materials, it is an environmentally benign, cost-effective, and natural process that has no negative effects on the environment. The main types of phytoremediation, their mechanisms, and strategies to raise the remediation rate and the use of genetically altered plants, phytoremediation plant prospects, economics, and usable plants are reviewed in this review. Several factors influence the phytoremediation process, including types of contaminants, pollutant characteristics, and plant species selection, climate considerations, flooding and aging, the effect of salt, soil parameters, and redox potential. Phytoremediation’s environmental and economic efficiency, use, and relevance are depicted in our work. Multiple recent breakthroughs in phytoremediation technologies are also mentioned in this review.
Collapse
Affiliation(s)
| | - M. Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur 3814, Bangladesh
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Nathan, QLD 4222, Australia
| | - M. Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Centre Dhaka (AECD), Bangladesh Atomic Energy Commission, Shahbag, Dhaka 1000, Bangladesh
| | - Moshiur Rahman
- Department of Fisheries (DoF), Ministry of Fisheries and Livestock, Dhaka 1000, Bangladesh
| | | | - Md. Monjurul Hasan
- Bangladesh Fisheries Research Institute, Riverine Station, Chandpur 3602, Bangladesh
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
38
|
Rizwan M, Ali S, Rehman MZU, Riaz M, Adrees M, Hussain A, Zahir ZA, Rinklebe J. Effects of nanoparticles on trace element uptake and toxicity in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112437. [PMID: 34153540 DOI: 10.1016/j.ecoenv.2021.112437] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 05/04/2023]
Abstract
Agricultural soils are receiving higher inputs of trace elements (TEs) from anthropogenic activities. Application of nanoparticles (NPs) in agriculture as nano-pesticides and nano-fertilizers has gained rapid momentum worldwide. The NPs-based fertilizers can facilitate controlled-release of nutrients which may be absorbed by plants more efficiently than conventional fertilizers. Due to their large surface area with high sorption capacity, NPs can be used to reduce excess TEs uptake by plants. The present review summarizes the effects of NPs on plant growth, photosynthesis, mineral nutrients uptake and TEs concentrations. It also highlights the possible mechanisms underlying NPs-mediated reduction of TEs toxicity at the soil and plant interphase. Nanoparticles are effective in immobilization of TEs in soil through alteration of their speciation and improving soil physical, chemical, and biological properties. At the plant level, NPs reduce TEs translocation from roots to shoots by promoting structural alterations, modifying gene expression, and improving antioxidant defense systems. However, the mechanisms underlying NPs-mediated TEs uptake and toxicity reduction vary with NPs type, mode of application, time of NPs exposure, and plant conditions (e.g., species, cultivars, and growth rate). The review emphasizes that NPs may provide new perspectives to resolve the problem of TEs toxicity in crop plants which may also reduce the food security risks. However, the potential of NPs in metal-contaminated soils is only just starting to be realized, and additional studies are required to explore the mechanisms of NPs-mediated TEs immobilization in soil and uptake by plants. Such future knowledge gap has been highlighted and discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| |
Collapse
|
39
|
Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review. WATER 2021. [DOI: 10.3390/w13162186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology has been widely used in many fields including in soil and groundwater remediation. Nanoremediation has emerged as an effective, rapid, and efficient technology for soil and groundwater contaminated with petroleum pollutants and heavy metals. This review provides an overview of the application of nanomaterials for environmental cleanup, such as soil and groundwater remediation. Four types of nanomaterials, namely nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), and metallic and magnetic nanoparticles (MNPs), are presented and discussed. In addition, the potential environmental risks of the nanomaterial application in soil remediation are highlighted. Moreover, this review provides insight into the combination of nanoremediation with other remediation technologies. The study demonstrates that nZVI had been widely studied for high-efficiency environmental remediation due to its high reactivity and excellent contaminant immobilization capability. CNTs have received more attention for remediation of organic and inorganic contaminants because of their unique adsorption characteristics. Environmental remediations using metal and MNPs are also favorable due to their facile magnetic separation and unique metal-ion adsorption. The modified nZVI showed less toxicity towards soil bacteria than bare nZVI; thus, modifying or coating nZVI could reduce its ecotoxicity. The combination of nanoremediation with other remediation technology is shown to be a valuable soil remediation technique as the synergetic effects may increase the sustainability of the applied process towards green technology for soil remediation.
Collapse
|
40
|
Hussain F, Hadi F, Rongliang Q. Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34697-34713. [PMID: 33655481 DOI: 10.1007/s11356-021-13132-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Applications of nanoparticles and plants for efficient restoration of heavy metal-polluted water and soil are an emerging approach and need to be explored. Hydroponic study was performed to find the role of zinc oxide nanoparticles (ZnO NPs) in plant growth, antioxidative response, and lead (Pb) accumulation in Persicaria hydropiper. Seedlings were grown in Pb-polluted media amended with 5, 10, 15, and 20 mg L-1 ZnO NPs. Inductively coupled plasma spectroscopy (ICP) was used for Pb analysis in plant tissues. Pb significantly inhibited seedling growth, and ZnO NPs alleviated Pb-induced stress by promoting plant growth, and improved chlorophyll and carotenoid contents. Oxidative stress ameliorated in ZnO NPs exposed seedlings through enhanced production of free proline, phenolics, flavonoids, and activation of antioxidative enzymes. Pb accumulation boosted in ZnO NP treatments, and highly significant increase in Pb accumulation in roots (255.60±4.80 mg kg-1), stem (124.07±2.84 mg kg-1), and leaves (92.00±3.22 mg kg-1) was observed in T3 (15 mg L-1 ZnO NPs) for P. hydropiper. Contrarily, ZnO NPs at 20 mg L-1 dose suppressed plant growth, Pb accumulation, secondary metabolites, and antioxidative enzyme activities. Moreover, positive correlation was found in Pb accumulation with free proline and secondary metabolite contents in plant tissues. These results suggest that ZnO NPs at optimum concentration may augment efficacy of plants to remove heavy metal from polluted water through nanophytoremediation.
Collapse
Affiliation(s)
- Fazal Hussain
- Department of Biotechnology, University of Malakand, KP, Chakdara, 18800, Pakistan
| | - Fazal Hadi
- Department of Biotechnology, University of Malakand, KP, Chakdara, 18800, Pakistan.
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qiu Rongliang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
41
|
Sun D, Hu J, Bai J, Qin H, Wang J, Wang J, Lin X. Arbuscular mycorrhizal fungus facilitates ryegrass (Lolium perenne L.) growth and polychlorinated biphenyls degradation in a soil applied with nanoscale zero-valent iron. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112170. [PMID: 33773154 DOI: 10.1016/j.ecoenv.2021.112170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Nanoscale zero-valent iron (nZVI) shows an excellent degradation effect on chlorinated contaminants in soil, but poses a threat to plants in combination with phytoremediation. Arbuscular mycorrhizal (AM) fungus can reduce the phyototoxicity of nZVI, but their combined impacts on polychlorinated biphenyls (PCBs) degradation and plant growth remain unclear. Here, a greenhouse pot experiment was conducted to investigate the influences of nZVI and/or Funneliformis caledonium on soil PCB degradation and ryegrass (Lolium perenne L.) antioxidative responses. The amendment of nZVI significantly reduced not only the total and homolog concentrations of PCBs in the soil, but also the ryegrass biomass as well as soil available P and root P concentrations. Moreover, nZVI significantly decreased leaf superoxide disutase (SOD) activity, while tended to decrease the protein content. In contrast, the additional inoculation of F. caledonium significantly increased leaf SOD activity and protein content, while tended to increase the catalase activity and tended to decrease the malondialdehyde content. The additional inoculation of F. caledonium also significantly increased soil alkaline phosphatase activity, and tended to increase root P concentration, but had no significantly effects on soil available P concentration, the biomass and P acquisition of ryegrass, which could be attributed to the fixation of soil available nutrients by nZVI. Additionally, F. caledonium facilitated PCB degradation in the nZVI-applied soil. Thus, AM fungus can alleviate the nZVI-induced phytotoxicity, showing great application potentials in accompany with nZVI for soil remediation.
Collapse
Affiliation(s)
- Dongnian Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China
| | - Junli Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianfeng Bai
- Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China.
| | - Hua Qin
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Junhua Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jingwei Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
42
|
Cheng P, Zhang S, Wang Q, Feng X, Zhang S, Sun Y, Wang F. Contribution of Nano-Zero-Valent Iron and Arbuscular Mycorrhizal Fungi to Phytoremediation of Heavy Metal-Contaminated Soil. NANOMATERIALS 2021; 11:nano11051264. [PMID: 34065026 PMCID: PMC8151622 DOI: 10.3390/nano11051264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/24/2023]
Abstract
Soil pollution with heavy metals has attracted increasing concern, which calls for the development of new remediation strategies. The combination of physical, chemical, and biological techniques can achieve more efficient remediation. However, few studies have focused on whether nanomaterials and beneficial microbes can be jointly used to facilitate phytoremediation. Therefore, we studied the role of nano-zero-valent iron (nZVI) and arbuscular mycorrhizal (AM) fungi in the phytoremediation of an acidic soil polluted with Cd, Pb and Zn, using sweet sorghum. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and mapping analyses were conducted to explore the mechanisms of metal immobilization by nZVI. The results showed that although both bare nZVI (B-nZVI) and starch-stabilized nZVI (S-nZVI) inhibited root mycorrhizal colonization, Acaulospora mellea ZZ successfully colonized the plant roots. AM inoculation significantly reduced the concentrations of DTPA-Cd, -Pb, and -Zn in soil, and the concentrations of Cd, Pb, and Zn in plants, indicating that AM fungi substantially facilitated heavy metal immobilization. Both B-nZVI and S-nZVI, ranging from 50 mg/kg to 1000 mg/kg, did not impede plant growth, and generally enhanced the phytoextraction of heavy metals. XRD, EDS and mapping analyses showed that S-nZVI was more susceptible to oxidation than B-nZVI, and thus had more effective immobilization effects on heavy metals. Low concentrations of nZVI (e.g., 100 mg/kg) and AM inoculation had synergistic effects on heavy metal immobilization, reducing the concentrations of Pb and Cd in roots and enhancing root Zn accumulation. In conclusion, our results showed that AM inoculation was effective in immobilizing heavy metals, whereas nZVI had a low phytotoxicity, and they could jointly contribute to the phytoremediation of heavy metal-contaminated soils with sweet sorghum.
Collapse
|
43
|
Iannone MF, Groppa MD, Zawoznik MS, Coral DF, Fernández van Raap MB, Benavides MP. Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111942. [PMID: 33476850 DOI: 10.1016/j.ecoenv.2021.111942] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
In this work, the internalization and distribution of citric acid-coated magnetite nanoparticles (here, Fe3O4-NPs) in soybean and alfalfa tissues and their effects on plant growth were studied. Both legumes were germinated in pots containing an inert growing matrix (vermiculite) to which Hoagland solution without (control, C), with Fe3O4-NPs (50 and 100 mgironL-1, NP50 and NP100), or with the same amount of soluble iron supplied as Fe-EDTA (Fe50, Fe100) was added once before sowing. Then, plants were watered with the standard nutrient solution. The observation of superparamagnetic signals in root tissues at harvest (26 days after emergence) indicated Fe3O4-NPs uptake by both legumes. A weak superparamagnetic signal was also present in the stems and leaves of alfalfa plants. These findings suggest that Fe3O4-NPs are readily absorbed but not translocated (soybean) or scarcely translocated (alfalfa) from the roots to the shoots. The addition of both iron sources resulted in increased root weight; however, only the addition of Fe3O4-NPs resulted in significantly higher root surface; shoot weight also increased significantly. As a general trend, chlorophyll content enhanced in plants grown in vermiculite supplemented with extra iron at pre-sowing; the greatest increase was observed with NP50. The only antioxidant enzyme significantly affected by our treatments was catalase, whose activity increased in the roots and shoots of both species exposed to Fe3O4-NPs. However, no symptoms of oxidative stress, such as increased lipid peroxidation or reactive oxygen species accumulation, were evidenced in any of these legumes. Besides, no evidence of cell membrane damage or cell death was found. Our results suggest that citric acid-coated Fe3O4-NPs are not toxic to soybean and alfalfa; instead, they behave as plant growth stimulators.
Collapse
Affiliation(s)
- María Florencia Iannone
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.
| | - María Daniela Groppa
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | - Myriam Sara Zawoznik
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | - Diego Fernando Coral
- Instituto de Física de La Plata (IFLP, CONICET), Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina
| | - Marcela Beatriz Fernández van Raap
- Instituto de Física de La Plata (IFLP, CONICET), Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina
| | - María Patricia Benavides
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|
44
|
Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04301-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractToxic metal contamination of soil is a major environmental hazard. Chemical methods for heavy metal's (HMs) decontamination such as heat treatment, electroremediation, soil replacement, precipitation and chemical leaching are generally very costly and not be applicable to agricultural lands. However, many strategies are being used to restore polluted environments. Among these, phytoremediation is a promising method based on the use of hyper-accumulator plant species that can tolerate high amounts of toxic HMs present in the environment/soil. Such a strategy uses green plants to remove, degrade, or detoxify toxic metals. Five types of phytoremediation technologies have often been employed for soil decontamination: phytostabilization, phytodegradation, rhizofiltration, phytoextraction and phytovolatilization. Traditional phytoremediation method presents some limitations regarding their applications at large scale, so the application of genetic engineering approaches such as transgenic transformation, nanoparticles addition and phytoremediation assisted with phytohormones, plant growth-promoting bacteria and AMF inoculation has been applied to ameliorate the efficacy of plants as candidates for HMs decontamination. In this review, aspects of HMs toxicity and their depollution procedures with focus on phytoremediation are discussed. Last, some recent innovative technologies for improving phytoremediation are highlighted.
Collapse
|
45
|
Applications of Nanomaterials for Heavy Metal Removal from Water and Soil: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13020713] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Heavy metals are toxic and non-biodegradable environmental contaminants that seriously threaten human health. The remediation of heavy metal-contaminated water and soil is an urgent issue from both environmental and biological points of view. Recently, nanomaterials with excellent adsorption capacities, great chemical reactivity, active atomicity, and environmentally friendly performance have attracted widespread interest as potential adsorbents for heavy metal removal. This review first introduces the application of nanomaterials for removing heavy metal ions from the environment. Then, the environmental factors affecting the adsorption of nanomaterials, their toxicity, and environmental risks are discussed. Finally, the challenges and opportunities of applying nanomaterials in environmental remediation are discussed, which can provide perspectives for future in-depth studies and applications.
Collapse
|
46
|
Zhang K, Feng S, Kang S, Wu Y, Zhang M, Wang Q, Tao Z, Fan Y, Lu W. Hybrid structure of PbS QDs and vertically-few-layer MoS 2 nanosheets array for broadband photodetector. NANOTECHNOLOGY 2021; 32:145602. [PMID: 33438586 DOI: 10.1088/1361-6528/abd57f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel three-dimensional (3D) vertically-few-layer MoS2 (V-MoS2) nanosheets- zero-dimensional PbS quantum dots (QDs) hybrid structure based broadband photodetector was fabricated, and its photoelectric performance was investigated in detail. We synthesized the V-MoS2 nanosheets by chemical vapor deposition, using the TiO2 layer as the induced layer, and proposed a possible growth mechanism. The use of the TiO2 induction layer successfully changed the growth direction of MoS2 from parallel to vertical. The prepared V-MoS2 nanosheets have a large specific surface area, abundantly exposed edges and excellent light absorption capacity. The V-MoS2 nanosheets detector was then fabricated and investigated, which exhibits a high sensitivity for 635 nm light, a fast response time and an excellent photoelectric response. The V-MoS2 nanosheets with a height of approximately 1 μm successfully broke the light absorption limit caused by the atomic thickness. Finally, we fabricated the PbS QDs/V-MoS2 nanosheets hybrid detector and demonstrated their potential for high-performance broadband photodetectors. The response wavelength of the hybrid detector extends from the visible band to the near-infrared band. The responsivity of the hybrid detector reaches 1.46 A W-1 under 1450 nm illumination. The combination of 3D MoS2 nanosheets and QDs further improves the performance of MoS2-based photodetector devices. We believe that the proposed zero-dimensional QDs and 3D vertical nanosheets hybrid structure broadband photodetector provides a promising way for the next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, 150001, People's Republic of China. Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shikha D, Singh PK. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4104-4124. [PMID: 33210252 DOI: 10.1007/s11356-020-11600-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
The heavy metal contamination of soil and groundwater is a serious threat to environment worldwide. The survival of human being primarily relies upon soil and groundwater sources. Therefore, the remediation of heavy metal-contaminated soil and groundwater is a matter of utmost concern. Heavy metals are non-degradable and persist in the environment and subsequently contaminate the food chain. Heavy metal pollution puts a serious impact on human health and it adversely affects our physical body. Although, numerous in situ conventional technologies have been utilized for the treatment purpose, but most of the techniques have some limitations such as high cost, deterioration of soil properties, disturbances to soil native flora and fauna and intensive labour. Despite that, in situ phytoremediation is a cost-effective, eco-friendly, solar-driven and novel approach with significant public acceptance. The past research reflects rare discussion addressing both (heavy metal in situ phytoremediation of soil and groundwater) in one platform. The present review article covers both the concepts of in situ phytoremediation of soil and groundwater with major emphasis on health risks of heavy metals, enhanced integrated approaches of in situ phytoremediation, mechanisms of in situ phytoremediation along with effective hyperaccumulator plants for heavy metals remediation, challenges and future prospects.
Collapse
Affiliation(s)
- Deep Shikha
- Department of Environmental Science & Engineering, Indian Institute of Technology (IIT; Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| | - Prasoon Kumar Singh
- Department of Environmental Science & Engineering, Indian Institute of Technology (IIT; Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
48
|
Daryabeigi Zand A, Tabrizi AM, Heir AV. The influence of association of plant growth-promoting rhizobacteria and zero-valent iron nanoparticles on removal of antimony from soil by Trifolium repens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42815-42829. [PMID: 32720026 DOI: 10.1007/s11356-020-10252-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Using association of plants, nanomaterials, and plant growth-promoting bacteria (PGPR) is a novel approach in remediation of heavy metal-contaminated soils. Co-application of nanoscale zerovalent iron (nZVI) and PGPR to promote phytoremediation of Sb-contaminated soil was investigated in this study. Seedlings of Trifolium repens were exposed to different regimes of nZVI (0, 150, 300, 500, and 1000 mg/kg) and the PGPR, separately and in combination, to investigate the effects on plant growth, Sb uptake, and accumulation and physiological response of the plant in contaminated soil. Co-application of nZVI and PGPR had positive effects on plant establishment and growth in contaminated soil. Greater accumulation of Sb in the shoots compared to the roots of T. repens was observed in all treatments. Using nZVI significantly increased accumulation capacity of T. repens for Sb with the greatest accumulation capacity of 3896.4 μg per pot gained in the "PGPR+500 mg/kg nZVI" treatment. Adverse impacts of using 1000 mg/kg nZVI were found on plant growth and phytoremediation performance. Significant beneficial effect of integrated use of nZVI and PGPR on plant photosynthesis was detected. Co-application of nZVI and PGPR could reduce the required amounts of nZVI for successful phytoremediation of metalloid polluted soils. Intelligent uses of plants in accompany with nanomaterials and PGPR have great application prospects in removal of antimony from soil.
Collapse
Affiliation(s)
- Ali Daryabeigi Zand
- School of Environment, College of Engineering, University of Tehran, No. 25, Azin St, Tehran, 141556135, Iran.
| | - Alireza Mikaeili Tabrizi
- Department of Environmental Sciences, Gorgan University of Agricultural Sciences & Natural Resources, Shahid Beheshti St, Golestan, 4913815739, Iran
| | - Azar Vaezi Heir
- School of Environment, College of Engineering, University of Tehran, No. 25, Azin St., Tehran, 141556135, Iran
| |
Collapse
|
49
|
Guha T, Gopal G, Chatterjee R, Mukherjee A, Kundu R. Differential growth and metabolic responses induced by nano-scale zero valent iron in germinating seeds and seedlings of Oryza sativa L. cv. Swarna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111104. [PMID: 32791360 DOI: 10.1016/j.ecoenv.2020.111104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Since development of antioxidant defence system is high energy demanding event, innate defence system and stress tolerance of plant is strictly governed by plant age. This study is aimed towards evaluating variation of tolerance in germinating seeds and seedlings of Oryza sativa L. cv. Swarna against nano-scale zero valent iron (nZVI). A comparative study of several physiological and biochemical parameters have been carried out among 2 distinct plant groups, Group I treated with variable concentrations of nZVI (50, 100, 150 and 200 mg L-1) during germination and Group II treated with similar nZVI doses on 7th day after germination. Upon treatment with higher nZVI concentrations, Group I seedlings showed susceptibility towards oxidative stress while Group II seedlings showed tolerance against these higher doses of nZVI. Significant growth enhancement was observed upon treatment with 50-150 mg L-1 nZVI, since up-regulation of plant's endogenous antioxidant system protected relatively aged Group II seedlings from oxidative damages. Hierarchical clustering based on overall physiological, biochemical and stress parameters confirmed that in Group I seedlings 100-200 mg L-1 nZVI treatments were toxic where as in Group II seedlings 50-150 mg L-1 nZVI treatments showed growth promoting effects. This differential response is due to developmental stage related resistance in plants.
Collapse
Affiliation(s)
- Titir Guha
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Geetha Gopal
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Rohan Chatterjee
- St. Xavier's College, 30 Mother Teresa Sarani, Kolkata, 16, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Rita Kundu
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India.
| |
Collapse
|
50
|
Yin Z, Song L, Song H, Hui K, Lin Z, Wang Q, Xuan L, Wang Z, Gao W. Remediation of copper contaminated sediments by granular activated carbon-supported titanium dioxide nanoparticles: Mechanism study and effect on enzyme activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139962. [PMID: 32563130 DOI: 10.1016/j.scitotenv.2020.139962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 05/04/2023]
Abstract
After much effort, the remediation of heavy metal contaminated sediments still remains physically hard and technically challenging issue to resolve. In this study, granular activated carbon-supported titanium dioxide nanoparticles (GAC-TiO2 NPs) are synthesized to remedy heavy metal copper (Cu) contaminated sediments. The concentration and chemical speciation of Cu in overlying water, interstitial water and contaminated sediments are fully assessed to examine the remediation effect of GAC-TiO2 NPs. The GAC-TiO2 NPs are separated from GAC-TiO2 NPs-remedied sediments and characterized by X-ray photoelectron spectra (XPS), which reveals the mechanism of GAC-TiO2 NPs remedy Cu Contaminated sediments. The results show that after 35 days adding 20% GAC-TiO2 NPs to contaminated sediments, the Cu concentration in the overlying water and interstitial water decreases 89.47% and 83.52%, respectively, and the exchangeable fraction (F-1) of Cu in sediments decreases from 43.91% to 7.49%. The percentage of residual fraction (F-4) increases sharply from 42.79% to 80.30%. XPS results show that hydroxyl (-OH) plays an important role in the remediation process. The synergistic effects of pH, phosphorus concentration and organic matter (OM) content on the remediation effect are explored. When the pH value is 8, phosphorus concentration is 0.32 mg/L and OM content is 151.2 g/kg, adding 20% GAC-TiO2 NPs achieves the best remediation effect on Cu contaminated sediment. Biological enzyme-activity experiments prove that GAC-TiO2 NPs not only reduce the bioavailability and biotoxicity of Cu, but also effectively suppress the negative effects of granular activated carbon (GAC) on enzyme activities. All these results indicate that GAC-TiO2 NPs is an environmentally friendly remediation material for Cu contaminated sediments with high-potential applications.
Collapse
Affiliation(s)
- Zhenzhou Yin
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China.
| | - Hongwei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Kai Hui
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Zhipeng Lin
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Qian Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Lili Xuan
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Zehao Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Wenjian Gao
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| |
Collapse
|