1
|
Hu Z, Tang Y, Zhang J, Li T, Wang Y, Huang Y, Zhao Y, Yang G, Xu Z. Transcriptomic Analysis of Broussonetia papyrifera Fruit Under Manganese Stress and Mining of Flavonoid Synthesis Genes. PLANTS (BASEL, SWITZERLAND) 2025; 14:883. [PMID: 40265799 PMCID: PMC11944339 DOI: 10.3390/plants14060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Broussonetia papyrifera is a deciduous tree with significant economic and medicinal value. It demonstrates notable physiological adaptability to mining areas with severe manganese contamination and is a pioneering species in the field of ecological restoration. Flavonoids are vital secondary metabolites that improve plant resilience to environmental stresses. In the study presented herein, immature and mature fruits of B. papyrifera grown in normal and high manganese environments were used as the test materials. B. papyrifera fruit was subjected to transcriptome sequencing via high-throughput sequencing technology to analyze its flavonoid metabolic pathways and related genes. Transcriptome sequencing identified a total of 46,072 unigenes, with an average length of 1248 bp and a percentage of Q30 bases ranging from 92.45 to 93.17%. Furthermore, 31,792 unigenes (69% of the total) were annotated using eight databases, including the GO and KEGG. Analysis of KEGG metabolic pathways and flavonoid content trends in B. papyrifera fruits revealed four unigenes with strong links to the flavonoid biosynthesis pathway under manganese stress: flavone 3-hydroxylase, flavonoids 3',5'-O-methyltransferase, chalcone synthase, and flavonol synthase. These unigenes may play important roles in regulating flavonoid synthesis in B. papyrifera fruits under manganese stress. This study lays the groundwork for functional gene research in B. papyrifera.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China; (Z.H.); (T.L.); (Y.W.)
| | - Yiwang Tang
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; (Y.T.); (Y.Z.)
| | - Jihui Zhang
- College of Forestry, Northwest A & F University, Yangling 712100, China; (J.Z.); (Y.H.); (G.Y.)
| | - Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China; (Z.H.); (T.L.); (Y.W.)
| | - Yihan Wang
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China; (Z.H.); (T.L.); (Y.W.)
| | - Yani Huang
- College of Forestry, Northwest A & F University, Yangling 712100, China; (J.Z.); (Y.H.); (G.Y.)
| | - Yunlin Zhao
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; (Y.T.); (Y.Z.)
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling 712100, China; (J.Z.); (Y.H.); (G.Y.)
| | - Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling 712100, China; (J.Z.); (Y.H.); (G.Y.)
| |
Collapse
|
2
|
Pan G, Hu J, Zi Z, Wang W, Li X, Xu X, Liu W. Arbuscular mycorrhizal fungi alleviate Mn phytotoxicity by altering Mn subcellular distribution and chemical forms in Lespedeza davidii. FRONTIERS IN PLANT SCIENCE 2024; 15:1470063. [PMID: 39665109 PMCID: PMC11631616 DOI: 10.3389/fpls.2024.1470063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) can relieve manganese (Mn) phytotoxicity and promote plant growth under Mn stress, but their roles remain unclear. Methods In this study, Lespedeza davidii inoculated with or without AMF (Glomus mosseae) under different Mn concentrations (0 mmol/L, 1 mmol/L, 5 mmol/L, 10 mmol/L, and 20 mmol/L) was cultivated via a pot experiment, and plant biomass, physiological and biochemical characteristics, manganese absorption, subcellular distribution, and chemical forms of Mn were examined. Results The results showed that root biomass, stem biomass, leaf biomass, and total individual biomass decreased under high Mn concentrations (above 10 mmol/L), and the inoculated plants had higher biomass than the uninoculated plants. With the increasing Mn concentration, the contents of soluble sugar, soluble protein, free proline, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased first and then decreased, while the malondialdehyde (MDA) content increased. The contents of soluble sugar, soluble protein, free proline, SOD, POD, and CAT in the inoculated group were higher than those in the uninoculated group at the Mn concentration of 20 mmol/L. The content of MDA in the inoculated plants was lower than that in the uninoculated plants. AMF inoculation enriched most of the manganese in the root system when compared with the non-mycorrhizal treatment. Subcellular distribution of Mn indicated that most of the Mn ions were stored in the cell wall and the vacuoles (the soluble fractions), and the proportion of Mn content in the cell wall components and the vacuole components in leaves in the inoculated group was higher than that in the uninoculated group. Furthermore, the proportions of Mn extracted using ethanol and deionized water in the uninoculated group in stems and roots were higher than those in the inoculated group, which suggested that AMF could convert Mn into inactive forms. Discussion The present study demonstrated that AMF could improve the resistance of L. davidii to Mn toxicity by increasing the activity of antioxidant enzymes and altering the subcellular distribution and chemical forms of Mn.
Collapse
Affiliation(s)
- Gao Pan
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Jiayao Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Zhen Zi
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Wenying Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Xinhang Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Xiaoli Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Wensheng Liu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
3
|
Wu X, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121979. [PMID: 39088904 DOI: 10.1016/j.jenvman.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 μM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.
Collapse
Affiliation(s)
- Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
4
|
Cheng Y, Yuan J, Wang G, Hu Z, Luo W, Zhao X, Guo Y, Ji X, Hu W, Li M. Phosphate-solubilizing bacteria improve the antioxidant enzyme activity of Potamogeton crispus L. and enhance the remediation effect on Cd-contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134305. [PMID: 38626677 DOI: 10.1016/j.jhazmat.2024.134305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Phosphorus-solubilizing bacteria (PSB) assisted phytoremediation of cadmium (Cd) pollution is an effective method, but the mechanism of PSB-enhanced in-situ remediation of Cd contaminated sediment by submerged plants is still rare. In this study, PSB (Leclercia adecarboxylata L1-5) was inoculated in the rhizosphere of Potamogeton crispus L. (P. crispus) to explore the effect of PSB on phytoremediation. The results showed that the inoculation of PSB effectively improved the Cd extraction by P. crispus under different Cd pollution and the Cd content in the aboveground and underground parts of P. crispus all increased. The μ-XRF images showed that most of the Cd was enriched in the roots of P. crispus. PSB especially showed positive effects on root development and chlorophyll synthesis. The root length of P. crispus increased by 51.7 %, 80.5 % and 74.2 % under different Cd pollution, and the Ca/Cb increased by 38.9 %, 15.2 % and 8.6 %, respectively. Furthermore, PSB enhanced the tolerance of P. crispus to Cd. The contents of soluble protein, MDA and H2O2 in 5 mg·kg-1 and 7 mg·kg-1 Cd content groups were decreased and the activities of antioxidant enzymes were increased after adding PSB. The results showed that the application of PSB was beneficial to the in-situ remediation of submerged plants.
Collapse
Affiliation(s)
- Yuxin Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Junjun Yuan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Gongting Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenzhen Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenqing Luo
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xin Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Pan Y, Shi J, Li J, Zhang R, Xue Y, Liu Y. Regulatory Mechanism through Which Old Soybean Leaves Respond to Mn Toxicity Stress. Int J Mol Sci 2024; 25:5341. [PMID: 38791379 PMCID: PMC11120821 DOI: 10.3390/ijms25105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Manganese (Mn) is a heavy metal that can cause excessive Mn poisoning in plants, disrupting microstructural homeostasis and impairing growth and development. However, the specific response mechanisms of leaves to Mn poisoning have not been fully elucidated. This study revealed that Mn poisoning of soybean plants resulted in yellowing of old leaves. Physiological assessments of these old leaves revealed significant increases in the antioxidant enzymes activities (peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) and elevated levels of malondialdehyde (MDA), proline, indoleacetic acid (IAA), and salicylic acid (SA), under 100 μM Mn toxicity. Conversely, the levels of abscisic acid (ABA), gibberellin 3 (GA3), and jasmonic acid (JA) significantly decreased. The Mn content in the affected leaves significantly increased, while the levels of Ca, Na, K, and Cu decreased. Transcriptome analysis revealed 2258 differentially expressed genes in the Mn-stressed leaves, 744 of which were upregulated and 1514 were downregulated; these genes included genes associated with ion transporters, hormone synthesis, and various enzymes. Quantitative RT-PCR (qRT-PCR) verification of fifteen genes confirmed altered gene expression in the Mn-stressed leaves. These findings suggest a complex gene regulatory mechanism under Mn toxicity and stress, providing a foundation for further exploration of Mn tolerance-related gene regulatory mechanisms in soybean leaves. Using the methods described above, this study will investigate the molecular mechanism of old soybean leaves' response to Mn poisoning, identify key genes that play regulatory roles in Mn toxicity stress, and lay the groundwork for cultivating high-quality soybean varieties with Mn toxicity tolerance traits.
Collapse
Affiliation(s)
- Yuhu Pan
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyu Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rui Zhang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
6
|
Morsch L, Marques ACR, Trentin E, Oliveira FND, Andreolli T, Barbosa JGP, Ferreira MM, Moura-Bueno JM, Comin JJ, Loss A, Lourenzi CR, Brunetto G. Diversity and botanical composition of native species in the Pampa biome in vineyards cultivated on soils with high levels of copper, zinc and manganese and phytoremediation potential. CHEMOSPHERE 2024; 349:140819. [PMID: 38042423 DOI: 10.1016/j.chemosphere.2023.140819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Viticulture allows the preservation of native species inside vineyards in the Pampa biome. However, phytosanitary treatments in these areas can increase the levels of Cu, Zn and Mn. The study aimed to (i) verify the influence of Cu, Zn and Mn contents in Pampa biome soils; (ii) identify variables related to Cu, Zn and Mn that most contribute to the variation in richness, diversity, and dry matter production of native vegetation, (iii) investigate the phytoremediation potential of species present in vineyards. Botanical composition, Cu, Zn, Mn available in the soil, and plant nutritional composition in two vineyards (V1 and V2) and native field (NF) were evaluated. Vineyards showed higher Cu, Zn and Mn contents in the soil, resulting in the lowest biomass, richness, and diversity of native species. Mn in tissue was the most important variable in explaining the variation in dry matter. Zn in the soil helped to explain the difference in species richness and diversity. P concentration in tissue was important in elucidating the variation in species diversity. Paspalum plicatulum and Paspalum notatum have potential for phytostabilization of metals in vineyards.
Collapse
Affiliation(s)
- Letícia Morsch
- Universidade Federal de Santa Catarina (UFSC), 88034.001, Florianópolis, SC, Brazil.
| | | | - Edicarla Trentin
- Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| | | | - Talita Andreolli
- Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| | | | - Matheus Martins Ferreira
- Instituto Federal de Rondônia (IFRO) e Centro Universitário Faema (UNIFAEMA), 76873-630, Brazil.
| | - Jean Michel Moura-Bueno
- Universidade de Cruz Alta (UNICRUZ) e Universidade Federal de Santa Maria (UFSM), 97105-900, Brazil.
| | - Jucinei José Comin
- Universidade Federal de Santa Catarina (UFSC), 88034.001, Florianópolis, SC, Brazil.
| | - Arcângelo Loss
- Universidade Federal de Santa Catarina (UFSC), 88034.001, Florianópolis, SC, Brazil.
| | | | - Gustavo Brunetto
- Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Pan G, Wang W, Li X, Pan D, Liu W. Revealing the effects and mechanisms of arbuscular mycorrhizal fungi on manganese uptake and detoxification in Rhus chinensis. CHEMOSPHERE 2023; 339:139768. [PMID: 37567258 DOI: 10.1016/j.chemosphere.2023.139768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can alleviate heavy metal phytotoxicity and promote plant growth, while the underlying mechanisms of AMF symbiosis with host plants under manganese (Mn) stress remain elusive. A pot experiment was carried out to investigate the plant growth, micro-structure, Mn accumulation, subcellular distribution, chemical forms, and physiological and biochemical response of Rhus chinensis inoculated with Funneliformis mosseae (FM) under different Mn treatments. The results showed that compared with plants without FM, FM-associated plants exhibited higher growth status, photosynthetic pigments, and photosynthesis under Mn stress. FM-associated plants were able to maintain greater integrity in mesophyll structure, higher thickness of leaf, upper epidermis, and lower epidermis under Mn treatment, and promote leaf growth. Mn accumulation in leaves (258.67-2230.50 mg kg-1), stems (132.67-1160.00 mg kg-1), and roots (360.92-2446.04 mg kg-1) of the seedlings inoculated with FM was higher than non-inoculated ones. FM-associated plants exhibited higher osmotic regulating substances and antioxidant enzymes' activities under Mn exposure, suggesting lower Mn toxicity in FM inoculated seedlings, despite the augment in Mn accumulation. After FM inoculation, Mn concentration (151.04-1211.32 mg kg-1) and percentage (64.41-78.55%) enhanced in the cell wall, whilst the transport of Mn to aerial plant organs decreased. Furthermore, FM symbiosis favored the conversion of Mn from high toxic forms (2.17-15.68% in FEthanol, 11.37-24.52% in Fdeionized water) to inactive forms (28.30-38.15% in FNaCl, 18.07-28.59% in FHAc, 4.41-17.99% in FHCl) with low phytotoxicity. Our study offers a theoretical basis for remediation of the FM- R. chinensis symbiotic system in Mn-contaminated environments.
Collapse
Affiliation(s)
- Gao Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Wumin Wang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xinhang Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Deng Pan
- Central South Academy of Inventory and Planning of NFGA, Changsha, 410014, PR China.
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| |
Collapse
|
8
|
Song R, Li Z, Su X, Liang M, Li W, Tang X, Li J, Qiao X. The Malus domestica metal tolerance protein MdMTP11.1 was involved in the detoxification of excess manganese in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154056. [PMID: 37562313 DOI: 10.1016/j.jplph.2023.154056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Ion homeostasis is maintained in plant cells by specialized transporters. However, functional studies on Mn transporters in apple trees have not been reported. MdMTP11.1, which encodes a putative Mn-MTP transporter in Malus domestica, was expressed highly in leaves and induced by Mn stress. Subcellular localization analysis of the MdMTP11.1-GFP fusion protein indicated that MdMTP11.1 was targeted to the Golgi. Meanwhile, overexpression of MdMTP11.1 in Arabidopsis thaliana conferred increased resistance to plants under toxic Mn levels, as evidenced by increased biomass of whole plant and length of primary root. Analysis of Mn bioaccumulation indicated that overexpression of MdMTP11.1 effectively reduced the content of Mn in every subcellular component and chemical forms when the plants were subjected with Mn stress. The majority of Mn of action were bound to cell wall and combined with un-dissolved phosphate. Besides, contents of malondialdehyde (MDA), proline and hydrogen peroxide (H2O2) were significantly lower, while content of chlorophyll and activities of CAT, SOD, POD and APX were significantly higher in MdMTP11.1-over-expressing plants compared with that in wild type plants under Mn stress. Taken together, these results suggest that MdMTP11.1 is a Mn specific transporter localized to the Golgi can maintain the phenotype, reduce the Mn accumulation and alleviate damage of oxidative stress, conferring the positive role of Mn tolerance.
Collapse
Affiliation(s)
- Ruoxuan Song
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Zhiyuan Li
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Xintong Su
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Meixia Liang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Weihuan Li
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Xiaoli Tang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Jianzhao Li
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Xuqiang Qiao
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| |
Collapse
|
9
|
Thiesen LA, Brunetto G, Trentin E, Kokkonen da Silva AA, Tabaldi LA, Schwalbert R, Birck TP, Machado LC, Teixeira Nicoloso F. Subcellular distribution and physiological responses of native and exotic grasses from the Pampa biome subjected to excess manganese. CHEMOSPHERE 2023; 310:136801. [PMID: 36241121 DOI: 10.1016/j.chemosphere.2022.136801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Fungicides containing manganese (Mn) applied to control plant diseases increase the concentration of Mn in soils, which may potentiate Mn toxicity in acid soils. Some species of wild grasses, such as those from the Pampa biome located in South America, or even those introduced into this biome, may possess different mechanisms of tolerance to excess Mn. The present study aimed to evaluate the subcellular distribution and physiological and biochemical responses of exotic and native grasses from the Pampa biome, cultivated in Mn excess. The experiment was conducted in nutrient solution in a greenhouse, in an entirely randomized design, bifactorial 4 × 4, consisting of four Mn concentrations (2 [control], 300, 600 and 900 μM) and four species (two exotic: Avena strigosa and Lolium multiflorum; and two native: Paspalum notatum and Paspalum plicatulum). At 27 days of exposure to the treatments, biomass and growth rates, leaf gas exchange with the environment, photosynthetic pigment concentrations of malondialdehyde and H2O2, antioxidant enzyme activities (SOD and POD), and subcellular distribution of Mn were evaluated. Most of the grasses showed high concentration of Mn in tissues, mainly, in the shoot. In the presence of 900 μM Mn, more than 80% of the absorbed Mn was compartmentalized in the cell walls and vacuoles of the cells. Compartmentalization of Mn excess into metabolically less active organelles is the main tolerance factor in grasses. Physiological and biochemical responses were stimulated in the presence of 300 μM Mn, while 900 μM Mn negatively affected biochemical-physiological responses of grasses. The species L. multiflorum was most sensitive to excess Mn, while P. notatum was the most tolerant.
Collapse
Affiliation(s)
| | - Gustavo Brunetto
- Department of Soil Science, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Edicarla Trentin
- Department of Soil Science, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | | - Luciane Almeri Tabaldi
- Department of Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Raíssa Schwalbert
- Department of Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Thalia Preussler Birck
- Department of Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Liliane Corrêa Machado
- Department of Phytotechnics, State University of North Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | | |
Collapse
|
10
|
Tümer C, Çavuşoğlu K, Yalçin E. Screening the toxicity profile and genotoxicity mechanism of excess manganese confirmed by spectral shift. Sci Rep 2022; 12:20986. [PMID: 36470962 PMCID: PMC9722709 DOI: 10.1038/s41598-022-25657-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the toxicity induced by excessive doses of manganese (MnCl2), which is one of the essential trace elements for the continuation of the metabolic activities of the organisms, was investigated with the help of the Allium test. Toxicity was investigated by using physiological (percent germination, root length, weight gain), cytogenetic [mitotic index (MI), micronucleus (MN), chromosomal abnormalities (CAs)], biochemical [malondialdehyde (MDA), superoxide dismutase (SOD) catalase (CAT)] and anatomical (root tip meristematic cell damage) parameters. Allium cepa L. bulbs were divided into four groups as one control and three treatments. The control group was germinated with tap water, and the treatment groups were germinated with 250, 500 and 1000 µM doses of MnCl2. The germination process was continued for 72 h without interruption. At the end of the period, the root tips were collected, washed in distilled water and made ready for microscopic and spectrophotometric analyzes with the help of routine preparation techniques. As a result, the highest germination percentage, root length, weight gain and MI, and the lowest MN frequency, CAs numbers, MDA level, SOD and CAT enzyme activities were determined in the control group (group I). MnCl2 exposure caused a decrease in physiological parameter values and an increase in cytogenetic (except MI) and biochemical parameter values, depending on the dose. MnCl2 exposure induced MN and CAs such as fragment, sticky chromosome, vagrant chromosome, unequal distribution of chromatin and bridge. This genotoxic effect of MnCl2 was associated with DNA-MnCl2 interaction, and this interaction was also confirmed by bathochromic and hypochromic shifts in spectral analysis. Anatomical damages such as epidermis cell damage, flattened cell nucleus, cortex cell damage and cortex cell wall thickening were observed after MnCl2 treatment. As a result, it has been determined that excessive doses of the trace element Mn cause physiological, cytogenetic, biochemical and anatomical toxicity and A. cepa test material is a reliable bio-indicator in determining this toxicity.
Collapse
Affiliation(s)
- Cihat Tümer
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey
| | - Emine Yalçin
- Department of Biology, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey.
| |
Collapse
|
11
|
Kuang X, Wang W, Hu J, Liu W, Zeng W. Subcellular distribution and chemical forms of manganese in Daucus carota in relation to its tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:947882. [PMID: 36275550 PMCID: PMC9582765 DOI: 10.3389/fpls.2022.947882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Daucus carota is a biennial herb of the Umbelliferae family, which is a candidate plant for the phytoremediation of Mn pollution. To reveal the mechanism of this plant to adapt to Mn stress, plant growth, anatomical structure, Mn accumulation characteristic, Mn subcellular distribution, and chemical forms of D. carota under six Mn2+ concentrations by pot culture experiments were studied. The results showed that with the rising Mn concentrations, the total dry weight and leaf area of D. carota increased firstly and then decreased, while the specific leaf area increased. The thickness of the main vein, upper epidermis, and lower epidermis; the thickness of the palisade tissue; and the thickness of the spongy tissue of the leaves increased firstly and then decreased. The Mn content in the aboveground and underground parts of D. carota increased, and the values of the bioconcentration factor (BCF) and translocation factor (TF) were higher than 1. The Mn existing in the cell wall and soluble components accounted for the largest proportion, and the proportion of Mn in the cell wall increased with increasing concentrations of Mn. In addition, Mn mainly existed in ethanol extraction state, deionized water extraction state, and sodium chloride extraction state. The results showed that D. carota could alleviate the damage caused by high manganese concentration by storing most of manganese in the cell wall and vacuole and existing in the form of low-activity state.
Collapse
Affiliation(s)
| | | | | | | | - Wenbin Zeng
- *Correspondence: Wensheng Liu, ; Wenbin Zeng,
| |
Collapse
|
12
|
Jiao A, Gao B, Gao M, Liu X, Zhang X, Wang C, Fan D, Han Z, Hu Z. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil. CHEMOSPHERE 2022; 294:133654. [PMID: 35066084 DOI: 10.1016/j.chemosphere.2022.133654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Phytoremediation is commonly used in the remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) because of its economy and effectiveness. Sudan grass (Sorghum sudanense (Piper) Stapf.) has well-developed roots and strong tolerance to heavy metals, so it has been widely concerned. In this study, nitrilotriacetic acid (NTA) and tea saponin (TS) were used as enhancers and combined with Sudan grass for improving the remediation efficiency of Ni-pyrene co-contaminated soil. The results of the pot experiment in soils showed that enhancers promoted the enrichment of Ni in plants. With the function of enhancers, more inorganic and water-soluble Ni were converted into low-toxic phosphate-bonded and residual Ni, so as to reinforce the tolerance of Sudan grass to Ni. In the pot experiment based on vermiculite, it was found that enhancers increased the accumulation of Ni in cell wall by 49.71-102.73%. Enhancers also had the positive effect on the relative abundance of Proteobacteria, Patescibacteria and Bacteroidetes that could tolerate heavy metals at phylum level. Simultaneously, the study found that pyrene reduced the exchangeable Ni in soils. More Ni entered the organelles and transfer to more high-toxic forms in Sudan grass when pynere coexisted. The study manifested that enhancers improved the phytoremediation effect of Ni significantly, yet the co-existence of pyrene weakened the process. Our results provided meaningful references for remediating actual co-contaminated soil of heavy metals and PAHs.
Collapse
Affiliation(s)
- Anxing Jiao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Bingjie Gao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Mingjing Gao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Chuanhua Wang
- College of Life and Environment Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Delong Fan
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zongrui Han
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Ziqiao Hu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
13
|
Wei W, Peng H, Xie Y, Wang X, Huang R, Chen H, Ji X. The role of silicon in cadmium alleviation by rice root cell wall retention and vacuole compartmentalization under different durations of Cd exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112810. [PMID: 34571424 DOI: 10.1016/j.ecoenv.2021.112810] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 05/22/2023]
Abstract
Silicon (Si) plays a pivotal role in mitigating phytotoxicity caused by cadmium (Cd). However, few former reports focused on the internal mechanism how Si assisted in alleviating Cd stress in rice under different durations of Cd exposure. Herein, the effects of Si on subcellular distribution of Cd in rice roots under short-term (12 h) and long-term (20 d) Cd exposure were explored. Results showed that Si decreased shoot Cd concentration but had little impact on root Cd levels. Under short-term Cd exposure, subcellular distribution analysis showed that Si increased the ratio of Cd in root cell wall by 23.2~24.0%, and decreased the ratio of Cd in root soluble fraction by 20.6~21.5%. This suggested that Si supply improved root retention of Cd by fixing it on the cell wall and thus restricted intracellular transportation of Cd. Further analysis unraveled that pectin (especially ionic-soluble pectin) of the cell wall was the main binding component, and Si supply induced more Cd accumulation in covalent-soluble pectin and hemicellulose. Moreover, the overexpression of germin-like proteins (GLPs) proved the role of cell wall in moderating Cd toxicity. Under long-term Cd exposure, Si promoted phytochelatin 2 (PC2) and phytochelatin 3 (PC3) synthesis in cytosol, at the same time, Si down-regulated the expression of the Cd efflux-related protein multidrug resistance-associated protein-like ATP-binding cassette transporters (MRP-like ABC transporters) and limited Cd transportation from vacuole to cytosol. Taken together, Si rather predominates in limiting Cd translocation by the cell wall of root under short-term Cd exposure and promoting vacuole compartmentalization to mitigate the Cd toxicity under long-term exposure, instead of reducing the absorption of Cd in rice roots, thereby decreasing Cd delivery into shoots.
Collapse
Affiliation(s)
- Wei Wei
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Hua Peng
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China
| | - Yunhe Xie
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China
| | - Xin Wang
- School of Geographic Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Rui Huang
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Haoyu Chen
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Xionghui Ji
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China.
| |
Collapse
|
14
|
Wang QY, Hu NW, Yu HW, Wang QR, Liu YX, Yue J, Hu B. Do freeze-thaw cycles affect the cadmium accumulation, subcellular distribution, and chemical forms in spinach (Spinacia oleracea L.)? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112952. [PMID: 34736033 DOI: 10.1016/j.ecoenv.2021.112952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
To date, although there are many studies investigating the toxicity of heavy metal to plant, little research exists in the seasonal freeze-thaw (FT) regions where FT cycles often happen during the plant growing process. To reveal the adaptive mechanisms of plants to the combination stresses of cadmium (Cd) and FT, the Cd accumulation, subcellular distribution, chemical forms, and antioxidant enzyme activity (peroxidase (POD)) were investigated in spinach (Spinacia oleracea L.) growing under different soil Cd levels (i.e., 0.10 mg Cd kg-1 soil (low), 1.21 mg Cd kg-1 soil (medium), and 2.57 mg Cd kg-1 soil (high)). Compared to the non-freeze-thaw (NFT) treatments, higher Cd concentrations in the root and lower translocation factors from root to leaf were found for the plants experiencing FT cycles. FT significantly decreased the Cd concentrations in the leaves under the low- and medium-Cd treatments, while similar values were found for the high-Cd treatments. Generally, FT could decrease the concentrations and proportions of Cd stored in the cell wall and soluble fractions and increase them in the organelle fractions for the medium- and high-Cd treatments, while opposite tendency was found for the low-Cd treatments. Moreover, larger Cd amounts in the inorganic and water-soluble forms were found for the low- and medium-Cd treated plants under FT, while lower values were found for the high-Cd treatments. Additionally, POD, which presented higher activities at the low- and medium-Cd treatments and lower activities at the high-Cd treatments under FT, were also significantly influenced by the Cd × FT interaction. This study indicated that FT could significantly change the accumulations of Cd in plant, and it provided a new insight into the Cd accumulation by plants in the seasonal FT region.
Collapse
Affiliation(s)
- Quan-Ying Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Nai-Wen Hu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong-Wen Yu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Qi-Rong Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Yu-Xin Liu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Yue
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Bo Hu
- Agricultural Technology and Extension Center of Jilin Province, Changchun 130033, China.
| |
Collapse
|
15
|
Lu HL, Nkoh JN, Biswash MR, Hua H, Dong G, Li JY, Xu RK. Effects of surface charge and chemical forms of manganese(II) on rice roots on manganese absorption by different rice varieties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111224. [PMID: 32890955 DOI: 10.1016/j.ecoenv.2020.111224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The roots of 4 japonica, 4 indica, and 7 hybrid rice varieties were obtained by hydroponic experiment and used to explore the relationship between charge characteristics and exchangeable manganese(II) (Mn(II)) on rice roots and Mn(II) absorption in roots and shoots of the rice. Results indicated Mn(II) adsorbed on rice roots mainly existed as exchangeable Mn(II) after 2 h. The roots of indica and hybrid rice carried more negative charges than the roots of japonica rice. Accordingly, this led to more exchangeable Mn(II) to be adsorbed on roots of indica and hybrid rice after 2 h and more Mn(II) absorbed in the roots of the same varieties after 48 h. However, this was contrary to the result of Mn(II) absorption in rice shoots after 48 h. Coexisting cations of K+, Na+, Ca2+, and Mg2+ reduced the exchangeable Mn(II) on rice roots through their competition with Mn(II) for sorption sites on rice roots, which led to the decrease in Mn(II) absorption in rice roots and shoots. Ca2+ and Mg2+ showed a greater decrease in the Mn(II) absorbed in roots and shoots than K+ and Na+. The reduction of Mn(II) absorption in the roots of indica rice and hybrid rice induced by Ca2+ and Mg2+ was more than that of japonica rice. This was attributed to more negative charges on the roots of the former than the latter. Therefore, the absorption of Mn(II) by rice roots was determined by surface charge properties and exchangeable Mn(II) on the rice roots. The results suggested that Ca2+ and Mg2+ have potential to alleviate Mn(II) toxicity to rice.
Collapse
Affiliation(s)
- Hai-Long Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Md Romel Biswash
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ge Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|