1
|
Wang WG, Yang MJ, Sheng ZB, Tao LM, Xu WP, Zhang Y. Avermectin induces photoreceptor functional impairment and color vision deficits in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138085. [PMID: 40174454 DOI: 10.1016/j.jhazmat.2025.138085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
The effects of avermectin on the visual function of nontarget organisms, particularly aquatic organisms, require further evaluation. Avermectin can come into direct contact with the eyes of nontarget organisms through air or water. However, few studies have investigated the safety of avermectin in the eyes of nontarget organisms. Therefore, it is important to assess its safety in the eyes of nontarget organisms. The results demonstrate that avermectin induces ocular morphological abnormalities, retinal structural damage, and decreased locomotor behavior in zebrafish larvae. Further analyses indicate that avermectin-induced ocular toxicity in zebrafish larvae is associated with the thyroid hormone and retinoic acid signaling pathways. The evaluation of the effect of avermectin on the visual function of adult zebrafish reveals that avermectin induces changes in the sensitivity of adult zebrafish to different light wavelengths and colors. Male adult zebrafish showed greater variation, suggesting possible sex differences. These results indicate that avermectin induces ocular developmental damage in zebrafish larvae and visual behavioral abnormalities in adult zebrafish.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ming-Jun Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineer Research Center of Reproduction Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Zhu-Bo Sheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
de Souza AM, da Silva Junior FC, Dantas ÉD, Galvão-Pereira MC, de Medeiros SRB, Luchiari AC. Temperature effects on development and lifelong behavior in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179172. [PMID: 40112540 DOI: 10.1016/j.scitotenv.2025.179172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/05/2024] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
In recent decades, global warming has intensified temperature changes, placing substantial pressure on organism survival. Understanding how temperature variations impact development and behavior is crucial for conservation strategies. This study examined how temperature affects zebrafish embryo development and behavior, focusing on mRNA expression changes under thermal challenges. Zebrafish embryos were reared at 27 °C (control), 22 °C, and 30 °C, monitored from 24 to 120 hpf for structural development, and tested for optomotor responses at 7 dpf. Juvenile (30 dpf) and adult (90 dpf) fish reared at 27 °C were subjected to acute temperature shifts (22 °C and 30 °C for 2 h), followed by behavioral assessments and brain sampling for hsp90a and hspb1 mRNA expression analysis. Survival rates were significantly lower at 22 °C, with higher hatching rates at 30 °C but decreased at 22 °C. Developmental abnormalities varied: head malformations were more common at 30 °C, pericardial and yolk sac edema at 22 °C, and tail malformations at both extremes. Optomotor responses were impaired in fish from 22 °C. Social and aggressive behaviors were mostly unaffected, but fish from extreme temperatures showed increased risk-taking and reduced response to alarm substances. hsp90a mRNA expression was elevated in fish raised at 30 °C and those exposed to the 30 °C challenge, while hspb1 mRNA expression remained stable across temperatures. Cooling environments detrimentally affected embryo growth and survival, while warmer conditions induced pronounced growth defects. Elevated temperatures posed greater risks, triggering heightened hsp90a expression crucial for stress adaptation. Understanding thermal variation impacts on embryo development is crucial for mitigating climate change effects on species' viability and reproduction.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Graduate Program in Biotechnology, Biosciences Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | | | - Éntony David Dantas
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59064-741, Brazil
| | - Maria Clara Galvão-Pereira
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Graduate Program in Biotechnology, Biosciences Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil.
| |
Collapse
|
3
|
Li P, Liu B, He SW, Liu L, Li ZH. Transgenerational neurotoxic effects of triphenyltin on marine medaka: Impaired dopaminergic system function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125456. [PMID: 39631653 DOI: 10.1016/j.envpol.2024.125456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Triphenyltin (TPT), a widely used environmental contaminant in antifouling paints, is known for its neurotoxic effects. To investigate the multigenerational impacts of long-term exposure (6 weeks) to environmental concentrations of TPT (100 ng/L) on either parent, we performed mixed mating between control and exposed groups (males or females). Although there was no direct contact with TPT in the subsequent generations, both the first and second generations displayed behavioral abnormalities, including reduced activity and impaired cognitive function, with pronounced gender differences and anxiety-like behaviors. Females were more susceptible than males, displaying a significantly increased time spent in the mirror-proximal zone in both F1 and F2 generations. Additionally, F0 females exhibited a marked reduction in the time spent in the bright area, further supporting the role of sex differences in behavioral responses. Notably, the maternal contribution of marine medaka (Oryzias melastigma) played a more significant role in the inheritance of TPT-induced cognitive deficits. A reduction in DA levels and AChE activity was observed across generations, regardless of gender, underscoring the critical role of DA-AChE balance in maintaining cognitive function. Additionally, gender differences and the hereditary effects of TPT exposure on anxiety-like behaviors were strongly associated with the transcriptional regulation of pparγ and gst. Impaired transcription of key genes in the dopaminergic system resulted in reduced DA levels, with the intergenerational transmission of mao being closely linked to behavioral impairments. In summary, TPT-induced neurotoxicity presents both hereditary effects and gender-specific differences, emphasizing the maternal influence in the inheritance of cognitive abilities and shedding light on the genetic impact of parental exposure.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
4
|
Zhang FY, Fang Y, Zhang CX, Zhang HY, Dong M, Zhang KW, Wu CY, Song HD, Chen G. The effects of disturbance on hypothalamus-pituitary-thyroid axis in zebrafish larvae after exposure to polyvinyl alcohol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117396. [PMID: 39603223 DOI: 10.1016/j.ecoenv.2024.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
In recent years, considerable concerns have been raised regarding environmental pollution caused by water-soluble polymers (WSPs). Polyvinyl alcohol (PVA), used in the textile industry and in the manufacture of medical consumables, is one type of WSPs. After use, PVA is discharged and enters aquatic ecosystems, but most of it cannot be completely biodegraded in the environment. In this study, we investigated the effects of PVA on developmental toxicity and thyroid endocrine disruption using a zebrafish (Danio rerio) model. We treated zebrafish embryos with 10 g/L and 5 mg/L PVA for 96 h and found that the proportion of coagulated embryos significantly increased, resulting in a remarkable decrease in hatching rate and larval survival. The body length of zebrafish larvae in the exposed group was remarkably shorter than that of the control group (Control: 3.64 ± 0.03 mm vs. 10 g/L PVA: 3.46 ± 0.03 mm; p=0.001). Compared to the control group, the levels of T3 and T4 in embryos of the exposed group were significantly lower, while thyroid stimulating hormone (TSH) levels were significantly increased. Notable up-regulation of trh, tshβ, and tshr genes, as well as down-regulation of trα , tg, ttr, dio1, and dio2 genes, were observed in embryos of the exposed group. Collectively, these findings suggest that PVA negatively influences the development and function of the thyroid gland during zebrafish embryogenesis. These effects may be partly attributed to the disruption of hypothalamic-pituitary-thyroid (HPT) axis regulation. Therefore, raising awareness about the possible thyroid toxicity associated with PVA is crucial.
Collapse
Affiliation(s)
- Fei-Yang Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Ya Fang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| | - Cao-Xu Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China.
| | - Hai-Yang Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mei Dong
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kai-Wen Zhang
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| | - Chen-Yang Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
5
|
Silva MGFR, Luchiari AC, Medeiros I, de Souza AM, Serquiz AC, Martins FF, de Moura SAB, Camillo CS, de Medeiros SRB, Pais TDS, Passos TS, Galeno DML, Morais AHDA. Evaluation of the Effects of Diet-Induced Obesity in Zebrafish ( Danio rerio): A Comparative Study. Nutrients 2024; 16:3398. [PMID: 39408365 PMCID: PMC11479130 DOI: 10.3390/nu16193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
OBJECTIVES This study aimed to compare diet-induced obesity (DIO) models in zebrafish and investigate the complications and differences between sexes in biochemical and inflammatory parameters. METHODS Adult animals of both sexes were divided into four groups (n = 50) and fed for eight weeks: control group 1: Artemia sp. (15-30 mg/day/fish); control group 2: commercial fish food (3.5% of average weight); obesity group 1: pasteurized egg yolk powder + soybean oil (5% of average weight); obesity group 2: Artemia sp. (60-120 mg/day/fish). Dietary intake, caloric intake and efficiency, body mass index, biochemical, inflammatory, behavioral, histopathological, and stereological parameters, and inflammation-related gene expression were investigated. RESULTS Obesity group 1 was the most indicated to investigate changes in the anxious behavioral profile (p < 0.05), triglyceride elevation [52.67 (1.2) mg/dL], adipocyte hypertrophy [67.8 (18.1) µm2; p = 0.0004], and intestinal inflammation. Obesity group 2 was interesting to investigate in terms of weight gain [167 mg; p < 0.0001), changes in fasting glucose [48.33 (4.14) mg/dL; p = 0.003), and inflammatory parameters [IL-6: 4.24 (0.18) pg/mL; p = 0.0015]. CONCLUSIONS Furthermore, both DIO models evaluated in the present study were effective in investigating hepatic steatosis. The data also highlighted that sex influences inflammatory changes and fasting blood glucose levels, which were higher in males (p > 0.05). The results show new metabolic routes to be explored in relation to DIO in zebrafish.
Collapse
Affiliation(s)
- Maria Gabriela F. R. Silva
- Nutrition Postgraduate Program, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.G.F.R.S.); (T.S.P.)
| | - Ana Carolina Luchiari
- Psychobiology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.M.); (S.R.B.d.M.); (T.d.S.P.)
| | - Augusto M. de Souza
- Biotechnology Program—Northeast Biotechnology Network (RENORBIO), Technology Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Alexandre C. Serquiz
- Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Fabiane F. Martins
- Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (F.F.M.); (S.A.B.d.M.); (C.S.C.)
| | - Sérgio A. B. de Moura
- Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (F.F.M.); (S.A.B.d.M.); (C.S.C.)
| | - Christina S. Camillo
- Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (F.F.M.); (S.A.B.d.M.); (C.S.C.)
| | - Silvia Regina B. de Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.M.); (S.R.B.d.M.); (T.d.S.P.)
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Tatiana dos S. Pais
- Biochemistry and Molecular Biology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.M.); (S.R.B.d.M.); (T.d.S.P.)
| | - Thaís S. Passos
- Nutrition Postgraduate Program, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.G.F.R.S.); (T.S.P.)
- Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Denise M. L. Galeno
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.G.F.R.S.); (T.S.P.)
- Biochemistry and Molecular Biology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.M.); (S.R.B.d.M.); (T.d.S.P.)
- Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
6
|
Wen L, Man X, Luan J, Zhang S, Zhao C, Bao Y, Liu C, Feng X. Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109981. [PMID: 39033795 DOI: 10.1016/j.cbpc.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Liang Wen
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China
| | - Xiaoting Man
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Congzhi Liu
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Xu Y, Zhang S, Bao Y, Luan J, Fu Z, Sun M, Zhao X, Feng X. Melatonin protects zebrafish pancreatic development and physiological rhythms from sodium propionate-induced disturbances via the hypothalamic-pituitary-thyroid axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7454-7463. [PMID: 38717324 DOI: 10.1002/jsfa.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The widespread use of sodium propionate as a preservative in food may affect public health. We aimed to assess the effects of sodium propionate on circadian rhythms and pancreatic development in zebrafish and the possible underlying mechanisms. RESULTS In this experiment, we analyzed the relationship between circadian rhythms and pancreatic development and then revealed the role of the thyroid endocrine system in zebrafish. The results showed that sodium propionate interfered with the rhythmic behavior of zebrafish, and altered the expression of important rhythmic genes. Experimental data revealed that pancreatic morphology and developmental genes were altered after sodium propionate exposure. Additionally, thyroid hormone levels and key gene expression associated with the hypothalamic-pituitary-thyroid axis were significantly altered. Melatonin at a concentration of 1 μmol L-1, with a mild effect on zebrafish, observably alleviated sodium propionate-induced disturbances in circadian rhythms and pancreatic development, as well as regulating the thyroid system. CONCLUSION Melatonin, while modulating the thyroid system, significantly alleviates sodium propionate-induced circadian rhythm disturbances and pancreatic developmental disorders. We further revealed the deleterious effects of sodium propionate as well as the potential therapeutic effects of melatonin on circadian rhythm, pancreatic development and the thyroid system. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixin Xu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Zhenhua Fu
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Chi-Ho Ip J, T Y Leung P, K Y Ho K, Qiu JW, M Y Leung K. Transcriptomic analysis reveals the endocrine toxicity of tributyltin and triphenyltin on the whelk Reishia clavigera and mechanisms of imposex formation. ENVIRONMENT INTERNATIONAL 2024; 190:108867. [PMID: 38968833 DOI: 10.1016/j.envint.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Organotin compounds (OTs) are endocrine disruptors that induce imposex in hundreds of gastropods, but little is known about their underlying molecular mechanisms. This study aimed to investigate the endocrine toxicity and molecular responses to tributyltin (TBT) and triphenyltin (TPT) exposure in the whelk Reishia clavigera, which often serves as a biomonitor for OT contamination. Over a 120-day exposure to environmentally relevant concentrations of TBT (1000 ng L-1) and TPT (500 ng L-1), we observed a significant increase in penis length in both male and female whelks. Notably, TPT exhibited a stronger potency in inducing pseudo-penis development and female sterility, even at a half dose of TBT. Bioaccumulation analysis also revealed higher persistence and accumulation of TPT in whelk tissues compared to TBT. Differential expression analysis identified a substantial number of differentially expressed genes (DEGs), with TPT exposure eliciting more DEGs than TBT. Our results demonstrated that OTs induced xenobiotic metabolism and metabolic dysregulation in the digestive gland, impaired multiple cellular functions and triggered neurotoxicity in the nervous system, and disrupted lipid homeostasis and oxidative stress in the gonads. Furthermore, imposex was possibly associated with disturbances in retinoic acid metabolism, nuclear receptor signaling, and neuropeptide activity. When compared to TBT, TPT exhibited a more pronounced endocrine-disrupting effect, attributable to its higher bioaccumulation and substantial interruption of transcriptional regulation, OT detoxification, and biosynthesis of retinoic acids in R. clavigera. Our results, therefore, highlight the importance of considering the differences in bioaccumulation and molecular toxicity between TBT and TPT in future risk assessments of these contaminants. Overall, our study provided molecular insights into the toxicity and transcriptome profiles in R. clavigera exposed to TBT and TPT, shedding light on the endocrine-disrupting effects and reproductive impairment in female gastropods.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Science Unit, Lingnan University, Hong Kong SAR, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Wen Qiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Chen CZ, Yin MH, Niu LJ, Wang JX, Liu L, Sun YJ, Ju WM, Li P, Li ZH. Exploring seasonal variations, assembly dynamics, and relationships of bacterial communities in different habitats of marine ranching. MARINE POLLUTION BULLETIN 2024; 205:116658. [PMID: 38964192 DOI: 10.1016/j.marpolbul.2024.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Offshore coastal marine ranching ecosystems provide habitat for diverse and active bacterial communities. In this study, 16S rRNA gene sequencing and multiple bioinformatics methods were applied to investigate assembly dynamics and relationships in different habitats. The higher number of edges in the water network, more balanced ratio of positive and negative links, and more keystone species included in the co-occurrence network of water. Stochastic processes dominated in shaping gut and sediment community assembly (R2 < 0.5), while water bacterial community assembly were dominated by deterministic processes (R2 > 0.5). Dissimilarity-overlap curve model indicated that the communities in different habitats have general dynamics and interspecific interaction (P < 0.001). Bacterial source-tracking analysis revealed that the gut was more similar to the sediment than the water bacterial communities. In summary, this study provides basic data for the ecological study of marine ranching through the study of bacterial community dynamics.
Collapse
Affiliation(s)
| | - Ming-Hao Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Lin-Jing Niu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong-Jun Sun
- Homey Group Co. Ltd, Rongcheng, Shandong 264306, China
| | - Wen-Ming Ju
- Homey Group Co. Ltd, Rongcheng, Shandong 264306, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
10
|
Zhang L, Luo K, Gao J, You J, Guo J, Li M, Wei Y, Lin Y, Zhang L. Abnormal eyes and spine development in zebrafish (Danio rerio) embryos and larvae induced by triphenyltin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173246. [PMID: 38768728 DOI: 10.1016/j.scitotenv.2024.173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Triphenyltin (TPT) is widely used in crop pest control and ship antifouling coatings, which leads to its entry into aquatic environment and poses a threat to aquatic organisms. However, the effects of TPT on the early life stages of wild fish in natural water environments remains unclear. The aim of this study was to assess the toxic effects of TPT on the early life stages of fish under two different environments: field investigation and laboratory experiment. The occurrence of deformities in wild fish embryos and larvae in the Three Gorges Reservoir (TGR) and the developmental toxicity of TPT at different concentrations (0, 0.15, 1.5 and 15 μg Sn/L) to zebrafish embryos and larvae were observed. The results showed that TPT content was higher in wild larvae, reaching 27.21 ng Sn/g w, and the malformation of wild fish larvae mainly occurred in the eyes and spine under natural water environment. Controlled experiment exposure of zebrafish larvae to TPT also resulted in eye and spinal deformities. Gene expression analysis showed that compared with the control group, the expression levels of genes related to eye development (sox2, otx2, stra6 and rx1) and spine development (sox9a and bmp2b) were significantly up-regulated in the 15 μg Sn/L exposure group, which may be the main cause of eye and spine deformity in the early development stage of fish. In addition, the molecular docking results further elucidate that the strong hydrophobic and electrostatic interactions between TPT and protein residues are the main mechanism of TPT induced abnormal gene expression. Based on these results, it can be inferred that TPT is one of the teratogenic factors of abnormal eye and spine development in the early life stage of fish in the TGR. These findings have important implications for understanding the toxicity of TPT on fish.
Collapse
Affiliation(s)
- Lixia Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kongyan Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Junmin Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jia You
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Maoqiu Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yunmei Wei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ling Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
11
|
Lin P, Liu L, Ma Y, Du R, Yi C, Li P, Xu Y, Yin H, Sun L, Li ZH. Neurobehavioral toxicity induced by combined exposure of micro/nanoplastics and triphenyltin in marine medaka (Oryzias melastigma). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124334. [PMID: 38852665 DOI: 10.1016/j.envpol.2024.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Microplastics/nanoplastics (MNPs) inevitably coexist with other pollutants in the natural environment, making it crucial to study the interactions between MNPs and other pollutants as well as their combined toxic effects. In this study, we investigated neurotoxicity in marine medaka (Oryzias melastigma) exposed to polystyrene micro/nanoplastics (PS-MNPs), triphenyltin (TPT), and PS-MNPs + TPT from physiological, behavioral, biochemical, and genetic perspectives. The results showed that marine medaka exposed to 200 ng/L TPT or 200 μg/L PS-NPs alone exhibited some degree of neurodevelopmental deficit, albeit with no significant behavioral abnormalities observed. However, in the PS-MP single exposure group, the average acceleration of short-term behavioral indices was significantly increased by 78.81%, indicating a highly stress-responsive locomotor pattern exhibited by marine medaka. After exposure to PS-MNPs + TPT, the swimming ability of marine medaka significantly decreased. In addition, PS-MNPs + TPT exposure disrupted normal neural excitability as well as activated detoxification processes in marine medaka larvae. Notably, changes in neural-related genes suggested that combined exposure to PS-MNPs and TPT significantly increased the neurotoxic effects observed with exposure to PS-MNPs or TPT alone. Furthermore, compared to the PS-MPs + TPT group, PS-NPs + TPT significantly inhibited swimming behavior and thus exacerbated the neurotoxicity. Interestingly, the neurotoxicity of PS-MPs was more pronounced than that of PS-NPs in the exposure group alone. However, the addition of TPT significantly enhanced the neurotoxicity of PS-NPs compared to PS-MPs + TPT. Overall, the study underscores the combined neurotoxic effects of MNPs and TPT, providing in-depth insights into the ecotoxicological implications of MNPs coexisting with pollutants and furnishing comprehensive data.
Collapse
Affiliation(s)
- Peiran Lin
- SDU-ANU Joint Science College, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Renyan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chuansen Yi
- SDU-ANU Joint Science College, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
12
|
Chen X, Zhu D, Ge R, Bao Z. Fecal transplantation of young mouse donors effectively improves enterotoxicity in elderly recipients exposed to triphenyltin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116140. [PMID: 38417315 DOI: 10.1016/j.ecoenv.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Triphenyltin (TPT) is a widely used biocide known for its high toxicity to various organisms, including humans, and its potential contribution to environmental pollution. The aging process leads to progressive deterioration of physiological functions in the elderly, making them more susceptible to the toxic effects of environmental pollutants. This study aimed to investigate the mitigating effect of fecal transplantation in young mice on the toxicological impairment caused by TPT exposure. For the study, 18-month-old mice were divided into four groups with six replicates each. The control group was fed a basal diet, the TPT group was exposed to 3.75 mg/Kg TPT, the feces group received fecal transplantation from 8-week-old young mice, and the combined group was exposed to 3.75 mg/Kg TPT after receiving fecal transplantation. Compared with the elderly control group, TPT induced significant upregulation of mRNA expression of pro-inflammatory factors (IL-1β, IL-6, TNF-α), while the anti-inflammatory factor gene IL-10 was significantly suppressed. The mRNA expression of intestinal barrier proteins (Claudin, Occludin, Muc2) was also significantly downregulated. However, fecal transplantation in young mice alleviated TPT-induced changes in inflammatory factors, ameliorated oxidative stress, and increased the activities of antioxidant enzymes (including SOD, CAT, GSH-Px). Further analysis using 16 s RNA showed that exposure to TPT led to changes in the composition of the intestinal flora. Untargeted metabolomics observations of feces from older mice revealed that exposure to TPT resulted in altered fecal metabolites. Fecal transplantation in young mice altered the microbiota of TPT-exposed older mice, especially by enhancing the levels of core probiotics. Similar beneficial effects were observed through untargeted metabolomics. Overall, this study highlights the potential benefits of young fecal transplantation in protecting the elderly from the toxicity of TPT, offering a promising approach to improve healthy aging.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Donghui Zhu
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Renshan Ge
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Ren X, Zhang Y, Gao X, Gong Q, Li J. Temporal and Within-Sporophyte Variations in Triphenyltin Chloride (TPTCL) and Its Degradation Products in Cultivated Undaria pinnatifida. PLANTS (BASEL, SWITZERLAND) 2024; 13:767. [PMID: 38592831 PMCID: PMC10975867 DOI: 10.3390/plants13060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Undaria pinnatifida can effectively deal with organotin pollution through its excellent accumulation and degradation capabilities found under laboratory conditions. However, nothing is known regarding its accumulation, degradation performance, and related impact factors in the wild farming area. In this study, we monitored triphenyltin chloride (TPTCL) contents and degradation products in different algal parts (blades, stipes, sporophylls, and holdfasts) of cultivated U. pinnatifida from December 2018 to May 2019. Our results showed that sporophytes had an accumulation and degradation capacity for TPTCL. The TPTCL contents and degradation products varied with the algal growth stages and algal parts. TPTCL accumulated in the blades at the growth stage and the blades, stipes, sporophylls, and holdfasts at the mature stage. The TPTCL content among algal parts was blades (74.92 ± 2.52 μg kg-1) > holdfasts (62.59 ± 1.42 μg kg-1) > sporophylls (47.24 ± 1.41 μg kg-1) > stipes (35.53 ± 0.55 μg kg-1). The primary degradation product DPTCL accumulated only in the blades at any stage, with a concentration of 69.30 ± 3.89 μg kg-1. The secondary degradation product MPTCL accumulated in the blades at the growth stage and in the blades, stipe, and sporophyll at the mature stage. The MPTCL content among algal parts was blades (52.80 ± 3.48 μg kg-1) > sporophylls (31.08 ± 1.53 μg kg-1) > stipes (20.44 ± 0.85 μg kg-1). The accumulation pattern of TPTCL and its degradation products seems closely related to nutrient allocation in U. pinnatifida. These results provide the basis for applying cultivated U. pinnatifida in the bioremediation of organotin pollution and the food safety evaluation of edible algae.
Collapse
Affiliation(s)
| | | | - Xu Gao
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (X.R.); (Y.Z.); (Q.G.)
| | | | - Jingyu Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (X.R.); (Y.Z.); (Q.G.)
| |
Collapse
|
14
|
Liu B, Li P, Du RY, Wang CL, Ma YQ, Feng JX, Liu L, Li ZH. Long-term tralopyril exposure results in endocrinological and transgenerational toxicity: A two-generation study of marine medaka (Oryzias melastigma). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169344. [PMID: 38097088 DOI: 10.1016/j.scitotenv.2023.169344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
This study aims to investigate the impact of tralopyril, a newly developed marine antifouling agent, on the reproductive endocrine system and developmental toxicity of offspring in marine medaka. The results revealed that exposure to tralopyril (0, 1, 20 μg/L) for 42 days resulted in decreased reproductive capacity in marine medaka. Moreover, it disrupted the levels of sex hormones E2 and T, as well as the transcription levels of genes related to the HPG axis, such as cyp19b and star. Sex-dependent differences were observed, with females experiencing more pronounced effects. Furthermore, intergenerational toxicity was observed in F1 offspring, including increased heart rate, changes in retinal morphology and cartilage structure, decreased swimming activity, and downregulation of transcription levels of relevant genes (HPT axis, GH/IGF axis, cox, bmp4, bmp2, runx2, etc.). Notably, the disruption of the F1 endocrine system by tralopyril persisted into adulthood, indicating a transgenerational effect. Molecular docking analysis suggested that tralopyril's RA receptor activity might be one of the key factors contributing to the developmental toxicity observed in offspring. Overall, our study highlights the potential threat posed by tralopyril to the sustainability of fish populations, as it can disrupt the endocrine system and negatively impact aquatic organisms for multiple generations.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
15
|
Li P, Chen CZ, Liu L, Li ZH. Whole-Transcriptome Analysis Reveals the RNA Profiles in Mouse Bone Marrow Mesenchymal Stem Cells or Zebrafish Embryos After Exposure to Environmental Level of Tributyltin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:34. [PMID: 38342962 DOI: 10.1007/s00128-024-03861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
To understand the underlying molecular mechanisms, mouse bone marrow mesenchymal stem cells (BMSCs) and zebrafish embryos were exposed to the control group and Tributyltin (TBT) group (10 ng/L, environmental concentration) for 48 h, respectively. The expression profiles of RNAs were investigated using whole-transcriptome analysis in mouse BMSCs or zebrafish embryos after TBT exposure. For mouse BMSCs, the results showed 2,449 differentially expressed (DE) mRNAs, 59 DE miRNAs, 317 DE lncRNAs, and 15 circRNAs. Similarly, for zebrafish embryos, the results showed 1,511 DE mRNAs, 4 DE miRNAs, 272 DE lncRNAs, and 28 circRNAs. According to KEGG pathway analysis showed that DE RNAs were mainly associated with immune responses, signaling, and cellular interactions. Competing endogenous RNA (ceRNA) network analysis revealed that the regulatory network of miRNA-circRNA constructed in zebrafish embryos was more complex compared to that of mouse BMSCs.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
16
|
Liu L, Du RY, Jia RL, Wang JX, Chen CZ, Li P, Kong LM, Li ZH. Micro(nano)plastics in marine medaka: Entry pathways and cardiotoxicity with triphenyltin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123079. [PMID: 38061435 DOI: 10.1016/j.envpol.2023.123079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
The simultaneous presence of micro(nano)plastics (MNPs) and pollutants represents a prevalent environmental challenge that necessitates understanding their combined impact on toxicity. This study examined the distribution of 5 μm (PS-MP5) and 50 nm (PS-NP50) polystyrene plastic particles during the early developmental stages of marine medaka (Oryzias melastigma) and assessed their combined toxicity with triphenyltin (TPT). Results showed that 2 mg/L PS-MP5 and PS-NP50 could adhere to the embryo surface. PS-NP50 can passively enter the larvae and accumulate predominantly in the intestine and head, while PS-MP5 cannot. Nonetheless, both types can be actively ingested by the larvae and distributed in the intestine. 2 mg/L PS-MNPs enhance the acute toxicity of TPT. Interestingly, high concentrations of PS-NP50 (20 mg/L) diminish the acute toxicity of TPT due to their sedimentation properties and interactions with TPT. 200 μg/L PS-MNPs and 200 ng/L TPT affect complement and coagulation cascade pathways and cardiac development of medaka larvae. PS-MNPs exacerbate TPT-induced cardiotoxicity, with PS-NP50 exhibiting stronger effects than PS-MP5, which may be related to the higher adsorption capacity of NPs to TPT and their ability to enter the embryos before hatching. This study elucidates the distribution of MNPs during the early developmental stages of marine medaka and their effects on TPT toxicity, offering a theoretical foundation for the ecological risk assessment of MNPs.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ruo-Lan Jia
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling-Ming Kong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
17
|
Zhang SQ, Li P, He SW, Xing SY, Cao ZH, Zhao XL, Sun C, Li ZH. Combined effect of microplastic and triphenyltin: Insights from the gut-brain axis. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100266. [PMID: 37096249 PMCID: PMC10121632 DOI: 10.1016/j.ese.2023.100266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms. To investigate the individual and combined toxicity of MPs and TPT, we selected the common carp (Cyprinus carpio) for a 42-day exposure experiment. Based on the environmental concentrations in a heavily polluted area, the experimental concentrations of MPs and TPT were set at 0.5 mg L-1 and 1 μg L-1, respectively. The effects of MPs combined with TPT on the carp gut-brain axis were evaluated by detecting gut physiology and biochemical parameters, gut microbial 16S rRNA, and brain transcriptome sequencing. Our results suggest that a single TPT caused lipid metabolism disorder and a single MP induced immunosuppression in carp. When MPs were combined with TPT, the involvement of TPT amplified the immunotoxic effect induced by MPs. In this study, we also explored the gut-brain axis relationship of carp immunosuppression, providing new insights for assessing the combined toxicity of MPs and TPT. At the same time, our study provides a theoretical basis for evaluating the coexistence risk of MPs and TPT in the aquatic environment.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shao-Ying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Han Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xue-Li Zhao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| |
Collapse
|
18
|
Moreira ALP, Paiva WS, de Souza AM, Pereira MCG, Rocha HAO, de Medeiros SRB, Luchiari AC. Benzophenone-3 causes oxidative stress in the brain and impairs aversive memory in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104164. [PMID: 37245610 DOI: 10.1016/j.etap.2023.104164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Oxybenzone (BP-3) is an ultraviolet (UV) filter widely used in industries that is directly or indirectly released into the aquatic environment. However, little is known about its effects on brain performance. Here, we investigated whether BP-3 exposure affects the redox imbalance in zebrafish and how they respond to a task that requires memory of an aversive situation. Fish were exposed to BP-3 10 and 50 μg L-1 for 15 days and then tested using an associative learning protocol with electric shock as a stimulus. Brains were extracted for reactive oxygen species (ROS) measurement and qPCR analysis of antioxidant enzyme genes. ROS production increased for exposed animals, and catalase (cat) and superoxide dismutase 2 (sod 2) were upregulated. Furthermore, learning and memory were reduced in zebrafish exposed to BP-3. These results suggested that BP-3 may lead to a redox status imbalance, causing impaired cognition and reinforcing the need to replace the toxic UV filters with filters that minimize environmental effects.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil.
| | - Weslley Souza Paiva
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Maria Clara Galvão Pereira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
19
|
Ren X, Zhang X, Ma X, Liu H, Wang L. Triphenyltin (TPT) exposure causes SD rat liver injury via lipid metabolism disorder and ER stress revealed by transcriptome analysis. Toxicol Lett 2023; 381:60-71. [PMID: 37156404 DOI: 10.1016/j.toxlet.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/05/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND TPT is an environmental endocrine disruptor that can interfere with endocrine function. However, whether TPT can cause damage to liver structure and function and abnormal lipid metabolism and whether it can cause ER stress is still unclear. OBJECTIVE To explore the effect of TPT on liver structure, function and lipid metabolism and whether ER stress occurs. METHODS Male SD rats were divided into 4 groups: control group (Ctrl group, TPT-L group (0.5mg/kg/d), TPT-M group (1mg/kg/d), and TPT-H group (2mg/kg/d). After 10 days of continuous gavage, HE staining was used to observe the morphological structure of liver tissue, serum biochemical indicators were detected, gene expression and functional enrichment analysis were performed by RNA-seq, Western Blot was used to detect the protein expression level of liver tissue, and qRT-PCR was used to detect the gene expression. RESULTS After TPT exposure, the liver structure damaged; serum TBIL, AST and m-AST levels were significantly increased in the TPT-M group, and serum TG levels were significantly decreased in the TPT-H group. TCHO and TG in liver tissues were significantly increased; transcriptomic analysis detected 105 differential genes. Enrichment analysis showed that TPT exposure mainly affected fatty acid metabolism and drug metabolism in liver tissue, and also affected the redox process of liver tissue; the protein expression levels of PPARα, PPARγ, AMPK, RXRα, IRE1α and PERK were significantly increased after TPT exposure; the expression levels of lipid metabolism-related genes Acsl1, Elovl5, Hmgcr, Hmgcs1 and Srebf1 were significantly increased in the TPT-L group, while in the TPT-M and TPT-H groups had no significant change. CONCLUSIONS TPT exposure can cause liver injury, lipid metabolism disorder and ER stress.
Collapse
Affiliation(s)
- Xijuan Ren
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Xuemin Zhang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, PR China
| | - Xingzhuang Ma
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Hui Liu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
20
|
Qiao Y, Zhou Y, Zhang X, Faulkner S, Liu H, Wang L. Toxic effects of triphenyltin on the development of zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163783. [PMID: 37146813 DOI: 10.1016/j.scitotenv.2023.163783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Triphenyltin (TPT) is known to be an environmental endocrine disruptor and has adverse effects on aquatic animals. In this study, zebrafish embryos were treated with three different concentrations (12.5, 25, 50 nmol/L) based on the LC50 value at 96 h post fertilization (96 hpf), after TPT exposure. The developmental phenotype and hatchability were observed and recorded. Reactive oxygen species (ROS) levels in zebrafish were detected at 72 hpf and 96 hpf using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) as a probe. The number of neutrophils after exposure was observed using transgenic zebrafish Tg (lyz: DsRed). RNA-seq analysis was used to compare the gene expression changes in zebrafish embryos at 96 hpf in the control group and 50 nmol/L TPT exposure group. The data revealed that TPT caused a delay in hatching of zebrafish embryos in a time- and dose-dependent manner, as well as causing pericardial edema, spinal curvature and melanin reduction. ROS levels in embryos exposed to TPT increased, and the number of neutrophils increased after TPT exposure to Tg (lyz: DsRed) in transgenic zebrafish. RNA-seq results were also analyzed, and KEGG enrichment analysis showed that significant differential genes were enriched in the PPAR signaling pathway (P < 0.05), and the PPAR signaling pathway mainly affected genes related to lipid metabolism. The RNA-seq results were verified using real-time fluorescence quantitative PCR (RT-qPCR). Oil red O and Nile red staining showed increased lipid accumulation after TPT exposure. These findings suggest that TPT affects the development of zebrafish embryos even at relatively low concentrations.
Collapse
Affiliation(s)
- Ying Qiao
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Yongbing Zhou
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Xuemin Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW 2035, Australia
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
21
|
Li ZH, Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, You H. Systematic toxicological analysis of the effect of salinity on the physiological stress induced by triphenyltin in Nile tilapia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106441. [PMID: 36848695 DOI: 10.1016/j.aquatox.2023.106441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Triphenyltin (TPT), a synthetic chemical, is prevalent in complex salinity areas, including estuaries and coastal regions. However, current studies on the toxicological effects of TPT relevant to the environment at different salinities are limited. In the study, biochemical, histological, and transcriptional analyses of TPT and salinity alone, or in combination, was performed on the Nile tilapia (Oreochromis niloticus) liver. Nile tilapia exhibited weakened antioxidant defenses and liver damage. Transcriptomic analysis revealed that TPT exposure primarily affected lipid metabolism and immunity; salinity exposure alone particularly affected carbohydrate metabolism; combined exposure primarily immune- and metabolic-related signaling pathways. In addition, the single exposure to TPT or salinity induced inflammatory responses by up-regulating the expression of pro-inflammatory cytokines, whereas combined exposure suppressed inflammation by down-regulating pro-inflammatory cytokine levels. These findings are beneficial to understand the negative effects of TPT exposure in Nile tilapia in the broad salinity zones and its potential defense mechanisms.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
22
|
Hou Y, Cai XW, Liang ZF, Duan DD, Diao XP, Zhang JL. An integrative investigation of developmental toxicities induced by triphenyltin in a larval coral reef fish, Amphiprion ocellaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161487. [PMID: 36638977 DOI: 10.1016/j.scitotenv.2023.161487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triphenyltin (TPT) is widely distributed on coastlines, which makes coral reef fish a potential target of TPT pollution. However, the negative effects of TPT on coral reef fish remain poorly understood. Therefore, in the present study, the larval coral reef fish Amphiprion ocellaris was used to investigate the developmental toxicities of TPT at environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 14 d, the cumulative mortality increased, and growth was suppressed. In addition, TPT exposure inhibited the development of melanophores and xanthophores and delayed white strip formation, which might be responsible for the disruption of the genes (erbb3b, mitfa, kit, xdh, tyr, oca2, itk and trim33) related to pigmentation. TPT exposure also attenuated ossification of head skeletal elements and the vertebral column and inhibited the expression of genes (bmp2, bmp4 and sp7) related to skeletal development. The observed developmental toxicities on growth, pigmentation and skeleton development might be associated with the disruption of thyroid hormones and the genes related to thyroid hormone regulation (tshβ, thrα, thrβ, tg, tpo, dio2, and ttr). In addition, TPT exposure interfered with locomotor and shoaling behavior, and the related genes dbh, avp and avpr1aa. Taken together, our results suggest that TPT pollution might threaten the development of one of the most iconic coral reef fish, which might produce disastrous consequences on the health of coral reef ecosystems.
Collapse
Affiliation(s)
- Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xing-Wei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
| | - Zhi-Fang Liang
- Lingshui Wildlife Conservation Association, Lingshui, Hainan, China
| | - Dan-Dan Duan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; Lingshui Wildlife Conservation Association, Lingshui, Hainan, China.
| |
Collapse
|
23
|
Si W, Zhao M, Che H, Wu Z, Xiao Y, Xie X, Duan J, Shen T, Xu D, Zhao S. Microcystin-LR induced transgenerational effects of thyroid disruption in zebrafish offspring by endoplasmic reticulum stress-mediated thyroglobulin accumulation and apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121117. [PMID: 36690294 DOI: 10.1016/j.envpol.2023.121117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
MC-LR can interfere with thyroid function in fish, but the underlying mechanism is still unclear. Current study focuses to study the intergenerational inheritance of MC-LR-induced thyroid toxicity in zebrafish and in rat thyroid cells. In vivo experiments, adult female zebrafish (F0) were exposed to MC-LR (0, 5, and 25 μg/L) for 90 days and mated with male zebrafish without MC-LR exposure to generate F1 generation. F1 embryos were allowed to develop normally to 7 days post-fertilization (dpf) in clear water. In the F0 generation, MC-LR induced disturbance of the hypothalamic-pituitary-thyroid (HPT) axis, leading to a decrease in the production of thyroid hormones. Maternal MC-LR exposure also induced growth inhibition by altering thyroid hormones (THs) homeostasis and interfering with thyroid metabolism and development in F1 offspring. Mechanistically, MC-LR caused excessive accumulation of ROS and induced ER stress that further lead to activation of UPR in the F0 and F1 offspring of zebrafish. Interestingly, our findings suggested that MC-LR exposure hampered thyroglobulin turnover by triggering IRE1 and PERK pathway in zebrafish and FRTL-5 thyroid cells, thus disturbing the thyroid endocrine system and contributing to the thyroid toxicity from maternal to its F1 offspring of zebrafish. Particularly, inhibition of the IRE1 pathway by siRNA could alleviate thyroid development injury induced by MC-LR in FRTL-5 cells. In addition, MC-LR induced thyroid cell apoptosis by triggering ER stress. Taken together, our results demonstrated that maternal MC-LR exposure causes thyroid endocrine disruption by ER stress contributing to transgenerational effects in zebrafish offspring.
Collapse
Affiliation(s)
- Weirong Si
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Mengjie Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zaiwei Wu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuchun Xiao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xinxin Xie
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayao Duan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
24
|
Zhang SQ, Li P, He SW, Xing SY, Cao ZH, Zhao XL, Sun C, Li ZH. Assessing the ecotoxicity of combined exposure to triphenyltin and norfloxacin at environmental levels: A case study of immunotoxicity and metabolic regulation in carp (Cyprinus carpio). CHEMOSPHERE 2023; 313:137381. [PMID: 36435316 DOI: 10.1016/j.chemosphere.2022.137381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
This paper evaluates the coexistence risks of triphenyltin (TPT) and norfloxacin (NOR) to aquatic organisms in the aquatic environment. Carp (Cyprinus carpio) was used as the test organism, the control and exposure groups (1 μg/L TPT), 1 mg/L (NOR), 1 μg/LTPT+1 mg/LNOR (TPT_NOR)) were set up according to the environmental concentration in the severely polluted area for 42 days. The single/combined toxic effects of TPT and NOR on aquatic organisms were evaluated by analyzing carp brain transcriptome sequencing, gut microbiota structure, and detection of biochemical indicators and RT-qPCR. Our results show that TPT and NOR induce lipid metabolism disorder in carp brain tissue, affecting the metabolism of cytochrome P450 to exogenous substances, and NOR also induces immunosuppression in carp. Long-term exposure to TPT combined with NOR amplifies the monotoxicity of TPT or NOR on lipid metabolism and immunosuppression in carp, induces immune dysfunction in brain tissue and changes in gut microbiota structure. However, TPT_NOR has no obvious neurotoxicity on the brain, but it can inhibit the level of intestinal MDA. This highlights that co-exposure of TPT and NOR amplifies metabolic disorders and immunosuppressive functions in carp.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China; State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shao-Ying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Han Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xue-Li Zhao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
25
|
Cao Z, Li P, Ru J, Cao X, Wang X, Liu B, Li ZH. Physiological responses of marine Chlorella sp. exposed to environmental levels of triphenyltin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26387-26396. [PMID: 36367644 DOI: 10.1007/s11356-022-23992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Triphenyltin (TPT) is a herbicide and antifouling agent that has been widely used. After TPT flows into water bodies, it will cause toxic effects on marine life. We evaluated the effect of environmental concentration level (0, 10, 100, and 200 ng/L) on the cell density, antioxidant capability, and photosynthesis-related genes in the marine Chlorella sp. The results showed that 10 and 100 ng/L TPT can promote the growth of marine Chlorella sp., 200 ng/L TPT can inhibit the growth of marine Chlorella sp., and the TPT toxicity was accumulative. The chlorophyll composition changed. The content of chlorophyll a in 100 ng/L and 200 ng/L groups was significantly higher than that in the control group (p < 0.05) in 13 days. The content of chlorophyll b in the 100 ng/L and 200 ng/L groups in 1 day and 13 days was significantly different from that in the control group (p < 0.05). The content of total chlorophyll in the 100 ng/L and 200 ng/L groups in 13 days was higher than that in the control group (p < 0.05). The 200 ng/L group began to suffer oxidative damage on the 12th day, and the pigment protein complex responded to oxidative damage through self-feedback regulation. On the 18th day, chld, cao, psy, rbcS, and rbcL genes were downregulated, and psbA gene was upregulated in the 10 ng/L and 100 ng/L groups, which may be a feedback regulation of self-oxidative damage. This paper analyzed toxicity of environmental levels of TPT to marine Chlorella sp., which provided new data support for the comprehensive evaluation of its marine ecological toxicity.
Collapse
Affiliation(s)
- Zhihan Cao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Jinchuang Ru
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
26
|
Ru JC, Zhao XL, Cao ZH, Chen CZ, Li P, Li ZH. Acute Toxicity of a Novel anti-fouling Material Additive DCOIT to Marine Chlorella sp. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1018-1022. [PMID: 36318303 DOI: 10.1007/s00128-022-03623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main ingredient in SeaNine-211, a new antifouling agent that replaces organotin compounds to prevent the growth of fouling organisms on board. Biocides from antifoulants can cause problems for marine ecosystems by destroying non-target algal species. This study evaluated the potential adverse effects DCOIT using the Marine Chlorella sp. The concentration of DCOIT were set according to the semi-inhibitory concentrations for acute exposure experiments, and relevant oxidative stress indicators were measured to assess the acute toxic effects. The results showed that the inhibition concentrations (IC50) of DCOIT against Marine Chlorella sp was 2.522 mg/L. The genes related to photosynthesis and antioxidant capacity showed the effect of promoting low concentration and inhibiting high concentration. In addition, based on the ultrastructural observation and the expression analysis of photosynthesis related genes, it was found that DCOIT had a significant effect on plant photosynthesis.
Collapse
Affiliation(s)
- Jin-Chuang Ru
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Xue-Li Zhao
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Zhi-Han Cao
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Ping Li
- Marine College, Shandong University, 264209, Weihai, Shandong, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, 264209, Weihai, Shandong, China.
| |
Collapse
|
27
|
He X, Han M, Zhan W, Liu F, Guo D, Zhang Y, Liang X, Wang Y, Lou B. Mixture effects of imidacloprid and difenconazole on enzymatic activity and gene expression in small yellow croakers (Larimichthys polyactis). CHEMOSPHERE 2022; 306:135551. [PMID: 35787886 DOI: 10.1016/j.chemosphere.2022.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Agrochemicals usually exist as mixtures in aqueous ecosystems and have harmful impacts on the natural environment. Nonetheless, the combined effects and underlying mechanisms of agrochemicals on aqueous organisms remain poorly understood. In the present study, the interactive effects of imidacloprid (IMI) and difenconazole (DIF) on the embryos of small yellow croakers (Larimichthys polyactis) were assessed using various toxicological assays, including acute toxicity, enzymatic activity, and gene expression changes. The results showed that DIF (72-h LC50 value of 0.20 mg L-1) had higher toxicity than IMI (72-h LC50 value of 12.5 mgL-1). Simultaneously, combinations of IMI and DIF exerted synergistic acute effects on the embryos of L. polyactis. In addition, the SOD, CAT, GST, and CarE activities were noticeably altered in most single and mixed exposures, relative to the untreated control. The expression of four genes (cyp19a1b, ngln2, klf2a, and socs3a) related to the immune system, endocrine system, and neurodevelopment was also surprisingly altered when the embryos of L. polyactis were subjected to individual and combined exposures relative to the untreated control. Changes in enzymatic activity and gene expression might provide early warning indices for the identification of agrochemical co-exposure. The results of this study provide valuable insights into the comprehensive toxicity of agrochemical mixtures to L. polyactis. Further studies on the long-term effects of agrochemical mixtures on marine fish should be conducted to formulate definitive conclusions concerning hazards.
Collapse
Affiliation(s)
- Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dandan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiao Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
28
|
He S, Yu D, Li P, Zhang M, Xing S, Liu B, Sun C, Liu L, Li ZH. A new perspective on endocrine disrupting effects of triphenyltin on marine medaka: From brain transcriptome, gut content metabolome and behavior. CHEMOSPHERE 2022; 307:136190. [PMID: 36030938 DOI: 10.1016/j.chemosphere.2022.136190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPT) is an endocrine contaminant that is often detected in the environment. However, the mechanism of the effects of TPT on biological systems is not fully understood. Here we exposed marine medaka (Oryzias melastigma) to TPT for 21 days. Brain transcriptome, intestinal content metabolism group, and behavior analysis were carried out. Through the comprehensive analysis of multiomics for the in-depth understanding of the ways related to health improvement, we determined that the glycine-serine-threonine metabolic axis was most perturbed by TPT. Through behavioral analysis, it was found that there was behavioral hyperactivity in the exposed group; behavioral hyperactivity may be caused by the interference of TPT with the neuroendocrine system. In order to gain a full understanding of the impacts of TPT on human health, transcriptomic screening of differential genes and an impartial attitude based on bioinformatics were used. Gene-disease interaction analysis using the Comparative Toxicogenomics Database (CTD) revealed the possible effects of TPT on human health. Finally, based on these findings, the relevant adverse outcome pathway (AOP), which is the "epigenetic modification of PPARG leading to adipogenesis," was identified from AOP Wiki. Further research is required to validate the potential AOP of TPT.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Daode Yu
- Marine Biology Institute of Shandong Province, Qingdao, Shandong, 266104, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
29
|
Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, Chen C, You H, Li ZH. Physiological responses in Nile tilapia (Oreochromis niloticus) induced by combined stress of environmental salinity and triphenyltin. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105736. [PMID: 36049432 DOI: 10.1016/j.marenvres.2022.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPT) has attracted considerable attention owing to its vitality, bioaccumulation, and lurking damage. TPT widely exists in complex salinity areas such as estuaries and coastal regions. However, there are few studies on the toxicological behavior of TPT under different salinity. In the study, juvenile Nile tilapia (Oreochromis niloticus) were utilized as model animals to investigate the effects of environmental relevant TPT exposure on the osmoregulation and energy metabolism in gill under different salinity. The results showed that salinity and TPT single or combined exposure affected the morphology of the gill tissue. After TPT exposure, Na+-K+-ATPase (NKA) activity significantly decreased at 0 ppt, while NKA and Ca2+-Mg2+-ATPase (CMA) activities significantly increased at 15 ppt. In addition, significantly higher succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities were found in the control fish compared to the TPT-exposed ones at 15 ppt. Quantitative real-time PCR results showed that TPT exposure affected the expression of osmoregulation and energy metabolism-related genes under different salinity. Overall, TPT exposure interfered with osmoregulation and energy metabolism under different salinity. The study will provide reference data for assessing the toxicity of organotin compounds in complex-salinity areas.
Collapse
Affiliation(s)
- Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
30
|
Hou Y, Wang LJ, Jin YH, Guo RY, Yang L, Li EC, Zhang JL. Triphenyltin exposure induced abnormal morphological colouration in adult male guppies (Poecilia reticulata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113912. [PMID: 35905627 DOI: 10.1016/j.ecoenv.2022.113912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Fish morphological colouration is essential for their survival and reproduction success; however, it is vulnerable to environmental factors, such as pollutants. Triphenyltin (TPT) is widespread in aquatic ecosystems, and its impacts on fish have been problematic. Therefore, the purpose of this study was to investigate the effects of TPT at environment-related concentrations (0, 1, 10 and 100 ng Sn/L) on morphological colouration in male guppies (Poecilia reticulata). The results showed that TPT exposure affected both orange/red and dark morphological colouration in guppies. The faded orange/red colouration might be related to the decrease of coloured pteridine and Pts (6-Pyruvoyltetrahydropterin Synthase) expression. In addition, TPT exposure induced melanogenesis, however, much melanin was distributed diffusely in the skin and did not seem to form a spot pattern, giving the fish a dull appearance. According to the skin transcriptional profiles, the changes of dark morphological colouration might be related to the changes in genes related to the functions of melanosome components (Gpnmb, Slc45a2 and Tyr), construction (Ap3d1, Fig4, Hps3, Hps5, Lyst, Rabggta, Txndc5 and Vps33a), and transport (Rab27a). Additionally, genes related to the regulation of melanogenesis (Atrn and Pomc) and system effects (Atox1, Atp6ap2, Atp6v1f, Atp6v1h, Rpl24, Rps19 and Rps20) might also be involved in the molecular mechanisms of abnormal morphological colouration induced by TPT. The present study provides crucial data on the molecular basis of abnormal morphological colouration in fish exposed to TPT and underscores the importance of toxicological studies of the effects of pollutants in aquatic environments on fish morphological colouration.
Collapse
Affiliation(s)
- Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Li-Jun Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ying-Hong Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui-Ying Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Li Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Er-Chao Li
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
31
|
Cao XQ, He SW, Liu B, Wang X, Xing SY, Cao ZH, Chen CZ, Li P, Li ZH. Exposure to enrofloxacin and depuration: Endocrine disrupting effect in juvenile grass carp (Ctenopharyngodon idella). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109358. [PMID: 35489638 DOI: 10.1016/j.cbpc.2022.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to determine the effects of Enrofloxacin (ENR) exposure and depuration on the disruption of thyroid function and growth of juvenile grass carp (Ctenopharyngodon idella) as well as to assess the risk of ENR exposure to human health. Juvenile grass carp were treated with ENR solutions at different concentration gradients for 21 days and then depurated for 14 days. The results indicated ENR accumulation in the juvenile grass carp muscles, which persisted after depuration. In addition, exposure to ENR could alter growth by regulating the expression of genes associated with growth hormone/insulin-like growth factor (GH)/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis. During ENR exposure, no significant changes in growth hormone levels were observed; however, a significant increase in the growth hormone level was noted. GH/IGF axis-related genes were upregulated after ENR exposure, and their expression levels remained high after depuration. Notably, a significant increase in the serum triiodothyronine (T3) and thyroxine (T4) levels coincided with the upregulation of HPT axis-related genes in both exposure and depuration treatments, and their expression levels remained high after depuration. Therefore, juvenile grass carp exposure to ENR induces physiological stress through HPT and GH/IGF axes that cannot be recovered after depuration. ENR accumulates in the muscles of juvenile grass carp and may pose a threat to human health. Therefore, exposure of juvenile grass carp to ENR results in impaired thyroid function and impaired growth. In addition, consumption of ENR-exposed fish poses human health risks.
Collapse
Affiliation(s)
- Xu-Qian Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shao-Ying Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Han Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | | | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
32
|
Zhang SQ, Zhao XL, He SW, Xing SY, Cao ZH, Li P, Li ZH. Effects of long-term exposure of norfloxacin on the HPG and HPT axes in juvenile common carp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44513-44522. [PMID: 35133590 DOI: 10.1007/s11356-022-18995-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Currently, there is a relatively lack of relevant research on the interference effect of quinolone antibiotics on the endocrine of aquatic animals. In this study, the toxicity of norfloxacin (NOR) on the endocrine system of juvenile common carp (Cyprinus carpio) was evaluated, as well as the hematocyte parameters. Specifically, two important endocrine axes were assessed: the hypothalamus-pituitary-thyroid (HPT) axis and hypothalamus-pituitary-gonadal (HPG) axis. Norfloxacin was used as a representative of quinolone antibiotics. According to the concentration of water pollution areas and considering the bad situation that may be caused by wastewater discharge, a control, 100 ng/L NOR, and 1 mg/L NOR treatment groups were set up. The juvenile carp, as the test animal, was subjected to an exposure experiment for 42 days. Thyroid hormones (T3 and T4) and related genes in HPT axis and sex hormones (11-ketotestosterone [11-KT] and progesterone [PROG]) and related genes in HPG axis and blood count are tested. It was found that the T4 iodine level and conversion process were enhanced after NOR treatment, which in turn led to the increase of T3 content and biological activity in the blood. One hundred nanograms per liter NOR can inhibit the level of sex hormones and inhibit the expression of HPG axis-related genes. In the 1 mg/L NOR treatment group, long-term exposure over a certain concentration range may lead to the development of adaptive mechanisms, making the changes in hormones and related genes insignificant. In conclusion, this study provides reference data for the endocrine interference of quinolone antibiotics on aquatic organisms, and has ecological significance for assessing the health of fish populations of quinolone antibiotics. However, the specific sites and mechanisms of action related to the effects of NOR on the endocrine system remain unclear and require further study.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Xue-Li Zhao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Shao-Ying Xing
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Han Cao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
33
|
Chronic Toxic Effects of Waterborne Mercury on Silver Carp (Hypophthalmichthys molitrix) Larvae. WATER 2022. [DOI: 10.3390/w14111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mercury (Hg) is a kind of heavy metal pollutant widely existing in the aquatic environment, and it is also recognized to have a highly toxic effect on fish. In this study, silver carp (Hypophthalmichthys molitrix) larvae were exposed to 0 (control), 1, 5, and 10 μg/L Hg2+ for 2 weeks. Antioxidant ability, neurotoxicity, and thyroid hormones (THs) content were evaluated. In comparison with the control, the superoxide dismutase (SOD) activity and the glutathione (GSH) activity were lower in silver carp exposed to 10 μg/L Hg2+. The lowest catalase (CAT) activity was found in the 10 μg/L Hg2+, while malondialdehyde (MDA) content was not significantly different among all groups. Compared with the control, monoamine oxidase (MAO) activity and nitric oxide (NO) content were significantly higher in the 10 μg/L Hg2+, while acetylcholinesterase (AChE) activity significantly decreased. Compared with the control, triiodothyronine (T3) content was significantly higher in the 1 μg/L Hg2+ and significantly lower in the 10 μg/L Hg2+; the 1 μg/L and 5 μg/L Hg2+ groups had significantly higher thyroxine (T4) content than the other groups. In the 1 μg/L Hg2+, the integrated biomarker response (IBR) index value was the highest. In summary, exposure to Hg could decrease the antioxidant ability, cause changes in neurotoxic parameters, and induce disorders of the thyroid hormone system in silver carp larvae. The results of this study may contribute to the understanding of the adverse effects of chronic mercury poisoning on fish.
Collapse
|
34
|
Liu B, Li P, He S, Xing S, Cao Z, Cao X, Wang X, Li ZH. Effects of short-term exposure to tralopyril on physiological indexes and endocrine function in turbot (Scophthalmus maximus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106118. [PMID: 35176693 DOI: 10.1016/j.aquatox.2022.106118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Tralopyril is an emerging marine antifouling agent with potential toxic effects on non-target aquatic organisms. To evaluate the toxicity of tralopyril, to turbot (Scophthalmus maximus), we assessed biomarkers, including oxidative stress, neurotoxicity, and osmotic homeostasis regulation enzymes, after a 7-day exposure to tralopyril (5 μg/L, 15 μg/L, 30 μg/L). Superoxide dismutase activity was significantly decreased at 30 μg/L, and Ca2+-Mg2+-ATPase activity in the gills was significantly increased at 15 μg/L and 30 μg/L. No statistically significant differences in the responses of acetylcholinesterase and nitric oxide were detected. In addition, 15 μg/L and 30 μg/L tralopyril induced hyperthyroidism, reflected by significantly increased of T3 levels. The expression levels of hypothalamus-pituitary-thyroid axis-related genes were also upregulated. The molecular docking results showed that the thyroid system disruption was not caused by competitive binding to the receptor. In addition, the integrated biomarker response index showed that 15 μg/L tralopyril had the greatest effect on turbot. In general, tralopyril caused oxidative damage, affected energy metabolism, and interfered with the endocrine system. These findings could provide reference data for assessing the ecological risk of tralopyril in marine environments.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
35
|
Agues-Barbosa T, da Silva Junior FC, Gomes-de-Lima JN, Batistuzzo de Medeiros SR, Luchiari AC. Behavioral genetics of alcohol's effects in three zebrafish (Danio rerio) populations. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110495. [PMID: 34915060 DOI: 10.1016/j.pnpbp.2021.110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Alcohol abuse is one of the most dangerous and serious problems for patients and society. Interpopulation studies are important in understanding how genetic background contributes to the effects of alcohol. In this study, we applied a chronic alcohol exposure protocol in three zebrafish populations (Danio rerio; both sexes; AB, TU, and outbred fish - OB). We analyzed the behavioral responses and mRNA expression involved in neurotransmitter metabolism - th1, tph1, ache, ada1, gaba1, gad1b, and bdnf. Locomotion patterns were similar between populations (increased speed after acute alcohol and unaltered locomotion after chronic and withdrawal treatments). All populations exhibited increased expression of genes associated with locomotion (th1, gad1b, and gaba1) after acute alcohol exposure. Anxiety-like responses increased in AB and TU fish during withdrawal and decreased in AB fish after acute alcohol exposure. Genes related to anxiety-like behavior (tph1 and ada1) were overexpressed in AB and TU fish after acute and withdrawal treatments, while OB fish exhibited unaltered responses. Bdnf levels decreased during withdrawal in AB and OB fish, while TU showed upregulated levels in both chronic and withdrawal treatments. Our results suggest that zebrafish populations respond differently to alcohol exposure, which may contribute to understanding the mechanisms underlying alcohol use and dependence. Moreover, we found that a more diverse genetic background (OB) was related to higher variability in behavioral and mRNA expression, demonstrating that inbred populations (AB and TU) may be useful tools in identifying alcohol use and abuse mechanisms.
Collapse
Affiliation(s)
- Thais Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | | | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
36
|
Thambirajah AA, Wade MG, Verreault J, Buisine N, Alves VA, Langlois VS, Helbing CC. Disruption by stealth - Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. ENVIRONMENTAL RESEARCH 2022; 203:111906. [PMID: 34418447 DOI: 10.1016/j.envres.2021.111906] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Verônica A Alves
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
37
|
Yang M, Huang J, Zhang S, Zhao X, Feng D, Feng X. Melatonin mitigated circadian disruption and cardiovascular toxicity caused by 6-benzylaminopurine exposure in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112555. [PMID: 34332249 DOI: 10.1016/j.ecoenv.2021.112555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
As a highly effective plant hormone, the overuse of 6-benzylaminopurine (6-BA) may pose potential threats to organisms and the environment. Melatonin is widely known for its regulation of sleep rhythm, and it also shows a beneficial effect in a variety of adverse situations. In order to investigate the harm of 6-BA to vertebrates and whether melatonin can reverse the toxicity induced by 6-BA, we analyzed the circadian rhythm and cardiovascular system of zebrafish, and further clarified the role of the thyroid endocrine system. The exposure of well-developed embryos started at 2 hpf, then 6-BA and/or melatonin were carried out. The results indicated that 6-BA disturbed the rhythmic activities of the larvae, increased wakefulness, correspondingly reduced their rest, and induced disrupted clock gene expression. Video analysis and qRT-PCR data found that zebrafish under 6-BA exposure showed obvious cardiovascular morphological abnormalities and dysfunction, and the mRNA levels of cardiovascular-related genes (nkx2.5, gata4, myl7, vegfaa and vegfab) were significantly down-regulated. In addition, altered thyroid hormone content and hypothalamus-pituitary-thyroid (HPT) axis-related gene expression were also clearly observed. 1umol/L of melatonin had little effect on zebrafish, but its addition could significantly alleviate the circadian disturbance and cardiovascular toxicity caused by 6-BA, and simultaneously played a regulatory role in thyroid system. Our research revealed the adverse effects of 6-BA on zebrafish larvae and the protective role of melatonin in circadian rhythm, cardiovascular and thyroid systems.
Collapse
Affiliation(s)
- Mengying Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jiaxing Huang
- The Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Shuhui Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin 300052, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
38
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
39
|
Horie Y, Chiba T, Takahashi C, Tatarazako N, Iguchi T. Influence of triphenyltin on morphologic abnormalities and the thyroid hormone system in early-stage zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108948. [PMID: 33285321 DOI: 10.1016/j.cbpc.2020.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
In the present study, we assessed the negative effects of triphenyltin (TPT) on zebrafish (Danio rerio) by exposing embryos and early-stage larvae to various concentrations of TPT from 2 h after fertilization (haf) until 30 days after hatching (dah). Whether test groups were fed or fasted during ecotoxicity studies using fish models has varied historically, and whether this experimental condition influences test results is unknown. Here, we confirmed that the lethal concentration of TPT to embryo and early-stage larvae (i.e., 3 dah or younger) showed in fed (lowest observed effect concentration (LOEC); 6.34 μg/L) and fasted (LOEC; 6.84 μg/L) groups. In addition, 84% and 100% of the larvae in the 2.95 and 6.64 μg/L exposure groups, respectively, had uninflated swim bladders; all affected larvae died within 9 dah. This finding suggests that morphologic abnormalities in early larval zebrafish are useful as endpoints for predicting the lethality of chemical substances after hatching. We then assessed the expression of several genes in the thyroid hormone pathway, which regulates swim bladder development in many fish species, including zebrafish. Larvae exposed to 6.64 μg/L TPT showed significant increases in the mRNA expression levels of thyroid hormone receptor α (trα) and trβ but not of thyroid stimulating hormone β subunit. These findings suggest that TPT disrupts the thyroid system in zebrafish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan.
| | - Takashi Chiba
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Taisen Iguchi
- Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
40
|
He S, Li P, Li ZH. Review on endocrine disrupting toxicity of triphenyltin from the perspective of species evolution: Aquatic, amphibious and mammalian. CHEMOSPHERE 2021; 269:128711. [PMID: 33121818 DOI: 10.1016/j.chemosphere.2020.128711] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) is widely used as a plastic stabilizer, insecticide and the most common fungicide in antifouling coatings. This paper reviewed the main literature evidences on the morphological and physiological changes of animal endocrine system induced by TPT, with emphasis on the research progress of TPT metabolism, neurological and reproductive regulation in animal endocrine system. Similar to tributyltin (TBT), the main effects of TPT on the potential health risks of 25 species of animals, from aquatic animals to mammals, are not only related to exposure dose and time, but also to age, sex and exposed tissue/cells. Moreover, current studies have shown that TPT can directly damage the endocrine glands, interfere with the regulation of neurohormones on endocrine function, and change hormone synthesis and/or the bioavailability (i.e., in the retinoid X receptor and peroxisome proliferator-activated receptor gamma RXR-PPARγ) in target cells. Importantly, TPT can cause biochemical and morphological changes of gonads and abnormal production of steroids, both of which are related to reproductive dysfunction, for example, the imposex of aquatic animals and the irregular estrous cycle of female mammals or spermatogenic disorders of male animals. Therefore, TPT should indeed be regarded as a major endocrine disruptor, which is essential for understanding the main toxic effects on different tissues and their pathogenic effects on endocrine, metabolism, neurological and reproductive dysfunction.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
41
|
Li P, Li ZH. Neurotoxicity and physiological stress in brain of zebrafish chronically exposed to tributyltin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:20-30. [PMID: 33016251 DOI: 10.1080/15287394.2020.1828209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT), an organotin compound, is hazardous in aquatic ecosystems. However, the mechanisms underlying TBT-induced central nervous system (CNS) toxicity remain to be determined especially in freshwater aquatic vertebrates. The aim of present study was to investigate the effects of chronic exposure to TBT on brain functions in a freshwater teleost the adult wild-type zebrafish (Danio rerio). Fish were exposed to sublethal concentrations of TBT (10, 100 or 300 ng/L) for 6 weeks. The influence of long-term TBT exposure was assessed in the brain of zebrafish with antioxidant related indices including malondialdehyde (MDA) levels and total antioxidant capacity, neurological parameters such as activities of acetylcholinesterase, and monoamine oxidase as well as levels of nitric oxide, dopamine, 5-hydroxytryptamine. In addition indices related to sensitivity of toxic insult such as cytochrome P450 1 regulation and heat shock protein 70 were determined. The regulation of related genes involved in endoplasmic reticulum stress (ERS), apoptosis and Nrf2 pathway were measured. Adverse physiological and biochemical responses were significantly enhanced in a concentration-dependent manner reflecting neurotoxicity attributed to TBT exposure. Our findings provide further insight into TBT-induced toxicity in wild-type zebrafish. and enhance our understanding of the molecular mechanisms underlying TBT-initiated CNS effects.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University , Weihai, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University , Weihai, Shandong, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China
| |
Collapse
|
42
|
Li SF, Liu Y, Gong QL, Gao X, Li JY. Physiological and ultrastructural responses of the brown seaweed Undaria pinnatifida to triphenyltin chloride (TPTCL) stress. MARINE POLLUTION BULLETIN 2020; 153:110978. [PMID: 32275535 DOI: 10.1016/j.marpolbul.2020.110978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin chloride (TPTCL) is a well-known marine pollutant that may constitute major environmental threats to seaweed mariculture. In the present study, the toxic effects of TPTCL on physiology and ultrastructure of cultivated sporophytes of Undaria pinnatifida were investigated under different TPTCL concentrations ranging from 0 to 100 μg L-1. Significant negative effects of increased TPTCL concentration were detected in the relative growth rates, survival percentages and chlorophyll a contents of young and adult sporophytes. Low TPTCL concentrations could significantly stimulate the activities of enzymes related to nitrogen metabolism. The chloroplast, mitochondria and nucleus inside cells were greatly damaged by TPTCL. Meanwhile, significant increases of electron dense deposits and physodes were found. Additionally, young sporophytes exhibited greater tolerance to TPTCL stress than adult sporophytes. The results of this study indicate that coastal TPTCL pollution could reduce the productivity and quality of cultivated U. pinnatifida.
Collapse
Affiliation(s)
- Su Fang Li
- Fisheries College, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yan Liu
- Fisheries College, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qing Li Gong
- Fisheries College, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xu Gao
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - Jing Yu Li
- Fisheries College, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|