1
|
Warner M, Rauch S, Eskenazi B, Calderon L, Gunier RB, Kogut K, Holland N, Guo W, Deardorff J, Torres JM. Persistent organochlorine pesticides and cardiometabolic outcomes among middle-aged Latina women in a California agricultural community: The CHAMACOS Maternal Cognition Study. ENVIRONMENT INTERNATIONAL 2025; 196:109302. [PMID: 39893912 DOI: 10.1016/j.envint.2025.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Environmental exposure to endocrine disrupting compounds is hypothesized to increase risk of cardiovascular disease through effects on obesity, hypertension, dyslipidemia, and insulin resistance. We examined the relationship between serum concentrations of persistent organochlorine pesticides and biologic markers of inflammation and cardiometabolic disease, measured over a decade later, in a cohort of middle-aged and primarily immigrant Latina women living in an underserved agricultural community in California. MATERIAL AND METHODS We used data from the Center for the Health Assessment of Mothers and Children of Salinas-Maternal Cognition Study (CHAMACOS-MCS). We included 468 women who had concentrations of organochlorine pesticides measured in serum collected in 2009-2011 and complete follow-up data in 2022-2024 (blood draw, anthropometry, personal interview). We used Bayesian hierarchical regression models (BHM) to examine the independent effects of five highly correlated pesticides with continuous and binary measures of cardiometabolic disease and inflammation. RESULTS Participants averaged 49.0 (±5.5) years at follow-up. In BHM models, a 10-fold increase in p,p'-dichlorodiphenyltrichloroethane (DDT) and β-hexacyclohexane (β-HCH) was positively associated with BMI (DDT: adj-β = 1.26, 95 % Credible Interval (CrI): 0.33, 2.20; β-HCH: adj-β = 1.56, 95 %CrI: 0.45, 2.67) and waist circumference (DDT: adj-β = 2.75, 95 %CrI: 0.65, 4.85; β-HCH: adj-β = 3.74, 95 %CrI: 1.24, 6.23). Although credible intervals crossed the null, consistent positive associations were observed for DDT and β-HCH with blood pressure and for DDT with insulin resistance. Trans-nonachlor was positively associated with triglycerides (log-TRIG: adj-β = 0.08, 95 %CrI: 0.02, 0.13). β-HCH was positively associated with inflammatory markers (log-hsCRP: adj-β = 0.11, 95 %CrI: 0.03, 0.19; log-IL-6: adj-β = 0.08, 95 %CrI: 0.03, 0.14). CONCLUSION With over a decade of follow-up, we extend evidence on previously reported associations of DDT and β-HCH with several measures of obesity. In addition, we provide new evidence suggesting associations with biomarkers of blood pressure, insulin resistance, dyslipidemia and inflammation, supporting the hypothesis that exposure may have long-term influences on cardiovascular disease risk.
Collapse
Affiliation(s)
- Marcella Warner
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Stephen Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Lucia Calderon
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Robert B Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Katherine Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Weihong Guo
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Jacqueline M Torres
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Zhang M, Wang L, Li X, Wang L, Li Y, Yang S, Song L, Wan Z, Lv Y, Wang Y, Mei S. The association of organochlorine pesticides and polychlorinated biphenyls exposure with dyslipidemia and blood lipids: The mediating effect of white blood cell counts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124987. [PMID: 39299636 DOI: 10.1016/j.envpol.2024.124987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Epidemiological evidence regarding the associations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) with lipid metabolism and its potential biological mechanisms remain largely unknown. We intended to explore the associations of OCPs and PCBs with dyslipidemia and blood lipid levels, and further evaluate the mediating role of total and differential white blood cell (WBC) counts. We measured the blood lipid levels, the concentration of OCPs/PCBs and WBC counts in serum among 2036 adults in Wuhan city, China. In the multiple-pollutant models, the results showed that β-hexachlorocyclohexane (HCH), p,p'-dichlorodiphenyldichloroethylene (DDE), and PCB-153 were positively correlated with increased odds of dyslipidemia. p,p'-DDE and PCB-153 were correlated with elevated triglyceride (TG) and lowered high-density lipoprotein cholesterol (HDL-c). A positive relationship was observed between p,p'-DDE and total cholesterol (TC) as well. Meanwhile, weighted quantile sum (WQS) regression analyses revealed that PCB and OCP mixtures were positively related to dyslipidemia risk and TG and negatively associated with HDL-c, to which p,p'-DDE was the major contributor. BMI, gender and age might modify the associations of OCPs and PCBs with dyslipidemia and TG. Furthermore, we found that WBC counts were significantly associated with dyslipidemia and blood lipid levels, and a positive correlation was also found between p,p'-DDE and lymphocyte count. Mediation analysis further indicated that lymphocyte count might mediate the associations of p,p'-DDE with dyslipidemia, TG, and TC. Accordingly, our results showed that OCPs and PCBs were related to abnormal lipid metabolism, which was partially mediated by WBC counts.
Collapse
Affiliation(s)
- Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lipan Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Hou H, Ji Y, Pan Y, Wang L, Liang Y. Persistent organic pollutants and metabolic diseases: From the perspective of lipid droplets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124980. [PMID: 39293651 DOI: 10.1016/j.envpol.2024.124980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The characteristic of semi-volatility enables persistent organic pollutants (POPs) almost ubiquitous in the environment. There is increasing concern about the potential risks of exposure to POPs due to their lipophilicity and readily bioaccumulation. Lipid droplets (LDs) are highly dynamic lipid storage organelles, alterations of intracellular LDs play a vital role in the progression of many prevalent metabolic diseases, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). This article systematically reviewed the biological processes involved in LDs metabolism, the role of LDs proteins and LDs in metabolic diseases, and summarized updating researches on involvement of POPs in the progression of LDs-related metabolic diseases and potential mechanisms. POPs might change the physiological functions of LDs, also interfere the processes of adipogenesis and lipolysis by altering LDs synthesis, decomposition and function. However, further studies are still needed to explore the underlying mechanism of POPs-induced metabolic diseases, which can offer scientific evidences for metabolic disease prevention.
Collapse
Affiliation(s)
- Huixin Hou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yaoting Ji
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
4
|
Wei D, Shi J, Chen Z, Xu H, Wu X, Guo Y, Zen X, Fan C, Liu X, Hou J, Huo W, Li L, Jing T, Wang C, Mao Z. Unraveling the pesticide-diabetes connection: A case-cohort study integrating Mendelian randomization analysis with a focus on physical activity's mitigating effect. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116778. [PMID: 39067072 DOI: 10.1016/j.ecoenv.2024.116778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIMS There is no evidence on the longitudinal and causal associations between multiple pesticides and the incidence of type 2 diabetes mellitus (T2DM) in the Chinese rural population, and whether physical activity (PA) modified these associations remains unclear. Here, we aimed to investigate the longitudinal and causal associations between pesticides mixture and T2DM, and determine whether PA modified these associations. METHODS A total of 925 subjects with normal glucose and 925 subjects with impaired fasting glucose (IFG) were enrolled in this case-cohort study. A total of 51 targeted pesticides were quantified at baseline. Logistic regression, quantile g-computation, and Bayesian kernel machine regression (BKMR) were used to assess the individual and combined effects of pesticides on IFG and T2DM. Mendelian randomization (MR) analysis was employed to obtain the causal association between pesticides and T2DM. RESULTS After 3-year follow-up, one-unit increment in ln-isofenphos, ln-malathion, and ln-deltamethrin were associated with an increase conversion of IFG to T2DM (FDR-P<0.05). One quartile increment in organochlorine pesticides (OCPs), organophosphorus pesticides (OPs), herbicides and pyrethroids mixtures were related to a higher incidence of T2DM among IFG patients (P<0.05). The BKMR results showed a positive trend between exposure to pesticides mixture and T2DM. The MR analysis indicated a positive association between exposure to pesticides and T2DM risk (P<0.05). No any significant association was found between pesticides and IFG. In addition, compared to subjects with high levels of PA, those with low levels of PA were related to increased risk of T2DM with the increased levels of pesticides among IFG patients. CONCLUSIONS Individual and combined exposure to pesticides increased the incidence of T2DM among IFG patients. MR analysis further supported the causal association of pesticides exposure with T2DM risk. Our study furtherly indicated that high levels of PA attenuated the diabetogenic effect of pesticides exposure.
Collapse
Affiliation(s)
- Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhiwei Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Haoran Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xuyan Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yao Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xin Zen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Caini Fan
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
5
|
Xie C, Yang S, Li Y, Zhang M, Xu Q, Wan Z, Song L, Lv Y, Luo D, Li Q, Wang Y, Chen H, Mei S. Associations of exposure to organochlorine pesticides and polychlorinated biphenyls with chronic kidney disease among adults: the modifying effects of lifestyle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45192-45203. [PMID: 38961018 DOI: 10.1007/s11356-024-34201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Exposure to organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) has been reported to be associated with renal impairment and chronic kidney disease (CKD). Nevertheless, the research results thus far have exhibited inconsistency, and the effect of lifestyle on their association is not clear. In this study, we assessed the correlation between serum OCPs/PCBs and CKD and renal function indicators including estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) among 1721 Chinese adults. In order to further investigate the potential impact of lifestyle, we conducted joint associations of lifestyle and OCPs/PCBs on CKD. We found a negative correlation between p,p'-DDE and eGFR, while logistic regression results showed a positive correlation between PCB-153 and CKD (OR, 1.92; 95% CI, 1.21, 3.06). Quantile g-computation regression analyses showed that the association between co-exposure to OCPs/PCBs and CKD was not significant, but p,p'-DDE and PCB-153 were the main contributors to the negative and positive co-exposure effects of eGFR and CKD, respectively, which is consistent with the regression results. Participants with both relatively high PCB-153 exposure and an unhealthy lifestyle had the highest risk of CKD, in the joint association analysis. The observed associations were generally supported by the FAS-eGFR method. Our research findings suggest that exposure to OCPs/PCBs may be associated with decreased eGFR and increased prevalence of CKD in humans, and a healthy lifestyle can to some extent alleviate the adverse association between PCB-153 exposure and CKD.
Collapse
Affiliation(s)
- Chang Xie
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Qitong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Luo
- Analytical Application Center, Shimadzu (China) Co., LTD., Wuhan Branch, No 96 Linjiang Avenue, Wuhan, 430060, China
| | - Qiang Li
- Analytical Application Center, Shimadzu (China) Co., LTD., Wuhan Branch, No 96 Linjiang Avenue, Wuhan, 430060, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Cui N, Pan X, Liu J. Distribution, sources and health risk assessment of DDT and its metabolites in agricultural soils in Zhejiang Province, China. ENVIRONMENTAL TECHNOLOGY 2024; 45:1522-1530. [PMID: 36373367 DOI: 10.1080/09593330.2022.2147449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is well known for its harmful effects and has been officially banned as a pesticide around the world. However, DDT pollution still exists in natural environments in China because DDT degrade very slowly. In this study, 60 soil samples were collected from Cixi, Zhejiang Province, and the levels of DDTs and its metabolites in soil and health risks were investigated. The results showed that the detection rate of DDT in soil samples were 100%, and the total DDTs residue in soil ranged from 0.007 to 1.208 mg/kg, with an average of 0. 113±0. 035 mg/kg, which exceeded the second-level Chinese soil environmental quality standard for farmland soil. The average residuals of p,p'-DDT, p,p'-DDE (dichlorodiphenyldichloroethylene), p,p'-DDD (dichlorodiphenyldichloroethane) and o,p'-DDT accounted for 34.8%, 50.9%, 8.0% and 6.3% of the total DDTs, respectively. The DDD/DDE ratios indicated a dehydrochlorination of DDT to DDE under aerobic conditions at most sampling sites. The ratios of (p,p'-DDE+p,p'-DDD)/p,p'-DDT and o,p'-DDT/p,p'-DDT indicating the DDT in the field were mainly introduced via industrial DDT and dicofol, including historical residue and fresh input. The health risk assessment showed that DDT-contaminated sites do not pose a non-carcinogenic risk to humans, and pose a very low risk of cancer to children and a low risk of cancer to adults. Overall, this study helps to understand the distribution, sources and health risks of DDT in typical soils.
Collapse
Affiliation(s)
- Ning Cui
- College of Medicine, Xi'an International University, Xi'an, People's Republic of China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, People's Republic of China
| | - Jing Liu
- College of Medicine, Xi'an International University, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Chen T, Liu X, Zhang J, Wang L, Su J, Jing T, Xiao P. Associations of chronic exposure to a mixture of pesticides and type 2 diabetes mellitus in a Chinese elderly population. CHEMOSPHERE 2024; 351:141194. [PMID: 38218232 DOI: 10.1016/j.chemosphere.2024.141194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Epidemiological studies have related exposure to pesticides to increased risk of diabetes. However, few studies have evaluated the health effects of mixed pesticides exposure, especially in an elderly population. Here, we utilized gas chromatography-tandem mass spectrometry to quantify the levels of 39 pesticides in 4 categories in a Chinese elderly population. Then we used general linear models to explore the association between individual pesticide exposure and type 2 diabetes mellitus (T2DM). Restricted cubic spline (RCS) models were fitted to identify potential non-linearities between those associations. Furthermore, stratified analysis by gender was conducted to explore the gender-specific associations. Finally, we used weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR) to evaluate the effects of mixed exposure to 39 pesticides. The results showed that exposure to pesticides was associated with high risk of T2DM, with β-Hexachlorocyclohexane (β-BHC) and oxadiazon being the most significant independent contributors, which was pronounced among elderly women. Moreover, the association of β-BHC and oxadiazon with T2DM was linear. These indicated that it is an urgent need to take practical measures to control these harmful pesticides.
Collapse
Affiliation(s)
- Tian Chen
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xiaohua Liu
- Shanghai Minhang Center for Disease Control and Prevention, Shanghai, China
| | - Jianghua Zhang
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lulu Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Su
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ping Xiao
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
8
|
Shi J, Wei D, Ma C, Geng J, Zhao M, Hou J, Huo W, Jing T, Wang C, Mao Z. Combined effects of organochlorine pesticides on type 2 diabetes mellitus: Insights from endocrine disrupting effects of hormones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122867. [PMID: 37944891 DOI: 10.1016/j.envpol.2023.122867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Association between organochlorine pesticides (OCPs) exposure and type 2 diabetes mellitus (T2DM) remains contradictory, and the evidence is mostly focused on a single exposure. Here, we assessed the associations between individual and combined OCPs exposure and T2DM, and explored the underlying mechanism of sex hormones and the methylation levels of sex hormone receptors in above associations. A case-control study with 1812 participants was performed. Gas chromatography mass spectrometry, liquid chromatography-tandem mass spectrometry, and pyrosequencing were used to measure plasma OCPs, serum sex hormones, and whole blood methylation levels of sex hormone receptors, respectively. Generalized linear models were used to analyze the relationships between OCPs, sex hormones, the methylation levels of sex hormone receptors, and T2DM. Quantile based g-computation (QGC) and Bayesian Kernel Machine Regression (BKMR) were employed to assess the combined OCPs exposure. The roles of sex hormones and the methylation levels of their receptors were evaluated by moderating mediation models. After adjusting for covariates, each unit (2.718 ng/ml) increase in p,p'-DDE was associated with a higher risk of T2DM in males (odds ratio (OR) and 95% confidence interval (CI): 1.066 (1.023, 1.112)). QGC and BKMR showed a positive combined effect in the associations of OCPs mixtures on T2DM among premenopausal females, and positive effects but not statistically significant among males and postmenopausal females. p,p'-DDE was the largest contributor for the positive associations. Furthermore, testosterone mediated 21.149% of the associations of p,p'-DDE with T2DM moderated by the androgen receptor methylation (ARm) located in CpG island 1. Individual and mixtures of OCPs exposure were positively linked to elevated risk of T2DM. Testosterone and ARm may participate in the related processes of OCPs with T2DM, providing new insights into the adverse endocrine effects caused by OCPs and specific pathways for the etiology and control of diabetes.
Collapse
Affiliation(s)
- Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Cuicui Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jintian Geng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
9
|
Zhang G, Zhang Q, Guan X, Liu M, Meng L, Han X, Li Y, Jiang G. Short-chain chlorinated paraffin (SCCP) exposure and type 2 diabetes risk: A population-based case-control study in East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168192. [PMID: 37924874 DOI: 10.1016/j.scitotenv.2023.168192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Exposure to persistent organic pollutants may be associated to type 2 diabetes, but the studies on associations between short-chain chlorinated paraffin (SCCP) exposure and type 2 diabetes risk in humans are still scarce. Here, we conducted a case-control study involving 344 participants in Shandong Province, East China, to explore the effects of SCCPs on type 2 diabetes risk and their correlations with glycemic biomarker and serum lipid parameters. SCCPs were detected in all serum samples with a median concentration of 24 ng mL-1 in cases and 19 ng mL-1 in controls. Exposure to C10-CPs, C11-CPs, and ΣSCCPs were positively associated with the risk of type 2 diabetes after adjusting for confounders. The associations remained consistent in stratified analyses but stronger in male participants and obese individuals. In the control group, there were significant and positive correlations between SCCP exposure and levels of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), total lipid, and non-high-density lipoprotein-cholesterol. Significant joint effects on SCCP exposure and lipid parameters were observed in females when analyzed by the quantile-based g-computation model, and C10-CPs showed the highest contribution. Mediation analysis showed that LDL-C had significant mediation effects on the associations between C10-CPs, C11-CPs, and ΣSCCPs exposure and risk of type 2 diabetes. Moreover, TC and high-density lipoprotein-cholesterol were mediators in the relationship between C11-CPs and type 2 diabetes. Taken together, our study revealed that human exposure to SCCPs may increase the risk of type 2 diabetes and disrupt lipid metabolism.
Collapse
Affiliation(s)
- Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Meng
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China.
| | - Xu Han
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
10
|
Jia C, Zhang S, Cheng X, Li P, An J, Zhang X, Li W, Xu Y, Yang H, Jing T, Guo H, He M. Circulating organochlorine pesticide levels, genetic predisposition and the risk of incident type 2 diabetes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122541. [PMID: 37717893 DOI: 10.1016/j.envpol.2023.122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/17/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Persistent organochlorine pesticide (OCP) has been associated with type 2 diabetes (T2D), and genetic polymorphism might modify such an association. However, prospective evidence remains scarce. We conducted a nested case-control study comprising 1006 incident diabetic cases and 1006 matched non-diabetic controls [sex and age (±5 years)] from 2008 to 2013 (mean follow-up period: ∼4.6 years) based on the Dongfeng-Tongji cohort in Shiyan City of China, determined baseline levels of nineteen OCPs, and examined the associations of circulating OCPs, both individually and collectively, with incident T2D risk. We also constructed overall genetic risk score (GRS) based on 161 T2D-associated variants and five pathway-specific cluster GRSs based on established variants derived from the Asian population. Compared with the first quartile of serum β-BHC levels, the multivariable-adjusted ORs (95% CIs) of incident T2D risk in the second, third, and fourth quartiles were 0.98 (0.70-1.39), 1.43 (0.99-2.07), and 1.75 (1.14-2.68), respectively (FDR-adjusted Ptrend = 0.03). A positive association was observed between serum OCP mixture and incident T2D risk and can be largely attributed to β-BHC. Furthermore, serum β-BHC and p,p'-DDE showed significant interactions with the GRS for lipodystrophy, a T2D-related pathway representing fat redistribution to viscera, on T2D risk (Pinteraction < 0.05). In conclusion, higher circulating OCP levels were independently associated with an increased risk of T2D, with β-BHC possibly being the major contributor. Genetic predisposition to T2D-related morbidity, such as visceral adiposity, should be considered when assessing the risk of T2D conferred by OCPs.
Collapse
Affiliation(s)
- Chengyong Jia
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwen Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Xu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Disease, Sinopharm Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, China
| | - Tao Jing
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Pavlíková N, Šrámek J, Jaček M, Kovář J, Němcová V. Targets for pollutants in rat and human pancreatic beta-cells: The effect of prolonged exposure to sub-lethal concentrations of hexachlorocyclohexane isomers on the expression of function- and survival-related proteins. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104299. [PMID: 37865351 DOI: 10.1016/j.etap.2023.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Decades after most countries banned hexachlorocyclohexane, HCH isomers still pollute the environment. Many studies described HCH as a pro-diabetic factor; nevertheless, the effect of HCH isomers on pancreatic beta-cells remains unexplored. This study investigated the effects of a one-month exposure to α-HCH, β-HCH, and γ-HCH on protein expression in human (NES2Y) and rat (INS1E) pancreatic beta-cell lines. α-HCH and γ-HCH increased proinsulin and insulin levels in INS1E cells, while β-HCH showed the opposite trend. α-HCH altered the expression of PKA, ATF3, and PLIN2. β-HCH affected the expression of GLUT1, GLUT2, PKA, ATF3, p-eIF2α, ATP-CL, and PLIN2. γ-HCH altered the expression of PKA, ATF3, PLIN2, PLIN5, and IDH1. From the tested proteins, PKA, ATF3, and PLIN-2 were the most sensitive to HCH exposure and have the potential to be used as biomarkers.
Collapse
Affiliation(s)
- Nela Pavlíková
- Departement of Biochemistry, Cell and Molecular Biology & Center for Research on Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jan Šrámek
- Departement of Biochemistry, Cell and Molecular Biology & Center for Research on Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Jaček
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic
| | - Jan Kovář
- Departement of Biochemistry, Cell and Molecular Biology & Center for Research on Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vlasta Němcová
- Departement of Biochemistry, Cell and Molecular Biology & Center for Research on Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
13
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Brennan E, Butler AE, Nandakumar M, Drage DS, Sathyapalan T, Atkin SL. Association between Organochlorine Pesticides and Vitamin D in Female Subjects. Biomedicines 2023; 11:biomedicines11051451. [PMID: 37239122 DOI: 10.3390/biomedicines11051451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In human population studies, organochlorine pesticides (OCPs) have been linked to vitamin D deficiency. Therefore, this study examined the association between OCPs, vitamin D3 (cholecalciferol, 25(OH)D3), and the active metabolite 1,25-dihydrovitamin D3 (1,25(OH)2D3) in a cohort of non-obese women. The serum samples of 58 female participants (age-31.9 ± 4.6 years; body mass index (BMI)-25.7 ± 3.7 kg/m2) were screened for 10 indicator OCPs. 25(OH)D3 and 1,25(OH)2D3 levels were determined via isotope dilution liquid chromatography tandem mass spectrometry. In this cohort, the 25(OH)D3 and 1,25(OH)2D3 levels were 22.9 ± 11.2 ng/mL and 0.05 ± 0.02 ng/mL, respectively, with 28 participants classified as 25(OH)D3-deficient (<50 nmol/L). In the study cohort, no correlations were found between individual or total OCPs (ƩOCPs) and 25(OH)D3. p,p'-dichlorodiphenyldichloroethylene (DDE) and ƩOCPs correlated positively with 1,25(OH)2D3, with the latter being negatively correlated with estimated glomerular filtration rate (eGFR). In women with sufficient 25(OH)D3 levels, p,p'-dichlorodiphenyltrichloroethan (DDT) was positively correlated with 1,25(OH)2D3, whilst in the deficient group, hexachlorobenzene (HCB) and p,p'-(DDE) were positively correlated with 1,25(OH)2D3, β-Hexachlorocyclohexane (HCH) was positively correlated with 25(OH)D3, and none of the OCPs were associated with measures of renal function. Overall, OCPs and ƩOCPs were not associated with 25(OH)D3, suggesting that they are unrelated to vitamin D deficiency, but p,p'-DDE and ƩOCPs correlated positively with active 1,25(OH)2D3, while ƩOCPs correlated negatively with eGFR, suggesting a possible renal effect. Analysis of vitamin D deficiency revealed an association between β-HCH and 25(OH)D3, and between HCB and p,p'-DDE and 1,25(OH)2D3, suggesting that OCP effects may be enhanced in cases of vitamin D deficiency.
Collapse
Affiliation(s)
- Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E Butler
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Manjula Nandakumar
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Brisbane, QLD 4108, Australia
| | | | - Stephen L Atkin
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
15
|
Zhang G, Meng L, Guo J, Guan X, Liu M, Han X, Li Y, Zhang Q, Jiang G. Exposure to novel brominated and organophosphate flame retardants and associations with type 2 diabetes in East China: A case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162107. [PMID: 36764545 DOI: 10.1016/j.scitotenv.2023.162107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The alternative flame retardants, novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment and biota and may induce endocrine disruption effects. Associations between traditional endocrine-disrupting chemicals and type 2 diabetes have been extensively reported in epidemiological studies. However, the effects of NBFRs and OPFRs in humans have not been reported to date. This paper reports a case-control study of 344 participants aged 25-80 years from Shandong Province, East China, where potential associations between serum NBFR and OPFR concentrations and type 2 diabetes are assessed for the first time. After adjusting for covariates (i.e., age, sex, body mass index, smoking status, alcohol consumption, triglycerides, and total cholesterol), serum concentrations of pentabromotoluene, 2,3-dibromopropyl 2,4,6-tribromophenyl ether, tri-n-propyl phosphate, triphenyl phosphate, and tris (2-ethylhexyl) phosphate were significantly positively associated with type 2 diabetes. In the control group, decabromodiphenyl ethane and triphenyl phosphate were significantly positively associated with fasting plasma glucose, triglycerides, and high-density lipoprotein cholesterol. In the quantile g-computation model, significant positive mixture effect was found between the flame retardants mixtures and high-density lipoprotein cholesterol levels, and decabromodiphenyl ethane contributed the largest positive weights to the mixture effect. Overall, these findings suggest that exposure to NBFRs and OPFRs may promote type 2 diabetes.
Collapse
Affiliation(s)
- Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiehong Guo
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, MI 49931, USA
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Han
- Sinopec Research Institute of Petroleum Processing CO., LTD., Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
16
|
Han M, Ma A, Dong Z, Yin J, Shao B. Organochlorine pesticides and polycyclic aromatic hydrocarbons in serum of Beijing population: Exposure and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160358. [PMID: 36436633 DOI: 10.1016/j.scitotenv.2022.160358] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, but large-scale human biomonitoring and health risk assessment data on these contaminants remain limited. In this study, concentrations of 6 OCPs and 5 PAHs were determined by GC-MS/MS in 1268 human serum samples which were collected from the participants in 2017 Beijing Chronic Disease and Risk Factor Surveillance. The detection frequencies of OCPs and PAHs ranged from 64.7 % to 96.5 % and 89.4 % to 99.6 %, respectively. The most abundant contaminants in OCPs and PAHs were pentachlorophenol (PCP) and pyrene (Pyr) with median concentrations reaching up to 3.13 and 8.48 μg/L, respectively. Nonparametric tests were employed to assess the correlations among contaminants levels, demographic characteristics (age, gender, body mass index, residence) and serum biochemical indexes. Significantly higher serum levels of all PAHs were observed in suburb residents than that in urban residents (P < 0.001). Binary logistic regression analysis demonstrated that exposure to benzo(a)pyrene (OR 2.17 [1.29, 3.63]), phenanthrene (OR 1.06 [1.02, 1.11]), fluoranthene (OR 1.04 [1.02, 1.07]) and Pyr (OR 1.02 [1.01, 1.03]) might increase the occurrence of hyperglycemia, and exposure to hexachlorobenzene (HCB) (OR 1.53 [1.05, 2.22]) and pentachlorobenzene (OR 1.14 [1.02, 1.27]) were positively associated with hyperlipidemia. Furthermore, the hazard quotients (HQs) for serum HCB, PCP and p,p'-dichlorodiphenyldichloroethylene were calculated based on health-based guidance values to predict health risks. 0.2 % and 4.3 % of serum samples showed HQ values exceeding 1 for HCB and PCP, respectively, in case of the non-carcinogenic risk, while 23.1 % of HQs for HCB were above 1 in case of the carcinogenic risk for a risk level 10-5. Our study reveals that the body burden of the Beijing general population relative to OCPs and PAHs was nonnegligible. The past exposure of HCB and PCP might adversely affect the health status of the Beijing population.
Collapse
Affiliation(s)
- Muke Han
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Aijuan Ma
- Institute of Non-communicable Chronic Disease Control and Prevention, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhong Dong
- Institute of Non-communicable Chronic Disease Control and Prevention, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Jie Yin
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|
17
|
Liu M, Li A, Meng L, Zhang G, Guan X, Zhu J, Li Y, Zhang Q, Jiang G. Exposure to Novel Brominated Flame Retardants and Organophosphate Esters and Associations with Thyroid Cancer Risk: A Case-Control Study in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17825-17835. [PMID: 36468700 DOI: 10.1021/acs.est.2c04759] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel brominated flame retardant (NBFR) and organophosphate ester (OPE) exposure may engender adverse effects on human health. However, present epidemiological information regarding the effects of such exposure is limited and controversial. In this case-control study, 481 serum samples were collected from patients with thyroid cancer (n = 242) and healthy controls (n = 239) in Shandong Province, eastern China. The levels of NBFRs and OPEs, thyroid hormones, and serum lipid parameters were measured in all the participants. Pentabromotoluene, 2,3-dibromopropyl 2,4,6 tribromophenyl ether, decabromodiphenylethane (DBDPE), tris (2-chloroethyl) phosphate (TCEP), and triphenyl phosphate (TPP) were widely detected (detection frequency > 60%) in all the participants. A significantly high risk association was found between exposure of NBFRs and OPEs (namely 1,2,3,4,5-pentabromobenzene, DBDPE, tri-n-propyl phosphate, tri[(2R)-1-chloro-2-propyl] phosphate, tris (1,3-dichloro-2-propyl) phosphate, and tris (2-butoxyethyl) phosphate) and thyroid cancer in both males and females. In the females of the control group, TCEP levels exhibited a significantly positive association with thyroid-stimulating hormone and a negative association with triiodothyronine (T3), free triiodothyronine (FT3), and free thyroxine (FT4) levels. Weighted quantile sum regression evaluated the mixed effects of the compounds on thyroid hormones levels and thyroid cancer. As a result, TPP accounted for the majority of the T3, thyroxine, and FT3 amounts. Our results suggest that NBFR and OPE exposure contributes to alterations in thyroid function, thereby increasing thyroid cancer risk.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiang Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| |
Collapse
|
18
|
Bo Y, Zhu Y. Reply to Luo's comments on 'Organophosphate esters exposure in relation to glucose homeostasis and type 2 diabetes in adults: A national cross-sectional study from the national health and nutrition survey'. CHEMOSPHERE 2022; 306:135451. [PMID: 35752315 DOI: 10.1016/j.chemosphere.2022.135451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yacong Bo
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjian Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms232012402. [PMID: 36293259 PMCID: PMC9604036 DOI: 10.3390/ijms232012402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.
Collapse
|
20
|
Sex-Based Evaluation of Lipid Profile in Postoperative Adjuvant Mitotane Treatment for Adrenocortical Carcinoma. Biomedicines 2022; 10:biomedicines10081873. [PMID: 36009421 PMCID: PMC9405852 DOI: 10.3390/biomedicines10081873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: A wide interindividual variability in mitotane concentrations and treatment-related dyslipidemia have been reported. Here, we aimed to underline the sex-related differences in the lipid profile in patients that underwent radical surgery of adrenocortical carcinoma during treatment with adjuvant mitotane. Methods: A chromatographic method was used to quantify the drug in plasma collected from adult patients with complete tumor resection, also considering active metabolite o,p’-DDE. Results: We observed different lipid profiles between males and females and between pre- and post-menopausal women. Considering the mitotane-related effects on lipid levels, we observed that higher drug concentrations were correlated with higher HDL in all the considered groups (p < 0.001), with total cholesterol both in males (p = 0.005) and females (p = 0.036), with triglycerides in postmenopausal females (p = 0.002) and with LDL in male patients (p < 0.001). Increases in o,p’-DDE were positively correlated with HDL levels in all the groups (p < 0.001) and negatively with LDL in all the groups (males p = 0.008, pre- and post-menopausal females p < 0.001), with total cholesterol in pre- (p = 0.016) and post-menopausal women (p = 0.01) and with triglycerides in premenopausal females (p = 0.005). Conclusions: This is the first study designed to evaluate sex differences in lipoprotein and lipid levels during mitotane adjuvant treatment; the results suggest that a gender and personalized approach could be useful to prevent and manage alterations in the lipid profile.
Collapse
|
21
|
Popli S, Badgujar PC, Agarwal T, Bhushan B, Mishra V. Persistent organic pollutants in foods, their interplay with gut microbiota and resultant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155084. [PMID: 35395291 DOI: 10.1016/j.scitotenv.2022.155084] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/09/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Persistent Organic Pollutants (POPs) have become immensely prevalent in the environment as a result of their unique chemical properties (persistent, semi-volatile and bioaccumulative nature). Their occurrence in the soil, water and subsequently in food has become a matter of concern. With food being one of the major sources of exposure, the detrimental impact of these chemicals on the gut microbiome is inevitable. The gut microbiome is considered as an important integrant for human health. It participates in various physiological, biochemical and immunological activities; thus, affects the metabolism and physiology of the host. A myriad of studies have corroborated an association between POP-induced gut microbial dysbiosis and prevalence of disorders. For instance, ingestion of polychlorinated biphenyls, polybrominated diphenyl ethers or organochlorine pesticides influenced bile acid metabolism via alteration of bile salt hydrolase activity of Lactobacillus, Clostridium or Bacteroides genus. At the same time, some chemicals such as DDE have the potential to elevate Proteobacteria and Firmicutes/Bacteriodetes ratio influencing their metabolic activity leading to enhanced short-chain fatty acid synthesis, ensuing obesity or a pre-diabetic state. This review highlights the impact of POPs exposure on the gut microbiota composition and metabolic activity, along with an account of its corresponding consequences on the host physiology. The critical role of gut microbiota in impeding the POPs excretion out of the body resulting in their prolonged exposure and consequently, enhanced degree of toxicity is also emphasized.
Collapse
Affiliation(s)
- Shivani Popli
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India.
| | - Tripti Agarwal
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India.
| |
Collapse
|
22
|
Yipei Y, Zhilin L, Yuhong L, Meng W, Huijun W, Chang S, Yan H. Assessing the risk of diabetes in participants with DDT DDE exposure- A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:113018. [PMID: 35227676 DOI: 10.1016/j.envres.2022.113018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
We have performed a systematic review and meta-analysis of the association between DDT/DDE and diabetes, searching PubMed, Embase, and Cochrane for relevant articles published up to August 30, 2021, and eventually including 43 publications. Our researchers evaluate included studies' quality and risk of bias via the recommended tool. This study uses meta-analyses of random effects of each exposure and outcome to estimate combined odds ratios (ORs) and 95% confidence intervals (CIs). Our research identified 43 cross-sectional, case-control, and cohort studies, including 40,141 individuals in America, Europe, Asia, and Africa. The summary ORs (95% CIs) of incident diabetes were 1.61 (1.10-2.39) for DDT, 1.67 (1.41-1.98) for DDE. The subgroup analysis indicated that the association is significantly higher in the region of Asia for both DDT (OR = 2.73) and DDE (OR = 2.62). Besides, we also tried various types of stratification to identify the more influential confounding factors, among which regional factors have a significant influence. Study evidence suggests that exposure to DDT and its breakdown product, DDE, might be associated with the risk of incident diabetes. Among Asian patients, DDT/DDE concentrations are more closely associated with diabetes. Further studies in specific regions will be considered in the future.
Collapse
Affiliation(s)
- Yu Yipei
- Peking University Health Science Center, China.
| | - Liu Zhilin
- Peking University Health Science Center, China.
| | - Lu Yuhong
- Peking University Health Science Center, China.
| | | | - Wang Huijun
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China.
| | - Su Chang
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China.
| | - Hou Yan
- Peking University Health Science Center, China.
| |
Collapse
|
23
|
Rebouillat P, Vidal R, Cravedi JP, Taupier-Letage B, Debrauwer L, Gamet-Payrastre L, Guillou H, Touvier M, Fezeu LK, Hercberg S, Lairon D, Baudry J, Kesse-Guyot E. Prospective association between dietary pesticide exposure profiles and type 2 diabetes risk in the NutriNet-Santé cohort. Environ Health 2022; 21:57. [PMID: 35614475 PMCID: PMC9131692 DOI: 10.1186/s12940-022-00862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/30/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Studies focusing on dietary pesticides in population-based samples are scarce and little is known about potential mixture effects. We aimed to assess associations between dietary pesticide exposure profiles and Type 2 Diabetes (T2D) among NutriNet-Santé cohort participants. METHODS Participants completed a Food Frequency Questionnaire at baseline, assessing conventional and organic food consumption. Exposures to 25 active substances used in European Union pesticides were estimated using the Chemisches und Veterinäruntersuchungsamt Stuttgart residue database accounting for farming practices. T2D were identified through several sources. Exposure profiles were established using Non-Negative Matrix Factorization (NMF), adapted for sparse data. Cox models adjusted for known confounders were used to estimate hazard ratios (HR) and 95% confidence interval (95% CI), for the associations between four NMF components, divided into quintiles (Q) and T2D risk. RESULTS The sample comprised 33,013 participants aged 53 years old on average, including 76% of women. During follow-up (median: 5.95 years), 340 incident T2D cases were diagnosed. Positive associations were detected between NMF component 1 (reflecting highest exposure to several synthetic pesticides) and T2D risk on the whole sample: HRQ5vsQ1 = 1.47, 95% CI (1.00, 2.18). NMF Component 3 (reflecting low exposure to several synthetic pesticides) was associated with a decrease in T2D risk, among those with high dietary quality only (high adherence to French dietary guidelines, including high plant foods consumption): HRQ5vsQ1 = 0.31, 95% CI (0.10, 0.94). CONCLUSIONS These findings suggest a role of dietary pesticide exposure in T2D risk, with different effects depending on which types of pesticide mixture participants are exposed to. These associations need to be confirmed in other types of studies and settings, and could have important implications for developing prevention strategies (regulation, dietary guidelines). TRIAL REGISTRATION This study is registered in ClinicalTrials.gov ( NCT03335644 ).
Collapse
Affiliation(s)
- Pauline Rebouillat
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, Inserm, INRAE, Cnam, University Paris Cité (CRESS), 74 rue Marcel Cachin, 93017, Bobigny, France.
| | - Rodolphe Vidal
- Institut de L'Agriculture Et de L'Alimentation Biologiques (ITAB), 75595, Paris, France
| | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Bruno Taupier-Letage
- Institut de L'Agriculture Et de L'Alimentation Biologiques (ITAB), 75595, Paris, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Mathilde Touvier
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, Inserm, INRAE, Cnam, University Paris Cité (CRESS), 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Léopold K Fezeu
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, Inserm, INRAE, Cnam, University Paris Cité (CRESS), 74 rue Marcel Cachin, 93017, Bobigny, France
- Département de Santé Publique, Hôpital Avicenne, 93017, Bobigny, France
| | - Serge Hercberg
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, Inserm, INRAE, Cnam, University Paris Cité (CRESS), 74 rue Marcel Cachin, 93017, Bobigny, France
- Département de Santé Publique, Hôpital Avicenne, 93017, Bobigny, France
| | - Denis Lairon
- Aix Marseille Université, INSERM, INRAE, C2VN, 13005, Marseille, France
| | - Julia Baudry
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, Inserm, INRAE, Cnam, University Paris Cité (CRESS), 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, Inserm, INRAE, Cnam, University Paris Cité (CRESS), 74 rue Marcel Cachin, 93017, Bobigny, France
| |
Collapse
|
24
|
Taylor RE, Bhattacharya A, Guo GL. Environmental Chemical Contribution to the Modulation of Bile Acid Homeostasis and Farnesoid X Receptor Signaling. Drug Metab Dispos 2022; 50:456-467. [PMID: 34759011 PMCID: PMC11022932 DOI: 10.1124/dmd.121.000388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Maintaining bile acid (BA) homeostasis is important and regulated by BA activated receptors and signaling pathways. Farnesoid X receptor (FXR) and its regulated target networks in both the liver and the intestines are critical in suppressing BA synthesis and promoting BA transport and enterohepatic circulation. In addition, FXR is critical in regulating lipid metabolism and reducing inflammation, processes critical in the development of cholestasis and fatty liver diseases. BAs are modulated by, but also control, gut microflora. Environmental chemical exposure could affect liver disease development. However, the effects and the mechanisms by which environmental chemicals interact with FXR to affect BA homeostasis are only emerging. In this minireview, our focus is to provide evidence from reports that determine the effects of environmental or therapeutic exposure on altering homeostasis and functions of BAs and FXR. Understanding these effects will help to determine liver disease pathogenesis and provide better prevention and treatment in the future. SIGNIFICANCE STATEMENT: Environmental chemical exposure significantly contributes to the development of cholestasis and nonalcoholic steatohepatitis (NASH). The impact of exposures on bile acid (BA) signaling and Farnesoid X receptor-mediated gut-liver crosstalk is emerging. However, there is still a huge gap in understanding how these chemicals contribute to the dysregulation of BA homeostasis and how this dysregulation may promote NASH development.
Collapse
Affiliation(s)
- Rulaiha E Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (R.E.T., A.B., G.L.G.); Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey (G.L.G.); Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey (G.L.G.); and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Anisha Bhattacharya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (R.E.T., A.B., G.L.G.); Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey (G.L.G.); Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey (G.L.G.); and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey (R.E.T., A.B., G.L.G.); Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey (G.L.G.); Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey (G.L.G.); and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| |
Collapse
|
25
|
Zhang YT, Zeeshan M, Su F, Qian ZM, Dee Geiger S, Edward McMillin S, Wang ZB, Dong PX, Ou YQ, Xiong SM, Shen XB, Zhou PE, Yang BY, Chu C, Li QQ, Zeng XW, Feng WR, Zhou YZ, Dong GH. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health project in China. ENVIRONMENT INTERNATIONAL 2022; 158:106913. [PMID: 34624590 DOI: 10.1016/j.envint.2021.106913] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies on the associations of legacy per- and polyfluoroalkyl substances (PFASs) and glucose homeostasis remain discordant. Understanding of PFAS alternatives is limited, and few studies have reported joint associations of PFASs and PFAS alternatives. OBJECTIVES To investigate associations of novel PFAS alternatives (chlorinated perfluoroalkyl ether sulfonic acids, Cl-PFESAs and perfluorobutanoic acid, PFBA) and two legacy PFASs (Perfluorooctanoic acid, PFOA and perfluorooctane sulfonate, PFOS) with glucose-homeostasis markers and explore joint associations of 13 legacy and alternative PFASs with the selected outcomes. METHODS We used cross-sectional data of 1,038 adults from the Isomers of C8 Health Project in China. Associations of PFASs and PFAS alternatives with glucose-homeostasis were explored in single-pollutant models using generalized linear models with natural cubic splines for PFASs. Bayesian Kernel Machine Regression (BKMR) models were applied to assess joint associations of exposures and outcomes. Sex-specific analyses were also conducted to evaluate effect modification. RESULTS After adjusting for confounders, both legacy (PFOA, PFOS) and alternative (Cl-PFESAs and PFBA) PFASs were positively associated with glucose-homeostasis markers in single-pollutant models. For example, in the total study population, estimated changes with 95% confidence intervals (CI) of fasting glucose at the 95th percentile of 6:2Cl-PFESA and PFOS against the thresholds were 0.90 (95% CI: 0.59, 1.21) and 0.44 (95% CI: 0.26, 0.62). Positive joint associations were found in BKMR models with 6:2Cl-PFESA contributing most. Sex-specific associations existed in both single- and multi-pollutant models. CONCLUSIONS Legacy and alternative PFASs were positively associated with glucose-homeostasis markers. 6:2Cl-PFESA was the primary contributor. Sex-specific associations were also identified. These results indicate that joint associations and effect modification should be considered in risk assessment. However, further studies are recommended to strengthen our findings and to elucidate the mechanisms of action of legacy and alternative PFASs.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng-Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Zhi-Bin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peng-Xin Dong
- Nursing College, Guangxi Medical University, Nanning 530021, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi-Min Xiong
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Xu-Bo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Pei-En Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563060, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
|
27
|
Li L, Shi H, Hua X, Wang M, Wang H. Intrinsic Clearance and Metabolism Pathway of Fosthiazate in Rat and Cock Liver Microsomes: From Chiral Assessment View. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12654-12660. [PMID: 34695356 DOI: 10.1021/acs.jafc.1c05217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral fosthiazate enters the organisms via environmental exposure and food web enrichment. Liver subcellular fractions of rats (RLM) and cocks (CLM) were prepared to explore the stereoselective metabolism of fosthiazate in vitro. The results indicated that fosthiazate exhibited different stereoselective metabolism behaviors in RLM and CLM. The clearance rate order of RLM to four fosthiazate stereoisomers was (1R,3R)-fosthiazate > (1S,3R)-fosthiazate > (1R,3S)-fosthiazate > (1S,3S)-fosthiazate. However, CLM showed a faster clearance rate to (1S,3S)-fosthiazate and (1S,3R)-fosthiazate than the other two stereoisomers. The molecular docking results revealed that the stereoselectivity was partially due to the stereospecific binding between fosthiazate stereoisomers and cytochrome P450 proteins. The main metabolism pathways of fosthiazate in RLM and CLM were oxidation and hydrolysis with five common metabolites including M299, M243, M227, M103, and M197 being identified by LC-TOF-MS/MS. The present study provides the accurate data on risk assessment of chiral fosthiazate.
Collapse
Affiliation(s)
- Lianshan Li
- College of Eco-Environment, Hebei University, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Hongjie Wang
- College of Eco-Environment, Hebei University, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China
| |
Collapse
|
28
|
Han X, Meng L, Zhang G, Li Y, Shi Y, Zhang Q, Jiang G. Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes: A case-control study in East China. ENVIRONMENT INTERNATIONAL 2021; 156:106637. [PMID: 33993001 DOI: 10.1016/j.envint.2021.106637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Associations between per- and polyfluoroalkyl substances (PFASs) and the incidence of type 2 diabetes are controversial in epidemiological studies. In addition, limited data are available for assessing the health effects of novel PFAS alternatives. Our study evaluated the effects of PFAS exposure on type 2 diabetes by estimating the associations of PFASs in human serum with the risk of type 2 diabetes and levels of glycemic biomarkers and lipid fractions. The case-control study consisted of 304 participants from Shandong Province, East China, half of which were diagnosed with type 2 diabetes. Logistic regression showed that most PFASs were inversely associated with the risk of type 2 diabetes after adjusting for age, sex, and body mass index. However, concentrations of perfluorooctanoic acid (PFOA) in the control group were positively associated with fasting plasma glucose levels (β = 0.04, 95% confidence interval (CI): 0.0003, 0.08), which may promote the development of type 2 diabetes. Furthermore, each log-unit increase in the concentrations of perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUnDA), and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESA) were associated with a total cholesterol increase (i.e., 17.49% (95% CI: 0.93%, 34.90%), 17.49% (95% CI: 4.71%, 31.83%), and 17.49% (95% CI: 4.71%, 31.83%), respectively). Positive associations were also observed between PFNA, PFUnDA, perfluorooctane sulfonate (PFOS), and 6:2 Cl-PFESA and low-density lipoprotein cholesterol. However, no associations between PFASs and hemoglobin A1c, triglycerides, or high-density lipoprotein cholesterol reached statistical significance, nor associations between PFAS mixtures and outcomes of interest. In conclusion, the significant correlations between serum PFASs and glycemic biomarkers and lipid fractions indicated that PFAS exposure may be a potential diabetogenic factor. To the best of our knowledge, this is the first study to assess the associations between novel Cl-PFESAs and type 2 diabetes, although the inverse associations observed require clarification in future studies.
Collapse
Affiliation(s)
- Xu Han
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Meng
- Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong 250014, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
29
|
Lee S, Ko E, Lee H, Kim KT, Choi M, Shin S. Mixed Exposure of Persistent Organic Pollutants Alters Oxidative Stress Markers and Mitochondrial Function in the Tail of Zebrafish Depending on Sex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189539. [PMID: 34574462 PMCID: PMC8469042 DOI: 10.3390/ijerph18189539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022]
Abstract
Persistent organic pollutants (POPs) are lipid-soluble toxins that are not easily degraded; therefore, they accumulate in the environment and the human body. Several studies have indicated a correlation between POPs and metabolic diseases; however, their effects on mitochondria as a central organelle in cellular metabolism and the usage of mitochondria as functional markers for metabolic disease are barely understood. In this study, a zebrafish model system was exposed to two subclasses of POPs, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), under two different conditions (solitary OCPs or OCPs with PCBs (Aroclor 1254)), and changes in the oxidative stress marker levels and mitochondrial enzyme activities in the electron transport chain of the tail were measured to observe the correlation between POPs and representative biomarkers for metabolic disease. The results indicated different responses upon exposure to OCPs and OCPs with Aroclor 1254, and accelerated toxicity was observed following exposure to mixed POPs (OCPs with Aroclor 1254). Males were more sensitive to changes in the levels of oxidative stress markers induced by POP exposure, whereas females were more susceptible to the toxic effects of POPs on the levels of mitochondrial activity markers. These results demonstrate that the study reflects real environmental conditions, with low-dose and multiple-toxin exposure for a long period, and that POPs alter major mitochondrial enzymes’ functions with an imbalance of redox homeostasis in a sex-dependent manner.
Collapse
Affiliation(s)
- Songhee Lee
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
| | - Eun Ko
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
| | - Hyojin Lee
- Department of Environmental Energy Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea; (H.L.); (K.-T.K.)
| | - Ki-Tae Kim
- Department of Environmental Energy Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea; (H.L.); (K.-T.K.)
| | - Moonsung Choi
- Department of Optometry, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea
- Convergence Institute of Biomaterials and Bioengineering, Seoul National University of Science and Technology, Seoul 01811, Korea
- Correspondence: (M.C.); (S.S.)
| | - Sooim Shin
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (M.C.); (S.S.)
| |
Collapse
|
30
|
Woldetsadik D, Simon MP, Knuth D, Hailu H, Gebresilassie A, Dejen A, Düring RA. Exposure to DDT and HCH congeners and associated potential health risks through khat (Catha edulis) consumption among adults in South Wollo, Ethiopia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3597-3613. [PMID: 33594639 PMCID: PMC7886647 DOI: 10.1007/s10653-021-00846-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Khat (Catha edulis) chewing is widespread in the region of East Africa. Even low levels of organochlorine pesticides (OCPs) in khat could induce public health concern. In a market-based study, from five popular khat varieties, a total of 35 composite khat samples were analyzed for dichlorodiphenyltrichloroethane (DDT) and its main transformation products, and four hexachlorocyclohexane (HCH) isomers. Extraction was carried out by quick, easy, cheap, effective, rugged and safe method (QuEChERS). OCP concentrations were determined by head space solid phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS). Every sample contained β-HCH above the maximum residue limit set by the European Commission. For total DDT, this was the case for 25.7% of the samples. The ratios of (p,p'-DDD + p,p'-DDE) to p,p'-DDT were less than one for 85% of khat samples, demonstrating recent use of DDT in khat farmlands. Conversely, the ratio of β-HCH to total HCH varied from 0.56 to 0.96, implying historical input of technical HCH. Assuming a daily chewable portion of 100 g, dietary intakes of p,p'-DDT, total DDT and total HCH by adults ranged from 3.12 to 57.9, 6.49 to 80.2 and 39.2 to 51.9 ng (kg body weight)-1 day-1, respectively. These levels are below acceptable levels suggested by international organizations. Chewing khat showed lower non-cancer health risk, but showed relatively higher cancer risk in terms of OCPs. Because khat is chewed without being subjected to any treatment, uncertainties associated with estimated intakes and health risks should be low. Therefore, this practice is of great concern.
Collapse
Affiliation(s)
- Desta Woldetsadik
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| | - Marcel Pierre Simon
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| | - Dennis Knuth
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| | - Hillette Hailu
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| | - Araya Gebresilassie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asmare Dejen
- Department of Plant Science, Wollo University, Dessie, Ethiopia
| | - Rolf-Alexander Düring
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
31
|
Wang X, Gao M, Tan Y, Li Q, Chen J, Lan C, Jiangtulu B, Wang B, Shen G, Yu Y, Li Z. Associations of Dietary Exposure to Organochlorine Pesticides from Plant-Origin Foods with Lipid Metabolism and Inflammation in Women: A Multiple Follow-up Study in North China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:289-295. [PMID: 33866393 DOI: 10.1007/s00128-021-03224-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
This study explored effects of dietary OCP intake from plant-origin foods (cereals, fruits, and vegetables) consumption on lipid metabolism and inflammation of women using a multiple follow-up study. The results showed that dietary intake of p,p'-dichlorodiphenyltrichloroethane (DDT) [β = - 10.11, 95% confidence interval (95%CI): - 17.32, - 2.905] and o,p'-dichlorodiphenyldichloroethylene (DDE) (β = - 6.077, 95%CI: - 9.954, - 2.200) were overall negatively associated with serum high-density lipoprotein cholesterol (HDL), whereas other OCPs were not. Serum interleukin (IL)-8 was positively associated with intake of dieldrin (β = 0.390, 95%CI: 0.105, 0.674), endosulfan-β (β = 0.361, 95%CI: 0.198, 0.523), total endosulfan (β = 0.136, 95%CI: 0.037, 0.234), and total OCPs (β = 0.084, 95%CI: 0.016, 0.153), and negatively correlated with intake of p,p'-DDE (β = - 2.692, 95%CI: - 5.185, - 0.198). We concluded that dietary intake of some individual DDT-, DDE- dieldrin-, and endosulfan-class chemicals from plant-origin foods may interfere with lipid metabolism and inflammation responses.
Collapse
Affiliation(s)
- Xuepeng Wang
- School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Miaomiao Gao
- School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yixi Tan
- School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Qi Li
- Jiangxi Environmental Engineering Vocational College, Ganzhou, 341002, People's Republic of China
| | - Junxi Chen
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Changxin Lan
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Bahabieke Jiangtulu
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Yanxin Yu
- School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
32
|
The association between environmental exposures to chlordanes, adiposity and diabetes-related features: a systematic review and meta-analysis. Sci Rep 2021; 11:14546. [PMID: 34267268 PMCID: PMC8282629 DOI: 10.1038/s41598-021-93868-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/23/2021] [Indexed: 12/02/2022] Open
Abstract
Chlordane compounds (CHLs) are components of technical chlordane listed in the Stockholm convention on persistent organic pollutants identified as endocrine disrupting chemicals (EDCs) and may interfere with hormone biosynthesis, metabolism or action resulting in an unbalanced hormonal function. There is increasing scientific evidence showing EDCs as risk factors in the pathogenesis and development of obesity and obesity-related metabolic syndromes such as type 2 diabetes, but there is no systematized information on the effect of CHLs in humans. Our aim is to identify the epidemiological data on the association between CHLs with adiposity and diabetes using a systematic approach to identify the available data and summarizing the results through meta-analysis. We searched PubMed and Web of Science from inception up to 15 February 2021, to retrieve original data on the association between chlordanes, and adiposity or diabetes. For adiposity, regression coefficients and Pearson or Spearman correlation coefficients were extracted and converted into standardized regression coefficients. Data were combined using fixed effects meta-analyses to compute summary regression coefficients and corresponding 95% confidence intervals (95% CI). For the association between chlordanes and diabetes, Odds ratios (ORs) were extracted and the DerSimonian and Laird method was used to compute summary estimates and respective 95% CI. For both, adjusted estimates were preferred, whenever available. Among 31 eligible studies, mostly using a cross-sectional approach, the meta-analysis for adiposity was possible only for oxychlordane and transchlordane, none of them were significantly associated with adiposity [(β = 0.04, 95% CI 0.00; 0.07, I2 = 89.7%)] and (β = 0.02, 95% CI − 0.01; 0.06), respectively. For diabetes, the estimates were positive for all compounds but statistically significant for oxychlordane [OR = 1.96 (95% CI 1.19; 3.23)]; for trans-nonachlor [OR = 2.43 (95% CI 1.64; 3.62)] and for heptachlor epoxide [OR = 1.88 (95% CI 1.42; 2.49)]. Our results support that among adults, the odds of having diabetes significantly increase with increasing levels of chlordanes. The data did not allow to reach a clear conclusion regarding the association with adiposity.
Collapse
|
33
|
El-Sikaily A, Helal M. Environmental pollution and diabetes mellitus. World J Meta-Anal 2021; 9:234-256. [DOI: 10.13105/wjma.v9.i3.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chromic metabolic disease that affects a large segment of the population worldwide. Physical inactivity, poor nutrition, and genetic predisposition are main risk factors for disease development. In the last decade, it was clear to the scientific community that DM development is linked to a novel disease inducer that was later defined as diabetogenic factors of pollution and endocrine disrupting agents. Environmental pollution is exponentially increasing in uncontrolled manner in several countries. Environmental pollutants are of diverse nature and toxicities, including polyaromatic hydrocarbons (PAHs), pesticides, and heavy metals. In the current review, we shed light on the impact of each class of these pollutants and the underlined molecular mechanism of diabetes induction and biological toxicities. Finally, a brief overview about the connection between coronavirus disease 2019 and diabetes pandemics is presented.
Collapse
Affiliation(s)
- Amany El-Sikaily
- National Institute of Oceanography and Fisheries (NIOF), Cairo 21513, Egypt
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), Cairo 21513, Egypt
| |
Collapse
|
34
|
Vera-Herrera L, Sadutto D, Picó Y. Non-Occupational Exposure to Pesticides: Experimental Approaches and Analytical Techniques (from 2019). Molecules 2021; 26:3688. [PMID: 34208757 PMCID: PMC8235395 DOI: 10.3390/molecules26123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pesticide residues are a threat to the health of the global population, not only to farmers, applicators, and other pesticide professionals. Humans are exposed through various routes such as food, skin, and inhalation. This study summarizes the different methods to assess and/or estimate human exposure to pesticide residues of the global population. METHODS A systematic search was carried out on Scopus and web of science databases of studies on human exposure to pesticide residues since 2019. RESULTS The methods to estimate human health risk can be categorized as direct (determining the exposure through specific biomarkers in human matrices) or indirect (determining the levels in the environment and food and estimating the occurrence). The role that analytical techniques play was analyzed. In both cases, the application of generic solvent extraction and solid-phase extraction (SPE) clean-up, followed by liquid or gas chromatography coupled to mass spectrometry, is decisive. Advances within the analytical techniques have played an unquestionable role. CONCLUSIONS All these studies have contributed to an important advance in the knowledge of analytical techniques for the detection of pesticide levels and the subsequent assessment of nonoccupational human exposure.
Collapse
Affiliation(s)
| | | | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Moncada-Naquera Road km 4.5, Moncada, 46113 Valencia, Spain; (L.V.-H.); (D.S.)
| |
Collapse
|
35
|
Yin S, Sun Y, Yu J, Su Z, Tong M, Zhang Y, Liu J, Wang L, Li Z, Ren A, Jin L. Prenatal exposure to organochlorine pesticides is associated with increased risk for neural tube defects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145284. [PMID: 33515890 DOI: 10.1016/j.scitotenv.2021.145284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Neural tube defects (NTDs) are among the most common and disabling fetal congenital defects. Organochlorine pesticides (OCPs) are ubiquitous in the environment. In this study, 119 women who had NTD-affected pregnancies (cases) and 119 women who delivered healthy neonates (controls) were recruited in a rural area of Northern China. We used concentrations of OCPs in umbilical cord tissue as markers of prenatal exposure to investigate the association between in utero exposure to OCPs and NTD risk. Concentrations of 20 OCPs were quantified by gas chromatography-mass spectrometry, and 16 of the 20 OCPs were included in the analyses. Odds ratios and 95% confidence intervals (95% CIs) for the associations between levels of individual OCPs and NTD risk were estimated separately with logistic regression adjusting for potential confounders. The combined effects of exposure to the 16 OCPs as a mixture were analyzed with Bayesian kernel machine regression (BKMR). Logistic regression showed that the risk for NTDs increased 5.44-fold (95% CI, 2.21-13.41) for β-hexachlorocyclohexane, 2.51-fold (95% CI, 1.07-5.86) for endosulfan I, 3.78-fold (95% CI, 1.60-8.89) for endosulfan II, 3.42-fold (95% CI, 1.44-8.12) for ο,ρ'-dichlorodiphenyldichloroethane, and 2.89-fold (95% CI, 1.22-6.86) for ρ,ρ'-dichlorodiphenyltrichloroethane when the concentration of each of these OCPs was above its median (exposed) compared to below its median (non-exposed). Other OCPs were not associated with NTD risk in multivariate models. In BKMR, NTD risk increased almost linearly with concentrations of the 16 OCPs as a mixture, which suggests joint effects on NTD risk. Exposure to α-hexachlorocyclohexane, β-hexachlorocyclohexane, endosulfan II, ο,ρ'-dichlorodiphenyldichloroethane, and ρ,ρ'-dichlorodiphenyldichloroethane was associated with an increased risk for NTDs when levels of the remaining 15 OCPs were taken into account. Taken together, these findings show that prenatal exposure to OCPs is associated with increased risk for NTDs.
Collapse
Affiliation(s)
- Shengju Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Ying Sun
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jinhui Yu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zaiming Su
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Mingkun Tong
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yali Zhang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
36
|
Djekkoun N, Lalau JD, Bach V, Depeint F, Khorsi-Cauet H. Chronic oral exposure to pesticides and their consequences on metabolic regulation: role of the microbiota. Eur J Nutr 2021; 60:4131-4149. [PMID: 33837455 DOI: 10.1007/s00394-021-02548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Pesticides have long been used in agriculture and household treatments. Pesticide residues can be found in biological samples for both the agriculture workers through direct exposure but also to the general population by indirect exposure. There is also evidence of pesticide contamination in utero and trans-generational impacts. Whilst acute exposure to pesticides has long been associated with endocrine perturbations, chronic exposure with low doses also increases the prevalence of metabolic disorders such as obesity or type 2 diabetes. Dysmetabolism is a low-grade inflammation disorder and as such the microbiota plays a role in its etiology. It is therefore important to fully understand the role of microbiota on the genesis of subsequent health effects. The digestive tract and mostly microbiota are the first organs of contact after oral exposure. The objective of this review is thus to better understand mechanisms that link pesticide exposure, dysmetabolism and microbiota. One of the key outcomes on the microbiota is the reduced Bacteroidetes and increased Firmicutes phyla, reflecting both pesticide exposure and risk factors of dysmetabolism. Other bacterial genders and metabolic activities are also involved. As for most pathologies impacting microbiota (including inflammatory disorders), the role of prebiotics can be suggested as a prevention strategy and some preliminary evidence reinforces this axis.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France
| | - Jean-Daniel Lalau
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France.,Service Endocrinologie, Diabétologie, Nutrition, CHU Amiens Picardie, Site Nord, 80054, Amiens cedex 1, France
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France
| | - Flore Depeint
- Unité Transformations & Agroressources ULR7519, Institut Polytechnique UniLaSalle-Université d'Artois, 60026, Beauvais, France
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France.
| |
Collapse
|
37
|
Shen Y, Jiang B, Xing Y. Recent advances in the application of magnetic Fe 3O 4 nanomaterials for the removal of emerging contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7599-7620. [PMID: 33398745 DOI: 10.1007/s11356-020-11877-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Emerging contaminants (ECs) are widely distributed and potentially hazardous to human health and the ecological system. However, traditional wastewater treatment techniques are not sufficient to remove ECs. Magnetic nanomaterials are made of ferromagnetic or superparamagnetic magnetic elements such as iron and nickel, which can be easily separated from the aqueous solution, making them ideal adsorbents for contaminants in water. This review focused on the synthesis approaches of magnetic Fe3O4 nanoparticles (MFNs), as well as surface modification in order to improve their stability and functional diversity. Also, a detailed summary on the state-of-art application of magnetic nanomaterials on the removal of ECs was addressed. Additionally, challenges and future prospective of applying magnetic nanomaterials into real-world cases were discussed, in which the green and simple synthesis and evaluation of the toxic effects of MFNs are still of great challenge. This work summarizes the recent progress of using magnetic nanomaterials as promising and powerful tools in the treatment of ECs-contaminated water, benefiting researchers interested in nanomaterials and environmental studies.
Collapse
Affiliation(s)
- Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
- National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, People's Republic of China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
38
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
39
|
Exposure to persistent organic pollutants and the risk of type 2 diabetes: a case-cohort study. DIABETES & METABOLISM 2021; 47:101234. [PMID: 33515717 DOI: 10.1016/j.diabet.2021.101234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/25/2022]
Abstract
AIMS To explore exposure to 22 persistent organic pollutants (POPs) and incident type 2 diabetes in a population-based, prospective cohort. METHODS This case-cohort study on 753 participants without type 2 diabetes at baseline, was followed-up over nine years, as part of the French D.E.S.I.R. cohort. We measured 22 POPs in fasting serum at baseline. The associations between baseline POP concentrations, pre-adjusted for lipids, BMI, age and sex, with incident type 2 diabetes, were assessed using Prentice-weighted Cox regression models (time scale: age), adjusted for traditional confounding factors. POPs were also modelled summed in functional groups: polychlorinated biphenyls (∑PCB) and organochlorines (∑OC) and also individually, after log-transformation, in adjusted Cox models. RESULTS There were 200 incident diabetes cases over nine years. Pre-adjusted POP concentrations were not related to diabetes risk for any of the 22 POPs examined. The fully-adjusted hazard ratios (HRs) per interquartile range of the pre-adjusted POPs, ranged from 0.87 (95% CI: 0.64,1.19) to 1.22 (0.93,1.59,). For dichlorodiphenyldichloroethylene (p, p'-DDE) and dichlorodiphenyltrichloroethane (p, p'-DDT), the HRs were 1.09 (0.83,1.43) and 0.89 (0.70,1.13), respectively. The HRs for PeCB, HCB, β-HCH, γ-HCH, oxychlordane, trans-nonachlor were 0.98 (0.85,1.13), 1.06 (0.84,1.33), 1.22 (0.93,1.59), 1.13 (0.89,1.42), 1.00 (0.76,1.31), 0.86 (0.66,1.13), respectively. HRs for ∑PCB, ∑OC and for individual log-transformed POPs did not differ significantly from one. CONCLUSION We did not observe any relations between exposure to POPs and diabetes in this population-based cohort. These results do not support causal inferences reported in previous studies linking serum POP concentrations and diabetes risk.
Collapse
|
40
|
Endocrine-Disrupting Organochlorine Pesticides in Human Breast Milk: Changes during Lactation. Nutrients 2021; 13:nu13010229. [PMID: 33466783 PMCID: PMC7830316 DOI: 10.3390/nu13010229] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to assess infant safety associated with the occurrence of endocrine-disrupting organochlorine pesticides (OCP) in breast milk. Moreover, the association between pregnant mothers' dietary habits and these compounds levels in breast milk was investigated. Breast milk was collected at various stages of lactation. The samples were analyzed by the GC-MS method. The OCP concentrations ranged from < limit of detection (LOD) to 6.81 ng/g lipids. The highest OCP concentrations in breast milk occurred primarily within the first month of lactation, and decreased over the lactation period. It was found that the maternal consumption of certain food products-in particular pork, beef, poultry, eggs, and dairy products-could have affected the content of 1,1'-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene), called DDT and its metabolites in the breast milk. The levels of beta-endosulfan were positively correlated with fish and poultry consumption. The redundancy analysis indicated that the diets of the pregnant women had an important impact on pesticide residues in the breast milk. There is a potential possibility of lowering the content of organochlorine compounds in breast milk by adhering to nutritional recommendations, e.g., avoiding the excessive consumption of fish and other raw food materials of unknown origin.
Collapse
|
41
|
Horak I, Horn S, Pieters R. Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115718. [PMID: 33035912 PMCID: PMC7513804 DOI: 10.1016/j.envpol.2020.115718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/28/2023]
Abstract
South Africa is the largest agrochemical user in sub-Saharan Africa, with over 3000 registered pesticide products. Although they reduce crop losses, these chemicals reach non-target aquatic environments via leaching, spray drift or run-off. In this review, attention is paid to legacy and current-use pesticides reported in literature for the freshwater environment of South Africa and to the extent these are linked to endocrine disruption. Although banned, residues of many legacy organochlorine pesticides (endosulfan and dichlorodiphenyltrichloroethane (DDT)) are still detected in South African watercourses and wildlife. Several current-use pesticides (triazine herbicides, glyphosate-based herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos) have also been reported. Agrochemicals can interfere with normal hormone function of non-target organism leading to various endocrine disrupting (ED) effects: intersex, reduced spermatogenesis, asymmetric urogenital papillae, testicular lesions and infertile eggs. Although studies investigating the occurrence of agrochemicals and/or ED effects in freshwater aquatic environments in South Africa have increased, few studies determined both the levels of agricultural pesticides present and associated ED effects. The majority of studies conducted are either laboratory-based employing in vitro or in vivo bioassays to determine ED effects of agrochemicals or studies that investigate environmental concentrations of pesticides. However, a combined approach of bioassays and chemical screening will provide a more comprehensive overview of agrochemical pollution of water systems in South Africa and the risks associated with long-term chronic exposure.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
42
|
Jugan J, Lind PM, Salihovic S, Stubleski J, Kärrman A, Lind L, La Merrill MA. The associations between p,p'-DDE levels and plasma levels of lipoproteins and their subclasses in an elderly population determined by analysis of lipoprotein content. Lipids Health Dis 2020; 19:249. [PMID: 33287856 PMCID: PMC7722417 DOI: 10.1186/s12944-020-01417-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lipoproteins at aberrant levels are known to play a role in cardiovascular disease. The metabolite of the insecticide dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), physically associates with lipids and accumulates in adipose tissue. Little is known about which lipoproteins associate with p,p'-DDE. An association between p,p'-DDE exposure and altered levels of circulating lipids was assessed in a large human cohort using a detailed analysis of lipoprotein content. METHODS Plasma samples were collected from the subset of 75-year old Swedes in the Prospective Investigation of the Vasculature of Uppsala Seniors (PIVUS) cohort who were not prescribed lipid lowering medication (n = 571). p,p'-DDE concentrations in plasma were measured using high-throughput solid phase extraction and gas chromatography-high resolution mass spectrometry. Analysis of plasma lipoprotein content was performed with nuclear magnetic resonance spectroscopy. RESULTS Detectable levels of p,p'-DDE were found in the plasma samples of all subjects. Elevated p,p'-DDE levels were associated with increased concentrations of lipoproteins of all diameters, with the exception of high density lipoprotein (HDL) of diameters between 14.3 nm-10.9 nm. Of the lipoprotein constituents, triglycerides were most uniformly associated with elevated p,p'-DDE across lipoproteins. p,p'-DDE was furthermore associated with apolipoprotein B, but not apolipoprotein A1. CONCLUSIONS The positive associations observed between each lipoprotein class and elevated p,p'-DDE support previous data suggesting that p,p'-DDE interacts with lipoproteins within plasma. It is speculated that both physio-chemical and biological mechanisms may explain why p,p'-DDE does not uniformly associate with lipids across lipoproteins.
Collapse
Affiliation(s)
- Juliann Jugan
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Samira Salihovic
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden.,MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|