1
|
Dos Santos Carvalho C, da Silva FH, Ferraz JVC, Fujiwara GH, de Oliveira LC, Utsunomiya HSM, Duarte ICS, do Nascimento LP. Use of biomarkers in bullfrog tadpoles Aquarana catesbeiana (Shaw 1802) for ecotoxicological evaluation of Pirajibú River (São Paulo, Brazil). ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:143-155. [PMID: 39466566 DOI: 10.1007/s10646-024-02821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
This study focused on investigating the water quality in the Pirajibú River, a relevant water body that flows through the industrial zone of Sorocaba (São Paulo/Brazil). Due to the limitations of assessing water quality based solely on standard physicochemical tests, an ecotoxicological approach was used to assess biomarker changes in the liver of bullfrog tadpoles (Aquarana catesbeiana). The animals were divided into groups and exposed to water samples collected upstream and downstream of the industrial zone. After 96 h, the upstream group presented a decrease in the enzymatic activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) and an increase in the activity of catalase (CAT). For the downstream group, while a decreased activity was observed for SOD, an increase in CAT and glutathione S-transferase (GST) activities was noted. A decrease in lipid peroxidation (LPO) levels was observed in the downstream group, and increased carbonyl protein (PCO) levels in the upstream and downstream groups. Integrated Biomarker Response (IBR) revealed GSH and PCO as the most responsive biomarkers, despite the lack of differences noted between the groups. Regardless of whether the water quality standards of Pirajibú River were following Brazilian environmental legislation, the tadpoles presented high sensitivity when exposed to the water, even for a short period.
Collapse
Affiliation(s)
- Cleoni Dos Santos Carvalho
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Fabio Henrique da Silva
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - João Victor Cassiel Ferraz
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Gabriel Hiroshi Fujiwara
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Luciana Camargo de Oliveira
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Heidi Samantha Moraes Utsunomiya
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Iolanda Cristina Silveira Duarte
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Letícia Portugal do Nascimento
- Center of Sciences and Technology for Sustainability, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil.
| |
Collapse
|
2
|
Wang Y, Fabuleux Tresor Baniakina L, Chai L. Response characteristic and potential molecular mechanism of tail resorption in Bufo gargarizans after exposure to lead and copper, alone or combined. ENVIRONMENTAL RESEARCH 2024; 259:119505. [PMID: 38945509 DOI: 10.1016/j.envres.2024.119505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Tail resorption during amphibian metamorphosis is one of the most dramatic processes that is obligatorily dependent on thyroid hormone (TH). Heavy metals could result in thyroid gland damages and disturb TH homeostasis. Lead (Pb) and copper (Cu) often co-exist in natural aquatic ecosystems. However, there is still little information on how tail resorption responds to alone or combined exposure to Pb and Cu. Our study investigated the effects of Pb and Cu alone or combined exposure on the morphological parameters of the tail, histological changes of thyroid gland and tail, and gene expression programs involved in cell death of the tail in Bufo gargarizans tadpoles at the climax of metamorphosis. Results demonstrated that Pb, Cu and Pb-Cu mixture exposure resulted in a significantly longer tail compared with control. Damages to notochord, muscle, skin and spinal cord of the tail were found in Pb and Cu exposure groups. The colloid area, the height of follicular cells and number of phagocytic vesicles of thyroid gland in Pb-Cu mixture exposure groups were significantly reduced. In addition, the expression levels of TH, apoptosis, autophagy, degradation of cellular components and oxidative stress-related genes in the tail were significantly altered following Pb and Cu exposure. The present work revealed the relationship between environmental pollutants and tail resorption, providing scientific basis for amphibian protection.
Collapse
Affiliation(s)
- Yaxi Wang
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lod Fabuleux Tresor Baniakina
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang' an University, Xi'an, 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang' an University, Xi'an, 710054, China.
| |
Collapse
|
3
|
Li Y, Li Z, Wang H. Gut dysbiosis of Rana zhenhaiensis tadpoles after lead (Pb) exposure based on integrated analysis of microbiota and gut transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116922. [PMID: 39181079 DOI: 10.1016/j.ecoenv.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Lead (Pb) is a ubiquitously detected heavy metal pollutant in aquatic ecosystems. Previous studies focused mainly on the response of gut microbiota to Pb stress, with less emphasis on gene expression in intestine, thereby limiting the information about impacts of Pb on intestinal homeostasis in amphibians. Here, microbial community and transcriptional response of intestines in Rana zhenhaiensis tadpoles to Pb exposure were evaluated. Our results showed that 10 μg/L Pb significantly decreased bacterial diversity compared to the controls by the Simpson index. Additionally, 1000 μg/L Pb exposure resulted in a significant reduction in the abundance of Fusobacteriota phylum and Cetobacterium genus but a significant expansion in Hafnia-Obesumbacterium genus. Moreover, transcriptome analysis revealed that about 90 % of the DEGs (8458 out of 9450 DEGs) were down-regulated in 1000 μg/L Pb group, mainly including genes annotated with biological functions in fatty acid degradation, and oxidative phosphorylation, while up-regulated DEGs involved in metabolism of xenobiotics by cytochrome P450. The expression of Gsto1, Gsta5, Gstt4, and Nadph showed strong correlation with the abundance of genera Serratia, Lactococcus, and Hafnia-Obesumbacterium. The findings of this study provide important insights into understanding the influence of Pb on intestinal homeostasis in amphibians.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Zizhu Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Yin G, Xin M, Zhao S, Zhao M, Xu J, Chen X, Xu Q. Heavy metals and elderly kidney health: A multidimensional study through Enviro-target Mendelian Randomization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116659. [PMID: 38964060 DOI: 10.1016/j.ecoenv.2024.116659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Chronic Kidney Disease (CKD), closely linked to environmental factors, poses a significant public health challenge. This study, based on 529 triple-repeated measures from key national environmental pollution area and multiple gene-related public databases, employs various epidemiological and bioinformatics models to assess the impact of combined heavy metal exposure (Chromium [Cr], Cadmium [Cd], and Lead [Pb]) on early renal injury and CKD in the elderly. Introducing the novel Enviro-Target Mendelian Randomization method, our research explores the causal relationship between metals and CKD. The findings indicate a positive correlation between increased levels of metal and renal injury, with combined exposure caused renal damage more significantly than individual exposure. The study reveals that metals primarily influence CKD development through oxidative stress and metal ion resistance pathways, focusing on three related genes (SOD2, MPO, NQO1) and a transcription factor (NFE2L2). Metals were found to regulate oxidative stress levels in the body by increasing the expression of SOD2, MPO, NQO1, and decreasing NFE2L2, leading to CKD onset. Our research establishes a new causal inference framework linking environmental pollutants-pathways-genes-CKD, assessing the impact and mechanisms of metal exposure on CKD. Future studies with more extensive in vitro evidence and larger population are needed to validate.
Collapse
Affiliation(s)
- Guohuan Yin
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Mingjun Xin
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shuanzheng Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xingyu Chen
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qun Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
5
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
6
|
Yin G, Zhao S, Zhao M, Xu J, Ge X, Wu J, Zhou Y, Liu X, Wei L, Xu Q. Complex interplay of heavy metals and renal injury: New perspectives from longitudinal epidemiological evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116424. [PMID: 38723382 DOI: 10.1016/j.ecoenv.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Epidemiological studies have reported associations between heavy metals and renal function. However, longitudinal studies are required to further validate these associations and explore the interactive effects of heavy metals on renal function and their directional influence. METHOD This study, conducted in Northeast China from 2016 to 2021, included a four-time repeated measures design involving 384 participants (1536 observations). Urinary concentrations of chromium (Cr), cadmium (Cd), manganese (Mn), and lead (Pb) were measured, along with renal biomarkers including urinary microalbumin (umAlb), urinary albumin-to-creatinine ratio (UACR), N-acetyl-β-D-glucosaminidase (NAG), and β2-microglobulin (β2-MG) levels. Estimated glomerular filtration rate (eGFR) was calculated. A Linear Mixed Effects Model (LME) examined the association between individual metal exposure and renal biomarkers. Subsequently, Quantile g-computation and Bayesian Kernel Machine Regression (BKMR) models assessed the overall effects of heavy metal mixtures. Marginal Effect models examined the directional impact of metal interactions in the BKMR on renal function. RESULT Results indicate significant impacts of individual and combined exposures of Cr, Cd, Pb, and Mn on renal biomarkers. Metal interactions in the BKMR model were observed, with synergistic effects of Cd-Cr on NAG, umAlb, UACR; Cd-Pb on NAG, UACR; Pb-Cr on umAlb, UACR, eGFR-MDRD, eGFR-EPI; and an antagonistic effect of Mn-Pb-Cr on UACR. CONCLUSION Both individual and combined exposures to heavy metals are associated with renal biomarkers, with significant synergistic interactions leading to renal damage. Our findings elucidate potential interactions among these metals, offering valuable insights into the mechanisms linking multiple metal exposures to renal injury.
Collapse
Affiliation(s)
- Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shuanzheng Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yifan Zhou
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing 100123, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, Liaoning 121001, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
7
|
de Albuquerque VJ, Folador A, Müller C, Pompermaier A, Hartmann M, Hartmann PA. How do different concentrations of aluminum and zinc affect the survival, body size, morphology and immune system of Physalaemus cuvieri (Fitzinger, 1826) tadpole? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:342-356. [PMID: 38310537 DOI: 10.1080/15287394.2024.2311828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The assessment of amphibian responses as bioindicators of exposure to chemical pollutants is an important tool for conservation of native species. This study aimed to investigate the effects of chronic aluminum (Al) and zinc (Zn) exposure on survival, body size, morphology (malformations), and immune system (leukocyte profile) in P. cuvieri tadpoles. Ecotoxicological analyses were performed utilizing chronic toxicity tests in which 210 tadpoles at the 25th Gosner developmental stage were exposed to Al and Zn. Individuals of P. cuvieri were maintained in glass containers containing various concentrations of aluminum sulfate (0.1, 0.2, or 0.3 mg/L) and zinc sulfate (0.18, 0.27 or 0.35 mg/L), and tests were performed in triplicate. After 14 days, amphibians were weighed, measured and survival rate, malformations in the oral and intestine apparatus, leukocyte profile, and ratio between neutrophils and lymphocytes determined. The differing concentrations of Al and Zn did not produce lethality in P. cuvieri where 95% of the animals survived 326 hr following metal exposure. Individuals exposed to Zn achieved greater body growth and weight gain compared to controls. Aluminum increased weight gain compared controls. These metals also produced malformations of the oral and intestine apparatus and enhanced occurrence of hemorrhages, especially at the highest doses. Lymphocytes were the predominant cells among leukocytes, with lymphopenia and neutrophilia observed following Al and Zn treatment, as evidenced by elevated neutrophil/lymphocyte ratio, an important indicator of stress in animals. Data suggest that further studies need to be carried out, even with metal concentrations higher than those prescribed by CONAMA, to ensure the conservation of this species.
Collapse
Affiliation(s)
| | - Alexandre Folador
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| | - Caroline Müller
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| | - Aline Pompermaier
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| | - Marília Hartmann
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| | - Paulo Afonso Hartmann
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| |
Collapse
|
8
|
Fernandes IF, Fujiwara GH, Moraes Utsunomiya HS, Souza IC, Monteiro DA, Monferrán MV, Wunderlin DA, Fernandes MN, Carvalho CDS. Oxidative stress and neurotoxicity induced by exposure to settleable atmospheric particulate matter in bullfrog tadpoles, Aquarana catesbeiana, (Shaw, 1802). CHEMOSPHERE 2024; 353:141576. [PMID: 38462180 DOI: 10.1016/j.chemosphere.2024.141576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.
Collapse
Affiliation(s)
- Isabela Ferreira Fernandes
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil
| | - Gabriel Hiroshi Fujiwara
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil
| | - Heidi Samantha Moraes Utsunomiya
- Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil
| | - Iara Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil; Grupo de Mutagênese Ambiental, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, and CONICET, CIBICI, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000, Córdoba, Argentina; Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Cleoni Dos Santos Carvalho
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil; Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil.
| |
Collapse
|
9
|
Sutha J, Gayathri M, Ramesh M. Chronic exposure to tris (2-chloroethyl) phosphate (TCEP) induces brain structural and functional changes in zebrafish (Danio rerio): A comparative study on the environmental and LC50 concentrations of TCEP. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16770-16781. [PMID: 38321284 DOI: 10.1007/s11356-024-32154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) is a crucial organophosphorus flame retardant widely used in many industrial and commercial products. Available reports reported that TCEP could cause various toxicological effects on organisms, including humans. Unfortunately, toxicity data for TCEP (particularly on neurotoxicity) on aquatic organisms are lacking. In the present study, Danio rerio were exposed to different concentrations of TCEP for 42 days (chronic exposure), and oxidative stress, neurotoxicity, sodium, potassium-adenosine triphosphatase (Na+, K+-ATPase) activity, and histopathological changes were evaluated in the brain. The results showed that TCEP (100 and 1500 µg L-1) induced oxidative stress and significantly decreased the activities of antioxidant enzymes (SOD, CAT and GR) in the brain tissue of zebrafish. In contrast, the lipid peroxidation (LPO) level was increased compared to the control group. Exposure to TCEP inhibited the acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain tissue. Brain histopathology after 42 days of exposure to TCEP showed cytoplasmic vacuolation, inflammatory cell infiltration, degenerated neurons, degenerated purkinje cells and binucleate. Furthermore, TCEP exposure leads to significant changes in dopamine and 5-HT levels in the brain of zebrafish. The data in the present study suggest that high concentrations of TCEP might affect the fish by altering oxidative balance and inducing marked pathological changes in the brain of zebrafish. These findings indicate that chronic exposure to TCEP may cause a neurotoxic effect in zebrafish.
Collapse
Affiliation(s)
- Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
10
|
da Costa RL, Souza IC, Morozesk M, de Carvalho LB, Carvalho CDS, Monferrán MV, Wunderlin DA, Fernandes MN, Monteiro DA. Toxic, genotoxic, mutagenic, and bioaccumulative effects of metal mixture from settleable particulate matter on American bullfrog tadpoles (Lithobates catesbeianus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122846. [PMID: 37926415 DOI: 10.1016/j.envpol.2023.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Amphibians are more susceptible to environmental stressors than other vertebrates due to their semipermeable skin and physiological adaptations to living in very specific microhabitats. Therefore, the aim of the present study was to investigate the effects of a metal mixture from settleable particulate matter (SePM) released from metallurgical industries on Lithobates catesbeianus tadpoles. Endpoints analyzed included metal bioconcentration, morphological (biometrical indices), hematological parameters (hemoglobin and blood cell count), and erythrocyte DNA damage (genotoxicity and mutagenicity). American bullfrog tadpoles (Gosner's stage 25) were kept under control condition (no contaminant addition) or exposed to a sub-lethal and environmentally relevant concentration (1 g.L-1) of SePM for 96 h. Tadpoles exposed to SePM exhibited elevated whole blood levels of Fe56, AL, Sn, Pb, Zn, Cr, Cu, Ti, Rb, V, Ce, La, Ag, As. SePM-exposed tadpoles showed a significant decrease in condition factor (12%) and increases in hepatosomatic index (25%), hemoglobin concentration (17%), and total leukocytes (82%), thrombocytes (90%), and monocytes (78%) abundance. In addition, exposed tadpoles showed higher MN and ENAs (340 and 140%, respectively) frequencies, and erythrocyte DNA damage with approximately 1.2- to 1.8-fold increases in comet parameters. Taken together, these results suggest that the multimetal mixture found in SePM is potentially genotoxic and mutagenic to L. catesbeianus tadpoles, induces stress associated with hematological changes, and negatively affects growth. Although such contamination occurs at sublethal levels, regulatory standards are needed to control the emission of SePM and protect amphibian populations.
Collapse
Affiliation(s)
- Regiane Luiza da Costa
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil; Programa de Pós-Graduação Em Ciências Ambientais (PPGCAm), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), Brazil
| | - Iara Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Luana Beserra de Carvalho
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil; Programa de Pós-Graduação Em Ciências Ambientais (PPGCAm), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Cleoni Dos Santos Carvalho
- Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
11
|
Zhang S, Chen A, Jiang L, Liu X, Chai L. Copper-mediated shifts in transcriptomic responses of intestines in Bufo gargarizans tadpoles to lead stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50144-50161. [PMID: 36790706 DOI: 10.1007/s11356-023-25801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/04/2023] [Indexed: 04/16/2023]
Abstract
The differential transcriptomic responses of intestines in Bufo gargarizans tadpoles to Pb alone or in the presence of Cu were evaluated. Tadpoles were exposed to 30 μg/L Pb individually and in combination with Cu at 16 or 64 μg/L from Gosner stage (Gs) 26 to Gs 38. After de novo assembly, 105,107 unigenes were generated. Compared to the control group, 7387, 6937, and 11139 differentially expressed genes (DEGs) were identified in the treatment of Pb + Cu0, Pb + Cu16, and Pb + Cu64, respectively. In addition, functional annotation and enrichment analysis of DEGs revealed substantial transcriptional reprogramming of diverse molecular and biological pathways were induced in all heavy metal treatments. The relative expression levels of genes associated with intestinal epithelial barrier and bile acids (BAs) metabolism, such as mucin2, claudin5, ZO-1, Asbt, and Ost-β, were validated by qPCR. This study demonstrated that Pb exposure induced transcriptional responses in tadpoles, and the responses could be modulated by Cu.
Collapse
Affiliation(s)
- Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
| |
Collapse
|
12
|
Utsunomiya HSM, Ferraz JVC, Fujiwara GH, Gutierres DM, Fernandes IF, de Lacerda Valverde BS, de Oliveira C, Franco-Belussi L, Fernandes MN, Dos Santos Carvalho C. Changes in blood parameters and metabolism in bullfrog tadpoles, Lithobates catesbeianus, (Shaw, 1802) after exposure to the Sorocaba River (São Paulo, Brazil) water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33419-33431. [PMID: 36480144 DOI: 10.1007/s11356-022-24590-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the genetic damage, oxidative stress, neurotoxicity, and energy metabolism in bullfrog tadpoles (Lithobates catesbeianus) exposed to water from two sites of the Sorocaba River, Ibiúna (PI), and Itupararanga reservoir (PIR), in summer and winter. After 96-h exposure, the erythrocyte number decreased in PI and increase in PIR in summer. Bullfrogs show oxidative unbalance (liver, kidney, and muscle), with alterations in the nitric oxide synthase and glucose 6-phosphate dehydrogenase. Cholinesterase increased in the brain in PI and PIR in the summer and decreased in PI in the winter. It also increased in the muscle in both PI and PIR in the winter. Tadpoles show alterations in the activity of the metabolic enzymes (liver, kidney, and muscle), such as phosphofructokinase, pyruvatokinase, malate dehydrogenase, and lactate dehydrogenase; and in the amount of glucose and triglycerides metabolites. Exposure to the Sorocaba River reflected a stressful situation for L. catesbeianus as the changes caused to their metabolism associated with oxidative stress and neurotoxicity may have effects on the development of tadpoles.
Collapse
Affiliation(s)
- Heidi Samantha Moraes Utsunomiya
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - João Victor Cassiel Ferraz
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - Gabriel Hiroshi Fujiwara
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - Davi Marques Gutierres
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - Isabela Ferreira Fernandes
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
- Programa de Pós-Graduação Em Biotecnologia E Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - Bruno Serra de Lacerda Valverde
- Programa de Pós-Graduação Em Biodiversidade, Universidade Estadual Paulista (UNESP), Campus de São José Do Rio Preto, São José Do Rio Preto, SP, Brazil
| | - Classius de Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Campus de São José Do Rio Preto, São José Do Rio Preto, SP, Brazil
| | - Lilian Franco-Belussi
- Laboratório de Patologia Experimental (LAPex), Instituto de Biociências, Universidade Federal de Mato Grosso Do Sul, Campus Campo Grande, Campo Grande, MS, Brazil
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Caixa Postal 676, Rodovia Washington Luís Km 235, São Carlos, SP, CEP 13565-905, Brazil
| | - Cleoni Dos Santos Carvalho
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil.
- Programa de Pós-Graduação Em Biotecnologia E Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil.
| |
Collapse
|
13
|
Taheri Zadeh Z, Esmaeilpour K, Aminzadeh A, Heidari MR, Joushi S. Resveratrol Attenuates Learning, Memory, and Social Interaction Impairments in Rats Exposed to Arsenic. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9993873. [PMID: 34621902 PMCID: PMC8492247 DOI: 10.1155/2021/9993873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
Arsenic (As) toxicity has deleterious effects on human health causing disorder in the brain. The aim of this study was to investigate the possible neuroprotective effect of resveratrol (RSV) on arsenic-induced neurotoxicity in rats. Neurotoxicity in rats was developed by treating As 10 mg/kg/day for 21 days orally. Animals were put into seven groups: control, vehicle, As, As+RSV10, As+RSV20 mg/kg, RSV10, and RSV20 mg/kg. Behavioral assessments such as the social interaction test, novel object recognition test, elevated plus maze, open field, the Morris water maze, in addition to assessment of biomarkers such as ferric reducing ability of plasma assay, glutathione assay, and malondialdehyde assay, were used to evaluate the effects of RSV on cognitive impairment and molecular changes induced by As. The results showed that cognitive performance impaired in As rats. RSV20 mg/kg significantly could ameliorate behavioral changes like spatial learning in days 3 and 4 (p < 0.05), recognition learning and memory (p < 0.01), disabilities in motor coordination and stress (p < 0.05), increased anxiety (p < 0.05), and social interaction deficit (sociability (p < 0.001) and social memory (p < 0.05)). RSV20 mg/kg also attenuated molecular modifications like decreased antioxidant power (p < 0.001), reduced glutathione content (p < 0.05), and increased malondialdehyde level (p < 0.05) induced by As. In addition to oxidative stress assessments, RSV10 mg/kg could significantly increase FRAP (p < 0.01) and GSH (p < 0.05); however, MDA was not significantly increased. Our current behavioral findings suggest that RSV has neuroprotective effects against AS toxicity.
Collapse
Affiliation(s)
- Zahra Taheri Zadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud Reza Heidari
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Fernandes IF, Utsunomiya HSM, de Lacerda Valverde BS, Ferraz JVC, Fujiwara GH, Gutierres DM, de Oliveira C, Belussi LF, Fernandes MN, Carvalho CDS. Ecotoxicological evaluation of water from the Sorocaba River using an integrated analysis of biochemical and morphological biomarkers in bullfrog tadpoles, Lithobates catesbeianus (). CHEMOSPHERE 2021; 275:130000. [PMID: 33667769 DOI: 10.1016/j.chemosphere.2021.130000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Lithobates catesbeianus tadpoles were exposed for 96 h to water from two sites of the Sorocaba River (summer and winter), Ibiúna (PI) and Itupararanga reservoir (PIR) that contained metals. In the liver, in PI, the glutathione peroxidase (GPx) decreased, and the glutathione S-transferase (GST) and carbonyl proteins (PCO) increased. In PIR, the glutathione reduced (GSH) increased, while there was a decrease in catalase (CAT), GPx, GST, PCO, and superoxide dismutase (SOD). In winter, GPx and GST increased in both points. Regarding the kidneys, lipoperoxidation (LPO) levels and GST decreased, while GSH increased in the summer. In the winter, LPO increased in PI. In the muscle, in the summer, there was an increase in GSH and GST and change in PCO. In the winter, the levels of PCO increased and CAT decreased in PIR. The area and volume of the hepatocyte and nucleus area increased in the summer and decreased in the winter. Hepatic melanin decreased in the summer after exposure to PIR water. There were the systemic effects of Sorocaba River water exposure at different times of the year with alterations in biomarkers at different levels, in which kidney shows highest Integrated Response of Biomarkers (IBR) value followed by liver and muscle. Biochemical biomarkers were more sensitive than morphological ones. The more sensitive biochemical markers were MT, PCO, GST and LPO. These effects confirm the hypothesis of metabolic alteration in bullfrog tadpoles by the Sorocaba River water.
Collapse
Affiliation(s)
- Isabela Ferreira Fernandes
- Programa de Pós-graduação Em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil; Universidade Federal de São Carlos, Campus Sorocaba, Laboratório de Bioquímica e Microbiologia (LaBioM), Rodovia João Leme Dos Santos, Km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil
| | - Heidi Samantha Moraes Utsunomiya
- Universidade Federal de São Carlos, Campus Sorocaba, Laboratório de Bioquímica e Microbiologia (LaBioM), Rodovia João Leme Dos Santos, Km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil
| | - Bruno Serra de Lacerda Valverde
- Universidade Estadual Paulista, Programa de Pós-Graduação Em Biologia Animal da UNESP, Campus de São José Do Rio Preto, Brazil
| | - João Victor Cassiel Ferraz
- Universidade Federal de São Carlos, Campus Sorocaba, Laboratório de Bioquímica e Microbiologia (LaBioM), Rodovia João Leme Dos Santos, Km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil
| | - Gabriel Hiroshi Fujiwara
- Universidade Federal de São Carlos, Campus Sorocaba, Laboratório de Bioquímica e Microbiologia (LaBioM), Rodovia João Leme Dos Santos, Km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil
| | - Davi Marques Gutierres
- Universidade Federal de São Carlos, Campus Sorocaba, Laboratório de Bioquímica e Microbiologia (LaBioM), Rodovia João Leme Dos Santos, Km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil
| | - Classius de Oliveira
- Departamento de Biologia, Universidade Estadual Paulista, São José Do Rio Preto, São Paulo, Brazil
| | - Lilian Franco Belussi
- Universidade Federal de Mato Grosso Do Sul, Instituto de Biociências, Laboratório de Patologia Experimental (LAPex), Mato Grosso Do Sul, MG, Brazil
| | - Marisa Narciso Fernandes
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Caixa Postal 676, Rodovia Washington Luís Km 235, CEP, 13565-905, São Carlos, SP, Brazil
| | - Cleoni Dos Santos Carvalho
- Programa de Pós-graduação Em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil; Universidade Federal de São Carlos, Campus Sorocaba, Laboratório de Bioquímica e Microbiologia (LaBioM), Rodovia João Leme Dos Santos, Km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil.
| |
Collapse
|