1
|
Singh S, Singh N, Chauhan A, Koshta K, Baby S, Tiwari R, Jagdale PR, Kumar M, Sharma V, Singh D, Srivastava V. Prenatal arsenic exposure alters EZH2/H3K27me3 to induce RKIP/NF-kB/ERK1/2-mediated early-onset kidney disease in mouse offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8498-8517. [PMID: 40085388 DOI: 10.1007/s11356-025-36229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The rising incidences of chronic kidney disease (CKD) and renal failure are a major public health concern. Arsenic, a widespread water contaminant and environmental toxicant, is well-known to contribute to kidney disease in adults. However, its long-term effects on kidney health following early-life exposure remain poorly understood. Therefore, we investigated the impact of prenatal arsenic exposure on kidney health in offspring using a BALB/c mouse model. 0.4 ppm arsenic, an environmentally relevant dose, was orally administered to female mice from 15 days before mating until delivery. Structural and ultrastructural changes in the kidney were assessed using histopathology and transmission electron microscopy, while markers of inflammation, kidney injury, and function were evaluated through Luminex assays, FITC-sinistrin-based glomerular filtration rate (GFR), real-time PCR, immunohistochemistry, and immunoblotting. Notably, arsenic-exposed offspring showed reduced body weight, crown-to-rump length, inflammation, and early signs of kidney injury on postnatal day 2 (PND-2). By 6 weeks, examination showed tubular dilation, mitochondrial damage, vacuolated cytoplasm, and basement membrane disruption were more evident in the kidneys. Furthermore, elevated levels of kidney injury markers, including kidney injury molecule-1, beta-2 microglobulin, cystatin C, and tissue inhibitor of metalloproteinase 1, were detected in urine. These changes were accompanied by increased serum creatinine and a decline in kidney function, as evidenced by reduced GFR levels. Proinflammatory cytokines (TNF-α, IL-6) and NF-κB were significantly elevated along with an increased immune cell infiltration in the kidneys of arsenic-exposed offspring. Further analysis showed increased mesenchymal markers fibronectin and alpha-smooth muscle actin and reduced epithelial marker E-cadherin in the kidneys, indicating fibrosis and epithelial-to-mesenchymal transition. Mechanistic studies revealed that arsenic exposure leads to increased levels of epigenetic regulators enhancer of zeste homolog 2 (EZH2) and histone H3 lysine 27 trimethylation (H3K27me3), which were associated with the activation of inflammatory pathways, fibrosis, and impaired kidney function. Overall, our findings demonstrate that only developmental exposure to arsenic can cause dysregulation of EZH2 and H3K27me3, driving inflammation and renal fibrosis. These changes ultimately lead to chronic kidney disease in offspring, highlighting a critical window of vulnerability for arsenic toxicity with significant implications for long-term kidney health.
Collapse
Affiliation(s)
- Sukhveer Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Neha Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Samiya Baby
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies (MRIIRS), Faridabad, 121004, Haryana, India
| | - Ratnakar Tiwari
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Nephrology and Feinberg Cardiovascular & Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Pankaj Ramji Jagdale
- Pathology Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies (MRIIRS), Faridabad, 121004, Haryana, India
| | - Dhirendra Singh
- Animal Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhong L, Yang Q, Shao Y, Hu S, Guo L. Helicobacter pylori promotes intestinal flora imbalance and hepatic metabolic disorders under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117512. [PMID: 39671763 DOI: 10.1016/j.ecoenv.2024.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Environmental arsenic contamination is a serious issue that cannot be ignored, since arsenic levels in drinking water frequently exceed safety standards, and there is an increased prevalence of Helicobacter pylori (H. pylori) infection. This results in an increasing population at risk of simultaneous exposure to both harmful agents, yet whether a synergistic interaction exists between them remains unclear. Therefore, this study aims to investigate the combined effects and underlying pathogenic mechanisms of concurrent exposure to these two hazardous factors by establishing a mouse model that is infected with H. pylori and exposed to inorganic arsenic through drinking water. Analysis of intestinal flora revealed significant alterations in the composition, relative abundance (Akkermansia, Faecalibaculum, Ilieibacterium, etc.), and metabolic potential of the intestinal microflora (amino acid metabolism and energy metabolism) in the combinatory exposure group. Non-targeted metabolomics analysis identified that the combinatory exposure group exhibited greater fluctuations in metabolite content, particularly in triacylglycerol, fatty-acid, peptide and amino acid. Moreover, H. pylori infection and arsenic exposure had increased levels of metabolites associated with the intestinal microbiota in their livers (4-Ethylphenyl sulfate and Phenylacetylglycine). Further analysis revealed significant correlations between changes in the intestinal flora and alterations in liver metabolic profiles. Herein, we hypothesize that H. pylori infection may exacerbate the intestinal flora imbalance and hepatic metabolic disturbances caused by arsenic exposure, which may disrupt enterohepatic homeostasis and potentially increase biological susceptibility to heavy metal toxicity.
Collapse
Affiliation(s)
- Linmin Zhong
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiling Yang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yiming Shao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
3
|
Lai C, Chen L, Zhong X, Tian X, Zhang B, Li H, Zhang G, Wang L, Sun Y, Guo L. Long-term arsenic exposure decreases mice body weight and liver lipid droplets. ENVIRONMENT INTERNATIONAL 2024; 192:109025. [PMID: 39317010 DOI: 10.1016/j.envint.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Arsenic (As) is a widespread global pollutant, and there is significant controversy surrounding its complex relationship with obesity, primarily focused on short-term exposure. Recognizing the prolonged nature of dietary arsenic exposure, this study involved feeding mice with arsenic-contained food for 14 months. The results showed that mice exposed to arsenic developed a non-alcoholic fatty liver condition, characterized by a light-yellow hue on the liver surface and various pathological alterations in the liver cells, including enlarged nuclei, cellular necrosis, inflammatory infiltration, dysfunctional mitochondria, and endoplasmic reticulum disorganization. There were also disruptions in biochemistry indices, with a significant increase in total cholesterol (TC) level and a decrease in high-density lipoprotein (HDL) level. However, some contradictory observations occurred, such as a significant decrease in body weight, triglyceride (TG) level, and the numbers of lipid droplets. Several genes related to lipid metabolism were tested, and a model was used to explain these discrepancies. Besides, examinations of the colon revealed compromised intestinal barrier function and signs of inflammation. Fecal 16S rRNA sequencing and pseudo-targeted metabolomics revealed disruptions in internal homeostasis, such as modules, nodes, connections, and lipid-related KEGG pathways. Fecal targeted metabolomics analyses of short-chain fatty acids (SCFAs) and bile acids (BAs) demonstrated a significant upregulation in three primary bile acids (CA, CDCA, TCDCA), four secondary bile acids (TUDCA, DCA, LCA, GUDCA), and total SCFAs level. Oxidative stress and inflammation were also evident. Additionally, based on correlation analysis and mediation analysis, it was assumed that changes in the microbiota (e.g., Dubosiella) can impact the liver metabolites (e.g., TGs) through alterations in fecal metabolites (e.g., LPCs). These findings provide a theoretical reference for the long-term effect of arsenic exposure on liver lipid metabolism.
Collapse
Affiliation(s)
- Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China; The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xianbing Tian
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Li
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000.China
| | - Liping Wang
- School of Nursing, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China; The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
4
|
Li H, Ye F, Li Z, Peng X, Wu L, Liu Q. The response of gut microbiota to arsenic metabolism is involved in arsenic-induced liver injury, which is influenced by the interaction between arsenic and methionine synthase. ENVIRONMENT INTERNATIONAL 2024; 190:108824. [PMID: 38917623 DOI: 10.1016/j.envint.2024.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
The drivers of changes in gut microbiota under arsenic exposure and the mechanism by which microbiota affect arsenic metabolism are still unclear. Here, C57BL/6 mice were exposed to 0, 5, or 10 ppm NaAsO2 in drinking water for 6 months. The results showed that arsenic exposure induced liver injury and increased the abundance of folic acid (FA)/vitamin B12 (VB12)- and butyrate-synthesizing microbiota. Statistical analysis and in vitro cultures showed that microbiota were altered to meet the demand for FA/VB12 by arsenic metabolism and to resist the toxicity of unmetabolized arsenic. However, at higher arsenic levels, changes of these microbiota were inconsistent. A 3D molecular simulation showed that arsenic bound to methionine synthase (MTR), which was confirmed by SEC-UV-DAD (1 μM recombinant human MTR was purified with 0 or 2 μM NaAsO2 at room temperature for 1 h) and fluorescence-labeled arsenic co-localization (primary hepatocytes were exposed to 0, 0.5, or 1 μM ReAsH-EDT2 for 24 h) in non-cellular and cellular systems. Mechanistically, the arsenic-MTR interaction in the liver interferes with the utilization of FA/VB12, which increases arsenic retention and thus results in a substantial increase in the abundance of butyrate-synthesizing microbiota compared to FA/VB12-synthesizing microbiota. By exposing C57BL/6J mice to 0 or 10 ppm NaAsO2 with or without FA (6 mg/L) and VB12 (50 μg/L) supplementation in their drinking water for 6 months, we constructed an FA/VB12 intervention mouse model and found that FA/VB12 supplementation blocked the disturbance of gut microbiota, restored MTR levels, promoted arsenic metabolism, and alleviated liver injury. We demonstrate that the change of gut microbiota is a response to arsenic metabolism, a process influenced by the arsenic-MTR interaction. This study provides new insights for understanding the relationship between gut microbiota and arsenic metabolism and present therapeutic targets for arseniasis.
Collapse
Affiliation(s)
- Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan, People's Republic of China
| | - Zhenyang Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xiaoshan Peng
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zhang J, Li W, Liu Y, He Y, Cheng Z, Li X, Chen Y, Zhang A, Peng Y, Zheng J. Arsenite-Induced Drug-Drug Interactions in Rats. Drug Metab Dispos 2024; 52:911-918. [PMID: 38849209 DOI: 10.1124/dmd.124.001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Yan He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Aihua Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| |
Collapse
|
6
|
Ren M, Li J, Xu Z, Nan B, Gao H, Wang H, Lin Y, Shen H. Arsenic exposure induced renal fibrosis via regulation of mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3679-3693. [PMID: 38511876 DOI: 10.1002/tox.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Environmental arsenic exposure is one of the major global public health problems. Studies have shown that arsenic exposure can cause renal fibrosis, but the underlying mechanism is still unclear. Integrating the in vivo and in vitro models, this study investigated the potential molecular pathways for arsenic-induced renal fibrosis. In this study, SD rats were treated with 0, 5, 25, 50, and 100 mg/L NaAsO2 for 8 weeks via drinking water, and HK2 cells were treated with different doses of NaAsO2 for 48 h. The in vivo results showed that arsenic content in the rats' kidneys increased as the dose increased. Body weight decreased and kidney coefficient increased at 100 mg/L. As a response to the elevated NaAsO2 dose, inflammatory cell infiltration, renal tubular injury, glomerular atrophy, tubulointerstitial hemorrhage, and fibrosis became more obvious indicated by HE and Masson staining. The kidney transcriptome profiles further supported the protein-protein interactions involved in NaAsO2-induced renal fibrosis. The in vivo results, in together with the in vitro experiments, have revealed that exposure to NaAsO2 disturbed mitochondrial dynamics, promoted mitophagy, activated inflammation and the TGF-β1/SMAD signaling pathway, and finally resulted in fibrosis. In summary, arsenic exposure contributed to renal fibrosis via regulating the mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling axis. This study presented an adverse outcome pathway for the development of renal fibrosis due to arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Zhang W, Zeng S, Huang J, Tian X, Wu J, Guo L, Liang Y. Down-regulation of O-GlcNAcylation alleviates insulin signaling pathway impairment following arsenic exposure via suppressing the AMPK/mTOR-autophagy pathway. Toxicol Lett 2024; 397:67-78. [PMID: 38734222 DOI: 10.1016/j.toxlet.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Impairment of the insulin signaling pathway is a key contributor to insulin resistance under arsenic exposure. Specifically, O-GlcNAcylation, an important post-translational modification, plays a crucial role in insulin resistance. Nevertheless, the concrete effect and mechanism of O-GlcNAcylation in arsenic-induced impairment of the insulin signaling pathway remain elusive. Herein, C57BL/6 mice were continuously fed arsenic-containing food, with a total arsenic concentration of 30 mg/kg. We observed that the IRS/Akt/GSK-3β insulin signaling pathway was impaired, and autophagy was activated in mouse livers and HepG2 cells exposed to arsenic. Additionally, O-GlcNAcylation expression in mouse livers and HepG2 cells was elevated, and the key O-GlcNAcylation homeostasis enzyme, O-GlcNAc transferase (OGT), was upregulated. In vitro, non-targeted metabolomic analysis showed that metabolic disorder was induced, and inhibition of O-GlcNAcylation restored the metabolic profile of HepG2 cells exposed to arsenic. In addition, we found that the compromised insulin signaling pathway was dependent on AMPK activation. Inhibition of AMPK mitigated autophagy activation and impairment of insulin signaling pathway under arsenic exposure. Furthermore, down-regulation of O-GlcNAcylation inhibited AMPK activation, thereby suppressing autophagy activation, and improving the impaired insulin signaling pathway. Collectively, our findings indicate that arsenic can impair the insulin signaling pathway by regulating O-GlcNAcylation homeostasis. Importantly, O-GlcNAcylation inhibition alleviated the impaired insulin signaling pathway by suppressing the AMPK/mTOR-autophagy pathway. This indicates that regulating O-GlcNAcylation may be a potential intervention for the impaired insulin signaling pathway induced by arsenic.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Shuxian Zeng
- Department of Genetic Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Jieliang Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xianbing Tian
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiegen Wu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yi Liang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
8
|
Qi Z, Zhao Q, Yu Z, Yang Z, Feng J, Song P, He X, Lu X, Chen X, Li S, Yuan Y, Cai Z. Assessing the Impact of PM 2.5-Bound Arsenic on Cardiovascular Risk among Workers in a Non-ferrous Metal Smelting Area: Insights from Chemical Speciation and Bioavailability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8228-8238. [PMID: 38695658 PMCID: PMC11097390 DOI: 10.1021/acs.est.3c10761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/15/2024]
Abstract
Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 μg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Qiting Zhao
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zixun Yu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zhu Yang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| | - Jie Feng
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Pengfei Song
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xiaochong He
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xingwen Lu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xin Chen
- The
Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of
Shunde), 528300 Foshan, Guangdong, China
| | - Shoupeng Li
- Analysis
and Test Center, Guangdong University of
Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| |
Collapse
|
9
|
Shao J, Lai C, Zheng Q, Luo Y, Li C, Zhang B, Sun Y, Liu S, Shi Y, Li J, Zhao Z, Guo L. Effects of dietary arsenic exposure on liver metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116147. [PMID: 38460405 DOI: 10.1016/j.ecoenv.2024.116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong 510176, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guangdong Province 527300, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jinglin Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zuguo Zhao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
10
|
Zhong X, Zhang G, Huang J, Chen L, Shi Y, Wang D, Zheng Q, Su H, Li X, Wang C, Zhang J, Guo L. Effects of Intestinal Microbiota on the Biological Transformation of Arsenic in Zebrafish: Contribution and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2247-2259. [PMID: 38179619 DOI: 10.1021/acs.est.3c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Both the gut microbiome and their host participate in arsenic (As) biotransformation, while their exact roles and mechanisms in vivo remain unclear and unquantified. In this study, as3mt-/- zebrafish were treated with tetracycline (TET, 100 mg/L) and arsenite (iAsIII) exposure for 30 days and treated with probiotic Lactobacillus rhamnosus GG (LGG, 1 × 108 cfu/g) and iAsIII exposure for 15 days, respectively. Structural equation modeling analysis revealed that the contribution rates of the intestinal microbiome to the total arsenic (tAs) and inorganic As (iAs) metabolism approached 44.0 and 18.4%, respectively. Compared with wild-type, in as3mt-/- zebrafish, microbial richness and structure were more significantly correlated with tAs and iAs, and more differential microbes and microbial metabolic pathways significantly correlated with arsenic metabolites (P < 0.05). LGG supplement influenced the microbial communities, significantly up-regulated the expressions of genes related to As biotransformation (gss and gst) in the liver, down-regulated the expressions of oxidative stress genes (sod1, sod2, and cat) in the intestine, and increased arsenobetaine concentration (P < 0.05). Therefore, gut microbiome promotes As transformation and relieves As accumulation, playing more active roles under iAs stress when the host lacks key arsenic detoxification enzymes. LGG can promote As biotransformation and relieve oxidative stress under As exposure.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China
| | - Jieliang Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dongbin Wang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chunchun Wang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
11
|
Biswas R, Rahul S, Pal SK, Sarkar A. Fabrication, characterization and performance analysis of a two-step arsenic bio-filter column using Delftia spp. BAs29 and fired red mud pellets. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4257-4273. [PMID: 36719609 DOI: 10.1007/s10653-022-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Arsenic (As) is considered to be a grave inorganic pollutant, contaminating major aquifers worldwide. In this study, a two-step approach has been designed to combat this toxic metalloid by combining a highly efficient As (III) oxidizing bacteria; Delftia sp. BAs29 and fired red mud pellets to remove the total As from groundwater including both As (III) and As (V) ions. The maximum capacity of As (III) oxidation by Delftia sp. BAs29 was seen to be 95.65% for 500 ml of As contaminated groundwater using an optimized As (III) concentration of 300 ppb and 6.5 g of bacterial cell mass for 7 days. The second step indicated the maximum As (V) adsorption capacity by the stacked red mud pellets to be 97.91% for 500 ml of As contaminated groundwater using the optimized pore size of 106-125 μm for 7 days. The efficiency of As removal increased to 98.76% at a flow rate of 50 ml/h on combining of both the steps. In addition, the morphological properties, chemical composition, and the crystal structure of the As (V) adsorbed red mud pellets were characterized. The techno-economic feasibility of this entire unit was studied using SuperPro 10 software to estimate its optimal demand and potential. Hence, it is believed that scaling up of this two-step bio-filter column can serve as a potent filtration unit to eliminate As, both at the household and industrial level in the near future.
Collapse
Affiliation(s)
- Rimi Biswas
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India
| | - S Rahul
- Department of Biotechnology, Indian Institute of Technology, Madras, 600036, India
| | - Sumit Kumar Pal
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
12
|
Liu X, Zhang J, Si J, Li P, Gao H, Li W, Chen Y. What happens to gut microorganisms and potential repair mechanisms when meet heavy metal(loid)s. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120780. [PMID: 36460187 DOI: 10.1016/j.envpol.2022.120780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal (loid) pollution is a significant threat to human health, as the intake of heavy metal (loid)s can cause disturbances in intestinal microbial ecology and metabolic disorders, leading to intestinal and systemic diseases. Therefore, it is important to understand the effects of heavy metal (loid)s on intestinal microorganisms and the necessary approaches to restore them after damage. This review provides a summary of the effects of common toxic elements, such as lead (Pb), cadmium (Cd), chromium (Cr), and metalloid arsenic (As), on the microbial community and structure, metabolic pathways and metabolites, and intestinal morphology and structure. The effects of heavy metal (loid)s on metabolism are focused on energy, nitrogen, and short-chain fatty acid metabolism. We also discussed the main solutions for recovery of intestinal microorganisms from the effects of heavy metal (loid)s, namely the supplementation of probiotics, recombinant bacteria with metal resistance, and the non-toxic transformation of heavy metal (loid) ions by their own intestinal flora. This article provides insight into the toxic effects of heavy metals and As on gut microorganisms and hosts and provides additional therapeutic options to mitigate the damage caused by these toxic elements.
Collapse
Affiliation(s)
- Xiaoyi Liu
- College of Life Science, Lanzhou University, Lanzhou, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haining Gao
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, China
| | - Weikun Li
- College of Life Science, Lanzhou University, Lanzhou, China
| | - Yong Chen
- College of Life Science, Lanzhou University, Lanzhou, China.
| |
Collapse
|
13
|
Chen L, Li C, Zhong X, Lai C, Zhang B, Luo Y, Guo H, Liang K, Fang J, Zhu X, Zhang J, Guo L. The gut microbiome promotes arsenic metabolism and alleviates the metabolic disorder for their mammal host under arsenic exposure. ENVIRONMENT INTERNATIONAL 2023; 171:107660. [PMID: 36470123 DOI: 10.1016/j.envint.2022.107660] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Gut microbiome can participate in arsenic metabolism. However, its efficacy in the host under arsenic stress is still controversial. To clarify their roles in fecal arsenic excretion, tissue arsenic accumulation, host physiological states and metabolism, in this study, ninety-six C57BL/6 male mice were randomly divided to four groups, groups A and B were given sterile water, and groups C and D were given the third generation of broad-spectrum antibiotic (ceftriaxone) to erase the background gut microbiome. Subsequently, groups B and D were subchronicly exposed to arsenic containing feed prepared by adding arsenical mixture (rice arsenic composition) into control feed. In group D, the fecal total arsenic (CtAs) decreased by 25.5 %, iAsIII composition increased by 46.9 %, unclarified As (uAs) composition decreased by 92.4 %, and the liver CtAs increased by 26.7 %; the fecal CtAs was positively correlated with microbial richness and some metabolites (organic acids, amino acids, carbohydrates, SCFAs, hydrophilic bile acids and their derivatives); and fecal DMA was positively correlated with microbial richness and some metabolites (ferulic acid, benzenepropanoic acid and pentanoic acid); network analysis showed that the numbers of modules, nodes, links were decreased and vulnerability was increased; some SCFAs and hydrophilic bile acid decreased, and hydrophobic bile acids increased (Ps < 0.05). In the tissue samples of group D, Il-18 and Ifn-γ gene expression increased and intestinal barrier-related genes Muc2, Occludin and Zo-1 expression decreased (Ps < 0.05); serum glutathione and urine malondialdehyde significantly increased (Ps < 0.05); urine metabolome significantly changed and the variation was correlated with six SCFAs-producing bacteria, and some SCFAs including isobutyric acid, valeric acid and heptanoic acid decreased (Ps < 0.05). Therefore, the normal gut microbiome increases fecal arsenic excretion and biotransformation, which can maintain a healthier microbiome and metabolic functions, and alleviate the metabolic disorder for their mammal host under arsenic exposure.
Collapse
Affiliation(s)
- Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Yunfu City Center for Disease Control, Guangdong Province 527300, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Keqing Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingwen Fang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xuan Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingjing Zhang
- Key Laboratory of Zebrafish Model for Development and Disease & Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
14
|
Li H, Fan X, Wu X, Han W, Amistadi MK, Liu P, Zhang D, Chorover J, Ding X, Zhang QY. Differential Effects of Arsenic in Drinking Water on Mouse Hepatic and Intestinal Heme Oxygenase-1 Expression. Antioxidants (Basel) 2022; 11:1835. [PMID: 36139908 PMCID: PMC9495312 DOI: 10.3390/antiox11091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic exposure has been associated with the risks of various diseases, including cancers and metabolic diseases. The aim of this study was to examine the effects of arsenic exposure via drinking water on the expression of heme oxygenase-1 (HO-1), a major responsive gene to arsenic-induced oxidative stress, in mouse intestinal epithelial cells which is the first site of exposure for ingested arsenic, and the liver, a known target of arsenic toxicity. The expression of HO-1 was determined at mRNA, protein, or enzymic activity levels in mice exposed to sodium arsenite through drinking water, at various doses (0, 2.5, 10, 25, 100 ppm), and for various time periods (1, 3, 7, or 28 days). HO-1 was significantly induced in the intestine, but not liver, at arsenic doses of 25 ppm or lower. The intestinal HO-1 induction was seen in both males and females, plateaued within 1-3 days of exposure, and was accompanied by increases in microsomal HO activity. In mice exposed to 25-ppm of arsenite for 7 days, total arsenic and As(III) levels in intestinal epithelial cells were significantly higher than in the liver. These findings identify intestinal epithelial cells as likely preferential targets for arsenic toxicity and support further studies on the functional consequences of intestinal HO-1 induction.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Weiguo Han
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Mary Kay Amistadi
- Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Jon Chorover
- Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Bilici N, Doğan E, Sevinç E, Sevinç N, Akinci G, Musmul A, Cengiz M, Şahin IK, Aslanipour B, Ayhanci A. Blood and Stool Arsenic Levels Are Decisive for Diagnosing Children's Functional Gastrointestinal Disease (FGD). Biol Trace Elem Res 2022; 200:3050-3059. [PMID: 34564832 DOI: 10.1007/s12011-021-02919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Pediatric gastroenteritis is a potentially fatal disease that accounts for 10% of childhood deaths. The main risk is environmental factors and nutrition. Arsenic (As) is commonly found in the earth's crust. As is an essential element that can form many organic compounds. In children, it causes diarrhea, gums, tongue lesions, diabetes, conjunctivitis, ocular opacity, and impaired immune response. It also causes low growth, mental retardation, and neurological problems. It is also known as the cause of many cancers that originate at an early age. Regionally, there is an iron and steel industry for almost a century. According to the Rome IV criteria, the blood and stools of 50 children aged 6-18 years, male and female, living in our province with functional gastrointestinal disease (FGD), were screened for As, and compared with the Healthy group (control) of 30 children. The results were evaluated with the Mann-Whitney Rank Sum Test. When blood and stool As values in males were compared with control samples, a high level of significance (p = 0.001) was found between both blood and stool As values in sick males and the control group (p < 0.005). In females, blood and stool As median values were also highly significant when compared with the control group (p = 0.001). According to these data, when the sick children (children with male and female gender) are compared with the healthy ones, the difference is highly significant (p < 0.005). High blood As levels in children indicate environmental pollution. It can be said that blood As levels are high as a result of food, water, and inhaler exposure. The presence of a high level of significant difference in stool means that the amount of As is high in the foods consumed daily. High levels of As are in blood and stools; It was evaluated that FGD could be the cause of nausea, diarrhea, vomiting, and colic. The increase in blood and stool As values due to environmental pollution is an important reason for FGD. For diseases of uncertain cause (such as FGD) resulting from chronic As exposure, blood and especially stool As values are more significant than urinary As levels. In conclusion, As a diagnostic criterion, it was concluded that blood and stool As values are an important marker in children with functional abdominal pain with other metals.
Collapse
Affiliation(s)
- Namik Bilici
- Faculty of Medicine Department of Medical Pharmacology, Karabuk University, Karabuk, Turkey
| | - Erkan Doğan
- Faculty of Medicine Department of Child Health and Diseases, Karabük University, Karabuk, Turkey
| | - Eylem Sevinç
- Faculty of Medicine Department of Child Health and Diseases, Karabük University, Karabuk, Turkey
| | - Nergiz Sevinç
- Faculty of Medicine Department of Public Health, Karabuk University, Karabuk, Turkey
| | | | - Ahmet Musmul
- Department of Medical Services and Techniques Medical Documentation and Secretariat Program, ESOGU Vocational School of Health Services, Eskisehir, Turkey
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkey.
| | | | - Behnaz Aslanipour
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Adnan Ayhanci
- Faculty of Arts and Science, Department of Biology, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
16
|
Ye Z, Huang L, Zhang J, Zhao Q, Zhang W, Yan B. Biodegradation of arsenobetaine to inorganic arsenic regulated by specific microorganisms and metabolites in mice. Toxicology 2022; 475:153238. [PMID: 35718002 DOI: 10.1016/j.tox.2022.153238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Arsenobetaine (AsB) is a primary arsenic (As) compound found in marine organisms. However, in mammals, the metabolic mechanism of AsB remains indistinct. Therefore, in this study, we investigated the biotransformation and regulatory mechanism of AsB, particularly the biodegradation process, in a mouse model to assess the underlying health hazards of AsB. We studied the biotransformation process of AsB in mice through the food chain [AsB feed-marine fish (Epinephelus fuscoguttatus)-mice (Mus musculus)]. Our results showed the significant bioaccumulation of total As, AsB, and, in particular, arsenate [As(V)] through biodegradation in mice tissues. As the abundance of Staphylococcus and Blautia (phylum, Firmicutes) increased, the expression of aqp7 (absorption) and methyltransferase (as3mt) (methylation) was upregulated. In contrast, the expression of S-adenosyl methionine (sam) (methylation) was downregulated. These findings suggest that demethylation and methylation occurred simultaneously in the intestines, with demethylation capacity being greater than that of methylation. Furthermore, Firmicutes such as Staphylococcus and Blautia showed a significant inverse relationship with arachidonic acid, choline, and sphingosine. Gene, microbiome, and metabolomics analyses indicated that Staphylococcus and Blautia and arachidonic acid, choline, and sphingosine participated in the degradation of AsB to As(V) in mouse intestines. Therefore, long-term AsB ingestion through marine fish consumption could cause potential health hazards in humans.
Collapse
Affiliation(s)
- Zijun Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Huang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jichao Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qianyu Zhao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Liu X, Wang J, Deng H, Zhong X, Li C, Luo Y, Chen L, Zhang B, Wang D, Huang Y, Zhang J, Guo L. In situ analysis of variations of arsenicals, microbiome and transcriptome profiles along murine intestinal tract. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127899. [PMID: 34876320 DOI: 10.1016/j.jhazmat.2021.127899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
In situ-based studies on microbiome-host interactions after arsenic exposure are few. In this study, the variations in arsenics, microbiota, and host genes along murine intestinal tracts were determined after arsenic exposure for two months. There was a gradual increase in the concentration of total As (CtAs) in feces from ileum to colon, whereas CtAs in the corresponding tissues were relatively stable. Differences in arsenic levels between feces and tissues were significantly different. The proportion of arsenite (iAsⅢ) in feces gradually decreased, however, it gradually increased in tissues. After arsenic exposure, the diversity and abundance of microbial community and networks in each segment were significantly dysregulated. Notably, 328, 579 and 90 differently expressed genes were detected in ileum, cecum, and colon, respectively. In addition, microbiome and transcriptome analyses showed a significant correlation between the abundance of Faecalibaculum and expressions of Plb1, Hspa1b, Areg and Duoxa2 genes. This implies that they may be involved in arsenic biotransformation. In vitro experiments using Biofidobactrium and Lactobacillus showed that probiotics have arsenic transformation abilities. Therefore, gut microbiome may modulate arsenic accumulation, excretion and detoxification along the digestive tract. Moreover, the abundance and diversity of gut microbiome may be related to the changes in host health.
Collapse
Affiliation(s)
- Xin Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jiating Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Hongyu Deng
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China.
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Dongbin Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yixiang Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jingjing Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
18
|
Chen F, Luo Y, Li C, Wang J, Chen L, Zhong X, Zhang B, Zhu Q, Zou R, Guo X, Zhou Y, Guo L. Sub-chronic low-dose arsenic in rice exposure induces gut microbiome perturbations in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112934. [PMID: 34755630 DOI: 10.1016/j.ecoenv.2021.112934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Long-term consumption of arsenic-contaminated rice has become a public health issue that urgently needs to be addressed. In this study, mice were exposed to arsenic in rice (low dose, 0.91 mg/kg; medium dose, 9.1 mg/kg) for 30 days and 60 days, respectively, and the effects on pathological structures of spleen and skin, as well as the structure of the fecal microbiome were examined. The findings revealed dose/time cumulative effects on pathological changes, with even a low dose exposure for 30 days causing destruction of splenic follicular structure and thickening of dermal keratinized and epidermal layers. The Firmicutes/Bacteroidetes ratio in the community and the positive/negative ratio in network links were higher in arsenic groups, suggesting that arsenic resulted in a less healthy and unstable microbiome for the host. Thus lifetime consumption of arsenic in rice may have potential health effects on humans and must be carefully assessed to safeguard human health. Furthermore, in arsenic groups, arsenic-resistant bacteria or arsenic hazards remediation bacteria changed to be the dominant bacteria and acted as the core bacteria in the network modules. Some microbial arsenic transforming genes (arsC, arsR, arsA, ACR3, and aoxB) differed, indicating that the gut microbiome changed to withstand arsenic stress. Furthermore, Faecalibaculum, Lachnospiraceae_NK4A136_group, Angelakisella, Ruminiclostridium, and Desulfovibrionaceae are positively associated with arsenic dosage and may be useful in the early detection of arsenicals.
Collapse
Affiliation(s)
- Fubin Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Jiating Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China..
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Qijiong Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Rong Zou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Xuming Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Yubin Zhou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| |
Collapse
|
19
|
Wang C, Deng H, Wang D, Wang J, Huang H, Qiu J, Li Y, Zou T, Guo L. Changes in metabolomics and lipidomics in brain tissue and their correlations with the gut microbiome after chronic food-derived arsenic exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112935. [PMID: 34801923 DOI: 10.1016/j.ecoenv.2021.112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic can cause neurodegenerative diseases of the brain, but the definite mechanism is still unknown. In this study, to discuss the disturbances on brain metabolome and lipidome under subchronic arsenic exposure, we treated mice with the arsenic-containing feed (concentration of total arsenic = 30 mg/kg) prepared in accordance with the proportion of rice arsenicals for 16 weeks and performed metabolomics and lipidomics studies respectively using UHPLC-Triple-TOF-MS/MS and UHPLC-Q Exactive Focus MS/MS on mice brain. In addition, the distributions of arsenical metabolites along the feed-gut-blood-brain chain were analyzed by ICP-MS and HPLC-ICP-MS, and fecal microbial variations were investigated by 16 s sequencing. The data showed that although only a tiny amount of arsenic (DMA=0.101 mg/kg, uAs=0.071 mg/kg) enters the brain through the blood-brain barrier, there were significant changes in brain metabolism, including 118 metabolites and 17 lipids. These different metabolites were involved in 30 distinct pathways, including glycometabolism, and metabolisms of lipid, nucleic acid, and amino acid were previously reported to be correlated with neurodegenerative diseases. Additionally, these different metabolites were significantly correlated with 12 gut bacterial OTUs, among which Lachnospiraceae, Muribaculaceae, Ruminococcaceae, and Erysipelotrichaceae were also previously reported to be related to the distortion of metabolism, indicating that the disturbance of metabolism in the brain may be associated with the disturbance of gut microbes induced by arsenic. Thus, the current study demonstrated that the brain metabolome and lipidome were significantly disturbed under subchronic arsenic exposure, and the disturbances also significantly correlated with some gut microbiome and may be associated with neurodegenerative diseases. Although preliminary, the results shed some light on the pathophysiology of arsenic-caused neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenfei Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518000, China.
| | - Hongyu Deng
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518110, China.
| | - Dongbin Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jiating Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510070, China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 528478, China.
| | - Hairong Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jiayi Qiu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yinfei Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Tangbin Zou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
20
|
Shao J, Li X, Luo Y, Fang H, Lin F, Zhang G, Lu F, Guo L, Sun Y. Distribution of arsenic species and pathological characteristics of tissues of the mice fed with arsenic-supplemented food simulating rice. J Toxicol Sci 2021; 46:539-551. [PMID: 34719557 DOI: 10.2131/jts.46.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The exposure and harm of arsenic have attracted wide attention. Rice is an arsenic-rich crop. The purpose of this study was to learn the distribution of arsenic species and the pathological changes in tissues of mice exposed to arsenic-supplemented food simulating rice. Test groups of mice were orally exposed with prepared arsenic feeds supplemented with four arsenic species (arsenite iAsIII, arsenate iAsV, monomethylarsonate MMA, and dimethylarsinate DMA) at three doses (total As concentration: 0.91, 9.1 and 30 μg/g), which simulated the arsenic species ratio in rice. After 112 days, the concentrations of the arsenic species in the spleen, thymus, heart, skin and hair were detected, and histopathology of the spleen, heart and skin was observed. Each arsenic species was detected and their total concentration increased in a dose-dependent manner with a few exceptions. One interesting phenomenon is that ratio of the organic arsenic to inorganic arsenic also increased in a dose-dependent manner. For the other, the order of tissues from high to low arsenic concentration was the same in the medium- and high-dose groups. The histopathological sections of the spleen, heart and skin showed dose-dependent debilitating alterations in tissue architecture. Hyperplasia, hyaline degeneration and sclerosis of fibrous connective tissue occurred in the spleen. Myocardial cell atrophy and interstitial edema occurred in the heart. Hyperpigmentation, hyperkeratosis and atypia of basal cells occurred in the skin. In summary, the long-term intake of high arsenic rice has a health risk. Further studies are needed to assess it.
Collapse
Affiliation(s)
- Junli Shao
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Xin Li
- School of Food and Biological Engineering, Guangdong Polytechnic of Science and Trade, China
| | - Yu Luo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Heng Fang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Fangyan Lin
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, China
| | - Furong Lu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Lianxian Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, China
| |
Collapse
|
21
|
Wang X, Zhou M, Xiao L, Xu T, Yang S, Nie X, Xie L, Yu L, Mu G, Ma J, Chen W. Systemic inflammation mediates the association of heavy metal exposures with liver injury: A study in general Chinese urban adults. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126497. [PMID: 34323735 DOI: 10.1016/j.jhazmat.2021.126497] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal exposures have been reported to be associated with increased risk for liver injury. However, the potential mechanisms of the association remain unclear. A repeated-measure study of 9367 observations was conducted to quantify the associations of urinary heavy metals with serum alanine aminotransferase (ALT), a biomarker for liver injury, and assess the mediating role of systemic inflammation in such associations among general Chinese adults. In single-metal models, positive dose-response relationships between urinary vanadium (V), chromium (Cr), copper (Cu), arsenic (As), cadmium (Cd), tungsten (W), and lead (Pb) and serum ALT were observed. In the multiple-metal model containing the seven metals mentioned above, V and Cu remained positively associated with ALT. In longitudinal analyses of 3-6 years, each 1-unit increase in log-transformed levels of V and Cu was associated with an additional rate of annual ALT increase (95% CI) for 1.3% (0.7-1.8%) and 1.3% (0.7-2.0%), respectively. Plasma CRP concentrations were not only positively associated with urinary Cu and Cd, but also positively related with ALT. Furthermore, mediation analyses showed that CRP mediated 4.70% and 7.03% of urinary Cu- and Cd-associated ALT elevations. Our study provides clues for the prevention of heavy metal-induced liver injury.
Collapse
Affiliation(s)
- Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
22
|
Biswas R, Sarkar A. A two-step approach for arsenic removal by exploiting an autochthonous Delftia sp. BAs29 and neutralized red mud. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40665-40677. [PMID: 32939655 DOI: 10.1007/s11356-020-10665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Groundwater arsenic contamination represents a global threat to human health. Among the proposed bioremediation applications, microbial transformation of arsenite (As (III)) seems to be the most favorable approach as it can be easily coupled with several adsorption techniques, without producing lethal by-products or demanding chemical addition. This study highlights the potential contribution of a highly efficient As (III) transforming bacteria Delftia sp. BAs29 followed by the adsorption of transformed arsenate (As (V)) using neutralized red mud under suitable treatment conditions. Diverse experimental conditions elucidated (inflow As (III) concentrations, flow rate) the rate and oxidation efficiency to mediate the process. Red mud is a waste by-product from the Bayer's process of the alumina industry, which when neutralized aids the removal of As (V). The neutralized red mud was characterized using X-ray diffraction (XRD) microanalysis, Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Arsenate adsorption using neutralized red mud was also studied as a function of pH and time, adsorbent dosage, and initial As (V) concentration. The adsorption process was significantly affected by the solution pH, which on decreasing gradually increased the adsorption efficiency. The maximum monolayer capacity for adsorption of 274.1 mg/g As (V) was found at optimum conditions of pH 4.0 and a contact time of 30 min at a temperature of 30 °C, respectively. Furthermore, this process significantly contributed in fabricating a two-step bio-filter column for the removal of total arsenic from groundwater. Graphical abstract.
Collapse
Affiliation(s)
- Rimi Biswas
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
23
|
Guo L, Dou X, Zou R, Guo X, Liu X, Tang H. The mycobiome in murine intestine is more perturbed by food arsenic exposure than in excreted feces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141871. [PMID: 32891997 DOI: 10.1016/j.scitotenv.2020.141871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a global pollutant that can accumulate in rice and has been confirmed to disturb the gut microbiome. By contrast, the influence on the gut mycobiome is seldom concerned because fungi comprise a numerically small proportion of the whole gut microcommunity. To expand the detection of the mycobiome in different gut sections of mammals and investigate the influence of food arsenic on the gut mycobiome in the digestive tract, we treated mice with feeds containing different compositions of arsenic species (7.3% sodium arsenate, 72.7% sodium arsenite, 1.0% sodium monomethylarsonate, and 19.0% sodium dimethylarsinate) in rice at a total arsenic dose of 30 mg/kg. After 60 days of exposure, the feces of four different sites, the ileum, cecum, colon, and excreted feces, were collected and analyzed by internal transcribed spacer gene sequencing. Among the samples, the major fungal phyla were Ascomycota, Basidiomycota, and Zygomycota; the top 10 fungal genera were Aspergillus, Verticillium, Penicillium, Cladosporium, Alternaria, Fusarium, Ophiocordyceps, Trametes, Mucor, and Nigrospora. In control mice, along the murine digestive tract, the mycobial richness and composition were significantly changed; Aspergillus and Penicillium possessed the higher ability to be stabilized in the murine gut, and larger proportions of positive correlations were observed among the major fungi. After arsenic exposure, the fungal composition was more disturbed in the intestinal tract than in feces. Along the digestive tract, arsenic can trigger larger mycobial variations, and the sensitivities of major fungi to arsenic were changed. Thus, the murine intestinal spatial mycobiota are more perturbed than excreted fecal mycobiota after food arsenic exposure. Feces are insufficient to be selected as a representative of the gut mycobiota in arsenic exposure studies.
Collapse
Affiliation(s)
- Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xinghao Dou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Rong Zou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xuming Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|