1
|
Eltoukhy A, Mohamed H, Abo-Kadoum MA, Khalid H, Ramadan AS, Hassane AMA, Zhang H, Song Y. Biodegradation and mineralization of bisphenol A by a novel soil-derived fungus Paraconiothyrium brasiliense mediated by extracellular laccase. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137460. [PMID: 39908764 DOI: 10.1016/j.jhazmat.2025.137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Bisphenol A (BPA), involved in plastic manufacturing, has indeed raised major threats due to its pervasive and potentially hazardous effects on human life and the environment. Therefore, a global concern with the elimination and biodegradation of diverse plastic material pollution is necessary. The purpose of this study was to investigate and thoroughly screen promising fungi for efficacy BPA biodegradation. Totally, 15 soil fungi were isolated. Among them, 6 isolates exhibited greater levels of BPA degradation with varied rates from 60 ± 0.8-100 ± 0.1 % and were then identified in accordance with (ITS) regions. The highly promising BPA degradation isolate (100 %) was confirmed as Paraconiothyrium brasiliense strain HMA1, with a removal concentration of (0.5-500 mg/L) after 10 days with an optimal temperature at 30 °C, pH at 7.5, and ammonium sulphate as nitrogen source. Moreover, multiple intermediate metabolites were detected and confirmed during the BPA biodegradation process using high-performance liquid chromatography-mass spectrometry (HPLC-MS) with the help of quadrupole time-of-flight (Q-TOF). The HMA1 exhibited a considerable mineralization rate of 150 mg/L BPA reached up to 78 % of total organic carbon in the culture media after 5 days. Depending on the properties of intermediate components, the potential BPA degradation pathway of HMA1 was proposed. Furthermore, the activity of extracellular laccase and its potential for BPA degradation was studied to elucidate the mechanism of BPA biodegradation by HMA1. Conclusively, our findings provide the first report combined with distinct characteristics of P. brasiliense with a maximum BPA elimination to be a promising candidate for plastic-based material degradation.
Collapse
Affiliation(s)
- Adel Eltoukhy
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt.
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt.
| | - M A Abo-Kadoum
- Department of Botany and Microbiology, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt.
| | - Hina Khalid
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Asmaa S Ramadan
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt.
| | - Hongyan Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; School of Basic Medicine, Qilu Medical University, Renmin West Road No. 1678, University Town, Zibo, Shandong 255300, China.
| |
Collapse
|
2
|
Cui P, Li J, Yao T, Gan Z. Fungal community composition and function in different Chinese post-fermented teas. Sci Rep 2025; 15:8514. [PMID: 40074817 PMCID: PMC11903669 DOI: 10.1038/s41598-025-93420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Chinese post-fermented teas are produced through special fermentation by microorganisms, with fungi significantly contributing to their flavor and sensory characteristics. Here, the fungal community structure and function were investigated using Illumina HiSeq sequencing of the fungal ITS rDNA region across different post-fermented teas, including Fuzhuan, Qingzhuan, Tianjian black, Liupao, and raw and ripened Pu-erh. Additionally, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology was used to compare the volatile components of tea samples, and moisture content, pH, total nitrogen, carbon-nitrogen ratio, and total sulfur were measured. All the tea samples were slightly acidic, with pH values of 5.56-6.43, and Ascomycota was the most dominant phylum, representing over 90% of the relative abundance. However, there were significant differences at the genus level in the six typical post-fermented teas. Aspergillus was the most dominant genus in Fuzhuan (91.16%), Qingzhuan (54.89%), Tianjian (64.11%), and Liupao (47.43%) teas, whereas Debaryomyces and Blastobotrys were the most dominant genera in raw (35.67%) and ripened (78.88%) Pu-erh tea, respectively. A functional prediction analysis revealed that most fungal gene functions were involved in metabolism. A total of 26 main volatile components were detected, which differed in composition among six tea samples. This is the first comparative analysis of fungal communities and volatile components in different typical Chinese post-fermented teas, and the results will aid the design of better culturing strategies for the specific dominant fungal species and the influence of fungi on aroma types of post-fermented teas.
Collapse
Affiliation(s)
- Pu Cui
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Jia Li
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Ting Yao
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Zhuoting Gan
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China.
- School of Tourism, Huangshan University, Huangshan, Anhui, China.
| |
Collapse
|
3
|
Wang Z, Shi W, Chen X, Lin Y, Chen W, Yao L, Sun X, Li X, He X. Effects of biological and abiotic factors on dark septate endophytes distribution and heavy metal resistance in different environments. Front Microbiol 2025; 15:1527512. [PMID: 39867491 PMCID: PMC11758167 DOI: 10.3389/fmicb.2024.1527512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance. Methods This study collected samples of three common plant species (Phragmites australis, PA, Setaria viridis, SV, and Artemisia annua, AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated. Results Twenty-two DSE species were isolated and identified with 11 species found in BY, 8 species in FF, and 11 species in HD. The screening for heavy metal resistance discovered 10 heavy metal-tolerant DSE species. Soil available phosphate, available nitrogen, and Cd contents, as well as the composition of different root fungal communities, influence the resistance and distribution of heavy metal-tolerant DSE. Notably, 12 DSE species, including Paraphoma radicina and Paraphoma chrysanthemicola, were reported for the first time in heavy metal habitats. The colonization rates of DSE in the roots of PA (96%) and AA (76%) were highest in BY, while the highest colonization rate in the roots of SV was observed in HD (94%). Site-specific soil parameters, such as available K, organic contents, Zn, and Cd contents from different sites are the main determinants affecting DSE colonization. Meanwhile, the diversity and richness of other root-associated endophytic fungi, which varied considerably across sites, served as significant biological factors influencing DSE distribution and colonization. Discussion The results of this study provide a strong theoretical framework for the effective utilization of DSE fungi to mitigate soil heavy metal pollution.
Collapse
Affiliation(s)
- Zhenzhou Wang
- School of Life Sciences, Hebei University, Baoding, China
| | - Wenyi Shi
- School of Life Sciences, Hebei University, Baoding, China
| | - Xiuling Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Yuli Lin
- School of Life Sciences, Hebei University, Baoding, China
| | - Wenjing Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Li Yao
- School of Life Sciences, Hebei University, Baoding, China
| | - Xiang Sun
- School of Life Sciences, Hebei University, Baoding, China
| | - Xia Li
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong’an New Area) of MOE, Baoding, China
| | - Xueli He
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong’an New Area) of MOE, Baoding, China
| |
Collapse
|
4
|
Egbewale SO, Kumar A, Mokoena MP, Olaniran AO. Optimization of anthracene biodegradation by indigenous Trichoderma lixii and Talaromyces pinophilus using response surface methodology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117431. [PMID: 39616665 DOI: 10.1016/j.ecoenv.2024.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Two indigenous fungal strains, Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12) showed potential to biodegrade anthracene. Response Surface Methodology (RSM) employing Box-Behnken Design (BBD) and Central Composite Design (CCD) methods optimized crucial physicochemical parameters like pH, temperature, biomass, substrate concentration and media composition. BBD maximized anthracene biodegradation efficiency by predicting 98.7-103.2 %. Analysis of Variance confirmed the model's accuracy with a significant F-value of 51.0 at p<0.0001 while the quadratic regression model showed a high R² value 0.9808. CCD predicted 100 % degradation efficiency which were validated for TlFLU1 and TpFLU12 respectively on day 8 and 12 at pH 4 and 5, temperatures 30°C and 25°C, with 20 mm biomass size and 200 mg/L anthracene. 9,10-anthraquinone and phthalic acid were detected as metabolites formed during the anthracene degradation by TlFLU1 and TpFLU12 after validation of the optimization process. Acute toxicity tests showed that the degradation media toxicity reduced as evidenced by increased in survival rate (log CFU/mL) of Vibrio parahaemolyticus after 6 h exposure. Despite reduced toxicity, both strains were classified as harmful based on effective concentration (EC50) and toxicity unit (TU) (20.92±1.32 mg/L and 4.78 % for TlFLU1 and 35.29±1.55 mg/L and 2.83 % for TpFLU12). This systematic optimization approach supported by robust statistical analyses and a deep exploration of biodegradation mechanisms holds the promise of more efficient and sustainable methods for remediating PAH-contaminated environments.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| | - Mduduzi P Mokoena
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa.
| |
Collapse
|
5
|
Chaturvedi M, Kaur N, Rahman PKSM, Sharma S. Solubilization and enhanced degradation of benzene phenolic derivatives-Bisphenol A/Triclosan using a biosurfactant producing white rot fungus Hypocrea lixii S5 with plant growth promoting traits. Front Microbiol 2024; 15:1433745. [PMID: 39360314 PMCID: PMC11445159 DOI: 10.3389/fmicb.2024.1433745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Endocrine disrupting chemicals (EDCs) as benzene phenolic derivatives being hydrophobic partition to organic matter in sludge/soil sediments and show slow degradation rate owing to poor bioavailability to microbes. Methods In the present study, the potential of a versatile white rot fungal isolate S5 identified as Hypocrea lixii was monitored to degrade bisphenol A (BPA)/triclosan (TCS) under shake flask conditions with concomitant production of lipopeptide biosurfactant (BS) and plant growth promotion. Results Sufficient growth of WRF for 5 days before supplementation of 50 ppm EDC (BPA/TCS) in set B showed an increase in degradation rates by 23% and 29% with corresponding increase in secretion of lignin-modifying enzymes compared to set A wherein almost 84% and 97% inhibition in fungal growth was observed when BPA/TCS were added at time of fungal inoculation. Further in set B, EDC concentration stimulated expression of laccase and lignin peroxidase (Lip) with 24.44 U/L of laccase and 281.69 U/L of Lip in 100 ppm BPA and 344 U/L Lip in 50 ppm TCS supplemented medium compared to their respective controls (without EDC). Biodegradation was also found to be correlated with lowering of surface tension from 57.02 mN/m (uninoculated control) to 44.16 mN/m in case of BPA and 38.49 mN/m in TCS, indicative of biosurfactant (BS) production. FTIR, GC-MS, and LC-ESI/MSMS confirmed the presence of surfactin lipopeptide isoforms. The WRF also displayed positive plant growth promoting traits as production of ammonia, indole acetic acid, siderophores, Zn solubilization, and 1-1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, reflecting its soil restoration ability. Discussion The combined traits of biosurfactant production, EDC degradation and plant growth promotion displayed by WRF will help in emulsifying the hydrophobic pollutants favoring their fast degradation along with restoration of contaminated soil in natural conditions.
Collapse
Affiliation(s)
| | - Navpreet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Pattanathu K. S. M. Rahman
- Centre for Natural Products and Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shashi Sharma
- Amity Institute of Biotechnology, Amity University, Noida, UP, India
| |
Collapse
|
6
|
Egbewale SO, Kumar A, Olasehinde TA, Mokoena MP, Olaniran AO. Anthracene detoxification by Laccases from indigenous fungal strains Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Biodegradation 2024; 35:769-787. [PMID: 38822999 PMCID: PMC11246312 DOI: 10.1007/s10532-024-10084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/13/2024] [Indexed: 06/03/2024]
Abstract
The persistence and ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the environment necessitate effective remediation strategies. Hence, this study investigated the potential of purified Laccases, TlFLU1L and TpFLU12L, from two indigenous fungi Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12), respectively for the oxidation and detoxification of anthracene. Anthracene was degraded with vmax values of 3.51 ± 0.06 mg/L/h and 3.44 ± 0.06 mg/L/h, and Km values of 173.2 ± 0.06 mg/L and 73.3 ± 0.07 mg/L by TlFLU1L and TpFLU12L, respectively. The addition of a mediator compound 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to the reaction system significantly increased the degradation of anthracene, with up to a 2.9-fold increase in vmax value and up to threefold decrease in Km values of TlFLU1L and TpFLU12L. The GC-MS analysis of the metabolites suggests that anthracene degradation follows one new pathway unique to the ABTS system-hydroxylation and carboxylation of C-1 and C-2 position of anthracene to form 3-hydroxy-2-naphthoic acid, before undergoing dioxygenation and side chain removal to form chromone which was later converted into benzoic acid and CO2. This pathway contrasts with the common dioxygenation route observed in the free Laccase system, which is observed in the second degradation pathways. Furthermore, toxicity tests using V. parahaemolyticus and HT-22 cells, respectively, demonstrated the non-toxic nature of Laccase-ABTS-mediated metabolites. Intriguingly, analysis of the expression level of Alzheimer's related genes in HT-22 cells exposed to degradation products revealed no induction of neurotoxicity unlike untreated cells. These findings propose a paradigm shift for bioremediation by highlighting the Laccase-ABTS system as a promising green technology due to its efficiency with the discovery of a potentially less harmful degradation pathway, and the production of non-toxic metabolites.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Tosin A Olasehinde
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Mduduzi P Mokoena
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
7
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y, Zhang W. Magnetic field-assisted surface engineering technology for active regulation of Fe 3O 4 medium to enable the laccase electrochemical biosensing of catechol with visible stripe patterns. Anal Chim Acta 2024; 1311:342739. [PMID: 38816161 DOI: 10.1016/j.aca.2024.342739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Catechol (CC), a prevalent phenolic compound, is a byproduct in various agricultural, chemical, and industrial processes. CC detection is crucial for safeguarding water quality and plays a pivotal role in enhancing the overall quality of life of individuals. Electrochemical biosensors exhibit rapid responses, have small sizes, and can be used for real-time monitoring. Therefore, the development of a fast and sensitive electrochemical biosensor for CC detection is crucial. RESULT In this study, a laccase-based electrochemical biosensor for detection of CC is successfully developed using Fe3O4 nanoparticles as medium and optimized by applying a magnetic field. This research proposes a unique strategy for biosensor enhancement by actively controlling the distribution of magnetic materials on the electrode surface through the application of a magnetic field, resulting in a visibly alternating stripe pattern. This approach effectively disperses magnetic particles, preventing their aggregation and reducing the boundary layer thickness, enhancing the electrochemical response of the biosensor. After fabrication condition optimization, CC is successfully detected using this biosensor. The fabricated sensor exhibits excellent performance with a wide linear detection range of 10-1000 μM, a low detection limit of 1.25 μM, and a sensitivity of 7.9 μA/mM. The fabricated sensor exhibits good selectivity and reliable detection in real water samples. In addition, the laccase-based sensor has the potential for the fast and accurate monitoring of CC in olive oil. SIGNIFICANCE The magnetic field optimization in this study significantly improved the performance of the electrochemical biosensor for detecting CC in environmental samples. Overall, the sensor developed in this study has the potential for fast and accurate monitoring of CC in environmental samples, highlighting the potential importance of a magnetic field environment in improving the performance of catechol electrochemical biosensors.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
8
|
Bibi M, Yasmin A, Murtza I, Abbas S. A novel univariate interpolation and bivariate regression hybrid method application to biodegradation of bisphenol A diglycidyl ether using laccases from Geobacillus stearothermophilus and Geobacillus thermoparafinivorans strains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45441-45451. [PMID: 38951392 DOI: 10.1007/s11356-024-34095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Bisphenol A diglycidyl ether (BADGE), a derivative of the well-known endocrine disruptor Bisphenol A (BPA), is a potential threat to long-term environmental health due to its prevalence as a micropollutant. This study addresses the previously unexplored area of BADGE toxicity and removal. We investigated, for the first time, the biodegradation potential of laccase isolated from Geobacillus thermophilic bacteria against BADGE. The laccase-mediated degradation process was optimized using a combination of response surface methodology (RSM) and machine learning models. Degradation of BADGE was analyzed by various techniques, including UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), Fourier transform infrared (FTIR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). Laccase from Geobacillus stearothermophilus strain MB600 achieved a degradation rate of 93.28% within 30 min, while laccase from Geobacillus thermoparafinivorans strain MB606 reached 94% degradation within 90 min. RSM analysis predicted the optimal degradation conditions to be 60 min reaction time, 80°C temperature, and pH 4.5. Furthermore, CB-Dock simulations revealed good binding interactions between laccase enzymes and BADGE, with an initial binding mode selected for a cavity size of 263 and a Vina score of -5.5, which confirmed the observed biodegradation potential of laccase. These findings highlight the biocatalytic potential of laccases derived from thermophilic Geobacillus strains, notably MB600, for enzymatic decontamination of BADGE-contaminated environments.
Collapse
Affiliation(s)
- Monaza Bibi
- Microbiology and Biotechnology Research lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Azra Yasmin
- Microbiology and Biotechnology Research lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Iqbal Murtza
- Department of Creative Technologies, Faculty of Computing and AI, Air University, Islamabad, Pakistan
| | - Sidra Abbas
- Microbiology and Biotechnology Research lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| |
Collapse
|
9
|
Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133906. [PMID: 38430590 DOI: 10.1016/j.jhazmat.2024.133906] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.
Collapse
Affiliation(s)
- Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
10
|
Ghariani B, Alessa AH, Ben Atitallah I, Louati I, Alsaigh AA, Mechichi T, Zouari-Mechichi H. Fungal Bioremediation of the β-Lactam Antibiotic Ampicillin under Laccase-Induced Conditions. Antibiotics (Basel) 2024; 13:407. [PMID: 38786136 PMCID: PMC11117353 DOI: 10.3390/antibiotics13050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Due to widespread overuse, pharmaceutical compounds, such as antibiotics, are becoming increasingly prevalent in greater concentrations in aquatic ecosystems. In this study, we investigated the capacity of the white-rot fungus, Coriolopsis gallica (a high-laccase-producing fungus), to biodegrade ampicillin under different cultivation conditions. The biodegradation of the antibiotic was confirmed using high-performance liquid chromatography, and its antibacterial activity was evaluated using the bacterial growth inhibition agar well diffusion method, with Escherichia coli as an ampicillin-sensitive test strain. C. gallica successfully eliminated ampicillin (50 mg L-1) after 6 days of incubation in a liquid medium. The best results were achieved with a 9-day-old fungal culture, which treated a high concentration (500 mg L-1) of ampicillin within 3 days. This higher antibiotic removal rate was concomitant with the maximum laccase production in the culture supernatant. Meanwhile, four consecutive doses of 500 mg L-1 of ampicillin were removed by the same fungal culture within 24 days. After that, the fungus failed to remove the antibiotic. The measurement of the ligninolytic enzyme activity showed that C. gallica laccase might participate in the bioremediation of ampicillin.
Collapse
Affiliation(s)
- Bouthaina Ghariani
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
| | - Ibtihel Louati
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
| | - Ahmad A. Alsaigh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
| | - Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (B.G.); (I.B.A.); (I.L.); (H.Z.-M.)
- Institute of Biotechnology of Sfax, University of Sfax, BP 1175, Sfax 3038, Tunisia
| |
Collapse
|
11
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenols-A Threat to the Natural Environment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6500. [PMID: 37834637 PMCID: PMC10573430 DOI: 10.3390/ma16196500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Negative public sentiment built up around bisphenol A (BPA) follows growing awareness of the frequency of this chemical compound in the environment. The increase in air, water, and soil contamination by BPA has also generated the need to replace it with less toxic analogs, such as Bisphenol F (BPF) and Bisphenol S (BPS). However, due to the structural similarity of BPF and BPS to BPA, questions arise about the safety of their usage. The toxicity of BPA, BPF, and BPS towards humans and animals has been fairly well understood. The biodegradability potential of microorganisms towards each of these bisphenols is also widely recognized. However, the scale of their inhibitory pressure on soil microbiomes and soil enzyme activity has not been estimated. These parameters are extremely important in determining soil health, which in turn also influences plant growth and development. Therefore, in this manuscript, knowledge has been expanded and systematized regarding the differences in toxicity between BPA and its two analogs. In the context of the synthetic characterization of the effects of bisphenol permeation into the environment, the toxic impact of BPA, BPF, and BPS on the microbiological and biochemical parameters of soils was traced. The response of cultivated plants to their influence was also analyzed.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
12
|
Cao Y, Yao J, Knudsen TŠ, Pang W, Zhu J, Liu B, Li H, Li M, Su J. Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H 2O 2. CHEMOSPHERE 2023; 312:137169. [PMID: 36402353 DOI: 10.1016/j.chemosphere.2022.137169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/H2O2 processes. In comparison with UV/H2O2, UV/chlorine had a higher BPA degradation efficiency and higher pH-dependency due to chlorination and the synergy of •OH and RCS. The •OH and Cl• played a pivotal role as the primary radicals in BPA degradation by UV/chlorine process at all pH investigated (6-8). The relative contributions of the secondary radicals ClO• gradually decreased with a variation of pH from 6 to 8 in this process. Presence of HCO3─ and HA inhibited BPA degradation to different extents in UV/chlorine process, while the effect of Cl─ could be neglected. According to the identified transformation products, chlorination (major), hydroxylation and breakage of the isopropylidene chain were BPA decomposition pathways in the UV/chlorine system. In the UV/H2O2 system, only hydroxylation (major) and breakage of the isopropylidene chain occurred. The toxicity analysis, based on the proposed degradation pathways, indicated that the generation of chlorinated products in the UV/chlorine system led to a higher toxicity of the resulting mixture than in the UV/H2O2 system. Although UV/chlorine has an excellent BPA degradation effect and it is cost-effective, the possible environmental risk should be carefully considered when UV/chlorine system is used to remove BPA in real waters.
Collapse
Affiliation(s)
- Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000, Belgrade, Serbia
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Junjie Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Miaomiao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jianchao Su
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
13
|
Eltoukhy A, Jia Y, Lamraoui I, Abo-Kadoum MA, Atta OM, Nahurira R, Wang J, Yan Y. Transcriptome analysis and cytochrome P450 monooxygenase reveal the molecular mechanism of Bisphenol A degradation by Pseudomonas putida strain YC-AE1. BMC Microbiol 2022; 22:294. [PMID: 36482332 PMCID: PMC9733184 DOI: 10.1186/s12866-022-02689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a rapid spreading organic pollutant that widely used in many industries especially as a plasticizer in polycarbonate plastic and epoxy resins. BPA reported as a prominent endocrine disruptor compound that possesses estrogenic activity and fulminant toxicity. Pseudomonas putida YC-AE1 was isolated in our previous study and exerted a strong degradation capacity toward BPA at high concentrations; however, the molecular degradation mechanism is still enigmatic. RESULTS We employed RNA sequencing to analyze the differentially expressed genes (DEGs) in the YC-AE1 strain upon BPA induction. Out of 1229 differentially expressed genes, 725 genes were positively regulated, and 504 genes were down-regulated. The pathways of microbial metabolism in diverse environments were significantly enriched among DEGs based on KEGG enrichment analysis. qRT-PCR confirm the involvement of BPA degradation relevant genes in accordance with RNA Seq data. The degradation pathway of BPA in YC-AE1 was proposed with specific enzymes and encoded genes. The role of cytochrome P450 (CYP450) in BPA degradation was further verified. Sever decrease in BPA degradation was recorded by YC-AE1 in the presence of CYP450 inhibitor. Subsequently, CYP450bisdB deficient YC-AE1 strain △ bisdB lost its ability toward BPA transformation comparing with the wild type. Furthermore, Transformation of E. coli with pET-32a-bisdAB empowers it to degrade 66 mg l-1 of BPA after 24 h. Altogether, the results showed the role of CYP450 in biodegradation of BPA by YC-AE1. CONCLUSION In this study we propose the molecular basis and the potential role of YC-AE1cytochrome P450 monooxygenase in BPA catabolism.
Collapse
Affiliation(s)
- Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035 China
| | - Imane Lamraoui
- Higher National School of Biotechnology “Toufik Khaznadar” (ENSB), 25000 Constantine, Algeria
| | - M. A. Abo-Kadoum
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
| | - Omar Mohammad Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
| | - Ruth Nahurira
- Faculty of Science, Kabale University, Kabale, Uganda
| | - Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
14
|
Li S, Liu Q, Liu J, Sun K, Yang W, Si Y, Li Y, Gao Y. Inhibition mechanisms of Fe 2+/Fe 3+ and Mn 2+ on fungal laccase-enabled bisphenol a polyreaction. CHEMOSPHERE 2022; 307:135685. [PMID: 35842042 DOI: 10.1016/j.chemosphere.2022.135685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is regarded as an endocrine disruptor associated with negative health effects in animals and humans. Laccase from white-rot fungus can enable BPA oxidation and auto-polymerization to circumvent its biotoxicity, but the work concerning the effect mechanisms of divalent and trivalent metal ions (MIs) on BPA polyreaction have rarely been reported. Herein, Trametes versicolor laccase-started BPA conversion within 1 h followed pseudo-first order kinetics, and the rate constant (kprcs) and half-life were respectively 0.61 h-1 and 1.14 h. The presence of Ca2+, Mg2+, Cu2+, Pb2+, Cd2+, Zn2+ and Al3+ exhibited insignificant impact on BPA removal, whereas Fe2+, Fe3+ and Mn2+ had a strong inhibiting effect. Compared with MI-free, the kprcs values of BPA respectively lowered 34.4%, 44.3% and 98.4% in the presence of Fe2+, Fe3+ and Mn2+. Enzymatic activity and differential absorption spectrum disclosed that the inhibitory actions were accomplished by two different mechanisms. One is Fe2+ was preferentially oxidized into Fe3+ that restrained laccase activity at the initial stage of reaction, and subsequently, the formed Fe3+ complex bound with laccase T1-Cu site and thus impeded the single-electron transfer system. The other is Mn2+ was instantly oxidized by laccase to generate Mn3+-citrate complex, which completely consumed the dissolved O2 in solution and consequently terminated BPA removal. Considering environmental bioremediation, T. versicolor laccase-enabled auto-polymerization is a simple and convenient candidate to eliminate BPA in enzymatic wastewater treatment, however the effects of Fe2+/Fe3+ and Mn2+ on BPA decontamination should be cautiously assessed.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Qingzhu Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jie Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Wei Yang
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Youbin Si
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yucheng Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
15
|
Olicón-Hernández DR, Guerra-Sánchez G, Porta CJ, Santoyo-Tepole F, Hernández-Cortez C, Tapia-García EY, Chávez-Camarillo GM. Fundaments and Concepts on Screening of Microorganisms for Biotechnological Applications. Mini Review. Curr Microbiol 2022; 79:373. [PMID: 36302918 DOI: 10.1007/s00284-022-03082-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]
Abstract
Microbial biotechnology uses microorganisms and their derivatives to generate industrial and/or environmental products that impact daily life. Modern biotechnology uses proteomics, metabolomics, quantum processors, and massive sequencing methods to yield promising results with microorganisms. However, the fundamental concepts of microbial biotechnology focus on the specific search for microorganisms from natural sources and their correct analysis to implement large-scale processes. This mini-review focuses on the methods used for the isolation and selection of microorganisms with biotechnological potential to empathize the importance of these concepts in microbial biotechnology. In this work, a review of the state of the art in recent years on the selection and characterization of microorganisms with a basic approach to understanding the importance of fundamental concepts in the field of biotechnology was carried out. The proper selection of isolation sources and the design of suitable selection criteria according to the desired activity have generated substantial changes in the development of biotechnology for more than three decades. Some examples include Taq polymerase in the PCR method and CRISPR technology. The objective of this mini review is to establish general ideas for the screening of microorganisms based on basic concepts of biotechnology that are left aside in several articles and maintain the importance of the basic concepts that this implies in the development of modern biotechnology.
Collapse
Affiliation(s)
- Dario R Olicón-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México.
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Carla J Porta
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Fortunata Santoyo-Tepole
- Departamento de Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Cecilia Hernández-Cortez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Erika Y Tapia-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| | - Griselda Ma Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Colonia Santo Tomas, 11340, Ciudad de México, México
| |
Collapse
|
16
|
Torres-García JL, Ahuactzin-Pérez M, Fernández FJ, Cortés-Espinosa DV. Bisphenol A in the environment and recent advances in biodegradation by fungi. CHEMOSPHERE 2022; 303:134940. [PMID: 35588877 DOI: 10.1016/j.chemosphere.2022.134940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a compound used in the manufacture of a wide variety of everyday materials that, when released into the environment, causes multiple detrimental effects on humans and other organisms. The reason for this review is to provide an overview of the presence, distribution, and concentration of BPA in water, soil, sediment, and air, as well as the process of release and migration, biomagnification, and exposure mechanisms that cause various toxic effects in humans. Therefore, it is important to seek efficient and economic strategies that allow its removal from the environment and prevent it from reaching humans through food chains. Likewise, the main removal techniques are analyzed, focusing on biological treatments, particularly the most recent advances in the degradation of BPA in different environmental matrices through the use of ligninolytic fungi, non-ligninolytic fungi and yeasts, as well as the possible routes of metabolic processes that allow their biotransformation or biodegradation due to their efficient extracellular enzyme systems. This review supports the importance of the application of new biotechnological tools for the degradation of BPA.
Collapse
Affiliation(s)
- J L Torres-García
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - M Ahuactzin-Pérez
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Autopista Tlaxcala-San Martín Km 10.5, 90120, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada. Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
17
|
Nasello S, Beiguel É, Fitó-Friedrichs G, Irala C, Berenstein G, Basack S, Montserrat JM. Thermal paper as a potential source of bisphenol A for humans and the environment: migration and ecotoxicological impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53382-53394. [PMID: 35284971 DOI: 10.1007/s11356-022-19561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The objective of this work was to evaluate thermal paper (TP) tickets used in Argentina as a potential source of bisphenol A (BPA) that could impact humans and the environment. BPA in TP was measured by HPLC ranging from 11.1 to 30.5 mg BPAg-1. In order to estimate the impact on humans, dermal BPA estimated daily intake was calculated as being 79.3 ± 19.5 μgd-1 for workers and 1.6 ± 0.4 μgd-1 for the general population. To evaluate TP's impact on the environment, BPA migration from TP to water and soil was studied. In the case of water, 99.6% of the BPA tickets content migrated in 30 h, while 78.0% moved into the soil in 96 h. BPA degradation kinetics in soil and water were also carried out; while in soil 61.9% of BPA degraded in 120 h, no degradation was observed up to 120 h in tap or river water.Additionally, ecotoxicological effects of BPA on the earthworm Eisenia andrei, a representative terrestrial indicator, were studied performing bioassays on lethality, avoidance, and reproductive and enzymatic activity. BPA showed to be very toxic to E. andrei (LC50 value in contact paper test of 17 μgcm-2, 95% confidence interval 6-46 μgcm-2, 24 h exposure) and also caused an increase of total cocoons for earthworms exposed to 10 and 50 mg BPA kg-1 soil. Evasion response was observed at a concentration of 50 mg BPA kg-1 soil, while no effect was observed on cholinesterases, carboxylesterases, and glutathione S-transferases activities (1, 10, and 50 mg BPA kg-1 soil). Finally, a simple BPA degradation technology using water peroxide and radish (Raphanus sativus) tissue as catalyst was explored as a simple and domestic potential treatment to avoid BPA migration to the environment.
Collapse
Affiliation(s)
- Soledad Nasello
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines; Prov. de Buenos Aires, Buenos Aires, Argentina
| | - Érica Beiguel
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines; Prov. de Buenos Aires, Buenos Aires, Argentina
| | - Gretel Fitó-Friedrichs
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines; Prov. de Buenos Aires, Buenos Aires, Argentina
| | - Carmen Irala
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines; Prov. de Buenos Aires, Buenos Aires, Argentina
| | - Giselle Berenstein
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines; Prov. de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvana Basack
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines; Prov. de Buenos Aires, Buenos Aires, Argentina.
| | - Javier M Montserrat
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines; Prov. de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
18
|
BPA biodegradation driven by isolated strain SQ-2 and its metabolism mechanism elucidation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Ismanto A, Hadibarata T, Kristanti RA, Maslukah L, Safinatunnajah N, Kusumastuti W. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119061. [PMID: 35231541 DOI: 10.1016/j.envpol.2022.119061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are an emerging category of toxicity that adversely impacts humans and the environment's well-being. Diseases like cancer, cardiovascular risk, behavioral disorders, autoimmune defects, and reproductive diseases are related to these endocrine disruptors. Because these chemicals exist in known sources such as pharmaceuticals and plasticizers, as well as non-point sources such as agricultural runoff and storm water infiltration, the interactive effects of EDCs are gaining attention. However, the efficiency of conventional treatment methods is not sufficient to fully remediate EDCs from aqueous environments as the occurrence of EDC bioremediation and biodegradation is detected in remediated drinking water. Incorporating modification into current remediation techniques has to overcome challenges such as high energy consumption and health risks resulting from conventional treatment. Hence, the use of advanced psychochemical and biological treatments such as carbon-based adsorption, membrane technology, nanostructured photocatalysts, microbial and enzyme technologies is crucial. Intensifying environmental and health concerns about these mixed contaminants are primarily due to the lack of laws about acute concentration limits of these EDCs in municipal wastewater, groundwater, surface water, and drinking water. This review article offers evidence of fragmentary available data for the source, fate, toxicity, ecological and human health impact, remediation techniques, and mechanisms during EDC removal, and supports the need for further data to address the risks associated with the presence of EDCs in the environment. The reviews also provide comprehensive data for biodegradation of EDCs by using microbes such as fungi, bacteria, yeast, filamentous fungi, and their extracellular enzymes.
Collapse
Affiliation(s)
- Aris Ismanto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia; Center for Coastal Disaster Mitigation and Rehabilitation Studies, Universitas Diponegoro, Semarang, 50275, Indonesia; Center for Integrated Coastal Zone Management (ICZM Center), Universitas Diponegoro, 50275, Indonesia
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| | - Lilik Maslukah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Novia Safinatunnajah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Wulan Kusumastuti
- Department of Health Administration and Policy, Faculty of Public Health, Universitas Diponegoro, 50275, Indonesia
| |
Collapse
|
20
|
Molina MA, Díez-Jaén J, Sánchez-Sánchez M, Blanco RM. One-pot laccase@MOF biocatalysts efficiently remove bisphenol A from water. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Wang J, Xie Y, Hou J, Zhou X, Chen J, Yao C, Zhang Y, Li Y. Biodegradation of bisphenol A by alginate immobilized Phanerochaete chrysosporium beads: Continuous cyclic treatment and degradation pathway analysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Baluyot JC, Santos HK, Batoctoy DCR, Torreno VPM, Ghimire LB, Joson SEA, Obusan MCM, Yu ET, Bela-ong DB, Gerona RR, Velarde MC. Diaporthe/Phomopsis longicolla degrades an array of bisphenol analogues with secreted laccase. Microbiol Res 2022; 257:126973. [DOI: 10.1016/j.micres.2022.126973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 12/07/2022]
|
23
|
Santhoshkumar S, Murugan E. Size controlled silver nanoparticles on β-cyclodextrin/graphitic carbon nitride: an excellent nanohybrid material for SERS and catalytic applications. Dalton Trans 2021; 50:17988-18000. [PMID: 34851335 DOI: 10.1039/d1dt02809j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A nanohybrid (NH), having high dispersion of silver nanoparticles (AgNPs) on β-cyclodextrin (β-CD)/graphitic carbon nitride (g-CN), designated as AgNPs/β-CD/g-CN-NH, was synthesized and characterized. It was exploited for a couple of environmental remediation applications like SERS sensing and catalytic reduction of specific organic pollutants in water. It showed excellent SERS activity as a Raman probe for the detection of malachite green (MG). Its enhancement factor (EF) and detection limit for MG were equal to 7.26 × 106 and 1 × 10-9 M, respectively. The relative standard deviation (RSD) was equal to 3.8% which indicates high homogeneity of AgNP dispersion and signal reproducibility of the SERS substrate. The NH displayed high catalytic activity for the reduction of eosin yellow (EY) in the presence of NaBH4 with the rate constant (k) of 0.1142 min-1. A comparison of the present NH with other reported materials reveals better SERS and catalytic activities of the former than those of the latter. The SERS activity of the NH was also examined for sensing of other triphenylamine dyes like methyl violet (MV), and it was successful. The same NH also exhibited high catalytic activity towards the reduction of Congo red (CR). The results of both studies clarify that the NH is an excellent SERS substrate and efficient catalyst for the detection of organic environmental pollutants having structures similar to MG and their degradation. This is due to the distribution of the controlled size of AgNPs on g-CN promoted by β-CD. Therefore, we focus our attention on future environmental applications of the nanohybrid as a very cheap SERS substrate and a very active catalyst.
Collapse
Affiliation(s)
- S Santhoshkumar
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Guindy, Chennai-25, India.
| | - E Murugan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Guindy, Chennai-25, India.
| |
Collapse
|
24
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenol A-A Dangerous Pollutant Distorting the Biological Properties of Soil. Int J Mol Sci 2021; 22:ijms222312753. [PMID: 34884560 PMCID: PMC8657726 DOI: 10.3390/ijms222312753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA), with its wide array of products and applications, is currently one of the most commonly produced chemicals in the world. A narrow pool of data on BPA–microorganism–plant interaction mechanisms has stimulated the following research, the aim of which has been to determine the response of the soil microbiome and crop plants, as well as the activity of soil enzymes exposed to BPA pressure. A range of disturbances was assessed, based on the activity of seven soil enzymes, an abundance of five groups of microorganisms, and the structural diversity of the soil microbiome. The condition of the soil was verified by determining the values of the indices: colony development (CD), ecophysiological diversity (EP), the Shannon–Weaver index, and the Simpson index, tolerance of soil enzymes, microorganisms and plants (TIBPA), biochemical soil fertility (BA21), the ratio of the mass of aerial parts to the mass of plant roots (PR), and the leaf greenness index: Soil and Plant Analysis Development (SPAD). The data brought into sharp focus the adverse effects of BPA on the abundance and ecophysiological diversity of fungi. A change in the structural composition of bacteria was noted. Bisphenol A had a more beneficial effect on the Proteobacteria than on bacteria from the phyla Actinobacteria or Bacteroidetes. The microbiome of the soil exposed to BPA was numerously represented by bacteria from the genus Sphingomonas. In this object pool, the highest fungal OTU richness was achieved by the genus Penicillium, a representative of the phylum Ascomycota. A dose of 1000 mg BPA kg−1 d.m. of soil depressed the activity of dehydrogenases, urease, acid phosphatase and β-glucosidase, while increasing that of alkaline phosphatase and arylsulfatase. Spring oilseed rape and maize responded significantly negatively to the soil contamination with BPA.
Collapse
|
25
|
Jasińska A, Soboń A, Różalska S, Średnicka P. Bisphenol A Removal by the Fungus Myrothecium roridumIM 6482-Analysis of the Cellular and Subcellular Level. Int J Mol Sci 2021; 22:ijms221910676. [PMID: 34639017 PMCID: PMC8509184 DOI: 10.3390/ijms221910676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Bisphenol (BPA) is a key ingredient in the production of epoxy resins and some types of plastics, which can be released into the environment and alter the endocrine systems of wildlife and humans. In this study, the ability of the fungus M. roridumIM 6482 to BPA elimination was investigated. LC-MS/MS analysis showed almost complete removal of BPA from the growth medium within 72 h of culturing. Products of BPA biotransformation were identified, and their estrogenic activity was found to be lower than that of the parent compound. Extracellular laccase activity was identified as the main mechanism of BPA elimination. It was observed that BPA induced oxidative stress in fungal cells manifested as the enhancement in ROS production, membranes permeability and lipids peroxidation. These oxidative stress markers were reduced after BPA biodegradation (72 h of culturing). Intracellular proteome analyses performed using 2-D electrophoresis and MALDI-TOF/TOF technique allowed identifying 69 proteins in a sample obtained from the BPA containing culture. There were mainly structural and regulator proteins but also oxidoreductive and antioxidative agents, such as superoxide dismutase and catalase. The obtained results broaden the knowledge on BPA elimination by microscopic fungi and may contribute to the development of BPA biodegradation methods.
Collapse
Affiliation(s)
- Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Poland;
- Correspondence: anna.jasiń; Tel.: +48-42635-47-17
| | - Adrian Soboń
- LabExperts, 14 Sokola Street, 93-519 Łódź, Poland;
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Poland;
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland;
| |
Collapse
|
26
|
Li D, Cheng Y, Zuo H, Zhang W, Pan G, Fu Y, Wei Q. Dual-functional biocatalytic membrane containing laccase-embedded metal-organic frameworks for detection and degradation of phenolic pollutant. J Colloid Interface Sci 2021; 603:771-782. [PMID: 34229119 DOI: 10.1016/j.jcis.2021.06.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 11/25/2022]
Abstract
In this work, a metal-organic framework material, zeolitic imidazolate framework-90 (ZIF-90), was firstly used to encapsulate laccase (LAC) and to prepare ZIF-90/LAC biocomposites. Afterward, the composites were combined with bacterial cellulose (BC) and carboxylated multi-walled carbon nanotubes (c-MWCNTs) by a facile method to achieve a novel cellulose membrane with biocatalytic function, displaying excellent detection and degradation properties towards phenolic pollutant. Notably, the membrane was directly employed as a biosensor electrode, and it exhibited a linear response to catechol from 20 to 400 μM with a detection limit of 1.86 µM (S/N = 3), as well as satisfactory selectivity, reproducibility, and stability. In addition, the biocatalytic membrane showed higher degradation efficiency towards catechol than pure LAC, and the catechol degradation efficiency of the membrane generally ranged from 93.4% to 82.1% for five cycles. Moreover, the membrane was successfully applied in enzyme membrane reactor (EMR), achieving satisfactory results. The novel membrane harbors a broad application prospect in the fields of real-time monitor and treatment of phenolic wastewater.
Collapse
Affiliation(s)
- Dawei Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yue Cheng
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Han Zuo
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Gangwei Pan
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yijun Fu
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
27
|
Conejo-Saucedo U, Ledezma-Villanueva A, Ángeles de Paz G, Herrero-Cervera M, Calvo C, Aranda E. Evaluation of the Potential of Sewage Sludge Mycobiome to Degrade High Diclofenac and Bisphenol-A Concentrations. TOXICS 2021; 9:115. [PMID: 34071049 PMCID: PMC8224792 DOI: 10.3390/toxics9060115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
One of the most challenging environmental threats of the last two decades is the effects of emerging pollutants (EPs) such as pharmaceutical compounds or industrial additives. Diclofenac and bisphenol A have regularly been found in wastewater treatment plants, and in soils and water bodies because of their extensive usage and their recalcitrant nature. Due to the fact of this adversity, fungal communities play an important role in being able to safely degrade EPs. In this work, we obtained a sewage sludge sample to study both the culturable and non-culturable microorganisms through DNA extraction and massive sequencing using Illumina MiSeq techniques, with the goal of finding degraders adapted to polluted environments. Afterward, degradation experiments on diclofenac and bisphenol A were performed with the best fungal degraders. The analysis of bacterial diversity showed that Dethiosulfovibrionaceae, Comamonadaceae, and Isosphaeraceae were the most abundant families. A predominance of Ascomycota fungi in the culturable and non-culturable population was also detected. Species such as Talaromyces gossypii, Syncephalastrum monosporum, Aspergillus tabacinus, and Talaromyces verruculosus had remarkable degradation rates, up to 80% of diclofenac and bisphenol A was fully degraded. These results highlight the importance of characterizing autochthonous microorganisms and the possibility of selecting native fungal microorganisms to develop tailored biotransformation technologies for EPs.
Collapse
Affiliation(s)
- Ulises Conejo-Saucedo
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
| | - Alejandro Ledezma-Villanueva
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
| | - Gabriela Ángeles de Paz
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
| | - Mario Herrero-Cervera
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
| | - Concepción Calvo
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
- Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - Elisabet Aranda
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
- Department of Microbiology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
28
|
Brahmi C, Benltifa M, Ghali M, Dumur F, Simonnet‐Jégat C, Monnier V, Morlet‐Savary F, Bousselmi L, Lalevée J. Polyoxometalate
s
/polymer composites for the photodegradation of
bisphenol‐A. J Appl Polym Sci 2021. [DOI: 10.1002/app.50864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chaima Brahmi
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Strasbourg University Strasbourg France
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies (CERTE) Soliman Tunisia
- National Institute of Applied Sciences and Technology University of Carthage Tunis Tunisia
| | - Mahmoud Benltifa
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies (CERTE) Soliman Tunisia
| | - Mariem Ghali
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Strasbourg University Strasbourg France
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies (CERTE) Soliman Tunisia
- National Institute of Applied Sciences and Technology University of Carthage Tunis Tunisia
| | - Frédéric Dumur
- CNRS, ICR, UMR7273 Aix Marseille University Marseille France
| | - Corine Simonnet‐Jégat
- Lavoisier Institute of Versailles, UMR CNRS 8180 University of Paris Saclay, University of Versailles St‐Quentin en Yvelines Versailles France
| | - Valérie Monnier
- CNRS, Fédération des Sciences Chimiques de Marseille Aix Marseille University Marseille France
| | - Fabrice Morlet‐Savary
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Strasbourg University Strasbourg France
| | - Latifa Bousselmi
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies (CERTE) Soliman Tunisia
| | - Jacques Lalevée
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Strasbourg University Strasbourg France
| |
Collapse
|
29
|
Xiao Y, Liu X, Huang Y, Kang W, Wang Z, Zheng H. Roles of hydroxyl and carbonate radicals in bisphenol a degradation via a nanoscale zero-valent iron/percarbonate system: influencing factors and mechanisms. RSC Adv 2021; 11:3636-3644. [PMID: 35424279 PMCID: PMC8694019 DOI: 10.1039/d0ra08395j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/19/2020] [Indexed: 01/15/2023] Open
Abstract
In this work, nanoscale-zero-valent iron (nZVI) was applied to activate sodium percarbonate (SPC) to eliminate bisphenol A (BPA), which poses a risk to ecological and human health as a typical endocrine disruptor. The influence of nZVI loading, SPC dosing, initial pH, and the presence of inorganic anions (including Cl-, HPO4 2-, NO3 - and NO2 -) and humic acid on BPA removal by the nZVI/SPC system were investigated. Based on the scavenger test results, ˙OH and CO3˙- participated in the degradation of BPA, and ˙OH was illustrated to be the dominant radical. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggested that surface iron oxide generation, electron transfer and Fe2+ release were the main processes of the SPC activation by nZVI. Moreover, BPA transformation products were detected by LC-MS allowing the proposal of a possible degradation pathway of BPA. Along with the degradation of the parent compound BPA, the total organic carbon (TOC) gradually decreased, while the bio-toxicity increased at the initial stage of the reaction (0-3 min) and then decreased to a lower level rapidly at 20 min. Overall, this study evidenced the feasibility of the nZVI/SPC system to efficiently degrade BPA, broadening the applications of nZVI in wastewater treatment.
Collapse
Affiliation(s)
- Yulun Xiao
- Faculty of Science, Monash University Clayton VIC 3800 Australia
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University Huangshi 435003 China +86-0714-6348286 +86-0714-6348671
| | - Xiang Liu
- School of Environmental Studies, China University of Geosciences Wuhan 430074 China
| | - Ying Huang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University Hangzhou 310027 China
| | - Wei Kang
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Zhen Wang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University Huangshi 435003 China +86-0714-6348286 +86-0714-6348671
- School of Environmental Studies, China University of Geosciences Wuhan 430074 China
| | - Han Zheng
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University Huangshi 435003 China +86-0714-6348286 +86-0714-6348671
| |
Collapse
|
30
|
Liu J, Shen X, Zheng Z, Li M, Zhu X, Cao H, Cui C. Immobilization of laccase by 3D bioprinting and its application in the biodegradation of phenolic compounds. Int J Biol Macromol 2020; 164:518-525. [DOI: 10.1016/j.ijbiomac.2020.07.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
|
31
|
A comprehensive study on bisphenol A degradation by newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12. Biodegradation 2020; 32:1-15. [PMID: 33205349 PMCID: PMC7940318 DOI: 10.1007/s10532-020-09919-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/07/2020] [Indexed: 01/16/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical. Its extensive use has led to the wide occurrence of BPA in various environmental ecosystems, at levels that may cause negative effects to the ecosystem and public health. Although there are many bacteria able to BPA utilization, only a few of them have a strong capacity for its biodegradation. Therefore, it is important to search for new bacteria strains, investigate their BPA biodegradation ability and potential effect of pH and other organic compounds on the process. These tasks have become the object of the present study. The results of our research show that for the newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12 after 15 days, with an initial BPA concentration of 100 mg L− 1, the highest BPA removal was achieved at pH 8, while sodium glutamate as a biostimulant best accelerated BPA degradation. Kinetic data for BPA biodegradation by both strains best fitted the Monod model. The specific degradation rate and the half saturation constant were estimated respectively as 8.75 mg L− 1 day− 1 and 111.27 mg L− 1 for Acinetobacter sp. K1MN, and 8.6 mg L− 1 day− 1 and 135.79 mg L− 1 for Pseudomonas sp. BG12. The half-maximal effective concentration (EC50) of BPA for Acinetobacter sp. K1MN was 120 mg L− 1 and for Pseudomonas sp. BG12 it was 123 mg L− 1. The toxicity bioassay (Microtox test) showed that elimination of BPA by both strains is accompanied by reduction of its toxic effect. The ability of tested strains to degrade BPA combined with their high resistance to this xenobiotic indicates that Acinetobacter sp. K1MN and Pseudomonas sp. BG12 are potential tools for BPA removal during wastewater treatment plant.
Collapse
|
32
|
Grelska A, Noszczyńska M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39958-39976. [PMID: 32803603 PMCID: PMC7546991 DOI: 10.1007/s11356-020-10382-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are a wide group of chemicals that interfere with the endocrine system. Their similarity to natural steroid hormones makes them able to attach to hormone receptors, thereby causing unfavorable health effects. Among EDC, bisphenol A (BPA), bisphenol S (BPS), and nonylphenol (NP) seem to be particularly harmful. As the industry is experiencing rapid expansion, BPA, BPS, and NP are being produced in growing amounts, generating considerable environmental pollution. White rot fungi (WRF) are an economical, ecologically friendly, and socially acceptable way to remove EDC contamination from ecosystems. WRF secrete extracellular ligninolytic enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase, involved in lignin deterioration. Owing to the broad substrate specificity of these enzymes, they are able to remove numerous xenobiotics, including EDC. Therefore, WRF seem to be a promising tool in the abovementioned EDC elimination during wastewater treatment processes. Here, we review WRF application for this EDC removal from wastewater and indicate several strengths and limitations of such methods.
Collapse
Affiliation(s)
- Agnieszka Grelska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Magdalena Noszczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
33
|
Peidro-Guzmán H, Pérez-Llano Y, González-Abradelo D, Fernández-López MG, Dávila-Ramos S, Aranda E, Hernández DRO, García AO, Lira-Ruan V, Pliego OR, Santana MA, Schnabel D, Jiménez-Gómez I, Mouriño-Pérez RR, Aréchiga-Carvajal ET, Del Rayo Sánchez-Carbente M, Folch-Mallol JL, Sánchez-Reyes A, Vaidyanathan VK, Cabana H, Gunde-Cimerman N, Batista-García RA. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ Microbiol 2020; 23:3435-3459. [PMID: 32666586 DOI: 10.1111/1462-2920.15166] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent xenobiotic compounds, with high toxicity effects. Mycoremediation with halophilic Aspergillus sydowii was used for their removal from a hypersaline medium (1 M NaCl). A. sydowii metabolized PAHs as sole carbon sources, resulting in the removal of up to 90% for both PAHs [benzo [a] pyrene (BaP) and phenanthrene (Phe)] after 10 days. Elimination of Phe and BaP was almost exclusively due to biotransformation and not adsorption by dead mycelium and did not correlate with the activity of lignin modifying enzymes (LME). Transcriptomes of A. sydowii grown on PAHs, or on glucose as control, both at hypersaline conditions, revealed 170 upregulated and 76 downregulated genes. Upregulated genes were related to starvation, cell wall remodelling, degradation and metabolism of xenobiotics, DNA/RNA metabolism, energy generation, signalling and general stress responses. Changes of LME expression levels were not detected, while the chloroperoxidase gene, possibly related to detoxification processes in fungi, was strongly upregulated. We propose that two parallel metabolic pathways (mitochondrial and cytosolic) are involved in degradation and detoxification of PAHs in A. sydowii resulting in intracellular oxidation of PAHs. To the best of our knowledge, this is the most comprehensive transcriptomic analysis on fungal degradation of PAHs.
Collapse
Affiliation(s)
- Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Deborah González-Abradelo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Maikel Gilberto Fernández-López
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Angélica Ortega García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Verónica Lira-Ruan
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar Ramírez Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Denhi Schnabel
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Rosa R Mouriño-Pérez
- Centro de Investigación Cientifica y Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Elva T Aréchiga-Carvajal
- Facultad de Ciencias Biológicas, Unidad de Manipulación Genética, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
34
|
Jia Y, Eltoukhy A, Wang J, Li X, Hlaing TS, Aung MM, Nwe MT, Lamraoui I, Yan Y. Biodegradation of Bisphenol A by Sphingobium sp. YC-JY1 and the Essential Role of Cytochrome P450 Monooxygenase. Int J Mol Sci 2020; 21:ijms21103588. [PMID: 32438730 PMCID: PMC7278973 DOI: 10.3390/ijms21103588] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/01/2023] Open
Abstract
Bisphenol A (BPA) is a widespread pollutant threatening the ecosystem and human health. An effective BPA degrader YC-JY1 was isolated and identified as Sphingobium sp. The optimal temperature and pH for the degradation of BPA by strain YC-JY1 were 30 °C and 6.5, respectively. The biodegradation pathway was proposed based on the identification of the metabolites. The addition of cytochrome P450 (CYP) inhibitor 1-aminobenzotriazole significantly decreased the degradation of BPA by Sphingobium sp. YC-JY1. Escherichia coli BL21 (DE3) cells harboring pET28a-bisdAB achieved the ability to degrade BPA. The bisdB gene knockout strain YC-JY1ΔbisdB was unable to degrade BPA indicating that P450bisdB was an essential initiator of BPA metabolism in strain YC-JY1. For BPA polluted soil remediation, strain YC-JY1 considerably stimulated biodegradation of BPA associated with the soil microbial community. These results point out that strain YC-JY1 is a promising microbe for BPA removal and possesses great application potential.
Collapse
Affiliation(s)
- Yang Jia
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (A.E.); (J.W.); (X.L.); (T.S.H.); (M.M.A.); (M.T.N.)
| | - Adel Eltoukhy
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (A.E.); (J.W.); (X.L.); (T.S.H.); (M.M.A.); (M.T.N.)
| | - Junhuan Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (A.E.); (J.W.); (X.L.); (T.S.H.); (M.M.A.); (M.T.N.)
| | - Xianjun Li
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (A.E.); (J.W.); (X.L.); (T.S.H.); (M.M.A.); (M.T.N.)
| | - Thet Su Hlaing
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (A.E.); (J.W.); (X.L.); (T.S.H.); (M.M.A.); (M.T.N.)
| | - Mar Mar Aung
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (A.E.); (J.W.); (X.L.); (T.S.H.); (M.M.A.); (M.T.N.)
| | - May Thet Nwe
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (A.E.); (J.W.); (X.L.); (T.S.H.); (M.M.A.); (M.T.N.)
| | - Imane Lamraoui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (A.E.); (J.W.); (X.L.); (T.S.H.); (M.M.A.); (M.T.N.)
- Correspondence: ; Tel.: +86-10-82109685
| |
Collapse
|
35
|
Metabolic Capability of Penicillium oxalicum to Transform High Concentrations of Anti-Inflammatory and Analgesic Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics are two of the most employed drug groups around the world due to their use in the treatment of edema and pain. However, they also present an ecological challenge because they are considered as potential water pollutants. In this work, the biodegradation of four NSAIDs (diclofenac, ibuprofen, naproxen and ketoprofen) and one analgesic (acetaminophen) at 50 µM (initial concentration) by Penicillium oxalicum, at both flask and bioreactor bench scales, was evaluated. An important co-metabolic mechanism as part of the global bioremediation process for the elimination of these drugs was observed, as in some cases it was necessary to supplement glucose to achieve a 100% removal rate: both individually and as a complex mixture. Identical behavior in the implementation of a fluidized bench-scale batch bioreactor, inoculated with pellets of this fungus and the complex mix of the drugs, was observed. The role of the cytochrome P450 enzymes (CYP) in the biodegradation of the drugs mix were evidenced by the observation of hydroxylated by-products. The results on the reduction of toxicity (micro and phyto) were not conclusive; however, a reduction in phytotoxicity was detected.
Collapse
|
36
|
Mtibaà R, Ezzanad A, Aranda E, Pozo C, Ghariani B, Moraga J, Nasri M, Manuel Cantoral J, Garrido C, Mechichi T. Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135129. [PMID: 31806325 DOI: 10.1016/j.scitotenv.2019.135129] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Research on the biodegradation of emerging pollutants is gained great focus regarding their detrimental effects on the environment and humans. The objective of the present study was to evaluate the ability of the ascomycetes Thielavia sp HJ22 to remove the phenolic xenobiotics nonylphenol (NP), 4-tert-octylphenol (4-tert-OP) and 2,4-dichlorophenol (2,4-DCP). The strain showed efficient degradation of NP and 4-tert-OP with 95% and 100% removal within 8 h of incubation, respectively. A removal rate of 80% was observed with 2,4-DCP within the same time. Under experimental conditions, the degradation of the tested pollutants concomitantly increased with the laccase production and cytochrome P450 monooxygenases inhibition. This study showed the involvement of laccase in pollutants removal together with biosorption mechanisms. Additionally, results demonstrated the participation of cytochrome P450 monooxygenase in the elimination of 2,4-DCP. Liquid chromatography-mass spectrometry analysis revealed several intermediates, mainly hydroxylated and oxidized compounds with less harmful effects compared to the parent compounds. A decrease in the toxicity of the identified metabolites was observed using Aliivibrio fischeri as bioindicator. The metabolic pathways of degradation were proposed based on the identified metabolites. The results point out the potential of Thielavia strains in the degradation and detoxification of phenolic xenobiotics.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia.
| | - Abdellah Ezzanad
- Department of Organic Chemistry, University of Sciences, University of Cádiz, Polígono Rio San Pedro 11510, Puerto Real, Cádiz, Spain
| | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Clementina Pozo
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Bouthaina Ghariani
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - Javier Moraga
- Department of Organic Chemistry, University of Sciences, University of Cádiz, Polígono Rio San Pedro 11510, Puerto Real, Cádiz, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - Jesús Manuel Cantoral
- Department of Biomedicine, Biotechnology and Public Health, Facultad de Ciencias del Mar y Ambientales, University of Cádiz, Polígono Rio San Pedro 11510 Puerto Real, Cádiz, Spain
| | - Carlos Garrido
- Department of Biomedicine, Biotechnology and Public Health, Facultad de Ciencias del Mar y Ambientales, University of Cádiz, Polígono Rio San Pedro 11510 Puerto Real, Cádiz, Spain
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| |
Collapse
|
37
|
Zhang R, Wang L, Han J, Wu J, Li C, Ni L, Wang Y. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121130. [PMID: 31518815 DOI: 10.1016/j.jhazmat.2019.121130] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 05/09/2023]
Abstract
Enhancing the catalytic activity and stability of enzymes is of great importance in the development of green chemical and cost-effective application, with removal of bisphenol A (BPA) as a prominent example. Engineering immobilization carriers and immobilization methods of enzymes endows great potential to achieve above goal. Until now, these reports have focused on employing the metal-organic frameworks (MOFs) to increase the stability and reusability of enzymes, an enhancement in its catalytic activity has yet to be addressed. This work introduced a biomimetic mineralization process for facile synthesis of laccase@HKUST-1 biocomposite under mild condition. By exploiting the activity of laccase@HKUST-1, we demonstrated, for the first time, that the integration of laccase and HKUST-1 containing cofactor Cu2+ ions leaded to 1.5-fold enhancement in the catalytic activity compared with free laccase, which was due to the synergistic enhancement of substrate oxidation. Indeed, the laccase@HKUST-1 biocomposite could function as active biocatalysts under biologically challenging conditions, such as acidic condition, high temperature, organic solvent, and continuous operation. The oxidation of phenols, such as BPA, with laccase@HKUST-1 reached higher catalytic performance than free laccase, and gave 100% degradation efficiency within 4 h. This study provides a feasible method to improve the activity and stability of laccase, which enable completely remove of BPA from the environment.
Collapse
Affiliation(s)
- Rongzheng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Liang Ni
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
38
|
Jiang L, Xu X, Yuan J, Zuo Y, Tao Y, Yao D, He G, Chen H. Heterogeneous activation of persulfate for the degradation of bisphenol A with Ni 2SnO 4–RGO. NEW J CHEM 2020. [DOI: 10.1039/c9nj05863j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The possible reaction mechanism of the activation of persulfate by Ni2SnO4–RGO for the degradation of BPA.
Collapse
Affiliation(s)
- Ling Jiang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Xiangyang Xu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Jingjing Yuan
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Yuanjie Zuo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Yingrui Tao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Dachuan Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Guangyu He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Haiqun Chen
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|
39
|
Dempsey JL, Cui JY. Microbiome is a functional modifier of P450 drug metabolism. CURRENT PHARMACOLOGY REPORTS 2019; 5:481-490. [PMID: 33312848 PMCID: PMC7731899 DOI: 10.1007/s40495-019-00200-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Host cytochrome P450s (P450s) play important roles in the bioactivation and detoxification of numerous therapeutic drugs, environmental toxicants, dietary factors, as well as endogenous compounds. Gut microbiome is increasingly recognized as our "second genome" that contributes to the xenobiotic biotransformation of the host, and the first pass metabolism of many orally exposed chemicals is a joint effort between host drug metabolizing enzymes including P450s and gut microbiome. Gut microbiome contributes to the drug metabolism via two distinct mechanisms: direct mechanism refers to the metabolism of drugs by microbial enzymes, among which reduction and hydrolysis (or deconjugation) are among the most important reactions; whereas indirect mechanism refers to the influence of host receptors and signaling pathways by microbial metabolites. Many types of microbial metabolites, such as secondary bile acids (BAs), short chain fatty acids (SCFAs), and tryptophan metabolites, are known regulators of human diseases through modulating host xenobiotic-sensing receptors. To study the roles of gut microbiome in regulating host drug metabolism including P450s, several models including germ free mice, antibiotics or probiotics treatments, have been widely used. The present review summarized the current information regarding the interactions between microbiome and the host P450s in xenobiotic biotransformation organs such as liver, intestine, and kidney, highlighting the remote sensing mechanisms underlying gut microbiome mediated regulation of host xenobiotic biotransformation. In addition, the roles of bacterial, fungal, and other microbiome kingdom P450s, which is an understudied area of research in pharmacology and toxicology, are discussed.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington
| |
Collapse
|
40
|
Chovanová K, Kamlárová A, Maresch D, Harichová J, Zámocký M. Expression of extracellular peroxidases and catalases in mesophilic and thermophilic Chaetomia in response to environmental oxidative stress stimuli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:481-490. [PMID: 31228824 DOI: 10.1016/j.ecoenv.2019.06.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Peroxidases and catalases are well-known antioxidant enzymes produced in almost all living organisms for the elimination of reactive oxygen species (ROS) and thus they prevent the occurrence of oxidative stress. In our study we focused on two soil fungi of the family Chaetomiaceae (mesophilic Chaetomium cochliodes and its thermophilic counterpart C. thermophilum var. dissitum) in order to explore the presence of peroxidase and catalase genes, formation of their native transcripts and protective effect of corresponding translation products in a case study. Predicted genes of our interest were confirmed by genomic PCR and their inducible transcripts by RT-PCR. We were able to quantify the expression levels of newly discovered fungal heme peroxidases and catalases with the reverse-transcription quantitative real-time PCR method. We compared obtained quantitative levels of mRNA production with the level of corresponding extracellular protein occurrence as detected with monitoring their specific peroxidase and catalase activities directly in the cultivation media at optimal growth temperatures. The presence of secretory Catalase 2 from C. thermophilum var. dissitum was detected and identified with mass spectrometry approach directly in the growth medium. This unique catalase is phylogenetically closely related with a previously described catalase-phenol oxidase thus representing an effective and versatile antioxidant in the environment of the fungal mycelia also involved in the catabolism of recalcitrant phenolic substances.
Collapse
Affiliation(s)
- Katarína Chovanová
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551, Bratislava Slovakia
| | - Anna Kamlárová
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551, Bratislava Slovakia; Institute of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, SK-04011, Košice, Slovakia
| | - Daniel Maresch
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Jana Harichová
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551, Bratislava Slovakia
| | - Marcel Zámocký
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551, Bratislava Slovakia; Department of Molecular Evolution & Development, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.
| |
Collapse
|
41
|
Wang XW, Bai FY, Bensch K, Meijer M, Sun BD, Han YF, Crous PW, Samson RA, Yang FY, Houbraken J. Phylogenetic re-evaluation of Thielavia with the introduction of a new family Podosporaceae. Stud Mycol 2019; 93:155-252. [PMID: 31824584 PMCID: PMC6816082 DOI: 10.1016/j.simyco.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Thielavia is morphologically defined by having non-ostiolate ascomata with a thin peridium composed of textura epidermoidea, and smooth, single-celled, pigmented ascospores with one germ pore. Thielavia is typified with Th. basicola that grows in close association with a hyphomycete which was traditionally identified as Thielaviopsis basicola. Besides Th. basicola exhibiting the mycoparasitic nature, the majority of the described Thielavia species are from soil, and some have economic and ecological importance. Unfortunately, no living type material of Th. basicola exists, hindering a proper understanding of the classification of Thielavia. Therefore, Thielavia basicola was neotypified by material of a mycoparasite presenting the same ecology and morphology as described in the original description. We subsequently performed a multi-gene phylogenetic analyses (rpb2, tub2, ITS and LSU) to resolve the phylogenetic relationships of the species currently recognised in Thielavia. Our results demonstrate that Thielavia is highly polyphyletic, being related to three family-level lineages in two orders. The redefined genus Thielavia is restricted to its type species, Th. basicola, which belongs to the Ceratostomataceae (Melanosporales) and its host is demonstrated to be Berkeleyomyces rouxiae, one of the two species in the "Thielaviopsis basicola" species complex. The new family Podosporaceae is sister to the Chaetomiaceae in the Sordariales and accommodates the re-defined genera Podospora, Trangularia and Cladorrhinum, with the last genus including two former Thielavia species (Th. hyalocarpa and Th. intermedia). This family also includes the genetic model species Podospora anserina, which was combined in Triangularia (as Triangularia anserina). The remaining Thielavia species fall in ten unrelated clades in the Chaetomiaceae, leading to the proposal of nine new genera (Carteria, Chrysanthotrichum, Condenascus, Hyalosphaerella, Microthielavia, Parathielavia, Pseudothielavia, Stolonocarpus and Thermothielavioides). The genus Canariomyces is transferred from Microascaceae (Microascales) to Chaetomiaceae based on its type species Can. notabilis. Canariomyces is closely related to the human-pathogenic genus Madurella, and includes three thielavia-like species and one novel species. Three monotypic genera with a chaetomium-like morph (Brachychaeta, Chrysocorona and Floropilus) are introduced to better resolve the Chaetomiaceae and the thielavia-like species in the family. Chrysocorona lucknowensis and Brachychaeta variospora are closely related to Acrophialophora and three newly introduced genera containing thielavia-like species; Floropilus chiversii is closely related to the industrially important and thermophilic species Thermothielavioides terrestris (syn. Th. terrestris). This study shows that the thielavia-like morph is a homoplastic form that originates from several separate evolutionary events. Furthermore, our results provide new insights into the taxonomy of Sordariales and the polyphyletic Lasiosphaeriaceae.
Collapse
Affiliation(s)
- X W Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - F Y Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - K Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - M Meijer
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - B D Sun
- China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y F Han
- Institute of Fungus Resources, Guizhou University, Guiyang, Guizhou, 550025, China
| | - P W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa.,Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - R A Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - F Y Yang
- Grassland Institute, College of Animal Science & Technology, China Agricultural University, NO. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100093, China
| | - J Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
42
|
Sun Y, Zhao L, Li X, Hao Y, Xu H, Weng L, Li Y. Stimulation of earthworms (Eisenia fetida) on soil microbial communities to promote metolachlor degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:219-228. [PMID: 30798023 DOI: 10.1016/j.envpol.2019.01.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Degradation of metolachlor in surface soil is extremely important to its potential mobility and overall persistence. In this study, the effects of earthworms (Eisenia fetida) on the degradation of metolachlor at two concentration levels (5 and 20 mg kg-1) in soil were investigated via the column experiment. The degradation kinetics of metolachlor indicate that addition of earthworms enhances metolachlor degradation significantly (P < 0.05), with the enhanced degradation rate of 30% and 63% in the low and high concentration treatments at the 15th day, respectively. Fungi rather than bacteria are primarily responsible for metolachlor degradation in soil, and earthworms stimulate metolachlor degradation mainly by stimulating the metolachlor-degrading functional microorganisms and improving fungal community structure. Earthworms prefer to promote the possible fungal degraders like order Sordariales, Microascales, Hypocreales and Mortierellales and the possible bacteria genus Rubritalea and strengthen the relationships between these primary fungi. Two metabolites metolachlor oxanilic (MOXA) and moetolachlor ethanesulfonic acid (MESA) are detected in soil and earthworms in the high concentration treatments. Earthworms stimulate the formation of MOXA and yet inhibit the formation of MESA in soil. Another metabolite metolachlor-2-hydroxy (M2H) is also detected in earthworms, which is reported firstly. The study provides an important information for the remediation of metolachlor-polluted soil.
Collapse
Affiliation(s)
- Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China; Land and Environmental College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Yueqi Hao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Huijuan Xu
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
43
|
Olicón-Hernández DR, Camacho-Morales RL, Pozo C, González-López J, Aranda E. Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:607-614. [PMID: 30699381 DOI: 10.1016/j.scitotenv.2019.01.248] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Diclofenac (DFC) is a common anti-inflammatory drug, and has attracted the significant attention due to its massive use around the world and its environmental impact. In this work, we describe for the first time the use of Penicillium oxalicum, an ascomycetes fungus, for the biotransformation of DFC at flask and bench bioreactor scales. We present a complete study of the role of enzymes, metabolic pathway, acute toxicity assays and comparison between free and immobilised biomass. Pellets of P. oxalicum degraded 100 μM of DFC within 24 h, and the activity of CYP450 enzymes was key for the elimination of the drug. The scaling-up to bench bioreactor was optimised by the reduction of nutrients, and characterising the actions of free pellets, polyurethane foam- and plastic K1-immobilised biomass revealed free pellets to be the most efficient DFC removal system (total elimination occurred in 36 h). Hydroxylated metabolites were detected during the process, suggesting that a mixture of biological and physical processes were involved in the elimination of DFC. The use of P. oxalicum reduced the acute toxicity of the medium supplemented with diclofenac and represents a novel and attractive alternative for the elimination of pharmaceutical compounds.
Collapse
Affiliation(s)
| | - R Lucero Camacho-Morales
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain
| | - Clementina Pozo
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - Jesús González-López
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - Elisabet Aranda
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
44
|
Aguelmous A, El Fels L, Souabi S, Zamama M, Yasri A, Lebrihi A, Hafidi M. Petroleum sludge bioremediation and its toxicity removal by landfill in gunder semi-arid conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:482-487. [PMID: 30312947 DOI: 10.1016/j.ecoenv.2018.09.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
In this investigation, petroleum sludge landfilling was carried out in order to assess the biodegradation degree and the final product quality. The microbial analysis showed a good microorganism proliferation which reinforces the biodegradation process. The total mesophilic and thermophilic microflora evaluated symmetrically as they increased at the intermediate stage and decreased at the final. The C/N and NH4+/NO3-ratios decreased while the polymerization degree increased at the end of the landfilling process. The total polyphenols and total petroleum C6 to C22hydrocarbons were removed by 71.6% and 73% respectively, and that affected the reduction of the phytotoxicity in a positive way. All these changes are in agreement with the efficiency of the biotransformation process and showed that petroleum sludge and filling reduced the toxic organic compounds and led to a stable final product.
Collapse
Affiliation(s)
- Anas Aguelmous
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Morocco
| | - Loubna El Fels
- Laboratory of Ecology and Environment, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco; Higher Institute of Nursing Professions and Health Technics, Marrakech-Safi, Morocco
| | - Salah Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Morocco
| | - Mohamed Zamama
- Laboratory of Physico-Chemical of Materials and Environment, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Abdelaziz Yasri
- Agrobiosciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | | | - Mohamed Hafidi
- Laboratory of Ecology and Environment, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco; Agrobiosciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.
| |
Collapse
|
45
|
Mtibaà R, Barriuso J, de Eugenio L, Aranda E, Belbahri L, Nasri M, Martínez MJ, Mechichi T. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. Int J Biol Macromol 2018; 120:1744-1751. [PMID: 30268749 DOI: 10.1016/j.ijbiomac.2018.09.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 01/25/2023]
Abstract
A laccase-producing ascomycete was isolated from arid soil in Tunisia. This fungus was identified as Thielavia sp. using the phylogenetic analysis of rDNA internal transcribed spacers. The extracellular laccase produced by the fungus was purified to electrophoretic homogeneity, showing a molecular mass around 70 kDa. The enzyme had an optimum pH of 5.0 and 6.0 for ABTS and 2,6‑DMP, respectively and it showed remarkable high thermal stability, showing its optimal temperature at 70 °C (against 2,6‑DMP). It presented slight inhibiting effect by EDTA, SDS and l‑cyst although this effect was more marked by sodium azide (0.1 mM). On the other hand, it showed tolerance to up to 300 mM NaCl, retaining around 50% of its activity at 900 mM. Among the metal ions tested on TaLac1, Mn2+ showed an activating effect. Their kinetic parameters Km and kcat were 23.7 μM and 4.14 s-1 for ABTS, and 24.3 μM and 3.46 s-1 towards 2,6‑DMP. The purified enzyme displayed greater efficiency in Remazol Brilliant Blue R decolorization (90%) in absence of redox mediator, an important property for biotechnological applications.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia.
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elisabet Aranda
- Department of Microbiology, Institute of Water Research, University of Granada, Calle Ramón y Cajal 4, E-18071 Granada, Spain
| | - Lasaad Belbahri
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2009 Neuchâtel, Switzerland
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - María Jesùs Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientίficas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineers of Sfax, BP «1173», 3038 Sfax, Tunisia
| |
Collapse
|