1
|
Lin S, He J, Zhou Y, Bao Y, Feng X, Cheng H, Cai H, Hu S, Wang L, Zheng Y, Zhang M, Fan Q, Wen S, Lin Y, Liu C, Chen X, Wang F, Ge X, Yang X. Cross-sectional and Longitudinal Associations Between Metal Mixtures and Serum C3, C4: Result from the Manganese‑exposed Workers Healthy Cohort. Biol Trace Elem Res 2025; 203:18-29. [PMID: 38492120 DOI: 10.1007/s12011-024-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Exposure to metal mixtures compromises the immune system, with the complement system connecting innate and adaptive immunity. Herein, we sought to explore the relationships between blood cell metal mixtures and the third and fourth components of serum complement (C3, C4). A total of 538 participants were recruited in November 2017, and 289 participants were followed up in November 2021. We conducted a cross-sectional analysis at baseline and a longitudinal analysis over 4 years. Least Absolute Shrinkage and Selection Operator (LASSO) was employed to identify the primary metals related to serum C3, C4; generalized linear model (GLM) was further used to evaluate the cross-sectional associations of the selected metals and serum C3, C4. Furthermore, participants were categorized into three groups according to the percentage change in metal concentrations over 4 years. GLM was performed to assess the associations between changes in metal concentrations and changes in serum C3, C4 levels. At baseline, each 1-unit increase in log10-transformed in magnesium, manganese, copper, rubidium, and lead was significantly associated with a change in serum C3 of 0.226 (95% CI: 0.146, 0.307), 0.055 (95% CI: 0.022, 0.088), 0.113 (95% CI: 0.019, 0.206), - 0.173 (95% CI: - 0.262, - 0.083), and - 0.020 (95% CI: - 0.039, - 0.001), respectively. Longitudinally, decreased copper concentrations were negatively associated with an increment in serum C3 levels, while decreased lead concentrations were positively associated with an increment in serum C3 levels. However, no metal was found to be primarily associated with serum C4 in LASSO, so we did not further explore the relationship between them. Our research indicates that copper and lead may affect complement system homeostasis by influencing serum C3 levels. Further investigation is necessary to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Sencai Lin
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junxiu He
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yinghua Zhou
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yu Bao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiuming Feng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Hong Cheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Haiqing Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Sihan Hu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lin Wang
- School of Science, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Yuan Zheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Mengdi Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qinghua Fan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shifeng Wen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yuanxin Lin
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chaoqun Liu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xing Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fei Wang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoting Ge
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Chen X, Zhang S, Jiang D, Li Y, Yin M, Fang C, Lv Z, Huang Y, Yang H, Zhang H, Zhang J, Fu Q, Wang H, Jiang W, Chen Y, Li X. Prenatal heavy metal exposure and pediatric asthma, allergic rhinitis, atopic dermatitis: a systematic review and meta-analysis. Expert Rev Clin Immunol 2024; 20:1401-1409. [PMID: 39109589 DOI: 10.1080/1744666x.2024.2390024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/21/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE We review the prevalence of allergic diseases in children across prenatal exposures to heavy metals. METHODS This systematic review and meta-analysis is registered in the PROSPERO database (CRD42023478471). A comprehensive search of PubMed, Web of Science, Medline and Cochrane library was conducted from the database inception until 31 October 2023. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the quality of included studies. We used a random-effects model to summarize the effects from the studies. RESULTS A total of 16 studies were included, 120,065 mother-child pairs enrolled. The NOS scores indicated that the quality of the literature included in the study was of a high standard. CONCLUSION The final results indicate that prenatal exposure to Pb increased the incidence of wheeze and Eczema in infants, and exposure to Ni and CD increased the incidence of AD in infants.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Shipeng Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Dongxi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yu Li
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Man Yin
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Caishan Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zeyi Lv
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yue Huang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hao Yang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hui Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Jianfeng Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Qinwei Fu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hanyu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Wenjing Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yang Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xinrong Li
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
3
|
Xiang Y, Li M, Pan E, Li Y, Yan W, Li Y, Ji G, Dong J. Protective effect of feed additive ferulic acid on respiratory depression and oxidation imbalance of carp induced by pesticide difenoconazole via ROS/NF-κB/NLRP3 axis. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109659. [PMID: 38797333 DOI: 10.1016/j.fsi.2024.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Difenoconazole (DFZ), classified as a "low-toxicity pesticide," has seen widespread application in recent years. Nevertheless, the non-target toxicity of the substance, particularly towards aquatic creatures, has generated considerable apprehension. The anti-inflammatory and antioxidant effects of Ferulic Acid (FA) have attracted considerable study in this particular setting. This study established a chronic exposure model to DFZ and investigated the protective effects of FA on chronic respiratory inhibition leading to gill damage in freshwater carp. Histological analyses via HE staining indicated that FA effectively alleviated gill tissue damage induced by chronic DFZ exposure. The qRT-PCR results showed that the addition of FA reduced the expression of IL-1β, IL-6 and TNF-α while boosting the expression of IL-10 and TGF-β1. Biochemical analyses and DHE staining revealed that FA reduced MDA levels and increased CAT and GSH activities, along with T-AOC, decreased ROS accumulation in response to chronic DFZ exposure. The results obtained from Western blotting analysis demonstrated that the addition of FA effectively suppressed the activation of the NF-κB signalling pathway and the NLRP3 inflammasome pathway in the gills subjected to prolonged exposure to DFZ. In summary, FA ameliorated gill tissue inflammation and blocked ROS accumulation in carp exposed to chronic DFZ, mitigating tissue inflammation and restoring redox homeostasis through the NF-κB-NLRP3 signaling pathway. Hence, the application of FA has been found to be efficacious for improving respiratory inhibition and mitigating gill tissue inflammation and oxidative stress resulting from DFZ pollution in aquatic habitats.
Collapse
Affiliation(s)
- Yannan Xiang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengxin Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Enzhuang Pan
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Weiping Yan
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guangquan Ji
- Department of Technology, The First People's Hospital of Lianyungang, Lianyungang, 222002, China.
| | - Jingquan Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
4
|
Grace J, Duran E, Ann Ottinger M, Maness T. Sublethal effects of early-life exposure to common and emerging contaminants in birds. Curr Res Toxicol 2024; 7:100190. [PMID: 39220619 PMCID: PMC11365322 DOI: 10.1016/j.crtox.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The plight of wild birds is becoming critical due to exposure to environmental contaminants. Although laboratory studies have provided insights into the developmental effects of chemical exposures, less is known about the adverse effects of environmental chemicals in developing wild birds. Early life stages are critical windows during which long-term organization of physiological, behavioral, and neurological systems can occur. Thus, contaminant exposure at early life stages can directly influence survival and reproductive success, with consequences for population stability and resilience in wild species. This review synthesizes existing knowledge regarding both short- and long-term effects of early-life exposure to widespread contaminants in birds. We focus especially on wild birds and on contaminants of concern within the Gulf of Mexico as an example of a habitat under anthropogenic stress from exposure to a complex mixture of chemicals and changing land uses that exacerbate existing vulnerabilities of wildlife in this region. Chemical contaminants for discussion in this review are based on avian mortality records from the Wildlife Health Information Sharing Partnership (WHISPers) database and on additional review of the literature regarding avian contaminants of concern for the northern Gulf of Mexico, and include oil and associated polycyclic aromatic hydrocarbons, dioxin and dioxin-like compounds, flame retardants, pesticides, heavy metals, and plastics. We provide an overview of effects in bird species at both the pre-hatching and post-hatching early life stages, discuss differences in sensitivities by route of exposure, life stage, and life history, and provide recommendations for future research. We find that additional research is needed on altricial species, post-hatching early-life exposure, long-term effects, and on ecologically relevant contaminant concentrations and routes of exposure. Given the increasing frequency and intensity of anthropogenic stressors encountered by wild animals, understanding both lethal and sublethal impacts of contaminants on the health of individuals and populations will be critical to inform restoration, management, and mitigation efforts.
Collapse
Affiliation(s)
- Jacquelyn Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77840-2258, USA
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Elena Duran
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Terri Maness
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
5
|
Lu TY, Wu CD, Huang YT, Chen YC, Chen CJ, Yang HI, Pan WC. Exposure to PM 2.5 Metal Constituents and Liver Cancer Risk in REVEAL-HBV. J Epidemiol 2024; 34:87-93. [PMID: 36908115 PMCID: PMC10751193 DOI: 10.2188/jea.je20220262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/05/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Ambient particulate matter is classified as a human Class 1 carcinogen, and recent studies found a positive relationship between fine particulate matter (PM2.5) and liver cancer. Nevertheless, little is known about which specific metal constituent contributes to the development of liver cancer. OBJECTIVE To evaluate the association of long-term exposure to metal constituents in PM2.5 with the risk of liver cancer using a Taiwanese cohort study. METHODS A total of 13,511 Taiwanese participants were recruited from the REVEAL-HBV in 1991-1992. Participants' long-term exposure to eight metal constituents (Ba, Cu, Mn, Sb, Zn, Pb, Ni, and Cd) in PM2.5 was based on ambient measurement in 2002-2006 followed by a land-use regression model for spatial interpolation. We ascertained newly developed liver cancer (ie, hepatocellular carcinoma [HCC]) through data linkage with the Taiwan Cancer Registry and national health death certification in 1991-2014. A Cox proportional hazards model was utilized to assess the association between exposure to PM2.5 metal component and HCC. RESULTS We identified 322 newly developed HCC with a median follow-up of 23.1 years. Long-term exposure to PM2.5 Cu was positively associated with a risk of liver cancer. The adjusted hazard ratio (HR) was 1.13 (95% confidence interval [CI], 1.02-1.25; P = 0.023) with one unit increment on Cu normalized by PM2.5 mass concentration in the logarithmic scale. The PM2.5 Cu-HCC association remained statistically significant with adjustment for co-exposures to other metal constituents in PM2.5. CONCLUSION Our findings suggest PM2.5 containing Cu may attribute to the association of PM2.5 exposure with liver cancer.
Collapse
Affiliation(s)
- Tzu-Yi Lu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Chiayi, Taiwan
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Yen-Tsung Huang
- Institue of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institution of Environmental Health Sciences, National Health Research Institute, Mioli, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Wang W, Zhang Y, Geng X, Li H, Wang X, Zhang Y, Zhao H. Zinc attenuates arsenic overdose-induced brain damage via PERK/ATF6 and TLR/MyD88/NF-κB pathways. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109806. [PMID: 38042229 DOI: 10.1016/j.cbpc.2023.109806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Exposure to arsenic (As), a widespread non-metallic toxicant in nature, often results in neurotoxicity, although the exact mechanism is unknown. Zinc (Zn) is a powerful nutrient often thought to be beneficial for growth, development and immunity. Whether Zn can rescue brain damage caused by As contamination remains to be demonstrated. Therefore, in this study, a 30-day model of As poisoning (2.83 mg/L) in carp was established and treated with Zn (1 mg/L) to investigate the detoxification mechanism involved. Histological observations showed that As induced the loosening of the molecular layer structure of the cerebellum and the dissolution or even disappearance of nuclei, accompanied by the occurrence of microthrombi in the granular layer, and the addition of Zn attenuated such As-induced damage. Further mechanistic studies indicated that Zn ameliorated As exposure-induced abnormalities in antioxidant capacity (decreased CAT and Cu/Zn-SOD), activation of the Nrf2/keap1 pathway and endoplasmic reticulum stress (ERs), which is a key factor in As-induced brain damage. ERs (high expression of PERK, ATF6, CHOP, eiF2α and GRP78) and inflammation (overexpression of TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β and IL-6 and low expression of IκBα and IL-10). We suggest that Zn can alleviate excessive As-induced brain damage by attenuating As-induced oxidative stress, PERK/ATF6 and TLR/MyD88/NF-κB pathways. The present study fills in the preventive mechanism of As injury in fish and provides the possibility of prevention and control of As pollution-induced brain tissue injury by Zn rescue.
Collapse
Affiliation(s)
- Weijun Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hong Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xuehuan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yingzi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
7
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
8
|
Deng H, Zhu S, Yang H, Cui H, Guo H, Deng J, Ren Z, Geng Y, Ouyang P, Xu Z, Deng Y, Zhu Y. The Dysregulation of Inflammatory Pathways Triggered by Copper Exposure. Biol Trace Elem Res 2023; 201:539-548. [PMID: 35312958 DOI: 10.1007/s12011-022-03171-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Copper (Cu) is an essential micronutrient for both human and animals. However, excessive intake of copper will cause damage to organs and cells. Inflammation is a biological response that can be induced by various factors such as pathogens, damaged cells, and toxic compounds. Dysregulation of inflammatory responses are closely related to many chronic diseases. Recently, Cu toxicological and inflammatory effects have been investigated in various animal models and cells. In this review, we summarized the known effect of Cu on inflammatory responses and sum up the molecular mechanism of Cu-regulated inflammation. Excessive Cu exposure can modulate a huge number of cytokines in both directions, increase and/or decrease through a variety of molecular and cellular signaling pathways including nuclear factor kappa-B (NF-κB) pathway, mitogen-activated protein kinase (MAPKs) pathway, JAK-STAT (Janus Kinase- signal transducer and activator of transcription) pathway, and NOD-like receptor protein 3 (NLRP3) inflammasome. Underlying the molecular mechanism of Cu-regulated inflammation could help further understanding copper toxicology and copper-associated diseases.
Collapse
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huiru Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, 625014, Sichuan, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
9
|
Meng X, Wang Y, Wang T, Jiao B, Shao H, Jia Q, Duan H. Particulate Matter and Its Components Induce Alteration on the T-Cell Response: A Population Biomarker Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:375-384. [PMID: 36537917 DOI: 10.1021/acs.est.2c04347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Compared with the T-cell potential of particulate matter (PM) in animal studies, comprehensive evaluation on the impairments of T-cell response and exposure-response from PM and its components in human population is limited. There were 768 participants in this study. We measured environmental PM and its polycyclic aromatic hydrocarbons (PAHs) and metals and urinary metabolite levels of PAHs and metals among population. T lymphocyte and its subpopulation (CD4+ T cells and CD8+ T cells) and the expressions of T-bet, GATA3, RORγt, and FoxP3 were measured. We explored the exposure-response of PM compositions by principal component analysis and mode of action by mediation analysis. There was a significant decreasing trend for T lymphocytes and the levels of T-bet and GATA3 with increased PM levels. Generally, there was a negative correlation between PM, urinary 1-hydroxypyrene, urinary metals, and the levels of T-bet and GATA3 expression. Additionally, CD4+ T lymphocytes were found to mediate the associations of PM2.5 with T-bet expression. PM and its bound PAHs and metals could induce immune impairments by altering the T lymphocytes and genes of T-bet and GATA3.
Collapse
Affiliation(s)
- Xiangjing Meng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Yanhua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Shao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Qiang Jia
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
10
|
Husain N, Ali SN, Arif H, Khan AA, Mahmood R. Oral Administration of Copper Chloride Damages DNA, Lowers Antioxidant Defense, Alters Metabolic Status, and Inhibits Membrane Bound Enzymes in Rat Kidney. Biol Trace Elem Res 2022; 201:3367-3380. [PMID: 36068418 DOI: 10.1007/s12011-022-03406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
Abstract
Copper (Cu) is a heavy metal that is widely used in industries and is also an essential micronutrient for living beings. However, excess Cu is toxic and human exposure to high levels of this metal results in numerous adverse health effects. We have investigated the effect of oral administration of copper chloride (CuCl2), a Cu(II) compound, on various parameters of oxidative stress, cellular metabolism, and DNA integrity in the rat kidney. This was done to delineate the molecular mechanism of Cu(II) toxicity. Adult male rats were randomly divided into five groups. Animals in four CuCl2-treated groups were separately administered single acute oral dose of CuCl2 at 5, 15, 30, and 40 mg/kg body weight. Animals in the fifth group were not given CuCl2 and served as the control. All rats were sacrificed 24 h after the dose of CuCl2 and their kidneys removed. CuCl2 administration led to significant alterations in enzymatic and non-enzymatic parameters of oxidative stress. It changed the activities of metabolic and membrane bound enzymes and also decreased the activities of brush border membrane enzymes. CuCl2 treatment dose-dependently enhanced DNA damage and DNA-protein crosslinking in renal cells, when compared to the control group. The administration of CuCl2 also resulted in marked morphological changes in the kidney, with more prominent alterations at higher doses of CuCl2. These results clearly show that CuCl2 impairs the antioxidant defense system resulting in oxidative damage to the kidney.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Shaikh Nisar Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, J.N. Medical College, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India.
| |
Collapse
|
11
|
Yi J, Liao J, Bai T, Wang B, Yangzom C, Ahmed Z, Mehmood K, Abbas RZ, Li Y, Tang Z, Zhang H. Battery wastewater induces nephrotoxicity via disordering the mitochondrial dynamics. CHEMOSPHERE 2022; 303:135018. [PMID: 35605732 DOI: 10.1016/j.chemosphere.2022.135018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of new energy battery enterprises manifolds the obsolete and scrapped batteries which are considered serious concern for the environment and ecology. Increasing trend of recycling batteries waste is public hazard throughout the world. The batteries wastes affect the various body systems but exact toxicological mechanism of battery wastewater is still unexplored. The present study was designed to observe the toxicological effects of batteries wastes on kidney functional dynamics. In this experiment, a total of 20 male mice were randomly divided into two groups including control and treatment (battery wastewater) group. The control group was provided the normal saline while the battery wastewater group were provided battery waste-water for a period of 21 days. The isolated kidneys were processed for histopathological analysis, biochemical assays, mRNA and protein estimation. The results showed that battery wastewater provision increased the mitochondrial division-related genes and proteins (Drp1, MFF, Fis1) and decreased the expression level of fusion-related nuclear proteins (MFN1, MFN2, OPA1) in kidneys. Moreover, the battery wastewater exposure significantly up-regulated the autophagy (PINK, Parkin, mTOR, ATG5, LC3-b, p62) and apoptosis (Bax, Cytc, APAF1, P53, Caspase3, Caspase8) related mRNA and proteins levels in kidneys. However, down-regulation of mRNA and proteins levels of Bcl2 and Beclin1 were also observed in kidneys after batteries wastes exposure. In conclusion, it is evident that the battery wastewater leads to renal apoptosis and autophagy by disrupting the mitochondrial dynamics in mice kidneys.
Collapse
Affiliation(s)
- Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tian Bai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bole Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China.
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Zhang D, Du J, Yu M, Suo L. Ginsenoside Rb1 prevents osteoporosis via the AHR/PRELP/NF-κB signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154205. [PMID: 35716470 DOI: 10.1016/j.phymed.2022.154205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Accumulating clinical and experimental evidence shows multiple biological effects of ginsenoside Rb1 (GRb1) in the treatment of aging related diseases such as osteoporosis (OP). Recently, GRb1 has attracted extensive attention as an anti-osteoporosis agent. Here, we sought to identify the mechanism by which GRb1 improves OP. METHODS A dexamethasone (DEX)-induced rat model of OP was constructed and the rats were treated with GRb1 to examine its role in OP. We screened the action targets of GRb1 online and validated by performing functional experiments. The correlation between aryl hydrocarbon receptor (AHR) and proline/arginine-rich end leucine-rich repeat protein (PRELP) was identified through luciferase and chromatin immunoprecipitation assays. In the isolated osteoblasts from DEX-induced OP rats, the expression of osteogenic differentiation-associated genes, and nuclear factor-kappa B (NF-κB) pathway-related genes, mineralization, and number of calcium nodules were assessed. RESULTS GRb1 enhanced the differentiation of osteoblasts, the mechanism of which was related to upregulation of AHR. AHR could promote the transcription of PRELP by binding to the PRELP promoter region and consequently caused its upregulation. Meanwhile, PRELP inhibited the activation of the NF-κB pathway, which underlay the promoting impact of AHR in the osteogenic differentiation. Additionally, GRb1 could ameliorate OP in DEX-induced rats via the AHR/PRELP/NF-κB axis. CONCLUSIONS Our findings demonstrate that GRb1 might function as an effective candidate to prevent the progression of OP via regulation of the AHR/PRELP/NF-κB axis, revealing a new molecular mechanism underpinning the impact of GRb1 in the progression of OP and offering a theoretical contribution to the treatment of OP.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China
| | - Jian Du
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China
| | - Min Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Linna Suo
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China.
| |
Collapse
|
13
|
Li X, Yang B, Shi C, Wang H, Yu R, Li Q, Liu S. Synergistic Interaction of Low Salinity Stress With Vibrio Infection Causes Mass Mortalities in the Oyster by Inducing Host Microflora Imbalance and Immune Dysregulation. Front Immunol 2022; 13:859975. [PMID: 35663972 PMCID: PMC9162580 DOI: 10.3389/fimmu.2022.859975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
A sudden drop in salinity following extreme precipitation events usually causes mass mortality of oysters exposed to pathogens in ocean environment. While how low salinity stress interacts with pathogens to cause mass mortality remains obscure. In this study, we performed an experiment by low salinity stress and pathogen infection with Vibrio alginolyticus to investigate their synergistic effect on the mortality of the Pacific oyster toward understanding of the interaction among environment, host, and pathogen. We showed that low salinity stress did not significantly affect proliferation and virulence of V. alginolyticus, but significantly altered microbial composition and immune response of infected oysters. Microbial community profiling by 16S rRNA amplicon sequencing revealed disrupted homeostasis of digestive bacterial microbiota with the abundance of several pathogenic bacteria being increased, which may affect the pathogenesis in infected oysters. Transcriptome profiling of infected oysters revealed that a large number of genes associated with apoptosis and inflammation were significantly upregulated under low salinity, suggesting that low salinity stress may have triggered immune dysregulation in infected oysters. Our results suggest that host-pathogen interactions are strongly affected by low salinity stress, which is of great significance for assessing future environmental risk of pathogenic diseases, decoding the interaction among environment, host genetics and commensal microbes, and disease surveillance in the oyster.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Ben Yang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Chenyu Shi
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Hebing Wang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Ruihai Yu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Gao PC, Chen XW, Chu JH, Li LX, Wang ZY, Fan RF. Antagonistic effect of selenium on mercuric chloride in the central immune organs of chickens: The role of microRNA-183/135b-FOXO1/TXNIP/NLRP3 inflammasome axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1047-1057. [PMID: 34995020 DOI: 10.1002/tox.23463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a persistent environmental and industrial pollutant that accumulated in the body and induces oxidative stress and inflammation damage. Selenium (Se) has been reported to antagonize immune organs damage caused by heavy metals. Here, we aimed to investigate the prevent effect of Se on mercuric chloride (HgCl2 )-induced thymus and bursa of Fabricius (BF) damage in chickens. The results showed that HgCl2 caused immunosuppression by reducing the relative weight, cortical area of the thymus and BF, and the number of peripheral blood lymphocytes. Meanwhile, HgCl2 induced oxidative stress and imbalance in cytokines expression in the thymus and BF. Further, we found that thioredoxin-interacting protein (TXNIP) and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediated HgCl2 -induced oxidative stress and inflammation. Mechanically, the targeting and inhibitory effect of microRNA (miR)-135b/183 on forkhead box O1 (FOXO1) were an upstream event for HgCl2 -activated TXNIP/NLRP3 inflammasome pathway. Most importantly, Se effectively attenuated the aforementioned damage in the thymus and BF caused by HgCl2 and inhibited the TXNIP/NLRP3 inflammasome pathway by reversing the expression of FOXO1 through inhibiting miR-135b/183. In conclusion, the miR-135b/183-FOXO1/TXNIP/NLRP3 inflammasome axis might be a novel mechanism for Se to antagonize HgCl2 -induced oxidative stress and inflammation in the central immune organs of chickens.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| |
Collapse
|
15
|
Ruan F, Zhang J, Liu J, Sun X, Li Y, Xu S, Xia W. Association between prenatal exposure to metal mixtures and early childhood allergic diseases. ENVIRONMENTAL RESEARCH 2022; 206:112615. [PMID: 34968434 DOI: 10.1016/j.envres.2021.112615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The association between prenatal exposure to the metal mixture and allergic diseases is poorly understood. We aimed to explore the individual effect and the combined effect of prenatal exposure to vanadium (V), chromium (Cr), nickel (Ni), arsenic (As), cadmium (Cd), thallium (Tl), and lead (Pb) on early childhood allergic diseases based on a birth cohort study that included 628 mother-infant pairs. Metals were measured in maternal urine samples collected in the first, second, and third trimesters. Children were prospectively followed up at age 4 years to collect information on allergic rhinitis, wheeze, and eczema status. By applying logistic regression models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR), the different statistical analyses revealed urinary metals were only associated with early childhood allergic rhinitis. The averaged prenatal As exposure was significantly associated with an increased OR for allergic rhinitis in both single-metal (OR = 2.04, 95% CI: 1.35, 3.07) and multiple-metal logistic regression models (OR = 1.78, 95% CI: 1.15, 2.78). The WQS index of mixed metal exposure was positively associated with allergic rhinitis (OR = 1.66, 95% CI: 1.26, 2.19), and As and Tl had the largest weights in the WQS index (weighted 0.51 and 0.29, respectively). The BKMR analysis also showed the overall effect of the metal mixture was significantly associated with allergic rhinitis when all the metals were at their 55th percentile or above, compared to their 50th percentile. The effect of As and Tl on the risk of allergic rhinitis was significant when all of the other metals were fixed at the specific percentiles. Our findings suggest that prenatal co-exposure to higher levels of the seven metals increases the risk of allergic rhinitis in children, and As and Tl may contribute most to the combined risk.
Collapse
Affiliation(s)
- Fengyu Ruan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Juan Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Arsenic Induces Continuous Inflammation and Regulates Th1/Th2/Th17/Treg Balance in Liver and Kidney In Vivo. Mediators Inflamm 2022; 2022:8414047. [PMID: 35210942 PMCID: PMC8863494 DOI: 10.1155/2022/8414047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 12/26/2022] Open
Abstract
Numerous studies on arsenic-induced hepatonephric toxicity including cancer have been reported. Given that chronic inflammatory response and immune imbalance are associated with oncogenesis, we investigated whether arsenic could influence the hepatic and nephritic expression of inflammatory factors and the differentiation of T cells. Mice were exposed to NaAsO2 (0, 25, and 50 mg/L) for 1 and 3 months. Our data showed the destruction of the structure and inflammatory infiltration in the liver. The arsenic markedly increased the activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The myeloperoxidase (MPO) activities increased in the liver at 25 and 50 mg/L arsenic for 3 months as well as in the kidney at both 1 and 3 months. An increased expression of inflammatory indicators (IL-1β, IL-12, and TNF-α) at 25 and 50 mg/L arsenic for 1 and 3 months in the liver and kidney, as well as IL-1β in the liver for 3 months and in the kidney at 50 mg/L for 1 and 3 months were demonstrated in our experiments. Besides, a definite tendency toward Th1/Th17 cytokines in the liver while Th2/Th17 cytokines in kidney was also observed by arsenic. Moreover, arsenic enhanced the expression of MAPK/Nrf2/NF-κB signaling molecules. In conclusion, the results of the study suggested that arsenic induces continuous immune-inflammatory responses in the liver and kidney.
Collapse
|
17
|
Wan F, Zhong G, Wu S, Jiang X, Liao J, Zhang X, Zhang H, Mehmood K, Tang Z, Hu L. Arsenic and antimony co-induced nephrotoxicity via autophagy and pyroptosis through ROS-mediated pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112442. [PMID: 34166936 DOI: 10.1016/j.ecoenv.2021.112442] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) and antimony (Sb) are commonly accumulated environmental pollutants that often coexist in nature and cause serious widespread biological toxicity. To investigate the nephrotoxicity induced by As and Sb in detail, we explored the mechanism by which As and Sb cotreatment induced autophagy and pyroptosis in vivo and in vitro. In this study, mice were treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony trichloride (SbCl3) by intragastric intubation for 60 days. TCMK-1 cells were treated with ATO (12.5 μM), SbCl3 (25 μM) or a combination of As and Sb for 24 h. The results of the in vivo experiment demonstrated that As or/and Sb exposure could induce histopathological changes in the kidneys, and increase the levels of biochemical indicators of nephrotoxicity. In addition, As and Sb can co-induce oxidative stress, which further activate autophagy and pyroptosis. In an in vitro experiment, As and/or Sb coexposure increased ROS generation and decreased MMP. Moreover, the results of related molecular experiments further confirmed that As and Sb coactivated autophagy and pyroptosis. In conclusion, our results indicated that As and Sb co-exposure could cause autophagy and pyroptosis via the ROS pathway, and these two metals might have a synergistic effect on nephrotoxicity.
Collapse
Affiliation(s)
- Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | | | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Yiming Z, Zhaoyi L, Jing L, Jinliang W, Zhiqiang S, Guangliang S, Shu L. Cadmium induces the thymus apoptosis of pigs through ROS-dependent PTEN/PI3K/AKT signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39982-39992. [PMID: 33765263 DOI: 10.1007/s11356-021-13517-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a transition metal that is toxic to living organisms in the environment and endangers living organisms. To explore whether Cd induces apoptosis in pig thymus and its possible mechanism, the role Cd induction of the PTEN/PI3K/Akt pathway in apoptosis of thymus cells was studied in pigs. We found that Cd exposure (the feed is treated with Cd) significantly increased Cd accumulation in the thymus of pigs. The TUNEL assay confirmed the typical apoptotic characteristics of thymus in Cd group. Moreover, in the Cd group, the activities of antioxidant indices decreased significantly, while the levels of oxidative stress indexes increased significantly, and the mRNA levels of GSH, CAT, Gpx1, GST, SOD1, and SOD2 decreased obviously. Moreover, the mRNA and protein levels of PTEN/PI3K/AKT and apoptosis-related genes were detected by qPCR and western blotting. The results show that the expressions of PI3K and AKT decreased, while the expression of PTEN increased, indicating that pathway activated. With the PTEN/PI3K/AKT pathway regulating, Bcl-2 expression decreased. Conversely, the mRNA and protein expression of apoptosis-related genes were up-regulated. In conclusion, accumulation of Cd in the pigs caused oxidative damage to immune tissues. In addition, Cd-induced oxidative stress activates the PTEN/PI3K/AKT pathway, inducing apoptosis in the thymus of pigs.
Collapse
Affiliation(s)
- Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lan Jing
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150000, China
| | - Wang Jinliang
- Shandong Binzhou Anim Sci & Vet Med Acad, Binzhou, 256600, People's Republic of China
| | - Shen Zhiqiang
- Shandong Binzhou Anim Sci & Vet Med Acad, Binzhou, 256600, People's Republic of China
| | - Shi Guangliang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
19
|
Husain N, Hasan S, Khan AA, Mahmood R. Copper chloride inhibits brush border membrane enzymes, alters antioxidant and metabolic status and damages DNA in rat intestine: a dose-dependent study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43711-43724. [PMID: 33837945 DOI: 10.1007/s11356-021-13804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is an extensively used heavy metal and an indispensible micronutrient for living beings. However, Cu is also toxic and exerts multiple adverse health effects when humans are exposed to high levels of this metal. We have examined the effect of single acute oral dose of copper chloride (CuCl2) on parameters of oxidative stress, cellular metabolism, membrane and DNA damage in rat intestine. Adult male Wistar rats were divided into four groups and separately administered a single oral dose of 5, 15, 30 and 40 mg CuCl2/kg body weight. Rats not administered CuCl2 served as the control. Oral administration of CuCl2 led to significant alterations in the activities of metabolic and membrane-bound enzymes; brush border enzymes were inhibited by 45-75% relative to the control set. Inhibition of antioxidant enzymes diminished the metal-reducing and free radical quenching ability of the cells. Oxidative damage caused cellular oxidation of thiols, proteins and lipids. Diphenylamine and comet assays showed that CuCl2 treatment enhanced DNA damage while DNA-protein crosslinking was also increased in the intestinal cells. Examination of stained sections showed that CuCl2 treatment led to marked histological changes in the intestine. All the changes seen were in a CuCl2 dose-dependent manner with more prominent alterations at higher doses of CuCl2. These results clearly show that oral administration of CuCl2 results in oxidative damage to the intestine which can impair its digestive and absorptive functions.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Samra Hasan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Aijaz Ahmed Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
20
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
21
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
22
|
Peng X, Dai C, Zhang M, Das Gupta S. Molecular Mechanisms Underlying Protective Role of Quercetin on Copper Sulfate-Induced Nephrotoxicity in Mice. Front Vet Sci 2021; 7:586033. [PMID: 33490128 PMCID: PMC7821355 DOI: 10.3389/fvets.2020.586033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023] Open
Abstract
Copper overload is an established cause of nephrotoxicity, but the precise molecular mechanism remains unknown. Our study aimed to investigate the molecular mechanism of copper sulfate (CuSO4)-induced nephrotoxicity and the protective effect of the natural compound quercetin using a mouse model. Mice were orally administered CuSO4 only (200 mg/kg per day), or co-administered CuSO4 (200 mg/kg per day) plus quercetin (25, 50, or 100 mg/kg per day), or quercetin only (100 mg/kg per day), or vehicle for 28 days. The blood and kidneys were collected for the examination of serum biomarkers, oxidative stress biomarkers, changes in histopathology and gene and protein expression. Our results show that quercetin supplementation attenuates CuSO4-induced renal dysfunction and tubular necrosis in a dose-dependent manner. Quercetin supplementation at 50 and 100 mg/kg significantly attenuated CuSO4-induced oxidative damage. Quercetin supplementation also inhibited the activities of caspases-9 and-3, and the expression of p53 and Bax mRNAs. Furthermore, quercetin supplementation markedly activated the expression of Nrf2 and HO-1 mRNAs, but inhibited the expression of NF-κB, IL-1β, IL-6, and TNF-α mRNAs. In conclusion, our results revealed that quercetin supplementation could inhibit CuSO4-induced nephrotoxicity in mice via the inhibition of mitochondrial apoptotic and NF-κB pathways and the activation of Nrf2/HO-1 pathway. Our study highlights quercetin as a potential candidate in treating copper overload-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Life Sciences, Yantai University, Yantai, China.,College of Food Engineering, Ludong University, Yantai, China
| | - Chongshan Dai
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Zhang
- College of Life Sciences, Yantai University, Yantai, China
| | - Subhajit Das Gupta
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
23
|
Yoo JW, Cho H, Lee KW, Won EJ, Lee YM. Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108863. [PMID: 32781295 DOI: 10.1016/j.cbpc.2020.108863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
The combined effect of toxic inducers has emerged as a challenging topic, particularly due to their inconsistent impacts on the environment. Using toxic unit (TU) based on LC50 value, we investigated the 48 h acute toxicities of the following combinations: Cd + As, Cd + Pb, As + Pb, and Cd + As + Pb, and binary and ternary combined effects were interpreted using concentration addition (CA) and independent action (IA) model. The molecular effects of these combinations were further examined on the basis of gene expression (four GST and two SOD isoforms) and antioxidant enzymes activity (SOD and GST). The CA-predicted LC50 was similar to the observed results, indicating that the CA model is more applicable for evaluating the combined effects of the metal mixtures. Synergistic effects (ΣTULC50 < 0.8) were observed for the mixtures As + Pb and Cd + Pb, while additive effects (0.8 < ΣTULC50 < 1.2) were observed for the mixtures Cd + As + Pb and Cd + As. No antagonistic effects were observed in this study. Molecular biomarkers for oxidative stress caused by metals, as well as traditional endpoints such as lethality, have shown a clear response in assessing the toxicity of binary and ternary mixtures. This study opens up a new avenue for the use of biomarkers to assess the combined effects of metals in aquatic environments.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyun-Woo Lee
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Youngdo, Busan 49111, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
24
|
Nie X, Wang Y, Zhao H, Guo M, Liu Y, Xing M. As 3+ or/and Cu 2+ exposure triggers oxidative stress imbalance, induces inflammatory response and apoptosis in chicken brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110993. [PMID: 32678762 DOI: 10.1016/j.ecoenv.2020.110993] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) and copper (Cu) are common environmental pollutants in nature. When they are excessively present in living organisms, they can cause heavy metal poisoning. There were relatively few studies of the toxicological concentrations of As and Cu in the brain using chicken as a model. Therefore, in this study, arsenic trioxide or/and copper sulfate were added to chicken diets for a 12-week toxicity test. The test results showed that excessive intake of As or/and Cu led to a significant reduction in the total antioxidant capacity (T-AOC), catalase (CAT) and hydroxyl radicals. And significant increase in nitric oxide synthase (NOS) indicates an imbalanced oxidation reaction. In addition, the increase in heat shock protein (HSPs), the increase of NF-κB pathway-related pro-inflammatory mediators, the change of apoptosis factors on the death receptor and mitochondrial apoptosis pathway show that, As or/and Cu exposure induced chicken brain has heat shock response (HSP), tissue inflammation and apoptosis. This damage is inseparable from the oxidative imbalance. It is worth noting that these injury changes are time-dependent, and the combined effect of these two metals is more severe than that of a single group of injuries. Our findings can inform the regulation of animal feed additives and avoid agricultural economic losses or biological health damage.
Collapse
Affiliation(s)
- Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
25
|
Liu Y, Zhao H, Wang Y, Guo M, Mu M, Xing M. Arsenic (III) and/or copper (II) induces oxidative stress in chicken brain and subsequent effects on mitochondrial homeostasis and autophagy. J Inorg Biochem 2020; 211:111201. [PMID: 32805460 DOI: 10.1016/j.jinorgbio.2020.111201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/31/2022]
Abstract
As two quite complicated substances, arsenic (As) and copper (Cu) have polluted to the environment. As is highly toxic and could cause nerve damage. Cu is involved in the occurrence of oxidative stress. The brain is one of the main target organs of heavy metal toxicity, but the damage mechanism activated by As and/or Cu in the chicken brain has not been precisely researched. This study is designed to analyze the nervous system damage induced by As and/or Cu exposure from both structural and molecular levels. Under the As and/or Cu stress, local hemorrhage, inflammatory infiltration and mitochondrial damage were observed. Enzymes and non-enzyme antioxidants clearly show that the redox balance is deviated gradually. The results of real-time quantitative PCR and Western blotting revealed that there may be a cascading effect between oxidative stress and disruption of mitochondrial dynamics, the key protein of mitochondrial fusion has decreased and the fission protein has increased. The superposition of these two types of damage may activate the celluar autophagy pathway, the up-regulation of autophagy related genes (ATGs) levels could be observed. All data indicated that excessive As and/or Cu in the environment may pose a threat to the nervous system of poultry. These findings have neurophysiological meaning for exploring cross-contamination of As and Cu in the environment, and offering precautions to economic losses and negative effects on the health of animals and humans. In addition, it provides a reference for feed preparation and environmental protection in agricultural production.
Collapse
Affiliation(s)
- Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China.
| |
Collapse
|