1
|
Zhang W, Jin Y, Liu Y, Tan R, Liu G, He W, Luo S, Tang Y, Chen Q, Chen Y. No toxic effects or interactions between aflatoxin B 1 and zearalenone in broiler chickens fed diets at China's regulatory limits. Regul Toxicol Pharmacol 2025; 159:105799. [PMID: 40043880 DOI: 10.1016/j.yrtph.2025.105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Currently, several countries such as China have established regulatory limits for six major mycotoxins in animal feed. However, these limits are primarily designed for single mycotoxin exposure. Co-contamination with multiple mycotoxins is increasingly common, and simultaneous exposure may lead to additive toxic effects. This study aimed to investigate the effects of individual and combined contamination of aflatoxin B1 (AFB1) and zearalenone (ZEA) at China's regulatory limits on the growth performance, oxidative stress, serum biochemistry, immunity indicators, intestinal morphology, liver and kidney histopathology of broilers by incorporating mycotoxin standards into the feed. A total of 432 one-day-old male AA broilers were randomly assigned to four treatment groups, each consisting of six replicates of 18 birds. The control group received a basic diet, while the experimental groups were supplemented with 10 μg/kg AFB1, 500 μg/kg ZEA, or a combination of both in the basic diet. The experimental period lasted for 35 days. The results revealed no significant differences among the groups in terms of growth performance, oxidative damage markers, serum biochemistry, cytokine levels, intestinal health, or histopathological assessments of the liver and kidneys. Furthermore, no toxic interactions between the two mycotoxins were observed. Taken together, these results suggest that future assessments should take into account the combined toxicological effects of a wider range of mycotoxins to inform the revision and formulation of feed safety standards.
Collapse
Affiliation(s)
- Wanjun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Ruiqi Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Gaoyi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Wenjun He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yutong Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Qiao Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
2
|
Chen Y, Zhang G, Li J, Li X, Jiang S, Zha Xi Y, Guo Y, Lu J. Glycyrrhiza uralensis extract supplementation mitigated the negative effects of prolonged low-dose exposure to Deoxynivalenol and Zearalenone on growth performance and intestinal health of broiler chickens. Front Vet Sci 2025; 12:1570265. [PMID: 40290476 PMCID: PMC12023903 DOI: 10.3389/fvets.2025.1570265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN), common symbiotic mycotoxins found in mold-contaminated cereal feed, adversely affect broiler' health. Glycyrrhiza uralensis has various pharmacological effects including antibacterial, antioxidant and immunomodulatory. This study aimed to investigate the effects of the long-term intake of low doses of DON and ZEN on growth performance and intestinal health of broilers, as well as the potential protective effect of supplementary Glycyrrhiza uralensis extract (GUE) in an 84-day feeding experiment. A total of 315 one-day-old male Liangfeng broilers were randomly assigned to three treatments: basal diet (CON), MOL diet (where 5% of corn in the basal diet was replaced with an equal amount of naturally moldy corn) containing DON and ZEN at 1.25 and 1.29 mg/kg, and MGUE diet supplemented with 0.1% GUE in the MOL diet. The MOL diet reduced the body weight (BW) of broilers at 56 and 84 day, body weight gain (BWG) and feed intake (FI) aged 1-56 and 1-84 days, and the feed conversion ratio (FCR) aged 1-84 days, as well as villus height (VH) and the villus/crypt (V/C) ratio, SOD and GSH-Px activities, and the expression of claudin-1, occludin and ZO-1, while increasing MDA level, the expression of TNF-α, IL-1β and IFN-γ in the jejunum of broilers. Additionally, MOL diet decreased the Firmicutes to Bacteroidetes (F/B) ratio and abundances of Lactobacillus (L.gallinarum and L.crispatus), and B.vulgatus, while increasing Bacteroides (B.fragilis and B.dore), Helicobacter (H.pullorum), and Escherichia (E.coli) in the ceca. In contrast, MGUE diet improved growth performance and returned it to a level comparable to that of the CON diet, increased VH and V/C ratio, SOD and GSH-Px activity, claudin-1, occludin and ZO-1 expression, while reducing MDA level, the expression of TNF-α, IL-1β and IFN-γ in the jejunum. Moreover, MGUE diet had a greater F/B ratio and abundance of Lactobacillus (L.gallinarum and L.crispatus) and B.vulgatus, while reducing Bacteroides (B.fragilis and B.dorei), Helicobacter (H.pullorum) and Escherichia (E.coli) in cecum. In conclusion, the long-term consumption of a low-dose DON-ZEN contaminated diet decreases growth performance and disrupts intestinal health and microbiota balance in broilers; however, dietary supplementation with GUE effectively mitigates the damage caused by DON-ZEN contamination.
Collapse
Affiliation(s)
- Yan Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Guohua Zhang
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiawei Li
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Ximei Li
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Susu Jiang
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yingpai Zha Xi
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianxiong Lu
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
3
|
Njaramba JK, Muloi DM, Velde MV, Saeger SD, Ibayi EL, Moodley A, Antonissen G. Multi-mycotoxin occurrence and their risk to poultry health in semi-intensive broiler farms in Kenya. Poult Sci 2025; 104:105008. [PMID: 40088532 PMCID: PMC11957512 DOI: 10.1016/j.psj.2025.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Scarcity of feed ingredients, unregulated feed mills, and limited monitoring of mycotoxin levels in feed increase the risk of mycotoxin exposure for poultry in sub-Saharan Africa. This study examined mycotoxins in feed from 122 Kenyan broiler farms and an association between on-farm feed handling practices and mycotoxin levels. Using a validated multi-mycotoxin liquid chromatography-tandem mass spectrometry method (LC-MS/MS), all feed samples contained at least one mycotoxin and 93 % (n=113) had >3 mycotoxins. The most prevalent EU-regulated mycotoxins detected were fumonisins (93 %; 79.2 - 1285.3 μg/kg), deoxynivalenol (88 %; 96.6 - 2131.2 μg/kg), aflatoxins (34 %; 4.6 - 87.8 μg/kg), and ochratoxin A (4 %; range 14.90 - 59.20 μg/kg). Deoxynivalenol, fumonisins, and zearalenone frequently co-occurred in the feed samples. Among the surveyed farms, 33 % (n= 40) were at risk of subclinical exposure to deoxynivalenol, while 14 % and 7 % faced similar risks from total aflatoxins and fumonisins, respectively. Univariate analysis found no significant associations between farm-specific feed handling practices and mycotoxin levels in feed. This study found a high co-occurrence of mycotoxin at low to moderate concentrations in compound broiler feed from the selected farms. While these levels pose a potential risk, no direct link to broiler health outcomes was found. Our findings highlight the need for further research to explore the effects of subclinical mycotoxin exposure on broilers and to develop context-specific mycotoxin level guidelines for the region.
Collapse
Affiliation(s)
- Jane K Njaramba
- Health Program, International Livestock Research Institute, Nairobi, Kenya.; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dishon M Muloi
- Health Program, International Livestock Research Institute, Nairobi, Kenya.; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Mario V Velde
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah D Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.; Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, South Africa
| | - Eugine L Ibayi
- Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Arshnee Moodley
- Health Program, International Livestock Research Institute, Nairobi, Kenya.; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
4
|
Kpodo KR, Milliken DJ, Campos PM, Proszkowiec‑Weglarz M, Lindemann MD, Adedokun SA. Modulating effects of mycotoxin and oxidized oil on intestinal microbiota in broiler chickens. PLoS One 2025; 20:e0314821. [PMID: 40029898 PMCID: PMC11875384 DOI: 10.1371/journal.pone.0314821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/17/2024] [Indexed: 03/06/2025] Open
Abstract
Climatic change and increased use of alternative sources of feed ingredients could influence poultry production. Mycotoxin and oxidized oil are two contaminations that may occur in chicken feed as a result of climate change and use of alternative feed ingredients, and these factors may have differential and potentially additive effects on birds' intestinal microbiota. The study objective was to determine the main effects of corn, oil quality, and their interaction on ileal content, ileal scrapings, cecal content, and whole cecum (content and tissue) microbiota in broiler chickens. Broiler chickens were raised for 21 days post-hatch and fed diet made with regular or mycotoxin-contaminated corn (7,959 ppb of deoxynivalenol, 2.1 ppm of aflatoxin, 23,200 ppb of fumonisin, and 1,403 ppb of zearalenone), and regular or oxidized (148 meq/kg) oil. Bacterial genomic DNA was extracted and sequenced targeting the variable (V3-V4) region of the 16S gene. The bioinformatic and statistical analysis of the microbiota data showed mycotoxin and mycotoxin by oxidized oil interaction increased the richness and evenness in the ileal content and only evenness in the cecal content. Mycotoxin and mycotoxin by oxidized oil interaction also increased beta diversity based on the variability in microbial community in the ileal content while increasing the abundance of bacterial taxa, including Streptomyces and Escherichia-Shigella, and predicted pathways related to RNA and DNA synthesis (Mycothiol and pyrimidine deoxyribonucleotides synthesis) and redox regulation (ergothioneine biosynthesis) in ileal content and pathways related to glycol metabolism and degradation and amino acids degradation were increased in the cecal content. Streptomyces has been associated with mycotoxin detoxication, and its increase could reduce the negative effects of mycotoxins contrary to Escherichia-Shigella, which has been negatively correlated with weight gain in chickens. These results show that mycotoxin alone and its combination with oxidized oil affect bacterial diversity and abundance mostly in the ileum content and predicted metabolic pathways across intestinal sections.
Collapse
Affiliation(s)
- Kouassi R. Kpodo
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Daniel J. Milliken
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Philip M. Campos
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Monika Proszkowiec‑Weglarz
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Merlin D. Lindemann
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sunday A. Adedokun
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
5
|
Greco D, D’Ascanio V, Santovito E, Abbasciano M, Quintieri L, Techer C, Avantaggiato G. Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model. Foods 2025; 14:360. [PMID: 39941953 PMCID: PMC11817501 DOI: 10.3390/foods14030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Mycotoxin detoxification by microorganisms offers a specific, economical, and environmentally sustainable alternative to physical/chemical methods. Three strains of B. subtilis, isolated from poultry farm environments and recognized by EFSA as safe in animal nutrition for all animal species, consumers, and the environment, were screened for their ability to remove mycotoxins. All of them demonstrated mycotoxin-dependent removal efficacy, being very effective against ZEA and its analogues (α- and β-ZOL, α- and β-ZAL, and ZAL) achieving up to 100% removal within 24 h under aerobic, anaerobic, and restrictive growth conditions with toxins as the sole carbon source. ZEA removal remained effective across a wide range of pH values (5-8), temperatures (20-40 °C), and at high toxin concentrations (up to 10 µg/mL). Additionally, up to 87% ZEA removal was achieved after 48 h of incubation (30 °C) of the strains in a contaminated liquid food model containing 1 µg/mL of the toxin. Mechanistic studies suggest that ZEA detoxification involves metabolic processes rather than physical adsorption or entrapment into bacterial cells. Enzymatic activities within the bacterial cells or associated with their cell walls likely play a role in the metabolization of the toxin. Interestingly, it has been observed that growth conditions and culture media can influence the metabolization and/or conjugation of the toxin, which can result in the production of various metabolites. Further investigation is needed to identify these metabolites and assess their safety.
Collapse
Affiliation(s)
- Donato Greco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Elisa Santovito
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Mariagrazia Abbasciano
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Clarisse Techer
- Mixscience, 2/4 Avenue de Ker Lann, CS17228, CEDEX, 35172 Bruz, France;
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| |
Collapse
|
6
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
7
|
Wang L, Deng Z, Huang J, Li T, Jiang J, Wang W, Sun Y, Deng Y. Zearalenone-induced hepatointestinal toxicity in laying hens: unveiling the role of gut microbiota and fecal metabolites. Poult Sci 2024; 103:104221. [PMID: 39241615 PMCID: PMC11406091 DOI: 10.1016/j.psj.2024.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024] Open
Abstract
Zearalenone (ZEN), a mycotoxin produced by Fusarium species, is known for its reproductive toxicity as an estrogen analogue. However, there are limited knowledge about its hepatointestinal toxicity, as well as the role that gut microbiota and metabolites play in this process. In this study, a total of 24 thirty-week-old hens were fed to investigate the hepatointestinal toxicity subjected to long-term ZEN consumption at 2.0 mg/kg for 90 d. And we employed uncultured 16S rRNA sequencing for gut microbiota and untargeted metabolomics for fecal metabolites assessment. Notably, ZEN induced significant hepatic damage, as evidenced by hepatocyte necrosis, inflammatory cell infiltrate, increased liver lipopolysaccharide (LPS) and blood aspartate aminotransferase (AST) levels (P < 0.05). The decreased villus height, disruption of simple columnar epithelial cells, and exposure of the mucosal intrinsic layer were observed in the intestine. The gut microbial community composition and metabolites differed between ZEN group and control group. ZEN group exhibited higher gut microbial diversity (P < 0.05), lower Firmicutes/Bacteroidetes ratio and Lactobacillus abundance, and higher abundance in the genus such as Bacteroidetes, Parabacteroidetes and Desulfovibrio. Metabolomic analysis showed that ZEN treatment altered biosynthesis of siderophore group nonribosomal peptides and phenylpropanoids, metabolism of amino acid, digestion and absorption of vitamin and ABC transporters. Differential metabolites suggested that ZEN increase the risk of estrogen disorder, nucleic acid degradation, intestinal oxidative stress and inflammation. Neural network analysis showed that Ruminococcus was positively correlated with glyceric acid, and Prevotella was positively correlated with phenylacetylglycine. Both metabolites were positively correlated with blood AST level (P < 0.05), suggesting that intestinal microbe Ruminococcus and Prevotella might exacerbate liver damage by producing these harmful metabolites. Overall, we conclude that ZEN has damaged hepatointestinal system and the altered gut microbiota with resultant metabolite changes contribute to the adverse hepatointestinal effects of ZEN on laying hens. This study underscores the need for monitoring and mitigating ZEN exposure in poultry diets, highlighting its broader implications for animal health and food safety.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Zifeng Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Jieying Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Tingyuan Li
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yu Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| |
Collapse
|
8
|
Wang L, Lv Z, Ning X, Yue Z, Wang P, Liu C, Jin S, Li X, Yin Q, Zhu Q, Chang J. The effects of compound probiotics on production performance, rumen fermentation and microbiota of Hu sheep. Front Vet Sci 2024; 11:1440432. [PMID: 39545259 PMCID: PMC11560882 DOI: 10.3389/fvets.2024.1440432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal probiotics have the potential as feed additives, but less has been explored in ruminant feed up to date. This study aimed to determine the effect of compound probiotics (CPs) with Aspergillus oryzae 1, Aspergillus oryzae 2 and Candida utilis on Hu sheep's growth performance, rumen fermentation and microbiota. A total of 120 male Hu sheep, aged 2 months and with the body weight of 16.95 ± 0.65 kg were divided into 4 groups. Each group consisted of 5 replicates, with 6 sheep per replicate. Group A was the control group fed with the basal diet. Group B, C and D was supplemented with the basal diet by adding 400, 800 and 1,200 grams per ton (g/t) CPs, respectively. The feeding trial lasted for 60 days after a 10-day adaptation period. The results showed that the average daily gain (ADG) of sheep in the CPs groups were significantly higher, the feed/gain were significantly lower than those in group A in the later stage and the overall period. The addition of CPs increased the economic benefit. The levels of CD4+ and the CD4+/CD8+ ratio in the CPs groups were higher than those in Group A. The levels of GSH, IgG, IL-2, IL-6, and IFN-γ in group C were significantly elevated compared with group A. Group B showed a significant increase in rumen NH3-N and cellulase activity. There was no difference in VFAs content between group A and group B, however, with the increasing addition of CPs, the butyric acid and isobutyric acid content tended to decrease. The rumen microbiota analysis indicated that the CPs addition increased the Firmicutes and Proteobacteria abundances, decreased the Bacteroidetes abundance. The correlation analysis showed that Prevotella was negatively correlated with ADG, and the addition of 400 CPs in group B reduced Prevotella's relative abundance, indicating CPs increased sheep growth by decreasing Prevotella abundance. The CPs addition reduced caspase-3, NF-κB and TNF-α expression in liver, jejunum and rumen tissues. In conclusion, the addition of CPs increased the sheep production performance, reduced inflammation, improved rumen and intestinal health. Considering the above points and economic benefits, the optimal addition of CPs as an additive for Hu sheep is 800 g/t.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhanqi Lv
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | | | - Zhiguang Yue
- Henan Anjin Biotechnology Co., Ltd., Xinxiang, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sanjun Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinxin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Zhen H, Hu Y, Xiong K, Li M, Jin W. The occurrence and biological control of zearalenone in cereals and cereal-based feedstuffs: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1344-1359. [PMID: 39102376 DOI: 10.1080/19440049.2024.2385713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Zearalenone, a prominent mycotoxin produced by Fusarium spp., ubiquitously contaminates cereal grains and animal feedstuffs. The thermal stability of zearalenone creates serious obstacles for traditional removal methods, which may introduce new safety issues, or reducing nutritional quality. In contrast, biological technologies provide appealing benefits such as easy to apply and effective, with low toxicity byproducts. Thus, this review aims to describe the occurrence of zearalenone in cereals and cereal-based feedstuffs in the recent 5 years, outline the rules and regulations regarding zearalenone in the major countries, and discuss the recent developments of biological methods for controlling zearalenone in cereals and cereal-based feedstuffs. In addition, this article also reviews the application and the development trend of biological strategies for removal zearalenone in cereals and cereal-based feedstuffs.
Collapse
Affiliation(s)
- Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yumeng Hu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
10
|
Liang J, Li X, Huang B, Pan Y, Zhuang Z, Ye Q, Peng C, Deng H, Yi Y, Zhang B, Chen P, Chen X. Rapid, on-site quantitative determination of mycotoxins in grains using a multiple time-resolved fluorescent microsphere immunochromatographic test strip. Biosens Bioelectron 2024; 258:116357. [PMID: 38729049 DOI: 10.1016/j.bios.2024.116357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.
Collapse
Affiliation(s)
- JunFa Liang
- Guangzhou Institute of Food Inspection, Guangzhou, 511400, PR China
| | - Xuewei Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Bin Huang
- Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen, 518100, PR China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Zile Zhuang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Qiuxiong Ye
- Guangzhou Institute of Food Inspection, Guangzhou, 511400, PR China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou, 511400, PR China
| | - Huangyi Deng
- Guangdong Institute of Food Inspection, Guangzhou, 510000, PR China
| | - Yunting Yi
- Guangzhou Institute of Food Inspection, Guangzhou, 511400, PR China
| | - Binbin Zhang
- Guangzhou Institute of Food Inspection, Guangzhou, 511400, PR China
| | - Peiyi Chen
- Guangzhou Institute of Food Inspection, Guangzhou, 511400, PR China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
11
|
Li G, Wang H, Yang J, Qiu Z, Liu Y, Wang X, Yan H, He D. The protective effects of Lactobacillus SNK-6 on growth, organ health, and intestinal function in geese exposed to low concentration Aflatoxin B1. Poult Sci 2024; 103:103904. [PMID: 38880050 PMCID: PMC11228886 DOI: 10.1016/j.psj.2024.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a prevalent mycotoxin present in feed ingredients. In this study, we investigated the effects of Lactobacillus salivarius (L. salivarius) on the Landes geese exposed to AFB1. The 300 one-day-old Landes geese were randomly divided into five groups: The control group received a basic diet, while the other groups were fed a basic diet supplemented with 10 μg/kg AFB1, 10 μg/kg AFB1+ 4*108 cfu/g L. salivarius, 50 μg/kg AFB1, and 50 μg/kg AFB1 + 4*108 cfu/g L. salivarius for 63 d. Results showed that high level AFB1 exposure significantly decreased final BW and ADG, increased feed/gain ratio (F/G) and liver index (P < 0.05). L. salivarius improved levels of IL-1, IL-6, and IL-12 under low level of AFB1 exposure (P < 0.05), along with similar trends observed in serum IgA, IgG, IgM, T3, T4, TNF-ɑ, and EDT (P < 0.05). AFB1 exposure reduced jejunum villus high and villus high/crypt depth ratio, and suppressed expression of ZO-1, Occludin, and Claudin-1 mRNA, and significant improved with L. salivarius supplementation under low level AFB1 exposure (P < 0.05). AFB1 significantly increased expression levels of TLR3 and NF-kB1, with supplementation of L. salivarius showing significant improvement under low AFB1 exposure (P < 0.05). Cecal microbiota sequencing revealed that under low level AFB1 exposure, supplementation with L. salivarius increased the abundance of Bacteroidetes and Lactococcus. In summary, supplementation with 4*108 cfu/g L. salivarius under 10 μg/kg AFB1 exposure improved growth performance and immune capacity, enhanced jejunum morphology, reduced liver inflammation, altered the cecal microbial structure, and positively affected the growth and development of geese.
Collapse
Affiliation(s)
- Guangquan Li
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huiying Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Junhua Yang
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhi Qiu
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yi Liu
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Xianze Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huaxiang Yan
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Daqian He
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China.
| |
Collapse
|
12
|
Lapris M, Errico M, Rocchetti G, Gallo A. The Potential of Multi-Screening Methods and Omics Technologies to Detect Both Regulated and Emerging Mycotoxins in Different Matrices. Foods 2024; 13:1746. [PMID: 38890974 PMCID: PMC11171533 DOI: 10.3390/foods13111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Mycotoxins are well-known secondary metabolites produced by several fungi that grow and occur in different crops during both pre-harvest and post-harvest conditions. The contamination and occurrence of mycotoxins currently represent some of the major issues in the entire agri-food system. The quantification of mycotoxins in different feeds and foodstuffs is extremely difficult because of the low concentration ranges; therefore, both sample collection and preparation are essential to providing accurate detection and reliable quantification. Currently, several analytical methods are available for the detection of mycotoxins in both feed and food products, and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) represents the most reliable instrumental approach. In particular, the fast development of high-throughput methods has made it possible to screen and analyze, in the same analytical run and with high accuracy, multiple mycotoxins, such as those regulated, masked, or modified, and emerging ones. Therefore, the aim of this review is to provide an overview of the state of the art of mycotoxins occurrence, health-related concerns, and analyses, discussing the need to perform multi-screening approaches combined with omics technologies to simultaneously analyze several mycotoxins in different feed and food matrices. This approach is expected to provide more comprehensive information about the profile and distribution of emerging mycotoxins, thus enhancing the understanding of their co-occurrence and impact on the entire production chain.
Collapse
Affiliation(s)
| | | | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (M.L.); (M.E.); (A.G.)
| | | |
Collapse
|
13
|
Tang X. Probiotic Roles of Clostridium butyricum in Piglets: Considering Aspects of Intestinal Barrier Function. Animals (Basel) 2024; 14:1069. [PMID: 38612308 PMCID: PMC11010893 DOI: 10.3390/ani14071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
China, as the global leader in pork production and consumption, is faced with challenges in ensuring sustainable and wholesome growth of the pig industry while also guaranteeing meat food safety amidst the ban on antibiotics usage in animal feed. The focus of the pig industry lies in guaranteeing piglet health and enhancing overall production performance through nutrition regulation. Clostridium butyricum (C. butyricum), a new type of probiotic, possesses characteristics such as heat resistance, acid resistance, and bile-salt tolerance, meaning it has potential as a feed additive. Previous studies have demonstrated that C. butyricum has a probiotic effect on piglets and can serve as a substitute for antibiotics. The objective of this study was to review the probiotic role of C. butyricum in the production of piglets, specifically focusing on intestinal barrier function. Through this review, we explored the probiotic effects of C. butyricum on piglets from the perspective of intestinal health. That is, C. butyricum promotes intestinal health by regulating the functions of the mechanical barrier, chemical barrier, immune barrier, and microbial barrier of piglets, thereby improving the growth of piglets. This review can provide a reference for the rational utilization and application of C. butyricum in swine production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertification Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
14
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
15
|
Mutlu M, Simsek UG, Iflazoglu S, Yilmaz A, Karabulut B, Incili CA, Cevik A, Incili GK, Seven PT, Iflazoglu Mutlu S. Potential effect dietary supplementation of calcium tetraborate in quails exposed to cadmium: Its impact on productive performance, oxidative stress, cecal microflora, and histopathological changes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115883. [PMID: 38157802 DOI: 10.1016/j.ecoenv.2023.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a ubiquitous environmental pollutant, and Cd exposure harms human health, agriculture, and animal husbandry. The present study aimed to investigate the potential protective effect of dietary supplementation of calcium tetraborate (CTB) on productive performance, oxidative stress, cecal microflora, and histopathological changes in quail exposed to Cd. A total of one hundred twenty, 6-week-old Japanese quail (four females and two males/replicate) were divided into four groups (30 quails/group): the control group (feeding basic diet), CTB group (basic diet containing 300 mg/kg CaB4O7, 22.14% elemental B/kg diet), the Cd group (basic diet containing 100 mg/kg cadmium chloride (CdCl2) (total Cd content of 92.1 mg/kg)) and the CTB + Cd group (basic diet containing 300 mg/kg CTB and 100 mg/kg CdCl2). The results showed that Cd exposure caused decreased performance, increased the proportion of broken and soft-shelled eggs, induced oxidative stress, affected cecal microflora, epicardial hemorrhages in the heart, focal necrosis in the liver, degeneration in the kidneys, and degenerated and necrotic seminiferous tubules in the testicles. CTB prevented Cd-induced oxidative stress in liver tissue by increasing total antioxidant status and reducing total oxidant status. In addition, CTB improved egg production and feed conversion ratio (FCR). CTB protected the cecal microflora by inhibiting Enterobacteriaceae and promoting Lactobacillus. CTB also reduced Cd-induced histopathological damage in the heart, liver, kidneys, and testicles. In conclusion, these findings suggest that CTB could be used in Cd-challenged quail, and this compound provides new insights into the toxicity of environmental Cd.
Collapse
Affiliation(s)
- Muhsin Mutlu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazig 23119, Turkey
| | - Ulku Gulcihan Simsek
- Department of Animal Science, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey
| | - Sera Iflazoglu
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey; TUBITAK Space Technologies Research Institute, Ankara 06800, Turkey
| | - Aysen Yilmaz
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Burak Karabulut
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey
| | - Canan Akdeniz Incili
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey
| | - Aydın Cevik
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey
| | - Gokhan Kursad Incili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazig 23119, Turkey
| | - Pinar Tatli Seven
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey
| | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey.
| |
Collapse
|
16
|
Ji J, Jin W, Liu S, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm (Beijing) 2023; 4:e420. [PMID: 37929014 PMCID: PMC10625129 DOI: 10.1002/mco2.420] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
The gut microbiota and its homeostasis play a crucial role in human health. However, for some diseases related to the gut microbiota, current traditional medicines can only relieve symptoms, and it is difficult to solve the root causes or even cause side effects like disturbances in the gut microbiota. Increasing clinical studies and evidences have demonstrated that probiotics, prebiotics, and postbiotics can prevent and treat various diseases, but currently they can only be used as dietary supplements rather than medicines, which restricts the application of probiotics in the field of medicine. Here, this review analyzes the importance of gut microbiota in human health and the current problems of traditional medicines, and systematically summarizes the effectiveness and mechanisms of probiotics, prebiotics, and postbiotics in maintaining health and treating diseases based on animal models and clinical trials. And based on current research outcomes and development trends in this field, the challenges and prospects of their clinical application in maintaining health, alleviating and treating diseases are analyzed. It is hoped to promote the application of probiotics, prebiotics, and postbiotics in disease treatment and open up new frontiers in probiotic research.
Collapse
Affiliation(s)
- Jing Ji
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Weilin Jin
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityThe First Clinical Medical College of Lanzhou UniversityLanzhouGansuChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zuoyi Jiao
- Cuiying Biomedical Research CenterThe Second Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
17
|
Tang B, Xue KS, Wang JS, Williams PL, Tang L. Bacteria pyruvate metabolism modulates AFB 1 toxicity in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165809. [PMID: 37506907 DOI: 10.1016/j.scitotenv.2023.165809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Aflatoxin B1 (AFB1), the most potent mycotoxin and Group 1 human carcinogen, continues to pose a significant public health burden, particularly in developing countries. Increasing evidence has shown the gut microbiota as a key mediator of AFB1 toxicity through multiple interactive host-microbiota activities. In our previous study we observed that disturbances in bacterial pyruvate metabolism might have a significant impact on AFB1 in the host. To further investigate the impact of the pyruvate pathway on AFB1 toxicity in C. elegans, we engineered two bacterial strains (triple-overexpressed and triple-knockout strains with aceB, lpd, and pflB). Additionally, we employed two mutant worm strains (pyk-1 and pdha-1 mutants) known to affect pyruvate metabolism. Our results revealed that the co-metabolism of pyruvate by the host and bacterial strains synergistically influences AFB1 toxicity. Remarkable, we found that bacterial pyruvate metabolism, rather than that of the host, plays a pivotal role in modulating AFB1 toxicity in C. elegans. Our study sheds light on the role of gut microbiota involved in pyruvate metabolism in influencing AFB1 toxicity in C. elegans.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Phillip L Williams
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Lin J, Liang T, Huang Y, Zuo C, Wang D, Liu Y. Co-occurrence of Mycotoxin-Induced Hepatotoxicity in Mice Inhibited by Lycopene: Mitochondrial Impairment and Early Hepatic Fibrosis. Mol Nutr Food Res 2023; 67:e2200671. [PMID: 37485620 DOI: 10.1002/mnfr.202200671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/22/2023] [Indexed: 07/25/2023]
Abstract
SCOPE Mycotoxins co-contamination of agricultural products poses a serious threat to human and animal health, especially hepatic dysfunction. Zearalenone (ZEN), deoxynivalenol (DON), and aflatoxin B1 (AFB1) are three commonly co-occurring mycotoxins. This study is to determine whether lycopene (LYC) can alleviate hepatic toxicity induced by the co-occurrence of ZEN, DON, and AFB1 in mice. METHODS AND RESULTS Eighty 6-week-old male ICR mice are divided into four groups: CON group (solvent control), LYC group (10 mg kg-1 LYC), Co-M group (10 mg kg-1 ZEN + 1 mg kg-1 DON + 0.5 mg kg-1 AFB1), and LYC+Co-M group (10 mg kg-1 LYC + 10 mg kg-1 ZEN + 1 mg kg-1 DON + 0.5 mg kg-1 AFB1). The results show that LYC can suppress the co-occurrence of mycotoxin-induced mitochondrial swelling and vacuolization accompanied by dysregulation of indices of mitochondrial dynamics (Mitofusin 1 (Mfn1), Mfn2, Optic atrophy 1 (Opa1), Dynamin-related protein 1 (Drp1), Fission 1 (Fis1) at the mRNA level; DRP1 and FIS1 at the protein level). LYC effectively inhibits co-occurrence of mycotoxin-induced activation of Cytochrome P450 2E1, and early fibrosis, as determined by staining with Masson's trichrome and α-SMA protein. CONCLUSION LYC successfully attenuates early hepatic fibrosis mainly through antioxidant activities and prevented mitochondrial injury.
Collapse
Affiliation(s)
- Jia Lin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tianzeng Liang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yang Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Cuige Zuo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
20
|
Zhao W, Chen Y, Tian Y, Wang Y, Du J, Ye X, Lu L, Sun C. Dietary supplementation with Dendrobium officinale leaves improves growth, antioxidant status, immune function, and gut health in broilers. Front Microbiol 2023; 14:1255894. [PMID: 37789853 PMCID: PMC10544969 DOI: 10.3389/fmicb.2023.1255894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Background The Dendrobium officinale leaves (DOL) is an underutilized by-product with a large biomass, which have been shown to exhibit immunomodulatory and antioxidant functions. The purpose of this research was to investigate the effects of DOL on broiler growth performance, antioxidant status, immune function, and gut health. Methods One hundred and ninety-two 1-day-old chicks were selected and divided into 4 groups at random, 6 replicates for each group and 8 in each. Chicks were given a basal diet supplemented with different amounts of DOL: 0% (control group, NC), 1% (LD), 5% (MD), or 10% (HD). During the feeding trial (70 days), broiler body weight, feed intake, and residual feeding were recorded. On d 70, 12 broilers from each group were sampled for serum antioxidant and immune indexes measurement, intestinal morphological analysis, as well as 16S rRNA sequencing of cecal contents and short-chain fatty acid (SCFA) determination. Results In comparison to the NC group, the LD group had greater final body weight and average daily gain, and a lower feed conversion ratio (p < 0.05, d 1 to 70). However, in MD group, no significant change of growth performance occurred (p > 0.05). Furthermore, DOL supplementation significantly improved the levels of serum total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase, but reduced the level of malondialdehyde (p < 0.05). Higher serum immunoglobulin A (IgA) content and lower cytokine interleukin-2 (IL-2) and IL-6 contents were observed in DOL-fed broilers than in control chickens (p <0.05). Compared to the NC group, duodenal villus height (VH) and villus height-to-crypt depth (VH:CD) ratio were considerably higher in three DOL supplementation groups (p < 0.05). Further, 16S rRNA sequencing analysis revealed that DOL increased the diversity and the relative abundance of cecal bacteria, particularly helpful microbes like Faecalibacterium, Lactobacillus, and Oscillospira, which improved the production of SCFA in cecal content. According to Spearman correlation analysis, the increased butyric acid and acetic acid concentrations were positively related to serum antioxidant enzyme activities (T-AOC and GSH-Px) and immunoglobulin M (IgM) level (p < 0.05). Conclusion Overall, the current study demonstrated that supplementing the dies with DOL in appropriate doses could enhance growth performance, antioxidant capacity, and immune response, as well as gut health by promoting intestinal integrity and modulating the cecal microbiota in broilers. Our research may serve as a preliminary foundation for the future development and application of DOL as feed additive in broiler chicken diets.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Jianke Du
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Xuan Ye
- Zhejiang Xianju Breeding Chicken Farm, Xianju, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
21
|
Hattab J, Marruchella G, Sibra A, Tiscar PG, Todisco G. Canaries' Microbiota: The Gut Bacterial Communities along One Female Reproductive Cycle. Microorganisms 2023; 11:2289. [PMID: 37764133 PMCID: PMC10537324 DOI: 10.3390/microorganisms11092289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Investigations of bacterial communities are on the rise both in human and veterinary medicine. Their role in health maintenance and pathogenic mechanisms is in the limelight of infectious, metabolic, and cancer research. Among the most considered, gut bacterial communities take the cake. Their part in animals was assessed mainly to improve animal production, public health, and pet management. In this regard, canaries deserve attention, being a popular pet and source of economic income for bird-keepers, for whom breeding represents a pivotal point. Thus, the present work aimed to follow gut bacterial communities' evolution along on whole reproductive cycle of 12 healthy female canaries. Feces were collected during parental care, molting, and resting phase, and submitted for 16S rRNA sequencing. Data were analyzed and a substantial presence of Lactobacillus aviarius along all the phases, and a relevant shift of microbiota during molting and rest due to an abrupt decrease of the Vermiphilaceae family were detected. Although the meaning of such change is not clear, future research may highlight unforeseen scenarios. Moreover, Lactobacillus aviarius may be deemed for normal bacteria flora restoration in debilitated birds, perhaps improving their health and productivity.
Collapse
Affiliation(s)
- Jasmine Hattab
- Department of Veterinary Medicine, University of Teramo, SP18 Piano d’Accio, 64100 Teramo, Italy; (J.H.); (G.M.)
| | - Giuseppe Marruchella
- Department of Veterinary Medicine, University of Teramo, SP18 Piano d’Accio, 64100 Teramo, Italy; (J.H.); (G.M.)
| | - Alessandra Sibra
- APHA—Animal & Plant Health Agency, Building 1, Sevington Inland Border Facility, Ashford TN25 6GE, UK;
| | - Pietro Giorgio Tiscar
- Department of Veterinary Medicine, University of Teramo, SP18 Piano d’Accio, 64100 Teramo, Italy; (J.H.); (G.M.)
| | | |
Collapse
|
22
|
Zhang J, Fang Y, Fu Y, Jalukar S, Ma J, Liu Y, Guo Y, Ma Q, Ji C, Zhao L. Yeast polysaccharide mitigated oxidative injury in broilers induced by mixed mycotoxins via regulating intestinal mucosal oxidative stress and hepatic metabolic enzymes. Poult Sci 2023; 102:102862. [PMID: 37419049 PMCID: PMC10466245 DOI: 10.1016/j.psj.2023.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023] Open
Abstract
This study was aimed to investigate the effects of yeast polysaccharides (YPS) on growth performance, intestinal health, and aflatoxin metabolism in livers of broilers fed diets naturally contaminated with mixed mycotoxins (MYCO). A total of 480 one-day-old Arbor Acre male broilers were randomly allocated into a 2 × 3 factorial arrangement of treatments (8 replicates with 10 birds per replicate) for 6 wk to assess the effects of 3 levels of YPS (0, 1, or 2 g/kg) on the broilers fed diets contaminated with or without MYCO (95 μg/kg aflatoxin B1, 1.5 mg/kg deoxynivalenol, and 490 μg/kg zearalenone). Results showed that mycotoxins contaminated diets led to significant increments in serum malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, mRNA expressions of TLR4 and 4EBP1 associated with oxidative stress, mRNA expressions of CYP1A1, CYP1A2, CYP2A6, and CYP3A4 associated with hepatic phase Ⅰ metabolizing enzymes, mRNA expressions of p53 associated with hepatic mitochondrial apoptosis, and AFB1 residues in the liver (P < 0.05); meanwhile dietary MYCO decreased the jejunal villus height (VH), villus height/crypt depth (VH/CD), the activity of serum total antioxidant capacity (T-AOC), mRNA expressions of jejunal HIF-1α, HMOX, and XDH associated with oxidative stress, mRNA expressions of jejunal CLDN1, ZO1, and ZO2, and mRNA expression of GST associated with hepatic phase Ⅱ metabolizing enzymes of broilers (P < 0.05). Notably, the adverse effects induced by MYCO on broilers were mitigated by supplementation with YPS. Dietary YPS supplementation reduced the concentrations of serum MDA and 8-OHdG, jejunal CD, mRNA expression of jejunal TLR2, and 4EBP1, hepatic CYP1A2, and p53, and the AFB1 residues in the liver (P < 0.05), and elevated the serum T-AOC and SOD, jejunal VH, and VH/CD, and mRNA expression of jejunal XDH, hepatic GST of broilers (P < 0.05). There were significant interactions between MYCO and YPS levels on the growth performance (BW, ADFI, ADG, and F/G) at d 1 to 21, d 22 to 42, and d 1 to 42, serum GSH-Px activity, and mRNA expression of jejunal CLDN2 and hepatic ras of broilers (P < 0.05). In contrast with MYCO group, the addition of YPS increased BW, ADFI, and ADG, the serum GSH-Px activity (14.31%-46.92%), mRNA levels of jejunal CLDN2 (94.39%-103.02%), decreased F/G, and mRNA levels of hepatic ras (57.83%-63.62%) of broilers (P < 0.05). In conclusion, dietary supplements with YPS protected broilers from mixed mycotoxins toxicities meanwhile keeping normal performance of broilers, presumably via reducing intestinal oxidative stress, protecting intestinal structural integrity, and improving hepatic metabolic enzymes to minimize the AFB1 residue in the liver and enhance the performance of broilers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yong Fang
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sangita Jalukar
- Arm and Hammer Animal and Food Production, Mason City, IA 50401, USA
| | - Jinglin Ma
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Guo
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Xu X, Chang J, Wang P, Liu C, Liu M, Zhou T, Yin Q, Yan G. Combination of glycyrrhizic acid and compound probiotics alleviates deoxynivalenol-induced damage to weaned piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114901. [PMID: 37054475 DOI: 10.1016/j.ecoenv.2023.114901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Deoxynivalenol (DON) can affect health and growth performance of pigs, resulting in significant economic losses in swine production. The aim of this study was to investigate the effect of glycyrrhizic acid combined with compound probiotics, i.e. Enterococcus faecalis plus Saccharomyces cerevisiae (GAP) on improving growth performance, intestinal health and its fecal microbiota composition change of piglets challenged with DON. A total of 160 42-day-old weaned piglets (Landrace × Large White) were used and the experimental period was 28 d. The results showed that supplementing GAP in the diet significantly improved the growth performance of piglets challenged with DON and alleviate DON-induced intestinal damage by reducing ALT, AST and LDH concentrations in serum, increasing the morphological parameters of jejunum, and decreasing DON residues in serum, liver and feces. Moreover, GAP could significantly decrease the expressions of inflammation and apoptosis genes and proteins (IL-8, IL-10, TNF-α, COX-2, Bax, Bcl-2 and Caspase 3), and increase the expressions of tight-junction proteins and nutrient transport factor genes and proteins (ZO-1, Occludin, Claudin-1, ASCT2 and PePT1). In addition, it was also found that GAP supplementation could significantly increase the diversity of gut microbiota, maintain microbial flora balance and promote piglet growth by significantly increasing the abundance of beneficial bacterium such as Lactobacillus and reducing the abundance of harmful bacterium such as Clostridium_sensu_stricto_1. In conclusion, GAP addition to piglet diets contaminated with DON could significantly promote the health and growth performance of piglets though alleviating DON-induced hazards. This study provided a theoretical basis for the application of GAP to alleviate DON toxicity for animals.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengjie Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph N1G 5C9, ON, Canada
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guorong Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
24
|
Tang B, Xue KS, Wang JS, Williams PL, Tang L. Host-microbiota affects the toxicity of Aflatoxin B 1 in Caenorhabditis elegans. Food Chem Toxicol 2023; 176:113804. [PMID: 37120088 DOI: 10.1016/j.fct.2023.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Aflatoxins are a group of potent fungal metabolites produced by Aspergillus and commonly contaminate groundnuts and cereal grains. Aflatoxin B1 (AFB1), the most potent mycotoxin, has been classified as Group 1 human carcinogen because it can be metabolically activated by the cytochrome P450 (CYP450) in the liver to form AFB1-DNA adducts and induce gene mutations. Increasing evidence has shown the gut microbiota as a key mediator of AFB1 toxicity through multiple interactive host-microbiota activities. To identify specific bacterial activity that modulates AFB1 toxicity in Caenorhabditis (C.) elegans, we established a 3-way (microbe-worm-chemical) high-throughput screening system using C. elegans fed E. coli Keio collection on an integrated robotic platform, COPAS Biosort. We performed 2-step screenings using 3985 Keio mutants and identified 73 E. coli mutants that modulated C. elegans growth phenotype. Four genes (aceA, aceB, lpd, and pflB) involved in the pyruvate pathway were identified from the screening and confirmed to increase the sensitivity of all animals to AFB1. Taking together, our results indicated that disturbances in bacterial pyruvate metabolism might have a significant impact on AFB1 toxicity in the host.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Phillip L Williams
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
25
|
Tao W, Zhu W, Nabi F, Li Z, Liu J. Penthorum chinense Pursh compound flavonoids supplementation alleviates Aflatoxin B1-induced liver injury via modulation of intestinal barrier and gut microbiota in broiler. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114805. [PMID: 36958264 DOI: 10.1016/j.ecoenv.2023.114805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is a commonly occurring toxicant in animal and human diets, leading to hazardous effects on health. AFB1 is known to be a hepato-toxicant, and the intestinal barrier may play a crucial role in reversing AFB1-induced liver injury. This study aimed to optimize the extraction conditions of Penthorum chinense Pursh Compound Flavonoids (PCPCF) by the response surface method with a Box-Behnken design and investigate the effects of PCPCF on AFB1-induced liver injury in broilers. A total of 164 one-day-old broilers were divided into seven groups, including Control, PCPCF (400 mg PCPCF/kg feed), AFB1 (3 mg AFB1/kg feed), and YCHT (Yin-Chen-Hao-Tang extract, 3 mg AFB1 +10 mL YCHT/kg feed) and low, medium, and high dose groups (PCPCF at 3 mg AFB1 +200, 400, 600 mg respectively). Samples of serum, liver, duodenum, and cecum contents were collected at 14th and 28th days for further analysis. The results showed that the maximum extraction rate of PCPCF was 8.15 %. PCPCF was rich in rutin, quercetin, liquiritin and kaempferol, and significantly inhibited the growth of Aspergillus flavus. The addition of PCPCF improved the growth performance of AFB1-injury broilers, modulated liver function, and increased serum immunoglobulin levels. PCPCF also alleviated liver pathological and oxidative stress damages caused by AFB1 and decreased AFB1-DNA and AFB1-lysine content in the liver. Furthermore, PCPCF supplementation ameliorated intestinal pathological damage, improved intestinal permeability of duodenum in the AFB1-induced broilers, and repaired the intestinal mucosal and mechanical barrier associated with the Notch signaling pathway. Meanwhile, PCPCF improved the intestinal flora structure of AFB1-damaged broilers and increased the abundance of beneficial bacteria. In conclusion, PCPCF ameliorated the adverse effects of AFB1 on growth performance and alleviated liver damage by repairing the intestinal barrier and improving intestinal health of broiler chicken.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Wenyan Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
26
|
Zhu F, Zhu L, Xu J, Wang Y, Wang Y. Effects of moldy corn on the performance, antioxidant capacity, immune function, metabolism and residues of mycotoxins in eggs, muscle, and edible viscera of laying hens. Poult Sci 2023; 102:102502. [PMID: 36739801 PMCID: PMC9932114 DOI: 10.1016/j.psj.2023.102502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON), are common contaminants of moldy feeds. Mycotoxins can cause deleterious effects on the health of chickens and can be carried over in poultry food products. This study was conducted to investigate the effects of moldy corn (containing AFB1, ZEN, and DON) on the performance, health, and mycotoxin residues of laying hens. One hundred and eighty 400-day-old laying hens were divided into 4 treatments: basal diet (Control), basal diet containing 20% moldy corn (MC20), 40% moldy corn (MC40) and 60% moldy corn (MC60). At d 20, 40, and 60, the performance, oxidative stress, immune function, metabolism, and mycotoxin residues in eggs were determined. At d 60, mycotoxin residues in muscle and edible viscera were measured. Results showed the average daily feed intake (ADFI) and laying performance of laying hens were decreased with moldy corn treatments. All the moldy corn treatments also induced significant oxidative stress and immunosuppression, reflected by decreased antioxidase activities, contents of cytokines, immunoglobulins, and increased malonaldehyde level. Moreover, the activities of aspartate aminotransferase and alanine transaminase were increased by moldy corn treatments. The lipid metabolism was influenced in laying hens receiving moldy corn, reflected by lowered levels of total protein, high density lipoprotein cholesterol, low density lipoprotein cholesterol, total cholesterol, and increased total triglyceride as well as uric acid. The above impairments were aggravated with the increase of mycotoxin levels. Furthermore, AFB1 and ZEN residues were found in eggs, muscle, and edible viscera with moldy corn treatments, but the residues were below the maximum residue limits. In conclusion, moldy corn impaired the performance, antioxidant capacity, immune function, liver function, and metabolism of laying hens at d 20, 40, and 60. Moldy corn also led to AFB1 residue in eggs at d 20, 40, and 60, and led to both AFB1 and ZEN residues in eggs at days 40 and 60, and in muscle and edible viscera at d 60. The toxic effects and mycotoxin residues were elevated with the increase of moldy corn levels in feed.
Collapse
Affiliation(s)
- Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Lianqin Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Jindong Xu
- College of Science and Information, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yuchang Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, P.R. China.
| |
Collapse
|
27
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
28
|
Compound mycotoxin detoxifier alleviating aflatoxin B 1 toxic effects on broiler growth performance, organ damage and gut microbiota. Poult Sci 2022; 102:102434. [PMID: 36586389 PMCID: PMC9811249 DOI: 10.1016/j.psj.2022.102434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to evaluate the effects of compound mycotoxin detoxifier (CMD) on alleviating the toxic effect of aflatoxin B1 (AFB1) for broiler growth performance. One-kilogram CMD consists of 667 g aflatoxin B1-degrading enzyme (ADE, 1,467 U/g), 200 g montmorillonite and 133 g compound probiotics (CP). The feeding experiment was divided into 2 stages (1-21 d and 22-42 d). In the early stage, a total of 300 one-day-old Ross broilers were randomly divided into 6 groups, 5 replications for each group, 10 broilers (half male and half female) in each replication. In the later feeding stage, about 240 twenty-two-day-old Ross broilers were randomly divided into 6 groups, 8 replications for each group, 5 broilers in each replication. Group A: basal diet; group B: basal diet with 40 μg/kg AFB1; group C: basal diet with 1 g/kg CMD; groups D, E, and F: basal diet with 40 μg/kg AFB1 plus 0.5, 1.0 and 1.5 g/kg CMD, respectively. The results indicated that AFB1 significantly decreased average daily gain (ADG), protein metabolic rate, organ index of thymus, bursa of Fabricius (BF), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase activities in serum, and increased AFB1 residues in serum and liver (P < 0.05). Hematoxylin-Eosin (HE) staining analysis of jejunum, liver and kidney showed that AFB1 caused the main pathological changes with different degrees of inflammatory cell infiltration. However, CMD additions could alleviate the negative effects of AFB1 on the above parameters. The gut microbiota analysis indicated that AFB1 could significantly increase the abundances of Staphylococcus-xylosu, Esherichia-coli-g-Escherichia-Shigella, and decrease Lactobacillus-aviarius abundance (P < 0.05), but which were adjusted to almost the same levels as the control group by CMD addition. The correlative analysis showed that Lactobacillus-aviarius abundance was positively correlated with ADG, SOD and BF (P < 0.05), whereas Staphylococcus-xylosus abundance was positively correlated with AFB1 residues in serum and liver (P < 0.05). In conclusion, CMD could keep gut microbiota stable, alleviate histological lesions, increase growth performance, and reduce mycotoxin toxicity. The optimal CMD addition should be 1 g/kg in AFB1-contaminated broilers diet.
Collapse
|
29
|
Maximizing Laboratory Production of Aflatoxins and Fumonisins for Use in Experimental Animal Feeds. Microorganisms 2022; 10:microorganisms10122385. [PMID: 36557638 PMCID: PMC9786054 DOI: 10.3390/microorganisms10122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Warm and humid climatic conditions coupled with poor agricultural practices in sub-Saharan Africa favor the contamination of food and feed by Aspergillus flavus and Fusarium verticillioides fungi, which subsequently may produce aflatoxins (AFs) and fumonisins (FBs), respectively. The growth of fungi and the production of mycotoxins are influenced by physical (temperature, pH, water activity, light and aeration), nutritional, and biological factors. This study aimed at optimizing the conditions for the laboratory production of large quantities of AFs and FBs for use in the animal experiments. A. flavus and F. verticillioides strains, previously isolated from maize in Kenya, were used. Levels of AFB1 and total FBs (FB1, FB2, and FB3) in different growth substrates were screened using ELISA methods. Maize kernels inoculated with three different strains of A. flavus simultaneously and incubated at 29 °C for 21 days had the highest AFB1 level of 12,550 ± 3397 μg/kg of substrate. The highest level of total FBs (386,533 ± 153,302 μg/kg of substrate) was detected in cracked maize inoculated with three different strains of F. verticillioides and incubated for 21 days at temperatures of 22-25 °C in a growth chamber fitted with yellow light. These two methods are recommended for the mass production of AFB1 and FBs for animal feeding trials.
Collapse
|
30
|
Wu K, Jia S, Xue D, Rajput SA, Liu M, Qi D, Wang S. Dual effects of zearalenone on aflatoxin B1-induced liver and mammary gland toxicity in pregnant and lactating rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114115. [PMID: 36179448 DOI: 10.1016/j.ecoenv.2022.114115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Food and feed are frequently co-contaminated with aflatoxin B1 (AFB1) and zearalenone (ZEN). This study investigated the effects of ZEN on the AFB1-induced liver and mammary gland toxicity in pregnant and lactating rats. AFB1 and ZEN co-exposure inhibited the growth of rats and caused oxidative stress and inflammatory responses in the liver and mammary gland. Compared with the AFB1-only group, damage was aggravated in the AFB1 + 10 mg/kg ZEN group, and the AFB1 + 1 mg/kg ZEN group showed a reduction in some metrics. The metabolomic results of the mammary gland showed that metabolite changes were mainly in lipid, amino acid, and glucose metabolism. Compared with the AFB1 + 0 mg/kg ZEN group, the AFB1 + 1 mg/kg ZEN group had the most metabolite changes. Moreover, AFB1 and ZEN co-exposure reduced the levels of sex hormones and RNA m6A methylation in the mammary gland. We speculate that ZEN affects the toxicity of AFB1 to the liver and mammary gland by interfering with the function of sex hormones, regulating cell proliferation and metabolic processes.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sifan Jia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Minjie Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Zoghi A, Todorov SD, Khosravi-Darani K. Potential application of probiotics in mycotoxicosis reduction in mammals and poultry. Crit Rev Toxicol 2022; 52:731-741. [PMID: 36757083 DOI: 10.1080/10408444.2023.2168176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mycotoxins in feedstuffs are considered as a principal worry by food safety authorities worldwide because most of them can be transferred from the feed to food commodities of animal origin, and further consumed by humans. Therefore, effective alternatives for the reduction of the impact of mycotoxins need to be applied in the feed production industry. Applications of beneficial microorganisms (probiotics) can be alternative and applied as feed additives in order to reduce or eliminate the toxic effects of mycotoxins on animals. The aim of this article is to provide information on the role of beneficial microorganisms (probiotics) and point out their role in the reduction of the effect of mycotoxin toxicity in farming animals (mammals and poultry). The objective was to provide a summary of the existing knowledge based on the application of different strains belonging to the group of lactic acid bacteria (LAB) or yeasts that are already or can be future employed in the feed industry, in order to reduce mycotoxicosis presence in mammals and poultry exposed to mycotoxin-contaminated feed. Moreover, an overview of mycotoxins toxicity in mammals and poultry will be presented, and furthermore, the role of the beneficial microorganisms (including probiotics) in the reduction of mycotoxins toxicity (aflatoxicosis, deoxynivalenol, zearalenone, ochratoxin A, and fumonisin toxicities) will be described in detail.
Collapse
Affiliation(s)
- Alaleh Zoghi
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Svetoslav Dimitrov Todorov
- Department of Advanced Convergence, ProBacLab, Handong Global University, Pohang, Gyeongbuk, Republic of Korea
| | - Kianoush Khosravi-Darani
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Effects of Compound Mycotoxin Detoxifier on Alleviating Aflatoxin B 1-Induced Inflammatory Responses in Intestine, Liver and Kidney of Broilers. Toxins (Basel) 2022; 14:toxins14100665. [PMID: 36287934 PMCID: PMC9609892 DOI: 10.3390/toxins14100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
In order to alleviate the toxic effects of aflatoxins B1 (AFB1) on inflammatory responses in the intestine, liver, and kidney of broilers, the aflatoxin B1-degrading enzyme, montmorillonite, and compound probiotics were selected and combined to make a triple-action compound mycotoxin detoxifier (CMD). The feeding experiment was divided into two stages. In the early feeding stage (1−21 day), a total of 200 one-day-old Ross broilers were randomly divided into four groups; in the later feeding stage (22−42 day), 160 broilers aged at 22 days were assigned to four groups: Group A: basal diet (4.31 μg/kg AFB1); Group B: basal diet with 40 μg/kg AFB1; Group C: Group A plus 1.5 g/kg CMD; Group D: Group B plus 1.5 g/kg CMD. After the feeding experiment, the intestine, liver, and kidney tissues of the broilers were selected to investigate the molecular mechanism for CMD to alleviate the tissue damages. Analyses of mRNA abundances and western blotting (WB) of inflammatory factors, as well as immunohistochemical (IHC) staining of intestine, liver, and kidney tissues showed that AFB1 aggravated the inflammatory responses through NF-κB and TN-α signaling pathways via TLR pattern receptors, while the addition of CMD significantly inhibited the inflammatory responses. Phylogenetic investigation showed that AFB1 significantly increased interleukin-1 receptor-associated kinase (IRAK-1) and mitogen-activated protein kinase (MAPK) activities (p < 0.05), which were restored to normal levels by CMD addition, indicating that CMD could alleviate cell inflammatory damages induced by AFB1.
Collapse
|
33
|
Yuan T, Li J, Wang Y, Li M, Yang A, Ren C, Qi D, Zhang N. Effects of Zearalenone on Production Performance, Egg Quality, Ovarian Function and Gut Microbiota of Laying Hens. Toxins (Basel) 2022; 14:toxins14100653. [PMID: 36287922 PMCID: PMC9610152 DOI: 10.3390/toxins14100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) is a ubiquitous contaminant in poultry feed, since ZEN and its metabolites can interfere with estrogen function and affect the reproductive ability of animals. The estrogen-like effect of ZEN on mammal is widely reported, while little information is available, regarding the effect of relatively low dose of ZEN on estrogen function and production performance of laying hens, and the relationship between them. This work was aimed to investigate the effects of ZEN on the production performance, egg quality, ovarian function and gut microbiota of laying hens. A total of 96 Hy-line brown laying hens aged 25-week were randomly divided into 3 groups including basal diet group (BD group), basal diet supplemented with 250 μg/kg (250 μg/kg ZEN group) and 750 μg/kg (750 μg/kg ZEN group) ZEN group. Here, 750 μg/kg ZEN resulted in a significant increase in the feed conversion ratio (FCR) (g feed/g egg) (p < 0.05), a decrease in the egg production (p > 0.05), albumen height and Haugh unit (p > 0.05), compared to the BD group. The serum Follicle-stimulating hormone (FSH) levels significantly decreased in ZEN supplemented groups (p < 0.05). Serum Luteinizing hormone (LH) and Progesterone (P) levels in the 750 μg/kg ZEN group were significantly lower than those in the BD group (p < 0.05). 16S rRNA sequencing indicated that ZEN reduced cecum microbial diversity (p < 0.05) and altered gut microbiota composition. In contrast to 250 μg/kg ZEN, 750 μg/kg ZEN had more dramatic effects on the gut microbiota function. Spearman’s correlation analysis revealed negative correlations between the dominant bacteria of the 750 μg/kg ZEN group and the production performance, egg quality and ovarian function of hens. Overall, ZEN was shown to exert a detrimental effect on production performance, egg quality and ovarian function of laying hens in this study. Moreover, alterations in the composition and function of the gut microbiota induced by ZEN may be involved in the adverse effects of ZEN on laying hens.
Collapse
|
34
|
Olmo R, Wetzels SU, Armanhi JSL, Arruda P, Berg G, Cernava T, Cotter PD, Araujo SC, de Souza RSC, Ferrocino I, Frisvad JC, Georgalaki M, Hansen HH, Kazou M, Kiran GS, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Mitter B, Nielsen MO, Olivares M, Quijada NM, Romaní-Pérez M, Sanz Y, Schloter M, Schmitt-Kopplin P, Seaton SC, Selvin J, Sessitsch A, Wang M, Zwirzitz B, Selberherr E, Wagner M. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Front Microbiol 2022; 13:834622. [PMID: 35903477 PMCID: PMC9315449 DOI: 10.3389/fmicb.2022.834622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Rocío Olmo,
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jaderson Silveira Leite Armanhi
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Paul D. Cotter
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Solon Cordeiro Araujo
- SCA, Consultoria em Microbiologia Agrícola, Campinas, Brazil
- Brazil National Association of Inoculant Producers and Importers (ANPII), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Tanja Kostic
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Aicha Kriaa
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| | - Emmanuelle Maguin
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mette Olaf Nielsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Narciso Martín Quijada
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joseph Selvin
- School of Life Sciences, Pondicherry University, Puducherry, India
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
35
|
Zhang Z, Zhang Q, Li M, Xu J, Wang J, Li M, Wei L, Lv Q, Chen X, Wang Y, Liu Y. SeMet attenuates AFB1-induced intestinal injury in rabbits by activating the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113640. [PMID: 35597141 DOI: 10.1016/j.ecoenv.2022.113640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the role of selenomethionine (SeMet) in alleviating AFB1 induced intestinal injury by inhibiting intestinal oxidative stress. Forty 35-day-old rabbits were divided randomly into 4 groups (control group, AFB1 group, 0.2 mg/kg Se + AFB1 group, 0.4 mg/kg Se + AFB1 group). From the first day of the experiment, the two treatment groups were fed 0.2 mg/kg SeMet or 0.4 mg/kg SeMet daily for 21 days. On the 17th day, all rabbits in the model group and the two treatment groups were given intragastric AFB1 daily for 5 days. The ADG, ADFI and FCR of the rabbits were examined. Rabbit jejunum tissue was collected for hematoxylin- eosin staining (HE), PCNA detection, immunofluorescence and WB. Intestinal tissue IL-1β, IL-6 and TNF-α were examined by enzyme-linked immunosorbent assay (ELISA). The results showed that the production performance was decreased, the levels of ROS and MDA were increased in intestinal tissues, the activity of antioxidant enzymes was decreased and the expression levels of Nrf2 and HO-1 were decreased in AFB1-exposed rabbits. In addition, AFB1 induces an inflammatory response in the jejunum and promotes the expression of TNF-α, IL-6 and IL-1β. SeMet pretreatment significantly improved the performance of the rabbits, alleviated intestinal oxidative stress and the inflammatory response. Therefore, we confirmed that SeMet protects against AFB1 induced oxidative damage and improves productivity in rabbits by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Monan Li
- The School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jingyi Xu
- College of Animal Science and Technology, China
| | | | - Mengyun Li
- College of Animal Science and Technology, China
| | - Lan Wei
- College of Animal Science and Technology, China
| | - Qiongxia Lv
- College of Animal Science and Technology, China
| | | | - Yuqin Wang
- College of Animal Science and Technology, China
| | - Yumei Liu
- College of Animal Science and Technology, China.
| |
Collapse
|
36
|
Yang S, Xiong Z, Xu T, Peng C, Hu A, Jiang W, Xiong Z, Wu Y, Yang F, Cao H. Compound probiotics alleviate cadmium-induced intestinal dysfunction and microbiota disorders in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113374. [PMID: 35272191 DOI: 10.1016/j.ecoenv.2022.113374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd), a common environmental pollutant, seriously threatens the health of intestine. This research aimed to investigate the effects of compound probiotics (CP) on intestinal dysfunction and cecal microbiota dysregulation induced by Cd in broilers. A total of 240 1-day-old Arbor Acre (AA) broilers were randomly assigned to four groups. After 120 days of feeding, the jejunum tissues and cecal contents were sampled for jejunum histopathological observation, the intestinal barrier and inflammatory factors related mRNA and proteins examinations, and intestinal microbiota analysis. The results showed that Cd could cause jejunal villus damage and inflammatory cells infiltration, down-regulate the mRNA levels of intestinal barrier related genes (ZO-1, ZO-2, ZO-3, Claudin1, Claudin3, Claudin4, Occludin, and E-cadherin) and inflammatory factor related genes (IL-1β, IL-18, IFN-γ, NF-κB), and the protein levels of Claudin1, ZO-1, Occludin, but up-regulate the Claudin2, IL-2, IL-4 and IL-10 mRNA levels. However, the addition of CP could effectively improve these changes. In addition, 16S rRNA gene sequencing analysis showed that compared with the Cd group, supplementation CP increased the abundance of Lactobacillales, Clostridiales, Firmicutes, together with regulations on the pathways responsible for energy metabolism, translation and amino acid metabolism. In conclusion, CP could improve intestinal barrier damage and intestinal microbiota disturbance induced by Cd.
Collapse
Affiliation(s)
- Shuqiu Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic, and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhonghua Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic, and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang 330096, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic, and Technological Development District, Nanchang 330045, Jiangxi, PR China; Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou 545005, Guangxi, PR China
| | - Aiming Hu
- Ji'an Animal Husbandry and Veterinary Bureau, No. 4 Luzhou West Road, Jizhou District, Ji'an City 343000, Jiangxi, PR China
| | - Wenjuan Jiang
- Jiangxi Agricultural Technology Extension Center, Nanchang 330096, Jiangxi, PR China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic, and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yunhui Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic, and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic, and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic, and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
37
|
Yang X, Li F, Ning H, Zhang W, Niu D, Shi Z, Chai S, Shan A. Screening of Pig-Derived Zearalenone-Degrading Bacteria through the Zearalenone Challenge Model, and Their Degradation Characteristics. Toxins (Basel) 2022; 14:toxins14030224. [PMID: 35324721 PMCID: PMC8952410 DOI: 10.3390/toxins14030224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Zearalenone (ZEN) is widely found in food and feed. Its cytotoxicity, reproductive toxicity, genetic toxicity, immunotoxicity and hepatorenal toxicity have serious impacts on human and animal health. In order to help animals avoid ZEN poisoning in feed, ZEN-degrading bacterial strains were screened from fecal samples through a zearalenone challenge pig model, and their degradation characteristics were researched. Through the optimization of parameters such as the culture time, pH value, temperature, and strain concentration, the optimal conditions for the ZEN-degrading ability of these strains were preliminarily determined, and the active site of the ZEN degradation was explored. In this study, three strains (SY-3, SY-14, SY-20) with high ZEN degradation capacities were obtained. SY-3 was identified as Proteus mirabilis, and its main degrading component was the supernatant. SY-14 and SY-20 were identified as Bacillus subtilis. Their main degrading components were the intracellular fluid of SY-14, and the intracellular fluid and cell wall of SY-20. The above results showed that the ZEN challenge model was an effective way to screen ZEN-degrading bacteria.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Feng Li
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Correspondence:
| | - Hangyi Ning
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Wei Zhang
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Dongyan Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Zhuo Shi
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Sa Chai
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Anshan Shan
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| |
Collapse
|
38
|
Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poult Sci 2022; 101:101693. [PMID: 35066384 PMCID: PMC8789536 DOI: 10.1016/j.psj.2021.101693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of the present study was to evaluate the probiotic properties of Bacillus subtilis KC1 as a feed additive in the poultry feed. Effects of the Bacillus subtilis supplementation on growth performance, heat-stress tolerance, resistance to Mycoplasma gallisepticum (MG) and Salmonella Pullorum challenge of broilers were determined. The protective effects of the Bacillus subtilis on liver function and immune response of broilers challenged with Aflatoxin B1 (AFB1) were also scrutinized. The results showed that the Bacillus subtilis supplementation could improve growth performance, increased body weight, relative weight of the immune organ and dressing percentage, and decrease feed conversion ratio. In addition, the Bacillus subtilis supplementation alleviated adverse effects caused by heat stress, MG, and Salmonella Pullorum challenge. Furthermore, the Bacillus subtilis supplementation resulted in improved liver function and enhanced immune response of broilers challenged with AFB1. In conclusion, these results suggested a tremendous potential of Bacillus subtilis KC1 as a feed additive in the poultry feed.
Collapse
|
39
|
Effects of Fumonisin B and Hydrolyzed Fumonisin B on Growth and Intestinal Microbiota in Broilers. Toxins (Basel) 2022; 14:toxins14030163. [PMID: 35324660 PMCID: PMC8954478 DOI: 10.3390/toxins14030163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Fumonisins are mainly produced by Fusarium verticillioides and proliferatum, which causes a variety of toxicities in humans and animals, including fumonisin Bs (FBs) as the main form. After they are metabolized by plants or microorganisms, modified fumonisins are difficult to detect by conventional methods, which result in an underestimation of their contamination level. Fumonisins widely contaminate maize and maize products, especially in broiler feed. As an economically important food, broilers are often adversely affected by mycotoxins, leading to food safety hazards and high economic losses. However, there are few studies regarding the adverse effects of FBs on broiler growth and health, especially modified FBs. Our data shows that after exposure to FBs or hydrolyzed fumonisin Bs (HFBs), the body weight and tissue weight of broilers decreased significantly, especially the testes. Moreover, they significantly affect the intestinal microbiota and the relative abundance of bacteria from phylum-to-species levels, with the differentially affected bacteria mainly belonging to Firmicutes and Proteobacteria. Our findings suggest that both the parent and hydrolyzed FBs could induce growth retardation, tissue damage and the imbalance of intestinal microbiota in broilers. This indicated that the harmful effects of HFBs cannot be ignored during food safety risk assessment.
Collapse
|
40
|
Gao J, Wang R, Liu J, Wang W, Chen Y, Cai W. Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult Sci 2022; 101:101412. [PMID: 34920387 PMCID: PMC8683594 DOI: 10.1016/j.psj.2021.101412] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we prepared a kind of novel microecologics, namely Chinese medicine-probiotic compound microecological preparation (CPCMP), which is composed of 5 traditional Chinese medicine herbs (Galla Chinensis, Andrographis paniculata, Arctii Fructus, Glycyrrhizae Radix, and Schizonepeta tenuifolia) fermented by Aspergillus niger and a kind of compound probiotics (Lactobacillus plantarum A37 and L. plantarum MIII). The effects of the CPCMP in broilers on growth performance, serum parameters, immune function, and intestinal health were investigated. A total of 450 one-day-old male Arbor Acres broilers were randomly divided into 6 treatment groups with 5 replicates, 15 birds per replicate. Treatments consisted of: blank control, CPCMP, positive control, commercial CPCMP, traditional Chinese medicine, and probiotics groups, which were birds fed with basal diet supplemented with no extra additives, 0.2% CPCMP, 0.0035% chlortetracycline, 0.2% commercially available CPCMP, 0.2% fermented traditional Chinese medicines, and 0.2% compound probiotics, respectively. CPCMP obviously increased the average body weight and average daily gain (P < 0.05, compared with any other group) and decreased the feed:gain ratio of broilers (P < 0.05, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Moreover, it significantly increased glutathione peroxidase and secretory immunoglobulin A levels and spleen/bursa indices (P < 0.05 for all, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Villus heights in duodenum, jejunum, and ileum were also elevated by CPCMP treatment (P < 0.05, compared with any other group). Furthermore, CPCMP substantially increased jejunal mRNA levels of occludin and zonula occludens-1 (P < 0.05, compared with the blank control, positive control, or probiotics group) and facilitated the growth and colonization of beneficial cecal bacteria, such as Olsenella, Barnesiella, and Lactobacillus. Overall results show that the CPCMP prepared in our work contributes to improving growth performance, serum parameters, immune function, and intestinal health of broilers and exerts synergistic effects of traditional Chinese medicines and probiotics to some extent. Our findings suggest that CPCMP is a promising antibiotic substitute in the livestock and poultry industry in the future.
Collapse
Affiliation(s)
- Jin Gao
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Rui Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jingxuan Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenling Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
41
|
Liu L, Xie M, Wei D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int J Mol Sci 2022; 23:ijms23031064. [PMID: 35162993 PMCID: PMC8835436 DOI: 10.3390/ijms23031064] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are highly toxic metabolites produced by fungi that pose a huge threat to human and animal health. Contamination of food and feed with mycotoxins is a worldwide issue, which leads to huge financial losses, annually. Decades of research have developed various approaches to degrade mycotoxins, among which the biological methods have been proved to have great potential and advantages. This review provides an overview on the important advances in the biological removal of mycotoxins over the last decade. Here, we provided further insight into the chemical structures and the toxicity of the main mycotoxins. The innovative strategies including mycotoxin degradation by novel probiotics are summarized in an in-depth discussion on potentialities and limitations. We prospected the promising future for the development of multifunctional approaches using recombinant enzymes and microbial consortia for the simultaneous removal of multiple mycotoxins.
Collapse
Affiliation(s)
- Lu Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Mei Xie
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Dong Wei
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Correspondence: ; Tel.: +86-20-8711-3849
| |
Collapse
|
42
|
The Effects of Magnolol Supplementation on Growth Performance, Meat Quality, Oxidative Capacity, and Intestinal Microbiota in Broilers. Poult Sci 2022; 101:101722. [PMID: 35196587 PMCID: PMC8866717 DOI: 10.1016/j.psj.2022.101722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 12/25/2022] Open
|
43
|
Lai Y, Sun M, He Y, Lei J, Han Y, Wu Y, Bai D, Guo Y, Zhang B. Mycotoxins binder supplementation alleviates aflatoxin B 1 toxic effects on the immune response and intestinal barrier function in broilers. Poult Sci 2021; 101:101683. [PMID: 35121530 PMCID: PMC8883060 DOI: 10.1016/j.psj.2021.101683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
This experiment was conducted to evaluate whether a commercial mycotoxins-binder, XL, could effectively attenuate the negative effects of Aflatoxin B1 (AFB1) on growth performance, immunological function, and intestinal health in birds. Two hundred forty 1-day-old Arbor Acres broiler chickens were randomly divided into 4 treatments using a 2 × 2 factorial randomized design with 2 levels of dietary mycotoxins binder (0 or 2g /kg) and 2 AFB1 supplemented levels (0 or 200 μg/kg) from 0 to 42 d. Results showed that AFB1 exposure impaired growth performance by decreasing BWG in 1–21 d and 1–42 d, decreasing FI in 1–21 d, increasing FCR in 1–21 d and 1–42 d (P < 0.05). Broilers fed AFB1- contaminated diet impaired the immune function, as evident by decreasing IgA contents, Newcastle disease antibody titers in serum, and sIgA contents of jejunal mucosa at 21 d (P < 0.05). On the other hand, AFB1 challenge significantly increased the gene expression of proinflammatory factors in spleen at 21 d and liver at 42 d, and significantly decreased claudin-1 expression at 42 d and occludin expression at 21 d, and increased claudin-2 at 21 d in jejunum of broiler chickens (P < 0.05) compared to the basal diet group. Dietary XL supplementation significantly decreased the gene expression of IL-6 in spleen at 21 d and IL-1β in liver at 42 d, cytochrome P450 3A4 (CYP3A4) expression in liver at 21 d of broilers (P < 0.05) compared with the nonsupplemented birds, regardless of AFB1 challenged or not. Inclusion of 2 g/kg XL increased serum ALB at 42 d, IgM and IgA at 42 d, Newcastle disease antibody titer level at 35 d (P < 0.05). Dietary XL addition enhanced intestinal barrier function by increasing the expression of claudin-1 at 21 d and Occludin at 42 d (P < 0.05) in jejunum. Conclusively, 2 g/kg mycotoxins-binder can relieve the toxic effect of AFB1 on broilers.
Collapse
Affiliation(s)
- Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meng Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanming Han
- Trouw Nutrition Amersfoort 773811, The Netherlands
| | - Yuanyuan Wu
- Trouw Nutrition Amersfoort 773811, The Netherlands
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Chen X, Ishfaq M, Wang J. Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella Pullorum infection resistance of broilers challenged with Aflatoxin B1. Poult Sci 2021; 101:101651. [PMID: 34999537 PMCID: PMC8753273 DOI: 10.1016/j.psj.2021.101651] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. It has been reported that dietary exposure to AFB1 is related to the low growth performance, immunosuppression, and high susceptibility to infectious diseases of chickens. The aim of the present study was to evaluate the protective effects of Lactobacillus salivarius on broiler chickens challenged with AFB1. First, AFB1 degradation ability of Lactobacillus salivarius was measured by a high-performance liquid chromatography (HPLC) method. Then, the Arbor Acres broiler chickens were randomly assigned to experimental groups. The effects of Lactobacillus salivarius supplementation on the growth performance, liver function, and meat quality were measured, and immune response was also determined after vaccination with attenuated infectious bursal disease virus (IBDV) vaccine of broilers challenged with AFB1. Besides, resistance to Salmonella Pullorum infection along with AFB1 exposure was determined in broilers. The results showed that Lactobacillus salivarius could effectively degrade AFB1. Lactobacillus salivarius supplementation improved growth performance, liver function, and meat quality of broilers challenged with AFB1. In addition, Lactobacillus salivarius supplementation resulted in enhanced specific antibody and IFN-γ production, and lymphocyte proliferation in broilers challenged with AFB1 after IBDV vaccine immunization. Furthermore, Lactobacillus salivarius supplementation enhanced Salmonella Pullorum infection resistance in broilers challenged with AFB1. Our results revealed a tremendous potential of Lactobacillus salivarius as feed additive to degrading AFB1 and increasing broilers production performance in poultry production.
Collapse
Affiliation(s)
- Xueping Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, P. R. China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang, 438000, P. R. China
| | - Jian Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, P. R. China.
| |
Collapse
|
45
|
Bangar SP, Sharma N, Kumar M, Ozogul F, Purewal SS, Trif M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Sun N, Xue Y, Wei S, Wu B, Wang H, Zeng D, Zhao Y, Khalique A, Pan K, Zeng Y, Shu G, Jing B, Ni X. Compound Probiotics Improve Body Growth Performance by Enhancing Intestinal Development of Broilers with Subclinical Necrotic Enteritis. Probiotics Antimicrob Proteins 2021; 15:558-572. [PMID: 34735679 DOI: 10.1007/s12602-021-09867-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study is to explore whether or not the combined application of BS15 and H2 is capable to have a more effective control effect on SNE in broilers. A total of 240 1-day-old female chickens were randomly divided into 5 groups: (a) basal diet in negative control group (NC group); (b) basal diet + SNE infection (coccidiosis vaccine + CP) (PC group); (c) basal diet + SNE infection + H2 pre-treatment (BT group); (d) basal diet + SNE infection + BS15 pre-treatment (LT group); and (e) basal diet + SNE infection + H2 pre-treatment + BS15 pre-treatment (MT group). The results showed the MT group had the most positive effect on inhibiting the negative effect of growth performance at 42 days of age. In the detection of the NC, PC, and MT group indicators at 28 days of age, we found that MT group significantly promoted ileum tissue development of broilers, and the ileum of broilers in the MT group formed a flora structure different from NC and PC, although it was found that the MT group had no effect on the butyrate level in the cecum, but it could affect the serum immune level, such as significantly reducing the level of pro-inflammatory cytokine IL-8 and increasing the content of immunoglobulin IgM and IgG. In conclusion, the composite preparation of Lactobacillus johnsonii BS15 and Bacillus licheniformis H2 could effectively improve the growth performance against SNE broilers, which is possibly caused by the improvement of the immune levels, the reduction of inflammation levels, and the promotion of the intestinal development.
Collapse
Affiliation(s)
- Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Xue
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siyi Wei
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Hesong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Zhao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
47
|
Ochieng PE, Scippo ML, Kemboi DC, Croubels S, Okoth S, Kang’ethe EK, Doupovec B, Gathumbi JK, Lindahl JF, Antonissen G. Mycotoxins in Poultry Feed and Feed Ingredients from Sub-Saharan Africa and Their Impact on the Production of Broiler and Layer Chickens: A Review. Toxins (Basel) 2021; 13:633. [PMID: 34564637 PMCID: PMC8473361 DOI: 10.3390/toxins13090633] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The poultry industry in sub-Saharan Africa (SSA) is faced with feed insecurity, associated with high cost of feeds, and feed safety, associated with locally produced feeds often contaminated with mycotoxins. Mycotoxins, including aflatoxins (AFs), fumonisins (FBs), trichothecenes, and zearalenone (ZEN), are common contaminants of poultry feeds and feed ingredients from SSA. These mycotoxins cause deleterious effects on the health and productivity of chickens and can also be present in poultry food products, thereby posing a health hazard to human consumers of these products. This review summarizes studies of major mycotoxins in poultry feeds, feed ingredients, and poultry food products from SSA as well as aflatoxicosis outbreaks. Additionally reviewed are the worldwide regulation of mycotoxins in poultry feeds, the impact of major mycotoxins in the production of chickens, and the postharvest use of mycotoxin detoxifiers. In most studies, AFs are most commonly quantified, and levels above the European Union regulatory limits of 20 μg/kg are reported. Trichothecenes, FBs, ZEN, and OTA are also reported but are less frequently analyzed. Co-occurrences of mycotoxins, especially AFs and FBs, are reported in some studies. The effects of AFs on chickens' health and productivity, carryover to their products, as well as use of mycotoxin binders are reported in few studies conducted in SSA. More research should therefore be conducted in SSA to evaluate occurrences, toxicological effects, and mitigation strategies to prevent the toxic effects of mycotoxins.
Collapse
Affiliation(s)
- Phillis E. Ochieng
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
| | - David C. Kemboi
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
- Department of Animal Science, Chuka University, P.O. Box 109-00625, Chuka 00625, Kenya
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | | | | | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
| | - Johanna F. Lindahl
- Department of Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya;
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, 750 07 Uppsala, Sweden
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
48
|
Guo H, Chang J, Wang P, Yin Q, Liu C, Li S, Zhu Q, Yang M, Hu X. Detoxification of aflatoxin B 1 in broiler chickens by a triple-action feed additive. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1583-1593. [PMID: 34372754 DOI: 10.1080/19440049.2021.1957159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to evaluate the detoxification of aflatoxin B1 (AFB1) in vitro and in broiler chickens using a triple-action compound mycotoxin detoxifier (CMD). Response surface methodology (RSM) was used to evaluate AFB1 detoxification in artificial gastrointestinal fluid (AGIF) in vitro. The AFB1-degradation rate was 41.5% (P < .05) when using a compound probiotic (CP) in which the visible counts of Bacillus subtilis, Lactobacillus casein, Enterococcus faecalis and Candida utilis were 1.0 × 105, 1.0 × 105, 1.0 × 107 and 1.0 × 105 CFU/mL, respectively. When CP was combined with 0.1% AFB1-degrading enzyme to give CPADE, the AFB1-degradation rate was increased to 55.28% (P < .05). The AFB1-removal rate was further increased to above 90% when CPADE was combined with 0.03% montmorillonite to make CMD. In vivo, a total of 150 one-day-old Ross broilers were allotted to 3 groups, 5 replications for each group, 10 broilers in each replication. Group A: basal diet, Group B: basal diet with 40 μg/kg AFB1, Group C: basal diet with 40 μg/kg AFB1 plus CMD. The feeding experiment period was 21 d. The results showed that broiler growth was increased, and AFB1 residues in serum, excreta and liver were decreased by CMD addition in broiler diet (P < .05). In conclusion, CMD was able to remove AFB1 efficiently in vitro and to increase broiler production performance and reduce AFB1 residues in the chickens.
Collapse
Affiliation(s)
- Hongwei Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Silu Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qun Zhu
- Henan Delin Biological Product Co. Ltd., Xinxiang, China
| | - Mingfan Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaofei Hu
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
49
|
Ruan H, Lu Q, Wu J, Qin J, Sui M, Sun X, Shi Y, Luo J, Yang M. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit Rev Food Sci Nutr 2021; 62:2281-2308. [PMID: 34346825 DOI: 10.1080/10408398.2021.1960794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins are metabolites produced by fungi. The widespread contamination of food and feed by mycotoxins is a global food safety problem and a serious threat to people's health. Most food-borne mycotoxins have strong hepatotoxicity. However, no effective methods have been found to prevent or treat Mycotoxin- Induced Liver Injury (MILI) in clinical and animal husbandry. In this paper, the molecular mechanisms and potential anti-MILI medicines of six food-borne MILI are reviewed, and their targets are predicted by network toxicology, which provides a theoretical basis for further study of the toxicity mechanism of MILI and the development of effective strategies to manage MILI-related health problems in the future and accelerate the development of food safety.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Jin J, Beekmann K, Ringø E, Rietjens IM, Xing F. Interaction between food-borne mycotoxins and gut microbiota: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|