1
|
Khan D, Franks S, Wang Z, Miles A, Hu H, Malin AJ. Urinary Fluoride Levels Among Youth in the National Health and Nutrition Examination Survey (NHANES) 2015-2016: Potential Differences According to Race. Nutrients 2025; 17:309. [PMID: 39861439 PMCID: PMC11768995 DOI: 10.3390/nu17020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Urinary fluoride (UF) is the most well-established biomarker for fluoride exposure, and understanding its distribution can inform risk assessment for potential adverse systemic health effects. To our knowledge, this study is the first to report distributions of UF among youth according to sociodemographic factors in a nationally representative United States (US) sample. METHODS The study included 1191 children aged 6-11 years and 1217 adolescents aged 12-19 years from the National Health and Nutrition Examination Survey (NHANES) 2015-2016. We examined UF according to sociodemographic variables as well as Spearman correlations between UF and plasma fluoride. Survey-weighted quantile regression examined associations between tap water fluoride and UF levels adjusted for covariates. RESULTS The average age of participants was 12.5 years. The median (IQR) UF and water fluoride concentrations were 0.52 (0.50) mg/L and 0.39 (0.54) mg/L, respectively. Children had higher UF levels than adolescents and males had higher UF levels than females. UF differed according to race/ethnicity among both children and adolescents. Specifically, non-Hispanic Black youth tended to have higher UF levels than all participants except for those classified as other race/multiracial. UF and plasma fluoride were moderately correlated for children and adolescents. Higher water fluoride levels were associated with higher UF levels, and the magnitudes of association were larger at higher quantiles of UF (β = 0.14, p < 0.001; β = 0.20, p< 0.001 at the 25th and 50th quantiles, respectively). The magnitude of association between water fluoride and UF was the largest for non-Hispanic Black participants (predictive margin = 0.3, p < 0.001). CONCLUSIONS Non-Hispanic Black youth in the US may have greater fluoride exposure and receive more of their fluoride intake from tap water than youth of other races/ethnicities. Factors contributing to potential racial/ethnic disparities in fluoride exposure within the US warrant further investigation so that they can be mitigated to reduce the potential for harm.
Collapse
Affiliation(s)
- Durdana Khan
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stephen Franks
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhilin Wang
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Angela Miles
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90032, USA;
| | - Ashley J. Malin
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (D.K.); (S.F.); (Z.W.); (A.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Yuan L, Sun H, Li Y, Xing Z, Yin S, Xie F, Zhou J, Li S, Wu L, Huang W, Wang T, Gao Y, Zhao L, Sun D. Fluoride Exposure from Drinking Water Increases the Risk of Stroke: An Ecological Study in Changwu Town, China. TOXICS 2024; 12:679. [PMID: 39330607 PMCID: PMC11436047 DOI: 10.3390/toxics12090679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Stroke is a major cause of death globally and the leading cause in China. Excessive fluoride exposure has been linked to cardiovascular conditions related to stroke risk factors such as hypertension, atherosclerosis, dyslipidemia, and cardiomyopathy. However, evidence supporting the association between fluoride exposure and stroke risk is limited. METHODS We constructed an ecological study in Changwu Town, Heilongjiang Province, China, a typical endemic fluorosis area caused by excessive fluoride exposure from drinking water. We collected demographic data, stroke prevalence, and mortality information from 2017 to 2021. Fluoride exposure data were obtained from the national monitoring project on endemic fluorosis. Water fluoride concentrations were measured using the standardized methods. Trend changes in stroke rates were assessed using annual percentage change (APC). Differences in stroke rates among fluoride exposure groups were analyzed using chi-square tests. RESULTS From 2017 to 2021, the all-ages and age-standardized stroke prevalence rates of permanent residents in Changwu Town increased year by year, while the all-ages and age-standardized mortality rates did not change significantly. The prevalence rates of stroke were significantly higher in endemic fluorosis areas compared to non-endemic areas (p < 0.001). Stratifying the population into tertile groups based on the water fluoride cumulative exposure index (WFCEI) revealed statistically significant differences in stroke prevalence rates (p < 0.001), showing a dose-response relationship with the WFCEI. However, the all-ages and age-standardized mortality rates of stroke were not found to be related to fluoride exposure. CONCLUSIONS Long-term excessive fluoride exposure from drinking water may increase the risk of stroke prevalence, indicating fluoride overexposure as a potential risk factor for stroke.
Collapse
Affiliation(s)
- Lin Yuan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Hongna Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Yue Li
- Zhaodong City Center for Disease Control and Prevention, Zhaodong 151100, China
| | - Zhifeng Xing
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Shihui Yin
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Fengyu Xie
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Jing Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Shuang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Liaowei Wu
- Shaanxi Provincial People's Hospital, Xi'an 712038, China
| | - Wei Huang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400707, China
| | - Teng Wang
- Beilun District People's Hospital, Ningbo 315800, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| |
Collapse
|
3
|
Ghaemi Z, Noshadi M. Evaluation of fluoride exposure using disability-adjusted life years and health risk assessment in south-western Iran: A novel Monte Carlo simulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116705. [PMID: 39003868 DOI: 10.1016/j.ecoenv.2024.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/08/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Consumption of fluoride-contaminated water is a worldwide concern, especially in developing countries, including Iran. However, there are restricted studies of non-single-value health risk assessment and the disease burden regarding fluoride intake nationwide. Prolonged exposure to excessive fluoride has been linked to adverse health effects such as dental and skeletal fluorosis. This can lead to under-mineralization of hard tissues, causing aesthetic concerns for teeth and changes in bone structure, increasing the risk of fractures. As such, we aimed to implement probability-based frameworks using Monte Carlo methods to explore the potential adverse effects of fluoride via the ingestion route. This platform consists of two sectors: 1) health risk assessment of various age categories coupled with a variance decomposition technique to measure the contributions of predictor variables in the outcome of the health risk model, and 2) implementing Monte Carlo methods in dose-response curves to explore the fluoride-induced burden of diseases of dental fluorosis and skeletal fractures in terms of disability-adjusted life years (DALYs). For this purpose, total water samples of 8053 (N=8053) from 57 sites were analyzed in Fars and Bushehr Provinces. The mean fluoride concentrations were 0.75 mg/L and 1.09 mg/L, with maximum fluoride contents of 6.5 mg/L and 3.22 mg/L for the Fars and Bushehr provinces, respectively. The hazard quotient of the 95th percentile (HQ>1) revealed that all infants and children in the study area were potentially vulnerable to over-receiving fluoride. Sobol' sensitivity analysis indices, including first-order, second-order, and total order, disclosed that fluoride concentration (Cw), ingestion rate (IRw), and their mutual interactions were the most influential factors in the health risk model. DALYs rate of dental fluorosis was as high as 981.45 (uncertainty interval: UI 95 % 353.23-1618.40) in Lamerd, and maximum DALYs of skeletal fractures occurred in Mohr 71.61(49.75-92.71), in Fars Province, indicated severe dental fluorosis but mild hazard regarding fractures. Residents of the Tang-e Eram in Bushehr Province with a DALYs rate of 3609.40 (1296.68-5993.73) for dental fluorosis and a DALYs rate of 284.67 (199.11-367.99) for skeletal fractures were the most potentially endangered population. By evaluating the outputs of the DALYs model, the gap in scenarios of central tendency exposure and reasonable maximum exposure highlights the role of food source intake in over-receiving fluoride. This research insists on implementing defluoridation programs in fluoride-endemic zones to combat the undesirable effects of fluoride. The global measures presented in this research aim to address the root causes of contamination and help policymakers and authorities mitigate fluoride's harmful impacts on the environment and public health.
Collapse
Affiliation(s)
- Zeynab Ghaemi
- Department of Water Engineering, Shiraz University, Shiraz, Iran.
| | - Masoud Noshadi
- Department of Water Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
4
|
Sánchez-Gutiérrez M, Hernández-Martínez I, Madrigal-Santillán EO, Flores-Elizalde KF, Izquierdo-Vega JA. Effect of fluoride-induced testicular alteration in rats fed a high-fat diet. Environ Anal Health Toxicol 2024; 39:e2024023-0. [PMID: 39536703 PMCID: PMC11560296 DOI: 10.5620/eaht.2024023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/25/2024] [Indexed: 11/16/2024] Open
Abstract
Previous research on the well-known environmental pollutant fluoride has demonstrated that fluoride exposure can lead to oxidative stress-related male infertility. Obesity is another public health issue that has a detrimental impact on male fertility. Previously, findings on fluoride toxicity in high-fat diet (HFD) conditions associated with oxidative stress have been evidenced. This study aimed to evaluate the impact of subchronic fluoride exposure (5 mg/kg) plus a HFD on testicular alteration in Wistar rats. Animals were divided into four groups (control, HFD, fluoride, and fluoride 5 mg/kg plus HFD). The HFD contained a 50% kcal increase in fat (saturated fat), after 90 days of co-exposure to fluoride plus HFD, the animals showed a significant decrease in the adiposity index. The co-exposed group showed oxidative damage assessed through decreased glutathione (GSH) concentration (p < 0.0001), increased concentrations of malondialdehyde (MDA) (p < 0.0001), and the oxidation of proteins (p < 0.0001) vs the control group. Finally, testicular histology exhibited a reduction in spermatogonia and spermatocytes. The results of the study indicate that under these conditions, subchronic co-exposure to fluoride under HFD conditions could protect against the accumulation of epididymal fat, however, oxidative alteration at the testicular level is maintained.
Collapse
Affiliation(s)
- Manuel Sánchez-Gutiérrez
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| | - Itziar Hernández-Martínez
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| | - Kevin Francisco Flores-Elizalde
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| | - Jeannett Alejandra Izquierdo-Vega
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| |
Collapse
|
5
|
Hasan S, Naseer S, Zamzam M, Mohilldean H, Van Wagoner C, Hasan A, Saleh ES, Uhley V, Kamel-ElSayed S. Nutrient and Hormonal Effects on Long Bone Growth in Healthy and Obese Children: A Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:817. [PMID: 39062266 PMCID: PMC11276385 DOI: 10.3390/children11070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Longitudinal bone growth is mediated through several mechanisms including macro- and micronutrients, and endocrine and paracrine hormones. These mechanisms can be affected by childhood obesity as excess adiposity may affect signaling pathways, place undue stress on the body, and affect normal physiology. This review describes the physiology of the epiphyseal growth plate, its regulation under healthy weight and obesity parameters, and bone pathology following obesity. A literature review was performed utilizing PubMed, PMC, NIH, and the Cochrane Database of Systematic Reviews pertinent to hormonal and nutritional effects on bone development, child obesity, and pathologic bone development related to weight. The review indicates a complex network of nutrients, hormones, and multi-system interactions mediates long bone growth. As growth of long bones occurs during childhood and the pubertal growth spurt, pediatric bones require adequate levels of minerals, vitamins, amino acids, and a base caloric supply for energy. Recommendations should focus on a nutrient-dense dietary approach rather than restrictive caloric diets to maintain optimal health. In conclusion, childhood obesity has profound multifaceted effects on the developing musculoskeletal system, ultimately causing poor nutritional status during development. Weight loss, under medical supervision, with proper nutritional guidelines, can help counteract the ill effects of childhood obesity.
Collapse
Affiliation(s)
- Sazid Hasan
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Shahrukh Naseer
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Mazen Zamzam
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Hashem Mohilldean
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Colin Van Wagoner
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Ahmad Hasan
- Department of Orthopedic Surgery, Detroit Medical Center, Detroit, MI 48201, USA
| | - Ehab S. Saleh
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
- Department of Orthopedic Surgery, Beaumont Hospital, Royal Oak, MI 48073, USA
| | - Virginia Uhley
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Suzan Kamel-ElSayed
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| |
Collapse
|
6
|
Wu Y, Cheng A, Wang Y, Zhu Q, Ren X, Lu Y, Shi E, Zhuang C, Wang J, Liang C, Zhang J. Bifidobacterium Relieved Fluoride-Induced Hepatic and Ileal Toxicity via Inflammatory Response and Bile Acid Transporters in Mice. Foods 2024; 13:1011. [PMID: 38611317 PMCID: PMC11012040 DOI: 10.3390/foods13071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Fluoride is a pervasive environmental contaminant. Prolonged excessive fluoride intake can inflict severe damage on the liver and intestines. Previous 16S rDNA sequencing revealed a decrease in ileal Bifidobacterium abundance during fluoride-induced hepatointestinal injury. Hence, this work aimed to investigate the possible mitigating function of Bifidobacterium on hepatointestinal injury caused by fluoride. Thirty-six 6-week-old C57BL/6J mice (equally divided between males and females) were allotted randomly to three groups: Ctrl group (distilled water), NaF group, and NaF + Ba group (100 mg/L NaF distilled water). After 10 weeks, the mice were given 1 × 109 CFU/mL Bifidobacterium solution (0.2 mL/day) intragastrically in the NaF + Ba group for 8 weeks, and the mice in other groups were given the same amount of distilled water. Dental damage, bone fluoride content, blood routine, liver and intestinal microstructure and function, inflammatory factors, and regulatory cholic acid transporters were examined. Our results showed that fluoride increased glutamic-oxalacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) activities, and the levels of lipopolysaccharide (LPS), IL-1β, IL-6, TNF-α, and IL-10 levels in serum, liver, and ileum. However, Bifidobacterium intervention alleviated fluoride-induced changes in the above indicators. In addition, Bifidobacterium reduced the mRNA expression levels of bile acid transporters ASBT, IBABP, OST-α, and OST-β in the ileum. In summary, Bifidobacterium supplementation relieved fluoride-induced hepatic and ileal toxicity via an inflammatory response and bile acid transporters in the liver and ileum of mice.
Collapse
Affiliation(s)
- Yue Wu
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Ao Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot 010018, China
| | - Qianlong Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Xuting Ren
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Yiguang Lu
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Erbao Shi
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu 030801, China
| |
Collapse
|
7
|
Xiang J, Qi XL, Cao K, Ran LY, Zeng XX, Xiao X, Liao W, He WW, Hong W, He Y, Guan ZZ. Exposure to fluoride exacerbates the cognitive deficit of diabetic patients living in areas with endemic fluorosis, as well as of rats with type 2 diabetes induced by streptozotocin via a mechanism that may involve excessive activation of the poly(ADP ribose) polymerase-1/P53 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169512. [PMID: 38145685 DOI: 10.1016/j.scitotenv.2023.169512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
Epidemiology has shown that fluoride exposure is associated with the occurrence of diabetes. However, whether fluoride affects diabetic encephalopathy is unclear. Elderly diabetic patients in areas with endemic (n = 169) or no fluorosis (108) and controls (85) underwent Montreal Cognitive Assessment. Sprague-Dawley rats receiving streptozotocin and/or different fluoride doses were examined for spatial learning and memory, brain morphology, blood-brain barrier, fasting blood glucose and insulin. Cultured SH-SY5Y cells were treated with 50 mM glucose and/or low- or high-dose fluoride, and P53-knockdown or poly-ADP-ribose polymerase-1 (PARP-1) inhibition. The levels of PARP-1, P53, poly-ADP-ribose (PAR), apoptosis-inducing factor (AIF), and phosphorylated-histone H2A.X (ser139) were measured by Western blotting. Reactive oxygen species (ROS), 8-hydroxydeguanosine (8-OHdG), PARP-1 activity, acetyl-P53, nicotinamide adenine dinucleotide (NAD+), activities of mitochondrial hexokinase1 (HK1) and citrate synthase (CS), mitochondrial membrane potential and apoptosis were assessed biochemically. Cognition of diabetic patients in endemic fluorosis areas was poorer than in other regions. In diabetic rats, fasting blood glucose, insulin resistance and blood-brain barrier permeability were elevated, while spatial learning and memory and Nissl body numbers in neurons declined. In these animals, expression and activity of P53 and PARP-1 and levels of NAD+, PAR, ROS, 8-OHdG, p-histone H2A.X (ser139), AIF and apoptosis content increased; whereas mitochondrial HK1 and CS activities and membrane potential decreased. SH-SY5Y cells exposed to glucose exhibited changes identical to diabetic rats. The changes in diabetic rats and cells treated with glucose were aggravated by fluoride. P53-knockout or PARP-1 inhibition mitigated the effects of glucose with/without low-dose fluoride. Elevation of diabetic encephalopathy was induced by exposure to fluoride and the underlying mechanism may involve overactivation of the PARP-1/P53 pathway.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, PR China
| | - Kun Cao
- Department of Hepatobiliary Surgery at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Long-Yan Ran
- Department of Medical Science and Technology at the Guiyang Healthcare Vocational University, Guiyang 550004, PR China
| | - Xiao-Xiao Zeng
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Xiao Xiao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Wei Liao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Wen-Wen He
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, PR China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, PR China
| | - Zhi-Zhong Guan
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China; Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, PR China.
| |
Collapse
|
8
|
India Aldana S, Colicino E, Cantoral Preciado A, Tolentino M, Baccarelli AA, Wright RO, Téllez Rojo MM, Valvi D. Longitudinal associations between early-life fluoride exposures and cardiometabolic outcomes in school-aged children. ENVIRONMENT INTERNATIONAL 2024; 183:108375. [PMID: 38128386 PMCID: PMC10842303 DOI: 10.1016/j.envint.2023.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND/AIM Fluoride is a natural mineral present in food, water, and dental products, constituting ubiquitous long-term exposure in early childhood and across the lifespan. Experimental evidence shows fluoride-induced lipid disturbances with potential implications for cardiometabolic health. However, epidemiological studies are scarce. For the first time, we evaluated associations between repeated fluoride measures and cardiometabolic outcomes in children. METHODS We studied ∼ 500 Mexican children from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort with measurements on urinary fluoride at age 4, and dietary fluoride at ages 4, 6, and 8 years approximately. We used covariate-adjusted linear mixed-effects and linear regression models to assess fluoride associations with multiple cardiometabolic outcomes (ages 4-8): lipids (total cholesterol, HDL, LDL, and triglycerides), glucose, HbA1c, adipokines (leptin and adiponectin), body fat, and age- and sex-specific z-scores of body mass index (zBMI), waist circumference, and blood pressure. RESULTS Dietary fluoride intake at age 4 was associated with annual increases in triglycerides [β per-fluoride-doubling = 2.02 (95 % CI: 0.37, 3.69)], cholesterol [β = 1.46 (95 % CI: 0.52, 2.39)], HDL [β = 0.39 (95 % CI: 0.02, 0.76)], LDL [β = 0.87 (95 % CI: 0.02, 1.71)], and HbA1c [β = 0.76 (95 % CI: 0.28, 1.24)], and decreased leptin [β = -3.58 (95 % CI: -6.34, -0.75)] between the ages 4 and 8. In cross-sectional analyses at age 8, higher tertiles of fluoride exposure were associated with increases in zBMI, triglycerides, glucose, and leptin (p-tertile trend < 0.05). Stronger associations were observed in boys at year 8 and in girls prior to year 8 (p-sex interaction < 0.05). Fewer but consistent associations were observed for urinary fluoride at age 4, indicating increased annual changes in HDL and HbA1c with higher fluoride levels. CONCLUSION Dietary fluoride exposures in early- and mid-childhood were associated with adverse cardiometabolic outcomes in school-aged children. Further research is needed to elucidate whether these associations persist at later ages.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Maricruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City, Mexico
| | - Andrea A Baccarelli
- Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Taher MK, Momoli F, Go J, Hagiwara S, Ramoju S, Hu X, Jensen N, Terrell R, Hemmerich A, Krewski D. Systematic review of epidemiological and toxicological evidence on health effects of fluoride in drinking water. Crit Rev Toxicol 2024; 54:2-34. [PMID: 38318766 DOI: 10.1080/10408444.2023.2295338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Fluoride is a naturally occurring substance that is also added to drinking water, dental hygiene products, and food supplements for preventing dental caries. Concerns have been raised about several other potential health risks of fluoride. OBJECTIVE To conduct a robust synthesis of evidence regarding human health risks due to exposure to fluoride in drinking water, and to develop a point of departure (POD) for setting a health-based value (HBV) for fluoride in drinking water. METHODS A systematic review of evidence published since recent reviews of human, animal, and in vitro data was carried out. Bradford Hill considerations were used to weigh the evidence for causality. Several key studies were considered for deriving PODs. RESULTS The current review identified 89 human studies, 199 animal studies, and 10 major in vitro reviews. The weight of evidence on 39 health endpoints was presented. In addition to dental fluorosis, evidence was considered strong for reduction in IQ scores in children, moderate for thyroid dysfunction, weak for kidney dysfunction, and limited for sex hormone disruptions. CONCLUSION The current review identified moderate dental fluorosis and reduction in IQ scores in children as the most relevant endpoints for establishing an HBV for fluoride in drinking water. PODs were derived for these two endpoints, although there is still some uncertainty in the causal weight of evidence for causality for reducing IQ scores in children and considerable uncertainty in the derivation of its POD. Given our evaluation of the overall weight of evidence, moderate dental fluorosis is suggested as the key endpoint until more evidence is accumulated on possible reduction of IQ scores effects. A POD of 1.56 mg fluoride/L for moderate dental fluorosis may be preferred as a starting point for setting an HBV for fluoride in drinking water to protect against moderate and severe dental fluorosis. Although outside the scope of the current review, precautionary concerns for potential neurodevelopmental cognitive effects may warrant special consideration in the derivation of the HBV for fluoride in drinking water.
Collapse
Affiliation(s)
- Mohamed Kadry Taher
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
| | - Franco Momoli
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Jennifer Go
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Shintaro Hagiwara
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Siva Ramoju
- Risk Sciences International, Ottawa, ON, Canada
| | - Xuefeng Hu
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Natalie Jensen
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Rowan Terrell
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Alex Hemmerich
- Risk Sciences International, Ottawa, ON, Canada
- Faculty of Education, Queen's University, Kingston, ON, Canada
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| |
Collapse
|
10
|
Irigoyen-Camacho ME, Perez-Perez N, Zepeda-Zepeda MA, Velazquez-Alva MC, Castaño-Seiquer A, Barbero-Navarro I, Sanchez-Perez L. Relationships between dental fluorosis and fluoride concentrations in bottled water and groundwater in low-income children in Mexico. FRONTIERS IN ORAL HEALTH 2023; 4:1187463. [PMID: 37377524 PMCID: PMC10291056 DOI: 10.3389/froh.2023.1187463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction The aim of the current study was to investigate associations between dental fluorosis in children living in low socioeconomic areas in Mexico, and fluoride concentrations in tap water, fluoride concentrations and in bottled water, and body mass index (BMI). Methods A cross-sectional study involving 585 schoolchildren aged 8-12 years was conducted in communities in a southern state of Mexico with >0.7 parts per million (ppm) fluoride in the groundwater. The Thylstrup and Fejerskov index (TFI) was used to evaluate dental fluorosis, and the World Health Organization growth standards were used to calculate age-adjusted and sex-adjusted BMI Z-scores. A BMI Z-score ≤ -1 SD was used as the cut-off point for thinness, and multiple logistic regression models for dental fluorosis (TFI ≥ 4) were constructed. Results The mean fluoride concentration in tap water was 1.39 ppm (SD 0.66), and the mean fluoride concentration in bottled water was 0.32 ppm (SD 0.23). Eighty-four children (14.39%) had a BMI Z-score ≤ -1 SD. More than half (56.1%) of the children presented with dental fluorosis in TFI categories ≥ 4. Children living in areas with higher fluoride concentrations in the tap water [odds ratio (OR) 1.57, p = 0.002] and bottled water (OR 3.03, p < .001) were more likely to have dental fluorosis in the severe categories (TFI ≥ 4). BMI Z-score was associated with the probability of dental fluorosis (TFI ≥ 4; OR 2.11, p < 0.001), and the effect size was 29.3%. Discussion A low BMI Z-score was associated with a higher prevalence of dental fluorosis in the severe category. Awareness of the fluoride concentrations in bottled water may help prevent dental fluorosis, particularly in children exposed to several high fluoride content sources. Children with a low BMI may be more vulnerable to dental fluorosis.
Collapse
Affiliation(s)
| | - Nora Perez-Perez
- School of Dentistry, Regional University of the Southeast, Oaxaca de Juárez, Mexico
| | | | | | | | | | - Leonor Sanchez-Perez
- Health Care Department, Metropolitan Autonomous University-Xochimilco, Mexico City, Mexico
| |
Collapse
|
11
|
Rocha-Amador DO, González-Martell AD, Pérez-Vázquez FJ, Cilia López VG. Health Risk Assessment in Mexican Children Exposed to Fluoride from Sweetened Beverages. Biol Trace Elem Res 2023; 201:2250-2257. [PMID: 35854170 DOI: 10.1007/s12011-022-03350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 12/07/2022]
Abstract
The primary source of fluoride exposure is groundwater, but evidence suggests that beverages and food are additional fluoride sources. Intake of these products at an early age affects the optimal functioning of soft organs. An increase in sweetened beverage consumption by the pediatric population has been reported, suggesting an increase in fluoride exposure. The objectives of this study were to determine the fluoride concentrations in beverages and analyze the risk to human health from fluoride exposure to sweetened beverages consumed by children. Eighty-two sugar-sweetened beverages produced in different Mexican states were analyzed. The fluoride determination was carried out with an ion-selective electrode. The highest fluoride concentration was 1.92 mg/L; 73.2% of beverages showed fluoride values above permitted limits. Low-cost beverages had the highest fluoride values, suggesting that the water used for their production does not comply with fluorine regulations. According to the risk assessment in children from 3 to 6 years, the daily consumption of juices and sodas with concentrations that exceeded the normative of 0.7 mg/L could represent a risk to dental fluorosis development. It is crucial to control fluoride and regulate its concentrations in beverages for children to ensure food safety, especially in areas of endemic hydrofluorosis.
Collapse
Affiliation(s)
- Diana Olivia Rocha-Amador
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
- Facultad de Medicina-CIACYT, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Andrea Daniela González-Martell
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
- Facultad de Medicina-CIACYT, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Francisco Javier Pérez-Vázquez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Virginia Gabriela Cilia López
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
| |
Collapse
|
12
|
Prasad UV, Vastrad P, N. C, Barvaliya MJ, Kirte R, R. S, Ray SK, B. R, Chakma T, Murhekar MV, Roy S. A community-based study of dental fluorosis in rural children (6–12 years) from an aspirational district in Karnataka, India. Front Public Health 2023; 11:1110777. [PMID: 37006577 PMCID: PMC10060513 DOI: 10.3389/fpubh.2023.1110777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
ObjectivesThe present study was planned to estimate the prevalence of dental fluorosis in 6–12 years of children and its association with various drinking water sources, water, and urine fluoride levels among the subset of children under the umbrella of a larger study to address iodine deficiency disorders and iron deficiency anemia in 17 villages of Manvi and Devadurga talukas of Raichur district of Karnataka.MethodsAnalysis of subset of data and urine samples of children under the umbrella of a larger cross-sectional community-based study was conducted in 17 villages of Manvi and Devadurga taluks of Raichur district. House to house survey was carried out to collect data using a semi-structured questionnaire in ODK software. Demographic details, source of drinking water, clinical assessment of dental fluorosis, and height and weight measurements were performed by trained staff. Urine and water samples were collected for fluoride level estimation. The overall prevalence of dental fluorosis and its severity-wise prevalence were estimated. Association between dental fluorosis and age, gender, type of diet, source of drinking water, height for age, BMI for age, water fluoride level, and urine fluoride level were carried out using logistic regression analysis.ResultsThe prevalence of dental fluorosis was 46.0%. Mild, moderate, and severe dental fluorosis was found in 37.9, 7.8, and 0.3% of children. With the increasing age of participants, the odds of dental fluorosis were found to increase by 2–4 folds. The odds of having dental fluorosis were significantly increased with increasing water fluoride levels of 3 to 5 ppm [AOR = 3.147 (1.585–6.248); P = 0.001] in comparison with water fluoride levels of < 1 ppm. The similar trend was found with urine fluoride level > 4 ppm [AOR = 3.607 (1.861–6.990); P < 0.001]. As compared to river water, other sources of drinking water were significantly associated with higher odds of dental fluorosis.ConclusionsPrevalence of dental fluorosis was high in 6 to 12 years due to overexposure of fluoride from drinking water. High water and urine fluoride levels in children indicate the chronic exposure to fluoride and suggest that the population is at high risk of developing chronic fluorosis.
Collapse
Affiliation(s)
- U. Venkateswara Prasad
- Model Rural Health Research Unit, Department of Health Research (Government of India), Sirwar, Raichur, Karnataka, India
| | - Phaniraj Vastrad
- Model Rural Health Research Unit, Department of Health Research (Government of India), Sirwar, Raichur, Karnataka, India
| | - Chandan N.
- National Institute of Traditional Medicine, Indian Council of Medical Research (ICMR), Belagavi, Karnataka, India
| | - Manish J. Barvaliya
- National Institute of Traditional Medicine, Indian Council of Medical Research (ICMR), Belagavi, Karnataka, India
| | - Rahul Kirte
- Model Rural Health Research Unit, Department of Health Research (Government of India), Sirwar, Raichur, Karnataka, India
- Raichur Institute of Medical Sciences, Raichur, Karnataka, India
| | - Sabarinath R.
- National Institute of Epidemiology, Indian Council of Medical Research (ICMR), Chennai, Tamil Nadu, India
| | - Suman K. Ray
- National Institute of Traditional Medicine, Indian Council of Medical Research (ICMR), Belagavi, Karnataka, India
| | - Ravichandran B.
- Regional Occupational Health Center, Indian Council of Medical Research (ICMR), Bangalore, Karnataka, India
| | - Tapas Chakma
- National Institute of Research in Tribal Health, Indian Council of Medical Research (ICMR), Jabalpur, India
| | - Manoj V. Murhekar
- National Institute of Epidemiology, Indian Council of Medical Research (ICMR), Chennai, Tamil Nadu, India
| | - Subarna Roy
- Model Rural Health Research Unit, Department of Health Research (Government of India), Sirwar, Raichur, Karnataka, India
- National Institute of Traditional Medicine, Indian Council of Medical Research (ICMR), Belagavi, Karnataka, India
- National Institute of Epidemiology, Indian Council of Medical Research (ICMR), Chennai, Tamil Nadu, India
- *Correspondence: Subarna Roy
| |
Collapse
|
13
|
Tang H, Wang M, Li G, Wang M, Luo C, Zhou G, Zhao Q, Dong L, Liu H, Cui Y, Liu L, Zhang S, Wang A. Association between dental fluorosis prevalence and inflammation levels in school-aged children with low-to-moderate fluoride exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120995. [PMID: 36603756 DOI: 10.1016/j.envpol.2022.120995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Inflammation mediates the neurological deficits caused by fluoride. Thus, whether inflammation is the underlying mechanism of dental fluorosis (DF) in school-aged children is worth exploring. A cross-sectional study was conducted to investigate the association between inflammation and the prevalence and severity of DF with low-to-moderate fluoride exposure. Fasting morning urine and venous blood samples were collected from 593 children aged 7-14 years. The fluoride content in the water and urine samples was measured using a fluoride ion-selective electrode assay. The levels of interleukin-1β (IL-1β) and C-reactive protein (CRP) were detected using an enzyme-linked immunosorbent assay. The Dean's index was used when performing dental examinations. Regression, stratified, and mediation analyses were performed to analyze the association between fluoride exposure, inflammation, and DF prevalence. In the adjusted regression models, the prevalence of mild DF was 1.723-fold (95% confidence interval [CI]:1.612, 1.841) and 1.594-fold (1.479, 1.717) greater than that of normal DF for each 1 mg/L increase in water and urinary fluoride content, respectively. The prevalence of mild DF increased by 3.3% for each 1 pg/mL increase in the IL-1β level and by 26.0% for each 1 mg/L increase in the CRP level. Stratified analysis indicated a weaker association between fluoride concentration and DF prevalence in boys than in girls, and susceptibility in the boys was reflected by the association of IL-1β with very mild and moderate DF prevalence. For every 1 mg/L increase in water and urinary fluoride levels, the proportion of IL-1β-mediated effects on the prevalence of mild DF was 10.0% (6.1%, 15.8%) and 8.7% (4.8%, 15.2%), respectively, and the proportion of CRP-mediated effects was 9.2% (5.5%, 14.9%) and 6.1% (3.3%, 11.0%), respectively. This study indicates that the DF prevalence may be sex-specific. Inflammatory factors may partially mediate the increased prevalence of mild DF in school-aged children with low-to-moderate fluoride exposure.
Collapse
Affiliation(s)
- Huayang Tang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mengru Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Henan Center for Disease Control and Prevention, Zhengzhou, Henan, PR China
| | - Gaochun Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mengwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chen Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qian Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lixin Dong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hongliang Liu
- Tianjin Center for Disease Control and Prevention, Tianjin, PR China
| | - Yushan Cui
- Tianjin Center for Disease Control and Prevention, Tianjin, PR China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
14
|
Chen G, Peng Y, Huang Y, Xie M, Dai Z, Cai H, Dong W, Xu W, Xie Z, Chen D, Fan X, Zhou W, Kan X, Yang T, Chen C, Sun Y, Zeng X, Liu Z. Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice. J Adv Res 2022:S2090-1232(22)00239-9. [PMID: 36341987 PMCID: PMC10403698 DOI: 10.1016/j.jare.2022.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Fluoride is widely presented in drinking water and foods. A strong relation between fluoride exposure and obesity has been reported. However, the potential mechanisms on fluoride-induced obesity remain unexplored. Objectives and methods The effects of fluoride on the obesity were investigated using mice model. Furthermore, the role of gut homeostasis in exacerbation of the obesity induced by fluoride was evaluated. Results The results showed that fluoride alone did not induce obesity in normal diet (ND) fed mice, whereas, it could trigger exacerbation of obesity in high-fat diet (HFD) fed mice. Fluoride impaired intestinal barrier and activated Toll-like receptor 4 (TLR4) signaling to induce obesity, which was further verified in TLR4-/- mice. Furthermore, fluoride could deteriorate the gut microbiota in HFD mice. The fecal microbiota transplantation from fluoride-induced mice was sufficient to induce obesity, while the exacerbation of obesity by fluoride was blocked upon gut microbiota depletion. The fluoride-induced bloom of Erysipelatoclostridium ramosum was responsible for exacerbation of obesity. In addition, a potential strategy for prevention of fluoride-induced obesity was proposed by intervention with polysaccharides from Fuzhuan brick tea. Conclusion Overall, these results provide the first evidence of a comprehensive cross-talk mechanism between fluoride and obesity in HFD fed mice, which is mediated by gut microbiota and intestinal barrier. E. ramosum was identified as a crucial mediator of fluoride induced obesity, which could be explored as potential target for prevention and treatment of obesity with exciting translational value.
Collapse
|
15
|
Saylor C, Malin AJ, Tamayo-Ortiz M, Cantoral A, Amarasiriwardena C, Estrada-Gutierrez G, Tolentino MC, Pantic I, Wright RO, Tellez-Rojo MM, Sanders AP. Early childhood fluoride exposure and preadolescent kidney function. ENVIRONMENTAL RESEARCH 2022; 204:112014. [PMID: 34506780 PMCID: PMC11071127 DOI: 10.1016/j.envres.2021.112014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early-life renal maturation is susceptible to nephrotoxic environmental chemicals. Given the widespread consumption of fluoride and the global obesity epidemic, our main aim was to determine whether childhood fluoride exposure adversely affects kidney function in preadolescence, and if adiposity status modifies this association. METHODS Our study included 438 children from the PROGRESS cohort. Urinary fluoride (uF) was assessed at age 4 by diffusion analysis; outcomes studied included estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), selected kidney proteins and blood pressure measured at age 8-12 years. We modeled the relationship between uF and outcomes, and adjusted for body mass index (BMI), age, sex, and socioeconomic status. RESULTS The median uF concentration was 0.67 μg/mL. We observed null associations between 4-year uF and preadolescent eGFR, although effect estimates were in the expected inverse direction. A single unit increase in ln-transformed uF was associated with a 2.2 mL/min decrease in cystatin C-based eGFR (95% CI: 5.8, 1.4; p = 0.23). We observed no evidence of sex-specific effects or effect modification by BMI status. Although uF was not associated with BMI, among children with obesity, we observed an inverse association (β: 4.8; 95% CI: 10.2, 0.6; p = 0.08) between uF and eGFR. CONCLUSIONS Low-level fluoride exposure in early childhood was not associated with renal function in preadolescence. However, given the adverse outcomes of chronic fluoride consumption it is possible that the preadolescent age was too young to observe any effects. Longitudinal follow-up in this cohort and others is an important next step.
Collapse
Affiliation(s)
- Charles Saylor
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley J Malin
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, 2001 N Soto St., Los Angeles, CA, 90032, USA.
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico.
| | - Alejandra Cantoral
- Iberoamerican University -Mexico City, Department of Health, Mexico City, Mexico
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Mari Cruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City, Mexico
| | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Tellez-Rojo
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico
| | - Alison P Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, USA.
| |
Collapse
|
16
|
Mukherjee I, Singh UK. Exploring a variance decomposition approach integrated with the Monte Carlo method to evaluate groundwater fluoride exposure on the residents of a typical fluorosis endemic semi-arid tract of India. ENVIRONMENTAL RESEARCH 2022; 203:111697. [PMID: 34358509 DOI: 10.1016/j.envres.2021.111697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
This study appraised the groundwater fluoride (F-) endemicity and the exposure levels under the Central Tendency Exposure (CTE) condition and the Reasonable Maximum Exposure (RME) condition on the residents of the semi-arid parts of the Birbhum district of Peninsular India using a Variance Decomposition (Sobol Sensitivity Indices) approach combined with Monte Carlo Simulations. The study finds the national scale drinking water standard limit for F- (1.5 mg L-1) is inappropriate for the present survey area where F- concentration in groundwater varied between 0.26 and 11.82 mg L-1 and ~54.5% of the samples (N = 400) exceeded this limit. Therefore, estimated the optimum F- concentration of 0.733 mg L-1 for the region using the method recommended by the World Health Organization (WHO) to calculate the optimum F- limit at a regional scale. The average value of F- concentrations for this region (1.71 mg L-1) is considerably higher than the estimated optimum concentration or even the maximum permissible limits recommended for the subtropical regions (0.5-0.7 mg L-1). The exposure analysis revealed the infants and children as potentially vulnerable populations compared to adolescents and adults of the study area for CTE and RME scenarios. The multi-exposure pathways indicated oral intake as the main exposure pathway whereas exposure through dermal contact was insignificant for the residents of all age groups of this region. Based on the first, second and total order Sobol Sensitivity Indices, F- concentration (C) in groundwater, the groundwater ingestion rate and their combined interaction are the greatest significant parameters for the oral exposure model whereas C and its interaction effects with the proportion of the skin surface area in contact with groundwater as the utmost sensitive variables for the dermal health risks assessment model. The present study insists the inhabitants to intake defluoridated groundwater.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Integrated Science Education and Research Centre (ISERC), Institute of Science, Visva- Bharati, Santiniketan-731235, Birbhum, West Bengal, India
| | - Umesh Kumar Singh
- Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
17
|
Pérez-Vázquez FJ, González-Martell AD, Fernández-Macias JC, Rocha-Amador DO, González-Palomo AK, Ilizaliturri-Hernández CA, González-Mille DJ, Cilia-Lopez VG. Health risk assessment in children living in an urban area with hydrofluorosis: San Luis Potosí Mexico case study. J Trace Elem Med Biol 2021; 68:126863. [PMID: 34601282 DOI: 10.1016/j.jtemb.2021.126863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Fluoride is an inorganic element, which can be found in high concentrations in groundwater. Its consumption and exposure have consequences on human health. The objective of this study was to evaluate fluoride exposure and develop a health risk assessment in children from an urban area with hydrofluorosis in Mexico. METHODS Water fluoride levels in active wells were provided by the Water State Agency and divided into three zones: agriculture zone (Zone A), metallurgical zone (Zone B), and industrial zone (Zone C). Urinary fluoride levels were determined by potentiometric method using an ion-selective electrode. Health risk assessment was performed through Monte Carlo model analysis and hazard quotient was calculated. RESULTS According to fluoride well concentration, all zones have high concentration especially Zone B (2.55 ± 0.98 mg/L). Urinary fluoride concentrations were highest in children in Zone B (1.42 ± 0.8 mg/L). The estimated median daily intake dose of fluoride was 0.084 mg/Kg-day for the children living in zone B. The highest mean HQ value was to Zone B (1.400 ± 0.980), followed by Zone C (0.626 ± 0.443). CONCLUSION The levels of fluoride exposure registered are a potential risk to generate adverse health effects in children in the San Luis Potosi metropolitan area.
Collapse
Affiliation(s)
- F J Pérez-Vázquez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico; CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - A D González-Martell
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - J C Fernández-Macias
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - D O Rocha-Amador
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Mexico
| | - A K González-Palomo
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | | | - D J González-Mille
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - V G Cilia-Lopez
- Facultad de Medicina-CIACYT, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
18
|
Chen G, Hu P, Xu Z, Peng C, Wang Y, Wan X, Cai H. The beneficial or detrimental fluoride to gut microbiota depends on its dosages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111732. [PMID: 33373928 DOI: 10.1016/j.ecoenv.2020.111732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Fluoride, widely presented in drinking water and tea, may be detrimental or beneficial to the human health, depending on its dosages ingested. However, the relationship of different dosages of fluoride and gut microbiota is still unclear. In this work, the fermentation model using fecal samples provided by four volunteers was used to evaluate the effects of different dosages of fluoride (1, 2, 10 and 15 mg/L) on the gut microbiota in vitro. The result showed low dosages of fluoride (1 and 2 mg/L) had limited effect on the structure and functional Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of gut microbiota. Furthermore, the low dosage of fluoride could promote the growth of beneficial gut microbiota, including Faecalibacterium and Lactobacillus. Whereas, the high dosage of fluoride (10 and 15 mg/L) significantly changed the composition and functional KEGG pathway of gut microbiota. Moreover, the high dosage of fluoride could also reduce the beneficial gut microbiota, including Faecalibacterium and Phascolarctobacterium, and increase the harmful bacterium including Proteobacteria and Enterobacteriaceae. Both low and high dosages of fluoride showed limited effect on the productions of short-chain fatty acids (SCFAs). Thus, the beneficial or detrimental fluoride to gut microbiota depends on its dosages. The fluoride is expected to serve as a food additive in suitable dosage to improve human health through modulation of the gut microbiota. Moreover, more attention should be paid to toxicity of fluoride with high dosage to gut microbiota.
Collapse
Affiliation(s)
- Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Pengcheng Hu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Zhichao Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China.
| |
Collapse
|
19
|
Wei Y, Zhu J, Wetzstein SA. Plasma and water fluoride levels and hyperuricemia among adolescents: A cross-sectional study of a nationally representative sample of the United States for 2013-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111670. [PMID: 33396180 DOI: 10.1016/j.ecoenv.2020.111670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Exposure to excessive fluoride has been associated with a number of adverse health outcomes; however, there is a lack of evidence on the relation between fluoride exposure and serum uric acid levels, especially in human populations. The present study examined a potential relationship between fluoride exposure, measured as both plasma and water fluoride concentrations, and uric acid levels in an adolescent population. A nationally representative subsample of 1933 adolescents, aged 12-19 years, in the 2013-2016 National Health and Nutrition Examination Survey was analyzed for the association of fluoride concentrations with serum uric acid levels using multivariate general linear and logistic regression models, adjusting for potential confounders. Since uric acid levels change during development, hyperuricemia was defined in this study as over the mean plus one standard deviation for each sex and age group of adolescents. Of the study participants, 276 adolescents (weighted prevalence, 16.56%) had hyperuricemia. A significant and dose-dependent increase in prevalence of hyperuricemia was seen among the participants cross increasing quartiles of plasma fluoride (p-trend = 0.0017). After adjusting for potential confounders, we found that adolescents in the higher quartiles of plasma fluoride (≥0.32 µmol/L) and in the highest quartile of water fluoride (≥0.73 mg/L) had significantly increased odds of hyperuricemia compared with those in the lowest quartile. A 1.95-fold increased odds (95% CI: 1.37, 2.77) of hyperuricemia was also observed when analyzing plasma fluoride concentrations as continuous variable. A general linear model revealed that a 1 µmol/L increase in ln-plasma fluoride was associated with a 0.212 mg/dL (p < 0.0001) increased serum uric acid level. Furthermore, a positive relationship was observed between water and plasma fluoride concentrations (β = 0.1907; p < 0.0001). Our study demonstrates a potential relation between fluoride exposure and hyperuricemia in adolescents. Further studies are warranted to overcome the limitations of this study to examine the impact of long-term exposure to low levels of fluoride during development on hyperuricemia and its related health outcomes.
Collapse
Affiliation(s)
- Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA, USA.
| | - Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, GA, USA
| | | |
Collapse
|
20
|
Bu T, Popovic S, Huang H, Fu T, Gardasevic J. Relationship Between National Economic Development and Body Mass Index in Chinese Children and Adolescents Aged 5-19 From 1986 to 2019. Front Pediatr 2021; 9:671504. [PMID: 33987156 PMCID: PMC8110708 DOI: 10.3389/fped.2021.671504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity represents a major risk factor for population health. No studies have evaluated how economic expansion impacts the prevalence of obesity. The purpose of this study was to assess the relationship between national economic development and body mass index (BMI) in Chinese children and adolescents. Data of mean BMI in children and adolescents aged 5-19 from 1986 to 2019 were extracted from an international database of cardiometabolic risk factors. Chinese economic development was quantified by the gross domestic product (GDP), which was extracted from the International Monetary Fund. The relationships between GDP and BMI were assessed in 1-year age groups for ages 5-19 years. In addition, the linear regression from the main data and estimated GDP growth allowed the projections of mean BMI for each age group between 2020 and 2025. The results suggest there was a linear increase in BMI over years, which means that there has been a steady increase in BMI over the economic expansion. Overall, 97% of the variance (Pearson correlation coefficient) of BMI in boys can be explained by the GDP expansion, and the same pattern (98% of the variance) occurred in girls. Projected mean BMI were provided for constructing future national strategies to prevent overweight and obesity in youth. In conclusion, BMI in children and adolescents aged 5-19 trended upwards between 1986 and 2019. Our analyses for the first time suggest that globalization has a major impact on BMI in China. Economic expansion was highly predictive of BMI increases.
Collapse
Affiliation(s)
- Te Bu
- Faculty of Sport and Physical Education, Hunan Normal University, Changsha, China
| | - Stevo Popovic
- Faculty for Sport and Physical Education, University of Montenegro, Niksic, Montenegro.,Montenegrin Sports Academy, Podgorica, Montenegro
| | - Huiqing Huang
- Faculty of Sport and Physical Education, Hunan Normal University, Changsha, China
| | - Tao Fu
- Faculty of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Jovan Gardasevic
- Faculty for Sport and Physical Education, University of Montenegro, Niksic, Montenegro.,Montenegrin Sports Academy, Podgorica, Montenegro
| |
Collapse
|