1
|
Mishra AK, Gupta GS, Agrawal SB, Tiwari S. Understanding the impact of elevated CO 2 and O 3 on growth and yield in Indian wheat cultivars: Implications for food security in a changing climate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124990. [PMID: 39303935 DOI: 10.1016/j.envpol.2024.124990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The pressing issue of increasing tropospheric ozone (O3) levels necessitates the development of effective stress management strategies for plant protection. While considerable research has elucidated the adverse impacts of O3, understanding the combined effects of O3 and CO2 requires further investigation. This study focuses on assessing the response of stomatal O3 flux under various O3 and CO2 treatments, individually and in combination, and their repercussions on physiological, growth, and yield attributes in two Indian wheat cultivars, HUW-55 and PBW-550, which exhibit varying levels of sensitivities against elevated O3. Results indicated significant alterations in stomatal O3 flux in both O3-sensitive and tolerant wheat cultivars across different treatments, influencing the overall yield outcomes. Particularly, the ECO2+EO3 treatment demonstrated more positive yield protection in the O3-sensitive cultivar PBW-550, compared to HUW-55 indicating enhanced allocation of photosynthates towards reproductive development in PBW-550, compared to the tolerant cultivar HUW-55, as evidenced by higher harvest index (HI). Furthermore, the study revealed a stronger correlation between yield response and stomatal O3 flux in PBW-550 (R2 = 0.88) compared to HUW-55 (R2 = 0.79), as indicated by a steeper regression slope for PBW-550. The research also confirmed the role of elevated CO2 in reducing stomatal O3- flux in the tested cultivars, with discernible effects on their respective yield responses. Further experimentation is necessary to confirm these results across different cultivars exhibiting varying sensitivities to O3. These findings can potentially revolutionize agricultural productivity in regions affected by O3 stress. The criteria for recommending cultivars for agricultural practices should not be based only on their sensitivity/tolerance to O3. Still, they should also consider the effect of CO2 fertilization in the growing area. This experiment offers hope to sustain global food security, as the O3-sensitive wheat cultivar also showed promising results at elevated CO2. In essence, this research could pave the way for more resilient agricultural systems in the era of changing climate under elevated O3 and CO2 conditions.
Collapse
Affiliation(s)
- Ashish Kumar Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gereraj Sen Gupta
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Supriya Tiwari
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Prakash J, Agrawal SB, Agrawal M. Unraveling the underlying mechanisms of biochemical, physiological, and growth responses of two pea ( Pisum sativum L.) cultivars under simulated acid rain-induced oxidative stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1329-1351. [PMID: 39184554 PMCID: PMC11341807 DOI: 10.1007/s12298-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
The current experiment was designed to evaluate the ramifications of simulated acid rain (SAR) on two pea (Pisum sativum L.) cultivars, Kashi Samridhi (Samridhi) and Kashi Nandini (Nandini), to decipher the intraspecific variations in defence mechanism considering the current scenario of rapid anthropogenic activities leading to increase in rain acidity. The pea cultivars were subjected to SAR of pH 7 (Control), 5.6, 5.0, and 4.5 under field conditions. SAR increased active oxygen species and malondialdehyde content due to increased lipid peroxidation in both cultivars; however, the increment intensity was more remarkable in Samridhi at the later growth stage. Ascorbic acid, thiol, and flavonoids were significantly increased in cultivar Nandini, along with increased peroxidase and superoxide dismutase activities. Total phenolics, glutathione reductase, and ascorbate peroxidase activities were enhanced considerably in Samridhi than in Nandini under SAR treatments. Higher stomatal density and stomatal size in Samridhi prompted greater acidic particles influx which further damaged the chloroplast and mitochondria. The present study concludes that cultivar Nandini is more proficient in inducing defence responses by elevating non-enzymatic antioxidants than Samridhi. Non-enzymatic linked defence mechanisms are more metabolically expensive, leading to less biomass accumulation in Nandini. The study depicted that innate defence responses, particularly the role of non-enzymatic antioxidants, governed the sensitivity level of cultivars towards SAR stress. Further, findings also contribute to bridging the knowledge gap regarding the responses of tropical and subtropical crops to acid rain. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01494-x.
Collapse
Affiliation(s)
- Jigyasa Prakash
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
3
|
JawaharJothi G, Kovilpillai B, Subramanian A, Mani JR, Kumar S, Kannan B, Mani S. Effect of tropospheric ozone and its protectants on gas exchange parameters, antioxidant enzymes and quality of Garlic (Allium sativum. L). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:991-1004. [PMID: 38528211 DOI: 10.1007/s00484-024-02642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
An experimental study was conducted to assess the detrimental effect of ground-level ozone (O3) on garlic physiology and to find out appropriate control measures against ground-level O3, at TNAU-Horticultural Research farm, Udhagamandalam. Elevated ground ozone levels significantly decreased garlic leaf chlorophyll, photosynthetic rate, stomatal conductance, total soluble solids and pungency. The garlic chlorophyll content was highest in ambient ozone level and lowest in elevated ozone@200 ppb, highest stomatal conductance was recorded in ambient ozone with foliar spray of 3%Panchagavya, and the lowest was observed in elevated ozone@200 ppb. Since the elevated O3 had reduced in garlic photosynthetic rate significantly the lowest was observed in elevated O3@200 ppb and the highest photosynthetic rate was observed in ambient Ozone with foliar spray 3% of panchagavya after a week. The antioxidant enzymes of garlic were increased with increased concentration of tropospheric ozone. The highest catalase (60.97 µg of H2O2/g of leaf) and peroxidase (9.13 ΔA/min/g of leaf) concentration was observed at 200 ppb elevated ozone level. Garlic pungency content was highest in ambient ozone with foliar spray of 0.1% ascorbic acid and the lowest was observed under elevated O3@200 ppb. Highest total soluble solids were observed in ambient ozone with foliar spray of 3%Panchagavya and the lowest observed in elevated ozone@200 ppb. Thus, tropospheric ozone has a detrimental impact on the physiology of crops, which reduced crop growth and yield. Under elevated O3 levels, ascorbic acid performed well followed by panchagavya and neem oil. The antioxidant such as catalase and peroxidase had positive correlation among themselves and had negative correlation with chlorophyll content, stomatal conductance, photosynthetic rate, pungency and TSS. The photosynthetic rate has high positive correlation with chlorophyll content, pungency and TSS. Correlation analysis confirmed the negative effects of tropospheric ozone and garlic gas exchange parameters and clove quality. The ozone protectants will reduce stomatal opening by which the entry of O3 in to the cell will be restricted and other hand they also will alleviate ROS and allied stresses.
Collapse
Affiliation(s)
- Gayathri JawaharJothi
- Division of Environment Science, Indian Agricultural Research Institute, New Delhi, India
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Boomiraj Kovilpillai
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Avudainayagam Subramanian
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Sudhir Kumar
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Balaji Kannan
- Department of Physical Science and Information Technology Tamil, Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudhakaran Mani
- JKK Munirajah College of Agricultural Science, Tamil Nadu, Erode dt, India
| |
Collapse
|
4
|
Xu Y, Kobayashi K, Feng Z. Wheat yield response to elevated O 3 concentrations differs between the world's major producing regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168103. [PMID: 37884153 DOI: 10.1016/j.scitotenv.2023.168103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Ground-level ozone (O3) concentration is rising in Asia, which accommodates the world's top-two wheat producers (China and India). Because wheat is among the species of high O3 sensitivity, yield loss due to rising O3 in Asia is a major threat to global wheat supply. We estimated the relationships between O3 dose on AOT40 (accumulated daytime O3 concentrations above 40 ppb for 90 days) and relative wheat yield for four wheat producing regions: China, India, Europe and North America using results of O3 elevation experiments conducted therein. When compared on the same AOT40, the estimated yield loss was greatest in China followed by India, Europe, and North America in this order. In China, Europe and North America, the yield loss was primarily due to the reduction of single grain weight, whereas in India reduction of the number of grains contributed more to the yield loss than single grain weight. The greater response of the number of grains to O3 in India can be explained by the earlier start of O3 elevation, but the seasonal change in O3 concentrations cannot explain the lower yield loss in North America than China and India. Referring to the past reports of lower yield sensitivity to O3 in older cultivars, we compared the year of release of cultivars between the regions. In North America, they used cultivars released in 1980s or earlier, whereas in China they used cultivars released in 2000s. In Europe and India, most cultivars were released between those in North America and China. The difference in cultivars could therefore be a cause the differential yield response among the regions. We argue that the O3-induced yield loss should be quantified using the dose-response relationships for each region accounting for the effects of seasonal change in O3 concentrations, cultivars and climate on the yield response.
Collapse
Affiliation(s)
- Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science & Technology, Nanjing, China
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
5
|
Dewan S, Bamola S, Lakhani A. Addressing ozone pollution to promote United Nations sustainable development goal 2: Ensuring global food security. CHEMOSPHERE 2024; 347:140693. [PMID: 37967682 DOI: 10.1016/j.chemosphere.2023.140693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Achieving global food security and ensuring sustainable agriculture, the dual objectives of the second Sustainable Development Goal (SDG 2), necessitate immediate and collaborative efforts from developing and developed nations. The adverse effects of ozone on crop yields have the potential to significantly undermine the United Nations' ambitious target of attaining food security and ending hunger by 2030. This review examines the causes of growing tropospheric ozone, especially in India and China which lead to a substantial reduction in crop yield and forest biomass. The findings show that a nexus of high population, rapid urbanization and regional pollution sources aggravates the problem in these countries. It elucidates that when plants are exposed to ozone, specific cellular pathways are triggered, resulting in changes in the expression of genes related to hormone production, antioxidant metabolism, respiration, and photosynthesis. Assessing the risks associated with ozone exposure involves using response functions that link exposure-based and flux-based measurements to variables like crop yield. Precisely quantifying the losses in yield and economic value in food crops due to current ozone levels is of utmost importance in comprehending the risks ozone poses to global food security. We conclude that policymakers should focus on implementing measures to decrease the emissions of ozone precursors, such as enhancing vehicle fuel efficiency standards and promoting the use of cleaner energy sources. Additionally, efforts should be directed toward mapping or developing crop varieties that can tolerate ozone, applying protective measures at critical stages of plant growth and establishing ozone-related vegetation protection standards.
Collapse
Affiliation(s)
- Surat Dewan
- Department of Chemistry, Dayalbagh Educational Institute, Agra, 282005, India
| | - Simran Bamola
- Department of Chemistry, Dayalbagh Educational Institute, Agra, 282005, India
| | - Anita Lakhani
- Department of Chemistry, Dayalbagh Educational Institute, Agra, 282005, India.
| |
Collapse
|
6
|
Darwish H, Alharthi S, Mehanna RA, Ibrahim SS, Fawzy MA, Alotaibi SS, Albogami SM, Albogami B, Hassan SHA, Noureldeen A. Evaluation of the Anti-Cancer Potential of Rosa damascena Mill. Callus Extracts against the Human Colorectal Adenocarcinoma Cell Line. Molecules 2022; 27:6241. [PMID: 36234779 PMCID: PMC9572977 DOI: 10.3390/molecules27196241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is an aggressive form of chemical drug therapy aiming to destroy cancer cells. Adjuvant therapy may reduce hazards of chemotherapy and help in destroying these cells when obtained from natural products, such as medical plants. In this study, the potential therapeutic effect of Rosa damascena callus crude extract produced in vitamin-enhanced media is investigated on colorectal cancer cell line Caco-2. Two elicitors, i.e., L-ascorbic acid and citric acid at a concentration of 0.5 g/L were added to the callus induction medium. Callus extraction and the GC-MS analysis of methanolic crude extracts were also determined. Cytotoxicity, clonogenicity, proliferation and migration of Caco-2 colorectal cancer cells were investigated using MTT cytotoxicity, colony-forming, Ki-67 flow cytometry proliferation and Migration Scratch assays, respectively. Our results indicated that L-ascorbic acid treatment enhanced callus growth parameters and improved secondary metabolite contents. It showed the least IC50 value of 137 ug/mL compared to 237 ug/mL and 180 ug/mL in the citric acid-treated and control group. We can conclude that R. damascena callus elicited by L-ascorbic acid improved growth and secondary metabolite contents as well as having an efficient antiproliferative, anti-clonogenic and anti-migratory effect on Caco-2 cancer cells, thus, can be used as an adjuvant anti-cancer therapy.
Collapse
Affiliation(s)
- Hadeer Darwish
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Radwa A. Mehanna
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria P.O. 21544, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria P.O. 21544, Egypt
| | - Samar S. Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria P.O. 21544, Egypt
| | - Mustafa A. Fawzy
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Bander Albogami
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sedky H. A. Hassan
- Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
7
|
Picchi V, Calzone A, Gobbi S, Paccani S, Lo Scalzo R, Marti A, Faoro F. Oxidative Stress Mitigation by Chitosan Nanoparticles in Durum Wheat Also Affects Phytochemicals and Technological Quality of Bran and Semolina. PLANTS 2022; 11:plants11152021. [PMID: 35956498 PMCID: PMC9370655 DOI: 10.3390/plants11152021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
In our previous work, durum wheat cv. Fabulis was grown over two consecutive seasons (2016–2017 and 2017–2018) in an experimental field in the north of Italy. With the aim of mitigating oxidative stress, plants were subjected to four treatments (deionized water, CHT 0.05 mg/mL, CHT-NPs, and CHT-NPs-NAC) three times during the experiment. Chitosan nanoparticles (CHT-NPs) reduced symptom severity on wheat leaves and positively influenced the final grain yield. The present work aimed at investigating whether CHT treatments and particularly N-acetyl cysteine (NAC)-loaded or -unloaded CHT-NPs, while triggering plant defense mechanisms, might also vary the nutritional and technological quality of grains. For this purpose, the grains harvested from the previous experiment were analyzed for their content in phytochemicals and for their technological properties. The results showed that CHT increased the polyphenol and tocopherol content and the reducing capacity of bran and semolina, even if the positive effect of the nano-formulation remained still unclear and slightly varied between the two years of cultivation. The positive effect against oxidative stress induced by the chitosan treatments was more evident in the preservation of both the starch pasting properties and gluten aggregation capacity, indicating that the overall technological quality of semolina was maintained. Our data confirm the role of chitosan as an elicitor of the antioxidant defense system in wheat also at the grain level.
Collapse
Affiliation(s)
- Valentina Picchi
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milano, Italy; (A.C.); (S.P.); (R.L.S.)
- Correspondence: (V.P.); (F.F.)
| | - Antonella Calzone
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milano, Italy; (A.C.); (S.P.); (R.L.S.)
| | - Serena Gobbi
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (S.G.); (A.M.)
| | - Sara Paccani
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milano, Italy; (A.C.); (S.P.); (R.L.S.)
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (S.G.); (A.M.)
| | - Roberto Lo Scalzo
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milano, Italy; (A.C.); (S.P.); (R.L.S.)
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (S.G.); (A.M.)
| | - Franco Faoro
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- Correspondence: (V.P.); (F.F.)
| |
Collapse
|
8
|
Junaidi, Nuringtyas TR, Clément-Vidal A, Flori A, Syafaah A, Oktavia F, Ismawanto S, Aji M, Subandiyah S, Montoro P. Analysis of reduced and oxidized antioxidants in Hevea brasiliensis latex reveals new insights into the regulation of antioxidants in response to harvesting stress and tapping panel dryness. Heliyon 2022; 8:e09840. [PMID: 35815130 PMCID: PMC9260451 DOI: 10.1016/j.heliyon.2022.e09840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Latex diagnosis (LD) is applied to optimize the natural rubber production and prevent tapping panel dryness (TPD), a physiological syndrome affecting latex production in Hevea brasiliensis. The reduced thiol content (RSH) is one of the biochemical parameters associated with the risk of TPD. However, RSH is difficult to interpret because of the influence of the environment. In order to better understand the regulation of antioxidants and to better interpret RSH, a key parameter of LD, this study analysed in latex both oxidised and reduced forms of ascorbic acid (AsA) and glutathione, and their cofactors as well as other latex diagnosis parameters in response to harvesting stress (tapping and ethephon stimulation) and TPD occurrence. The content of antioxidants in latex had a high variability among five rubber clones. The concentration in AsA was about ten times higher than GSH in laticifer, GSH accounting for about 50% of RSH. For short-term harvesting stress, RSH increased with tapping frequency and ethephon stimulation. TPD is associated with high latex viscosity and bursting of lysosomal particles called lutoids, as well as for several rubber clones with lower RSH and GSH contents. These results suggest that a high level of RSH shows the capacity of laticifer metabolism to cope with harvesting stress, while a drop in RSH is the sign of long stress related to lower metabolic activity and TPD occurrence. RSH remains an essential physiological parameter to prevent TPD when associated with reference data under low and high harvesting stress. This study paves the way to understand the role of AsA and GSH, and carry out genetic studies of antioxidants.
Collapse
|
9
|
Selem E, Hassan AASA, Awad MF, Mansour E, Desoky ESM. Impact of Exogenously Sprayed Antioxidants on Physio-Biochemical, Agronomic, and Quality Parameters of Potato in Salt-Affected Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:210. [PMID: 35050098 PMCID: PMC8781455 DOI: 10.3390/plants11020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 05/05/2023]
Abstract
Salinity is one of the harsh environmental stresses that destructively impact potato growth and production, particularly in arid regions. Exogenously applied safe-efficient materials is a vital approach for ameliorating plant growth, productivity, and quality under salinity stress. This study aimed at investigating the impact of foliar spray using folic acid (FA), ascorbic acid (AA), and salicylic acid (SA) at different concentrations (100, 150, or 200 mg/L) on plant growth, physiochemical ingredients, antioxidant defense system, tuber yield, and quality of potato (Solanum tuberosum L cv. Spunta) grown in salt-affected soil (EC = 7.14 dS/m) during two growing seasons. The exogenously applied antioxidant materials (FA, AA, and SA) significantly enhanced growth attributes (plant height, shoot fresh and dry weight, and leaves area), photosynthetic pigments (chlorophyll a and b and carotenoids), gas exchange (net photosynthetic rate, Pn; transpiration rate, Tr; and stomatal conductance, gs), nutrient content (N, P, and K), K+/ Na+ ratio, nonenzymatic antioxidant compounds (proline and soluble sugar content), enzymatic antioxidants (catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and ascorbate peroxidase (APX)) tuber yield traits, and tuber quality (dry matter, protein, starch percentage, total carbohydrates, and sugars percentage) compared with untreated plants in both seasons. Otherwise, exogenous application significantly decreased Na+ and Cl- compared to the untreated control under salt stress conditions. Among the assessed treatments, the applied foliar of AA at a rate of 200 mg/L was more effective in promoting salt tolerance, which can be employed in reducing the losses caused by salinity stress in potato grown in salt-affected soils.
Collapse
Affiliation(s)
- Eman Selem
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Asem A. S. A. Hassan
- Horticulture Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
10
|
Singh P, Kannaujia R, Narayan S, Tewari A, Shirke PA, Pandey V. Impact of chronic elevated ozone exposure on photosynthetic traits and anti-oxidative defense responses of Leucaena leucocephala (Lam.) de wit tree under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146907. [PMID: 33848871 DOI: 10.1016/j.scitotenv.2021.146907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
In this study, the impact of long term exposure of elevated ozone (+20 ppb above ambient) on photosynthetic traits and anti-oxidative defense system of Leucaena leucocephala, a tree of great economic importance, was studied in a Free Air Ozone Concentration Enrichment (O3-FACE) facility at different time intervals (6, 12, 18, and 24 months). Results showed that net photosynthesis, photosynthetic pigments and lipid peroxidation were significantly reduced after 6, 12 and 24 months of exposure to elevated ozone (eO3) whereas stomatal conductance and transpiration rate were significantly decreased after 12 months of exposure to eO3. Antioxidant enzymatic activities (catalase, ascorbate peroxidase and glutathione reductase) were significantly increased after 12 months of exposure to eO3. Ascorbate was increased significantly after 6 and 12 months of exposure to eO3 while reduced glutathione content declined significantly after 6 and 24 months of exposure to eO3. The study showed that there were several negative long lasting physiological and biochemical responses in Leucaena. The results provide evidence that Leucaena exhibited greater sensitivity to O3 during initial exposure (up to 12 months) but showed moderate tolerance by the end of the 2nd year.
Collapse
Affiliation(s)
- Pratiksha Singh
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India; Department of Forestry & Environmental Science, D.S.B. campus, Kumaun University, Nainital, Uttarakhand 263001, India
| | - Rekha Kannaujia
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India
| | - Shiv Narayan
- Plant Physiology Laboratory, CSIR- National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Tewari
- Department of Forestry & Environmental Science, D.S.B. campus, Kumaun University, Nainital, Uttarakhand 263001, India
| | - Pramod A Shirke
- Plant Physiology Laboratory, CSIR- National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Hassan A, Fasiha Amjad S, Hamzah Saleem M, Yasmin H, Imran M, Riaz M, Ali Q, Ahmad Joyia F, Mobeen, Ahmed S, Ali S, Abdullah Alsahli A, Nasser Alyemeni M. Foliar application of ascorbic acid enhances salinity stress tolerance in barley ( Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J Biol Sci 2021; 28:4276-4290. [PMID: 34354410 PMCID: PMC8324950 DOI: 10.1016/j.sjbs.2021.03.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.
Collapse
Affiliation(s)
- Amara Hassan
- Department of Botany, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Syeda Fasiha Amjad
- Department of Botany University of Agriculture Faisalabad, Punjab, Pakistan
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Humaira Yasmin
- Department of Bio-Sciences, COMSATS University, Islamabad 45550, Pakistan
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Muhammad Riaz
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qurban Ali
- Key Laboratory of Plant Pathology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad
| | - Mobeen
- Department of Botany, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, 11451-Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, 11451-Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Mohamed E, Ansari N, Yadav DS, Agrawal M, Agrawal SB. Salinity alleviates the toxicity level of ozone in a halophyte Mesembryanthemum crystallinum L. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:689-704. [PMID: 33742348 DOI: 10.1007/s10646-021-02386-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 05/26/2023]
Abstract
Mesembryanthemum crystallinum (Ice plant) is an annual halophytic plant species spread in the coastal areas of the Mediterranean Sea, Egypt. Information about the behaviour of halophytes under the future concentration of ozone (O3) is scanty. Therefore, we have assessed the effects of elevated O3 (ambient + 20 ppb), moderate salinity (200 mM NaCl), and their combined treatment (salinity + elevated O3) on various morphological, growth, physiological, biochemical and anatomical parameters of Egyptian ice plant. Under salinity stress, plant growth, percentage of pigmented leaf and its thickness, ROS levels, antioxidative enzymes, and ROS scavenging activities were increased, while photosynthetic pigments and efficiency were decreased compared to the control. Elevated O3 exposure led to reductions in most of the growth parameters and pigments, while ROS levels, histochemical localization of H2O2 and ·O2-, antioxidative enzymes and non-enzymatic antioxidants (betacyanin, phenolics, thiols and ascorbic acid) showed increases. Surprisingly, salinity alleviated the oxidative stress of elevated O3 due to the rise of SOD activity, antioxidant compounds, and a decrease of ·O2- production rate with concomitant increases of most of the growth parameters. Thick lower collenchyma and enhancement of xylem parenchyma under O3 and combined treatment suggested that anatomical acclimation also operated under O3 stress and salinity played a vital role in the growth of this plant under combined stress. Results showed that salt is essential for the optimum development of this species and its role is extended to alleviate the oxidative damage caused by elevated O3. The results further recommend the use of Egyptian M. crystallinum as a O3 tolerant crop for saline areas along the Mediterranean Sea coast.
Collapse
Affiliation(s)
- Elsayed Mohamed
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit, 71524, Egypt
| | - Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh Singh Yadav
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Wu R, Agathokleous E, Feng Z. Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144588. [PMID: 33429267 DOI: 10.1016/j.scitotenv.2020.144588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
A modified Ball-Berry-Leuning model of stomatal conductance was applied to data from fully open-air ozone (O3)-enrichment experiments with winter wheat (Triticum aestivum L.). The O3 fluxes reaching both surface of cell wall (Fcw) and plasmalemma (Fpl) were estimated considering apoplastic ascorbate, a major scavenger of O3. The difference (D) between Fcw and Fpl was defined as detoxification capacity of O3 by reaction with ascorbate in the leaf apoplast (ASCapo). The accumulated stomatal O3 flux above D nmol O3 m-2 s-1 (AFstD) and the accumulated Fpl (AFpl) were calculated over the optimal integration period covering the whole reproductive development of wheat, and used to derive O3AFstD yield-response relationships in comparison with PODY (phytotoxic O3 dose above a threshold of Y nmol m-2 s-1) and AOT40 (accumulated O3 dose over a threshold of 40 ppb). There was a good agreement between the observed and modeled values of ASCapo and stomatal conductance. AFstD and AFpl performed better than PODY and AOT40 in terms of R2 and intercept. However, the AFstD metric was more suitable for assessing grain yield loss due to lower sensitivity of the regression slope to variations in the input parameters, compared with AFpl. The average critical level (CL) of four cultivars for 5% grain-yield reduction was 1.53 mmol m-2 using POD6 and 2.81 mmol m-2 using AFstD, with the latter being well above the POD6-derived value for European cultivars (1.3 mmol m-2). The minimum hourly averaged O3 concentration contributed to CLs was below 20 ppb according to AFstD, a value that is lower than that suggested by POD6 (≈27 ppb). O3 flux-response relationships and CLs on the basis of quantified detoxification capacity shall facilitate the understanding of the different degrees of susceptibility to O3 among species or cultivars, and improve the assessments of O3 impacts on plants.
Collapse
Affiliation(s)
- Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
14
|
Ansari N, Yadav DS, Agrawal M, Agrawal SB. The impact of elevated ozone on growth, secondary metabolites, production of reactive oxygen species and antioxidant response in an anti-diabetic plant Costus pictus. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:597-610. [PMID: 33648624 DOI: 10.1071/fp20324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone (O3) is a global air pollutant that causes deleterious effect to the plants. The present objective was to investigate the growth response, foliar injury, reactive oxygen species (ROS) accumulation and metabolites production in Costus pictus D. Don (insulin plant) at two developmental stages under ambient O3 (AO) and ambient + 20 ppb O3 (EO) using the open-top chambers (OTCs). A significant reduction in leaf area and total biomass was observed under EO as compared with AO. EO induced ROS (.O2- and H2O2) and lipid peroxidation led to more significant foliar injury and solute leakage. Image obtained from the fluorescence microscope and biochemical estimations reflected high levels of ROS under EO. A differential response in flavonoids and anthocyanin content, ascorbic acid, and antioxidative enzymes such as catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) has been observed with the growth stages of C. pictus plant. EO exposure negatively affected thiols and protein contents at all the growth stages. Secondary metabolites (tannins, lignin, saponins and alkaloids) were increased in both leaves and rhizomes due to EO, whereas phytosterols were induced only in rhizomes. Apart from other metabolites, the key bioactive compound (corosolic acid) showed its synthesis to be stimulated under EO at later growth stage. The study concludes that O3 is a potent stimulating factor for changing the levels of secondary metabolites and antioxidants in an antidiabetic C. pictus plants as it can alter its medicinal properties.
Collapse
Affiliation(s)
- Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh S Yadav
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; and Corresponding author.
| |
Collapse
|
15
|
Ansari N, Agrawal M, Agrawal SB. An assessment of growth, floral morphology, and metabolites of a medicinal plant Sida cordifolia L. under the influence of elevated ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:832-845. [PMID: 32820442 DOI: 10.1007/s11356-020-10340-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Tropospheric ozone (O3) is a major secondary air pollutant and greenhouse gas, and its impact on growth, yield, and its quality is well established in the case of crop plants. However, the effects of tropospheric O3 have not been comprehensively studied on medicinal plants. Therefore, a field study was planned on a medicinally important Sida cordifolia L. plant (commonly known as country mallow or Bala) to assess the expected changes on the morphology, growth, and leaf injury under elevated O3 (ambient + 20 ppb) by using open-top chambers (OTCs) at 30, 60, and 90 days after treatment (DAT), while leaf and root metabolites were observed at 60 DAT. At all the growth stages, significant leaf damage was recorded as foliar injury symptoms. Most of the growth parameters also showed significant reductions at all the growth stages. Plants under elevated O3 showed a significant negative impact on most of the reproductive parts of the plant. Leaf weight ratio (LWR) showed significant increment at early stages while reduced at 90 DAT; however, root shoot ratio (RSR) showed a significant reduction at 60 DAT. The majority of the steroid metabolites showed an increase in root and leaves under elevated O3, while terpenes showed variable response. Due to O3 stress, most of the major metabolites showed an increase possibly due to their role in defense and other metabolic activities. Based on the outcomes, it is concluded that the future increase in the levels of tropospheric O3 will impact a significant effect on important metabolites of medicinal plants growing in tropical countries like India.
Collapse
Affiliation(s)
- Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
16
|
Shang B, Feng Z, Gao F, Calatayud V. The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134402. [PMID: 31683210 DOI: 10.1016/j.scitotenv.2019.134402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Ground-level ozone (O3) is an important phytotoxic air pollutant in China. In order to compare the sensitivity of common poplar clones to O3 in China and explore the possible mechanism, five poplar clones, clone DQ (Populus cathayana), clone 84 K (P. alba × P. glandulosa), clone WQ156 (P. deltoids × P. cathayana), clone 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and clone 107 (P. euramericana cv. '74/76') were exposed to four O3 treatments. According to the date of the initial visible O3 symptom and the slopes of O3 exposure-response relationships with the relative light-saturated rate of CO2 assimilation, we found that clone DQ and clone 546 were the most sensitive to O3, clone 84 K and clone WQ156 were the less sensitive, and clone 107 was the most tolerant, which could provide a basis to select O3 tolerant clones for poplar planting at areas with serious O3 pollution. Elevated O3 significantly reduced photosynthetic parameters, total phenols content, potential antioxidant capacity, leaf mass per area and biomass of five poplar clones, and there were significant interactions between O3 and clones for most photosynthetic parameters. Elevated O3 also significantly increased malondialdehyde content and total ascorbate content. The responses of total antioxidant capacity for poplar clones to elevated O3 were different, as indicated by the increase for clone 107 and reduction for other clones under elevated O3 treatment. Our results on the sensitivity of different poplar clones to O3 are not related to leaf stomatal conductance, leaf constitutive antioxidant levels or leaf morphology of plant grown in clean air. The possible reason is little difference in leaf traits among clones within close species, suggesting that more properties of plants should be considered for exploring the sensitivity mechanism of close species, such as mesophyll conductance, antioxidant enzyme activity and apoplastic antioxidants.
Collapse
Affiliation(s)
- Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - ZhaoZhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Agriculture Planning Science, China Agriculture University, Beijing 100193, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna 46980, Valencia, Spain
| |
Collapse
|