1
|
Zhu L, Yang Y, Tan J, Lin Y, Qing J, Li X, Zeng L. Effect of 2,5-hexanedione on rat ovarian granulosa cell apoptosis involves endoplasmic reticulum stress-dependent m-TOR signaling pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:319-328. [PMID: 39668517 DOI: 10.1080/15287394.2024.2438832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Occupational exposure to N-hexane/2,5-hexanedione (2,5-HD) was found to adversely affect reproductive functions in females. However, there are few studies regarding the mechanisms underlying reproductive system damage initiated by 2,5-HD. Several studies demonstrated that 2,5-HD exerts hormonal dysfunctions in females by promoting apoptosis using rat ovarian granulosa cells (GCs) as a model. The endoplasmic reticulum (ER) plays a key role in cellular processes such as protein folding and modification, Ca2+ storage, and lipid synthesis, which are known to involve the activation of stress (ERS)-dependent m-TOR signaling pathway. Thus, the aim of this study was to examine the effects of 2,5-HD on ER and the associated activation of stress (ERS)-dependent m-TOR signaling pathway resulting in consequent apoptosis of ovarian GCs. Data demonstrated that after intraperitoneal treatment with 100, 200, or 400 mg/kg 2,5-HD for 6 consecutive weeks, 5 times per week, a decrease in body weight, ovarian weight, and relative ovary weight was found. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that 2,5-HD promoted apoptosis of ovarian GCs, which involved enhanced relative protein expression levels of m-TOR/p-mTOR. Our findings demonstrated that 2,5-HD (1) elevated expression levels of pro-apoptosis-related genes Bax and Caspase 3, (2) decreased expression levels of the anti-apoptosis gene Bcl-2, and (3) activated the protein expression of glucose-regulatory protein 78 (GRP78), inositol-requiring enzyme-1 (IRE1), and c-Jun terminal kinase (JNK) associated with increased apoptosis. Evidence indicates that chronic exposure to 2,5-HD induced apoptosis of ovarian GCs, and the possible mechanism underlying this effect involves the ERS-dependent m-TOR signaling pathway.
Collapse
Affiliation(s)
- Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Yue Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingsi Tan
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Yibo Lin
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Jiaqi Qing
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Xin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Lingfeng Zeng
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
- Department of Pharmacology and Toxicology, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| |
Collapse
|
2
|
Ye T, Yang R, He S, Li J, Liu Y, Li C, Luo H. Synergistic endocrine disruption and cellular toxicity of polyethylene microplastics and bisphenol A in MLTC-1 cells and zebrafish. Sci Rep 2025; 15:10752. [PMID: 40155689 PMCID: PMC11953243 DOI: 10.1038/s41598-025-94902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
The study investigates the synergistic endocrine disruption and cellular toxicity resulting from co-exposure to polyethylene microplastics (PE-MPs) and bisphenol A (BPA) in zebrafish and MLTC-1 cells. Previous research has extensively examined the individual effects of PE-MPs and BPA on endocrine systems and cellular health. However, the specific interactions and combined toxicological impacts of these two common environmental pollutants remain underexplored, particularly in terms of their synergistic effects on endocrine pathways and cellular viability. To fill this knowledge gap, we characterized PE-MPs using scanning electron microscopy and Raman spectrometry and exposed MLTC-1 cells to PE-MPs, BPA, or combinations of both. The results showed that co-exposure to 100 µg/mL PE-MPs and 100-150 µmol/L BPA for 48 h significantly decreased cell viability, increased apoptosis rates, induced G2/M cell cycle arrest, reduced mitochondrial membrane potential, and altered the transcriptional expression of genes related to steroidogenesis. Specifically, co-exposure upregulated the Ar while downregulating Lhr and 3β-Hsd, with these effects being more pronounced than those observed with single exposures. In a complementary in vivo study, adult zebrafish were exposed to environmentally relevant concentrations of PE-MPs (1 mg/L) and BPA (1.5 µg/L) for 28 days. This co-exposure resulted in significant increases in the GSI and alterations in the gene expression associated with the HPG axis. In male zebrafish brains, genes such as Gnrh2, Esr1, and Ar were downregulated, while in female brains, Gnrh3, Esr1, and Ar also exhibited downregulation. In male testes, Star, Cyp11a1, and Hsd11b2 were upregulated, whereas Cyp19a1a, Hsd3b, Hsd20b, and Hsd17b3 were downregulated. In contrast, female ovaries showed upregulation of Cyp11a1, Cyp17, Cyp11b, Hsd3b, Hsd20b, and Hsd17b3, while Cyp19a1a was downregulated, indicating a sex-specific endocrine disruption. Overall, the findings reveal that co-exposure to PE-MPs and BPA induces synergistic toxic effects both in vitro and in vivo, which underscores the importance of studying the effects of combined pollutants to better assess environmental health risks.
Collapse
Affiliation(s)
- Ting Ye
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, Guizhou, People's Republic of China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005, Guizhou, People's Republic of China
| | - Ruiquan Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005, Guizhou, People's Republic of China
| | - Shumao He
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005, Guizhou, People's Republic of China
| | - Jiahui Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005, Guizhou, People's Republic of China
| | - Yi Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005, Guizhou, People's Republic of China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005, Guizhou, People's Republic of China.
| | - Heng Luo
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People's Republic of China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, Guizhou, People's Republic of China.
| |
Collapse
|
3
|
Kurita H, Ohuchi K, Inden M. Effects of Environmental Non-Essential Toxic Heavy Metals on Epigenetics During Development. TOXICS 2025; 13:167. [PMID: 40137494 PMCID: PMC11946632 DOI: 10.3390/toxics13030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
We are exposed to a variety of environmental chemicals in our daily lives. It is possible that the effects of this daily chemical exposure could accumulate in the organism in some form and influence health and disease development. The exposure effects extend throughout the human lifetime, not only after birth, but also during the embryonic period. Epigenetics is an important target for the molecular mechanisms of daily environmental chemical effects. Epigenetics is a mechanism of gene transcription regulation that does not involve changes in DNA sequence. The Developmental Origins of Health and Disease (DOHaD) theory has also been proposed, in which effects such as exposure to environmental chemicals during embryonic period are mediated by epigenetic changes, which may lead to risk for disease development and adverse health effects after maturity. This review summarizes the association between embryonic exposure and the epigenetics of well-known non-essential toxic heavy metals (methylmercury, cadmium, arsenic, and lead), a representative group of environmental chemicals. In the future, it will be important to predict the epigenetic mechanisms of unknown chemical and combined exposures. In addition, further experimental investigations using experimental animals and the accumulation of knowledge are needed to study the transgenerational effects of environmental chemicals in the future.
Collapse
Affiliation(s)
- Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (K.O.); (M.I.)
| | | | | |
Collapse
|
4
|
Zhao Y, Wang C, Du J, Wang W, Wu J, Liu T, Xue P, Ju Y, Hong X, Zheng J, Qu W, Zhang Y. Cadmium biphasically impacts the adaptive immune system via regulating mitochondrial activation of hematopoietic stem cells in mice. Toxicol Appl Pharmacol 2025; 495:117216. [PMID: 39725238 DOI: 10.1016/j.taap.2024.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Cadmium (Cd) is a highly toxic metal in human body, and therefore understanding the immunotoxicity of Cd is significant for public health. The aim of this study was to investigate the role of hematopoietic stem cells (HSC) in regulating the immunotoxicity of Cd. After exposure to 10 ppm Cd via drinking water for up to 9 months, C57BL/6 mice had a suppressed adaptive immune system at day 135 but had an enhanced adaptive immune system at day 270 during Cd exposure. The biphasic impacts of Cd on the adaptive immune system were correlated to the mitochondrial (MT) activation of HSC. Mechanistically, a direct action of Cd activated the non-canonical Wnt signaling to increase MT activation in HSC in the bone marrow (BM) at day 90, thus resulting in an impaired adaptive immune system in mice at day 135 during Cd exposure; conversely, Cd reduced the production of thrombopoietin (TPO) by osteoblasts in the BM to suppress MT activation in HSC at day 180, which in turn caused an enhanced adaptive immune system in mice at day 270 during Cd exposure. Thus, Cd biphasically impacts the adaptive immune system via regulating MT activation of HSC, providing a novel angle for understanding the immunotoxicology of metals.
Collapse
Affiliation(s)
- Yifan Zhao
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Chuanxuan Wang
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China
| | - Wei Wang
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiaojiao Wu
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ting Liu
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Peng Xue
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yingzi Ju
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xinyu Hong
- Institute of Chemical Toxicity Testing/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Jianheng Zheng
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Weidong Qu
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Xiao C, Lai D. Impact of oxidative stress induced by heavy metals on ovarian function. J Appl Toxicol 2025; 45:107-116. [PMID: 38938153 PMCID: PMC11634564 DOI: 10.1002/jat.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
As a crucial organ of the female reproductive system, the ovary has both reproductive and endocrine functions. Oxidative stress refers to an increase in intracellular reactive oxygen species (ROS), which play a role in the normal physiological activity of the ovary. However, excessive ROS can cause damage to the ovary. With the advancement of human industrial activities, heavy metal pollution has become increasingly severe. Heavy metals cause oxidative stress through both direct and indirect mechanisms, leading to changes in signal transduction pathways that damage the ovaries. This review aims to outline the adverse effects of oxidative stress on the ovaries triggered by heavy metals such as copper, arsenic, cadmium, mercury, and lead. The detrimental effects of heavy metals on ovaries include follicular atresia and decreased estrogen production in experimental animals, and they also cause premature ovarian insufficiency in women. Additionally, this review discusses the role of antioxidants, provides some treatment methods, summarizes the limitations of current research, and offers perspectives for future research directions.
Collapse
Affiliation(s)
- Chengqi Xiao
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| |
Collapse
|
6
|
Wang Z, Liang C, Shi LL, Zhu CS, Wang S, Nakayama SF, Kido T, Sun XL, Shan J. Associations Between Heavy Metal Exposure from Milk and Steroid Hormones in Mothers. Biol Trace Elem Res 2024:10.1007/s12011-024-04466-0. [PMID: 39633227 DOI: 10.1007/s12011-024-04466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Environmental exposure to heavy metals is ubiquitous. However, its relationship with steroid hormone levels is not well understood, particularly in pregnant women. This study investigated the association between prenatal heavy metal exposure and steroid hormone levels in an e-waste disposal area in China. We analyzed the Cd, Cr, Mn, Pb, Cu, and As concentrations in 102 human milk samples collected 4 weeks after delivery. Multiple regression analysis was used to assess the associations and interactions between heavy metals and steroidal hormones. We found positive associations between Mn and estrone and estriol (estrone: β = 0.713, 95%CI = 0.046, 1.381 and estriol: β = 1.290, 95%CI = 0.494, 2.085) and between Cd and progesterone (β = 0.280; 95%CI = 0.053, 0.506). We observed negative associations between Cr and estrone and estriol (estrone: β = - 0.757, 95%CI = - 1.473, - 0.041 and estriol: β = - 1.354, 95%CI = - 2.209, - 0.499). At last, we found that Pb was negatively associated with estrone (estrone: β = - 0.537, 95%CI = - 1.053, - 0.020). Our results suggest that exposure to heavy metals may affect steroid hormone levels in mothers living in an e-waste recycling area in China.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Jiaxing University, Jiaxing, China
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Caixia Liang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Li Li Shi
- School of Medicine, Jiaxing University, Jiaxing, China
| | - Cheng-Sheng Zhu
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Shenghang Wang
- School of Public Health, Shandong University, Jinan, China
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Xian Liang Sun
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China.
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Jiancong Shan
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
7
|
Li Q, Li Y, Zhu J, Liu Z, Sun Y, Lv Y, Li J, Luo L, Zhang C, Zhang W. Cadmium Exposure in Male Rats Results in Ovarian Granulosa Cell Apoptosis in Female Offspring and Paternal Genetic Effects. ENVIRONMENTAL TOXICOLOGY 2024; 39:5187-5198. [PMID: 39119833 DOI: 10.1002/tox.24375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/01/2024] [Accepted: 06/01/2024] [Indexed: 08/10/2024]
Abstract
The aim of this study was to investigate whether the damage to male offspring induced by cadmium (Cd) exposure during embryonic period leads to the apoptosis of ovarian granulosa cells (OGCs) in the next generation of female offspring, and whether this apoptosis in the offspring was due to paternal genetic effects. Pregnant Sprague-Dawley (SD) rats were exposed to CdCl2 (0, 0.5, 2.0, or 8.0 mg/kg) by gavage daily for 20 days to produce the filial 1 (F1) generation. F1 males were mated with newly purchased females to produce the F2 generation, and the F3 generation was generated in the same way. No apoptotic bodies were observed in the OGCs of either the F2 or F3 generation as shown by electron microscopy, and a reduced OGC apoptosis rate (detected by flow cytometry) was observed in F2 OGCs from the Cd-exposed group. Moreover, the mRNA (qRT-PCR) levels of Bax and Bcl-2 and the protein (western blotting) level of pro-caspase-8 increased in the F2 generation (p < 0.05). The expression of apoptosis-related miRNAs (qRT-PCR) and methylation of apoptosis-related genes (determined via bisulfite-sequencing PCR) in OGCs were further determined. Compared with those of the controls, the expression patterns of microRNAs (miRNAs) in the F2 offspring were different in the Cd-exposed group. The miR-92a-2-5p expression levels were decreased in both the F2 and F3 generations (p < 0.05), while the average methylation level of apoptosis-related genes did not change significantly (except for individual loci). In summary, this study showed that the paternal genetic intergenerational effect of male Cd exposure during embryonic period induced apoptosis of OGCs in the offspring was weakened, and the transgenerational effect disappeared; nevertheless, intergenerational and transgenerational changes in apoptosis-related genes, epigenetic modifications, DNA methylation, and miRNAs were observed, and may be important for understanding the homeostatic mechanisms of the body to alleviate the intergenerational transmission of Cd-induced damage.
Collapse
Affiliation(s)
- Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
9
|
Ali Hussein M, Kamalakkannan A, Valinezhad K, Kannan J, Paleati N, Saad R, Kajdacsy-Balla A, Munirathinam G. The dynamic face of cadmium-induced Carcinogenesis: Mechanisms, emerging trends, and future directions. Curr Res Toxicol 2024; 6:100166. [PMID: 38706786 PMCID: PMC11068539 DOI: 10.1016/j.crtox.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Cadmium (Cd) is a malleable element with odorless, tasteless characteristics that occurs naturally in the earth's crust, underground water, and soil. The most common reasons for the anthropological release of Cd to the environment include industrial metal mining, smelting, battery manufacturing, fertilizer production, and cigarette smoking. Cadmium-containing products may enter the environment as soluble salts, vapor, or particle forms that accumulate in food, soil, water, and air. Several epidemiological studies have highlighted the association between Cd exposure and adverse health outcomes, especially renal toxicity, and the impact of Cd exposure on the development and progression of carcinogenesis. Also highlighted is the evidence for early-life and even maternal exposure to Cd leading to devastating health outcomes, especially the risk of cancer development in adulthood. Several mechanisms have been proposed to explain how Cd mediates carcinogenic transformation, including epigenetic alteration, DNA methylation, histone posttranslational modification, dysregulated non-coding RNA, DNA damage in the form of DNA mutation, strand breaks, and chromosomal abnormalities with double-strand break representing the most common DNA form of damage. Cd induces an indirect genotoxic effect by reducing p53's DNA binding activity, eventually impairing DNA repair, inducing downregulation in the expression of DNA repair genes, which might result in carcinogenic transformation, enhancing lipid peroxidation or evasion of antioxidant interference such as catalase, superoxide dismutase, and glutathione. Moreover, Cd mediates apoptosis evasion, autophagy activation, and survival mechanisms. In this review, we decipher the role of Cd mediating carcinogenic transformation in different models and highlight the interaction between various mechanisms. We also discuss diagnostic markers, therapeutic interventions, and future perspectives.
Collapse
Affiliation(s)
- Mohamed Ali Hussein
- Department of Pharmaceutical Services, Children’s Cancer Hospital Egypt, 57357 Cairo, Egypt
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Abishek Kamalakkannan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Kamyab Valinezhad
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Jhishnuraj Kannan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Nikhila Paleati
- Department of Psychology and Neuroscience, College of Undergraduate Studies, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rama Saad
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - André Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| |
Collapse
|
10
|
Xu X, Pan Y, Zhan L, Sun Y, Chen S, Zhu J, Luo L, Zhang W, Li Y. The Wnt/β-catenin pathway is involved in 2,5-hexanedione-induced ovarian granulosa cell cycle arrest. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115720. [PMID: 37995618 DOI: 10.1016/j.ecoenv.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
N-Hexane causes significant ovarian toxicity, and its main active metabolite 2,5-hexanedione (2,5-HD) can induce ovarian injury through mechanisms such as inducing apoptosis in ovarian granulosa cells (GCs); however, the specific mechanism has not been fully elucidated. In this study, we investigated the effects on the cell cycle of rat ovarian GCs exposed in vitro to different concentrations of 2,5-HD (0 mM, 20 mM, 40 mM, and 60 mM) and further explored the mechanism by mRNA and miRNA microarray analyses. The flow cytometry results sindicated that compared with control cells, in ovarian GCs, there was significant cell cycle arrest after 2,5-HD treatment. Cell cycle- and apoptosis- related gene (Cdk2, Ccnd1, Bax, Bcl-2, Caspase3, and Caspase9) expression was altered. The mRNA and miRNA microarray results suggested that 5678 mRNAs and 32 miRNAs were differentially expressed in the 2,5-HD-treated group. A total of 262 target mRNAs were obtained by miRNA and mRNA coexpression analysis, forming 368 miRNA-mRNA coexpression relationship pairs with 27 miRNAs. GO and KEGG analyses showed that differentially expressed genes were significantly enriched in the cell cycle and Wnt signaling pathways. Furthermore, significant changes in the expression of Wnt signaling pathway and cell cycle- related genes (Fzd1, Lrp6, Tcf3, Tcf4, Fzd6, Lrp5, β-catenin, Lef1, GSK3β, and Dvl3) after 2,5-HD treatment were confirmed by qRT-PCR and Western blotting. Ther results of dual-luciferase assays indicated decreased β-catenin/TCF transcriptional activity after 2,5-HD treatment. In addition, Wnt pathway-related miRNAs (rno-miR-145-5p, rno-miR-143-3p, rno-miR-214-3p, rno-miR-138-5p, and rno-miR-199a-3p) were changed significantly after 2,5-HD treatment. In summary, 2,5-HD induced cell cycle arrest in ovarian GCs, and the Wnt/β-catenin signaling pathway may play a very critical role in this process. Alterations in the expression of miRNAs such as rno-miR-145-5p may have significant implications.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yimei Pan
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Liqin Zhan
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Sichuan Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
11
|
Luo L, Li J, Sun Y, Lv Y, Liu J, Li Y, Zhang C, Zhang W. Maternal genetic intergenerational and transgenerational effects on hormone synthesis in ovarian granulosa cells of offspring exposed to cadmium during pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115278. [PMID: 37481859 DOI: 10.1016/j.ecoenv.2023.115278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
This study aimed to investigate the maternally inherited intergenerational and transgenerational effects of cadmium (Cd) exposure on steroid hormone synthesis in the ovarian granulosa cells (GCs) of offspring rats. F1 rats were obtained by mating adult female Sprague-Dawley rats with healthy adult male rats and were exposed to 0, 0.5, 2.0, and 8.0 mg/kg CdCl2 during pregnancy. The adult female rats (PND 56) were mated with healthy adult male rats to produce F2 and F3 rats. The serum progesterone (Pg) and estradiol (E2) levels of the F2 adult female rats were decreased, while those of F3 rats were significantly increased. Moreover, hormone synthesis-related genes had different expression patterns in the F2 and F3 generations. F2 and F3 rat ovarian GCs exhibited altered miRNA expression profiles and DNA methylation patterns. Validation of miRNAs that regulate hormone synthesis-related genes in the cAMP/PKA signaling pathway suggested that miR-124-3p was downregulated in F2 and F3 rats, while miR-133a-5p and miR-150-5p were upregulated in F2 rats and downregulated in F3 rats. In summary, 1) there are maternal genetic intergenerational (GCs hormone synthesis disorder) and transgenerational (GCs hormone synthesis function repair change) effects on hormone synthesis function changes in offspring GCs induced by Cd exposure during pregnancy. 2) Changes in miRNAs and DNA methylation modifications associated with the genetic effects of altered hormone synthesis function in offspring GCs induced by Cd exposure during pregnancy are important. 3) Under the current environmental level of Cd exposure, the possible risk of maternal genetic intergenerational and transgenerational effects of offspring ovarian toxicity should be strongly considered.
Collapse
Affiliation(s)
- Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
12
|
Sun Y, Liu Z, Zhang W, Lin H, Li Q, Liu C, Zhang C. Paternal genetic effects of cadmium exposure during pregnancy on hormone synthesis disorders in ovarian granulosa cells of offspring. J Ovarian Res 2023; 16:98. [PMID: 37194017 DOI: 10.1186/s13048-023-01175-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
The aim of this study was to investigate the paternal genetic intergenerational and transgenerational genetic effects of cadmium (Cd) exposure during pregnancy on estradiol (E2) and progesterone (Pg) synthesis in the ovarian granulosa cells (GCs) of offspring. Pregnant SD rats were intragastrically exposed to CdCl2 (0, 0.5, 2.0, 8.0 mg/kg) from days 1 to 20 to produce the F1 generation, F1 males were mated with newly purchased females to produce the F2 generation, and the F3 generation was obtained in the same way. Using this model, Cd-induced hormone synthesis disorders in GCs of F1 have been observed [8]. In this study, altered serum E2 and Pg levels in both F2 and F3 generations showed a nonmonotonic dose‒response relationship. In addition, hormone synthesis-related genes (Star, Cyp11a1, Cyp17a1, Cyp19a1, Sf-1) and miRNAs were observed to be altered in both F2 and F3. No differential changes in DNA methylation modifications of hormone synthesis-related genes were observed, and only the Adcy7 was hypomethylated. In summary, paternal genetic intergenerational and transgenerational effects exist in ovarian GCs E2 and Pg synthesis disorders induced by Cd during pregnancy. In F2, the upregulation of StAR and CYP11A1, and changes in the miR-27a-3p, miR-27b-3p, and miR-146 families may be important, while changes in the miR-10b-5p and miR-146 families in F3 may be important.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Hao Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350005, Fujian Province, China
| | - Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
13
|
Sun Y, Zhang C, Luo L, Lin H, Liu C, Zhang W. Paternal genetic intergenerational and transgenerational effects of cadmium exposure on hormone synthesis disorders in progeny ovarian granulosa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121175. [PMID: 36731734 DOI: 10.1016/j.envpol.2023.121175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To investigate the paternal genetic effects of cadmium (Cd) exposure on hormone synthesis disorders in the ovarian granulosa cells (GCs) of offspring. Here, male Sprague‒Dawley (SD) rats were gavaged with CdCl2 (0, 0.5, 2, 8 mg/kg) from postnatal day (PND) 28-56, followed by mating with newly purchased healthy adult females to produce F1, and F1 adult males (PND 56) were mated with newly purchased healthy adult females to produce F2. The serum levels of estradiol (E2) and progesterone (Pg) decreased in F1 but essentially returned to normal in F2. The levels of StAR, CYP11A1, CYP17A1, CYP19A1, and SF-1 showed different alterations in F1 and F2 ovarian GCs. The expression patterns of miRNAs and imprinted genes related to hormone synthesis in GCs of F1 and F2 differed, but methylation of hormone synthesis-related genes was not significantly altered (except for individual loci in F1). In addition, there were significant changes in the expression of imprinted genes and miRNAs in F0 and F1 sperm. We conclude that paternal Cd exposure causes intergenerational genetic effects (hormone synthesis disorders) and transgenerational effects (reparative changes in hormone synthesis function) in ovarian GCs. These genetic effects were related to the downregulation of StAR in F1 and the upregulation of CYP17A1, CYP19A1, StAR and SF-1 in F2. Important changes in miRNAs and imprinted genes were also observed, but not all alterations originated from paternal inheritance.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Hao Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350005, Fujian, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
14
|
Lawless L, Xie L, Zhang K. The inter- and multi- generational epigenetic alterations induced by maternal cadmium exposure. Front Cell Dev Biol 2023; 11:1148906. [PMID: 37152287 PMCID: PMC10157395 DOI: 10.3389/fcell.2023.1148906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Exposure to cadmium during pregnancy, from environmental or lifestyle factors, has been shown to have detrimental fetal and placental developmental effects, along with negatively impacting maternal health during gestation. Additionally, prenatal cadmium exposure places the offspring at risk for developing diseases in infancy, adolescence, and adulthood. Although given much attention, the underlying mechanisms of cadmium-induced teratogenicity and disease development remain largely unknown. Epigenetic changes in DNA, RNA and protein modifications have been observed during cadmium exposure, which implies a scientific premise as a conceivable mode of cadmium toxicity for developmental origins of health and disease (DOHaD). This review aims to examine the literature and provide a comprehensive overview of epigenetic alterations induced by prenatal cadmium exposure, within the developing fetus and placenta, and the continued effects observed in childhood and across generations.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Ke Zhang,
| |
Collapse
|
15
|
miR-27a-3p targets NR5A2 to regulate CYP19A1 expression and 17-β estradiol synthesis in ovine granulosa cells. Anim Reprod Sci 2023; 248:107160. [PMID: 36481589 DOI: 10.1016/j.anireprosci.2022.107160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Although 17-β estradiol (E2) synthesis is important in regulating female fertility, we know little regarding the molecular mechanism of miRNA-regulated ovine E2 synthesis. Here, our experiments with granulosa cells (GCs) from Hu sheep revealed miR-27a-3p involvement in E2 synthesis and its association with ovine litter size. First, we showed that miR-27a-3p of sheep and other mammals share a high nucleotide identity. Next, gain- and loss-of-function assays indicated that miR-27a-3p inhibits CYP19A1 expression and E2 synthesis in GCs. Moreover, we demonstrated that NR5A2 is a direct target of miR-27a-3p. Ovine miR-27a-3p suppresses E2 synthesis via the NR5A2 and CYP19A1 axes. We also identified four single nucleotide polymorphisms in the ovine miR-27a gene, and g.-13 G>A and g 0.24 T > G were significantly associated with the first and the second parity litter size, respectively (P < 0.05). In summary, our findings reveal that miR-27a-3p is a novel regulator of E2 synthesis and may predict litter size of Hu sheep, providing insight into mechanisms underlying granulosa cell function and female fertility.
Collapse
|
16
|
Qu J, Wang Q, Sun X, Li Y. The environment and female reproduction: Potential mechanism of cadmium poisoning to the growth and development of ovarian follicle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114029. [PMID: 36055045 DOI: 10.1016/j.ecoenv.2022.114029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is ubiquitous in our environment and can easily bioaccumulate into the organism after passage through the respiratory and digestive tracts. Long-term exposure to Cd can result in the significant bioaccumulation in organism because of its long biological high-life (10-30 years), which exerts irreversible damages on the health of animals and humans. Although there are increased evidence of impeding the normal function of female reproduction resulted from Cd exposure, the mechanism of the negative action of Cd on the growth and development of ovarian follicle remains enigmatic. Thus, the purpose of the presented study is to summarize available literature which describing Cd-related toxicity involved in the adverse effects on the growth and development of the ovarian follicle. In conclusion, it is suggested that Cd causes damage to the folliculogenesis of mammalians, which results in the decline in the number and quality of ovulated oocytes and the failure in the fertilization. The mechanism behinds that may be linked to the interference to the production of reproductive hormones and the augment of reactive oxygen species (ROS). Furthermore, the enhanced ROS, in turn, impairs various molecules including proteins, lipids and DNA, as well as the balance of the antioxidant defense system, mitochondrial homeostasis, endoplasmic reticulum, autophagy and epigenetic modification. This review is expected to elaborate the toxic mechanism of Cd exposure to the growth and development of ovarian follicles and provide essential remediation strategies to alleviate the damage of Cd to female reproductive health.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Department of Animal Science, University of Vermont, Burlington, VT 05405, USA.
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
Huang Y, Zhang W, Cui N, Xiao Z, Zhao W, Wang R, Giesy JP, Su X. Fluorene-9-bisphenol regulates steroidogenic hormone synthesis in H295R cells through the AC/cAMP/PKA signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113982. [PMID: 35987080 DOI: 10.1016/j.ecoenv.2022.113982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Fluorene-9-bisphenol (BHPF), which has been used as a substitute for bisphenol A (BPA) in consumer goods and industrial products, can be detected in environmental media and human urine. BHPF has been reported to have endocrine-disrupting effects, whereas deleterious effects on steroidogenesis in H295R cells and underlying mechanisms are still unclear. Here, we investigated effects of BHPF on steroidogenesis using human adrenocortical carcinoma cells (H295R). Cytotoxicity was initially assessed and half-maximal inhibitory concentration (IC50) was determined based on proliferation of cells. Responses of four steroid hormones, aldosterone, cortisol, testosterone and 17β-estradiol (E2), and ten critical genes, StAR, HMGR, CYP11A1, CYP11B1, CYP11B1, HSD3B2, CYP21, CYP17, 17β-HSD, and CYP19, involved in steroidogenesis after exposure to non-cytotoxic concentrations of BHPF were determined in the presence or absence of 100 μM dbcAMP. Adenylate cyclase (AC) activity, intracellular concentrations of cAMP, PKA activity and amounts of steroidogenic factor-1 (SF-1) gene and expressions of proteins were determined to elucidate underlying mechanisms of effects on steroidogenesis. BHPF was cytotoxic to H295R cells in a dose- and time-dependent manner. Effects on production of hormones results demonstrated that exposure to greater concentrations of BHPF inhibited productions of aldosterone, cortisol, testosterone and E2 by down-regulation of steroidogenic genes. Inhibition of AC activity, intercellular cAMP content and PKA activity after exposure to BHPF implied that the AC/cAMP/PKA signaling pathway was involved in BHPF-induced suppression of steroidogenesis in H295R cells. Additionally, BHPF inhibited steroidogenesis and expressions of steroidogenic genes via decreasing expression of SF-1 protein, both in basal and dbcAMP-induced treatment. These results contributed to understanding molecular mechanisms of BHPF-induced effects on steroidogenesis and advancing the comprehensive risk assessment of BPs.
Collapse
Affiliation(s)
- Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Na Cui
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Zhiming Xiao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Wenyu Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences, and Toxicology Center, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK S7N 5B4, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 784 Wilson Rd, East Lansing, MI 48824, USA; Department of Environmental Science, Baylor University, 97266 One Bear Place, Waco, TX 76798, USA.
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| |
Collapse
|
18
|
Sun Y, Lv Y, Li Y, Li J, Liu J, Luo L, Zhang C, Zhang W. Maternal genetic effect on apoptosis of ovarian granulosa cells induced by cadmium. Food Chem Toxicol 2022; 165:113079. [PMID: 35525383 DOI: 10.1016/j.fct.2022.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
To investigate the maternal genetic effects of cadmium (Cd) -induced apoptotic in ovarian granulosa cells (OGCs). Herein, pregnant Sprague-Dawley (SD) rats were treated with CdCl2 from day 1 to day 20, F1 and F2 female rats were mated with untreated males to produce F2 and F3 generations. Under this model, significant apoptotic changes were observed in F1 OGCs induced by Cd (Liu et al., 2021). In this study, no apoptotic bodies were found in F2 while the mitochondrial membrane potential level decreased significantly but not in F3. Moreover, significant changes in bcl-xl and Cle-CASPASE-9/Pro-CASPASE-9 ratio were observed in F2 which disappears in F3. The DNA methylation sequencing and microRNAs (miRNAs) microarray reveals different gene methylation and miRNAs changes in F2 and F3. Notably, miR-132-3p, miR-199a-5p, and miR-1949 were upregulated in F1 while downregulated in F2 and F3 in which apoptosis gradually disappeared. Further, miRNA maturation-related genes and transcription factors have different expression patterns in F1-F3. These results indicate that maternal genetic intergenerational/transgenerational effect of Cd-induced OGCs apoptotic was significantly attenuated and disappeared, which was related to self-repair regulation of apoptosis-related genes. The changes in apoptosis-related miRNAs and DNA methylation may be important, and the role of transcription factors deserve attention.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
19
|
Liu J, Li L, Zhu J, Luo L, Li Y, Zhang C, Zhang W. Cadmium disrupts mouse embryonic stem cell differentiation into ovarian granulosa cells through epigenetic mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113431. [PMID: 35334236 DOI: 10.1016/j.ecoenv.2022.113431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) can influence germ cell development, and epigenetic events may be involved. However, there is no study on whether Cd can influence germ cells differentiation into ovarian granulosa cells (GCs), and more insight into the molecular mechanism of the effect of Cd on germ cell development from mouse embryonic stem (ES) cells into ovarian granulosa cells and investigation of appropriate epigenetic factors are of great importance. In this study, mouse ES cell differentiation into GCs was established in an in vitro model. Subsequently, different Cd concentrations of 0, 0.1, 0.3, and 1 and then 3.0, and 10.0 μmol/L were cultured in this in vitro model. We demonstrated that Cd treatment can interrupt ES cell differentiation into GCs by morphology and ultrastructure observation. Four specific markers (octamer-binding transcription factor 4 (OCT4), sex-determining region Y-box 2 (SOX2), Nanog homeobox (Nanog), and Anti-müllerian hormone type II receptor (Amhr2)) were significantly changed as measured by quantitative real-time-PCR or Western blot (p < 0.05). Cd also significantly changed the DNA methylation of GC sites on the CpG island of Nanog according to the sequential mass ARRAYR methylation method (p < 0.05). The MeRIP-qPCR method was used to detect the levels of N6-methyladenosine (m6A) methylation modification of long noncoding RNA (lncRNA) 1281 and indicated that they were decreased (p < 0.05). Microarray chip analysis, miRNA screening, and bioinformatics were used to further explore the roles of marker regulation-related miRNAs, and 27 miRNAs were putatively related to Cd-interrupted differentiation in ES cells. These data indicated that Cd can interrupt ES cell differentiation into GCs and affect germ cell development, and the underlying mechanism may involve epigenetic mechanisms.
Collapse
Affiliation(s)
- Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China
| | - Lingfang Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China
| | - Lingfeng Luo
- Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China
| | - Chenyun Zhang
- School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China.
| |
Collapse
|
20
|
Neamtu RI, Craina M, Dahma G, Popescu AV, Erimescu AG, Citu I, Dobrescu A, Horhat FG, Vulcanescu DD, Gorun F, Bernad ES, Motoc A, Citu IC. Heavy metal ion concentration in the amniotic fluid of preterm and term pregnancies from two cities with different industrial output. Exp Ther Med 2022; 23:111. [PMID: 34970334 PMCID: PMC8713173 DOI: 10.3892/etm.2021.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
The growth and development of the fetus is a complex phenomenon that can be influenced by several variables. High quantities of heavy metal ions in the amniotic fluid have been linked to poor health, especially in industrial, polluted and poor areas. The aim of the present study was to assess the differences in the concentration of these ions between preterm (weeks 15-37) and term pregnancies (starting at week 37). Another objective was to compare pregnancies from two cities with different industry levels. Two sample lots from two Romanian cities were analyzed. A total of 100 patients from Timisoara were compared with 60 from Petrosani, a heavy industry city in Romania. Demographic data were collected, and amniocentesis was performed on all women. Lead (Pb), copper (Cu), nickel (Ni), cadmium (Cd), arsenic (As), iron (Fe) and zinc (Zn) concentrations were assessed. Descriptive and analytical statistics were performed using the Mann-Whitney U test for non-parametric data and the Fisher's exact test for categorical data. In addition, categorical data was represented graphically. In the Timisoara cohort, the differences in heavy metal concentrations between preterm and term pregnancies were not statistically significant. In the Petrosani cohort, however, the concentrations of Zn (P=0.02606) and Cd (P=0.01512) were higher in preterm than in term pregnancies. When comparing the two cohorts as a whole, the concentration of Pb (P=0.04513), Cd (P=0.00002), As (P=0.03027) and Zn (P<0.00001) were higher in the patients from Petrosani than in those from Timisoara. Only Cu concentrations were higher in the Timisoara cohort (P<0.00001). The concentrations of Ni (P=0.78150) and Fe (P=0.44540) did not differ statistically. Thus, amniocentesis is an important diagnostic and exploratory tool in determining differences in the concentrations of elements such as heavy metal ions. Research over a longer period of time should be carried out to examine the relation between heavy metal ions concentration and possible postnatal health outcomes.
Collapse
Affiliation(s)
- Radu Ionut Neamtu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Craina
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - George Dahma
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alin Viorel Popescu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Geanina Erimescu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioana Citu
- Department of Internal Medicine I, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Amadeus Dobrescu
- Department of Surgery, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (Multi-Rez), Microbiology Department, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Clinical Laboratory, 'Louis Turcanu' Emergency Hospital for Children, 300011 Timisoara, Romania
| | - Dan Dumitru Vulcanescu
- Multidisciplinary Research Center on Antimicrobial Resistance (Multi-Rez), Microbiology Department, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Clinical Laboratory, 'Louis Turcanu' Emergency Hospital for Children, 300011 Timisoara, Romania
| | - Florin Gorun
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Elena Silvia Bernad
- Department of Internal Medicine I, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andrei Motoc
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Department of Anatomy and Embryology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioan Cosmin Citu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
21
|
Guo L, Huang Q, Zhao J, Liu H, Lu W, Wang J. microRNA-10b promotes the apoptosis of bovine ovarian granulosa cells by targeting plasminogen activator inhibitor-1. Theriogenology 2021; 176:206-216. [PMID: 34627051 DOI: 10.1016/j.theriogenology.2021.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Granulosa cells (GCs) are essential somatic cells in the ovaries, and apoptosis of GCs causes follicular atresia. microRNA-10b (miR-10b) is pivotal for cell apoptosis. However, currently, little is known about the role of miR-10b in bovine ovarian GCs (BGCs). In this study, the effect of miR-10b on the apoptosis of BGCs was investigated. Our results showed that the overexpression of miR-10b could increase the apoptosis rate of BGCs, which is associated with the increased expression of Caspase-3 and decreased expression ratio of Bcl-2/Bax (P < 0.05). Furthermore, plasminogen activator inhibitor-1 (PAI-1) was confirmed to be a validated target of miR-10b in BGCs using dual-luciferase reporter analysis, and transfection of miR-10b mimics decreased the expression of PAI-1 (P < 0.05). In addition, overexpression of PAI-1 significantly inhibited BGC apoptosis (P < 0.05), and PAI-1 could alleviate BGC apoptosis induced by miR-10b (P < 0.05). Subsequently, phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) was found to be the downstream pathway of PAI-1 by RNA-Seq analysis and verified by Western blot. Finally, a PI3K/AKT inhibitor (Miltefosine) was used to inhibit the PI3K/AKT pathway, which reversed the inhibitory effect of PAI-1 on the apoptosis of BGCs (P < 0.05), and enhanced the promotion effect of miR-10b on the apoptosis of BGCs (P < 0.05). Our results indicated that miR-10b promotes BGC apoptosis by targeting PAI-1 to regulate the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lewei Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qixuan Huang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wenfa Lu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
22
|
Comess S, Donovan G, Gatziolis D, Deziel NC. Exposure to atmospheric metals using moss bioindicators and neonatal health outcomes in Portland, Oregon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117343. [PMID: 34030082 DOI: 10.1016/j.envpol.2021.117343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Studying the impacts of prenatal atmospheric heavy-metal exposure is challenging, because biological exposure monitoring does not distinguish between specific sources, and high-resolution air monitoring data is lacking for heavy metals. Bioindicators - animal or plant species that can capture environmental quality - are a low-cost tool for evaluating exposure to atmospheric heavy-metal pollution that have received little attention in the public-health literature. We obtained birth records for Portland, Oregon live births (2008-2014) and modeled metal concentrations derived from 346 samples of moss bioindicators collected in 2013. Exposure estimates were assigned using mother's residential address at birth for six metals with known toxic and estrogenic effects (arsenic, cadmium, chromium, cobalt, nickel, lead). Associations were evaluated for continuous (cts) and quartile-based (Q) metal estimates and three birth outcomes (preterm birth (PTB; <37 weeks)), very PTB (vPTB; <32 weeks), small for gestational age (SGA; 10th percentile of weight by age and sex)) using logistic regression models with adjustment for demographic characteristics, and stratified by maternal race. Chromium and cobalt were associated with increased odds of vPTB (chromium - odds ratio (OR)cts = 1.09, 95% CI: 1.00, 1.17; cobalt - ORQ4vsQ1 = 1.33, 95% CI: 1.03, 1.71). Cobalt, chromium and cadmium were significantly associated with odds of SGA, although the direction of association differed by metal (cobalt - ORcts = 1.04, 95% CI: 1.01, 1.07; chromium - ORQ3vsQ1 = 0.91, 95% CI: 0.83, 0.99; cadmium - ORcts = 0.96, 95% CI: 0.93, 1.00). In stratified analyses, odds of SGA were significantly different among non-white mothers compared to white mothers with exposure to chromium, cobalt, lead and nickel. This novel application of a moss-based exposure metric found that exposure to some atmospheric metals is associated with adverse birth outcomes. These findings are consistent with previous literature and suggest that moss bioindicators are a useful complement to traditional exposure-assessment methods.
Collapse
Affiliation(s)
- Saskia Comess
- Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Geoffrey Donovan
- USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR, 97205, USA.
| | - Demetrios Gatziolis
- USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR, 97205, USA
| | - Nicole C Deziel
- Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
23
|
Sun Y, Zong C, Liu J, Zeng L, Li Q, Liu Z, Li Y, Zhu J, Li L, Zhang C, Zhang W. C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicol Appl Pharmacol 2021; 421:115536. [PMID: 33865896 DOI: 10.1016/j.taap.2021.115536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) can induce ovarian injury by microRNAs (miRNAs), however, the molecular mechanism of miRNAs after Cd exposure have not known. In this study, 56-day-old adult female Sprague-Dawley (SD) rats were injection with PMSG, after 48 h, ovarian granulosa cells (GCs) were extracted and cultured for 24 h, then treated with 0, 2.5, 5, 10 and 20 μM Cd for 24 h. The results showed that expression levels of miR-92a-2-5p (upregulated) and Bcl2 (downregulated) changed significantly after Cd exposure. The messenger RNA (mRNA) and protein expression levels of DNMT1, DNMT3A, and DNMT3B had changed, but no obvious differences were found in miR-92a-2-5p single site methylation. The transcription factors C-MYC (upregulated), E2F1 (downregulated), and SP1 (downregulated), which target miRNAs significantly changed after exposure to Cd. The human ovarian GC tumor line (COV434) was used to knocked down C-myc, and the expression of miR-92a-2-5p was downregulated in the COV434-C-myc + 10 μM Cd group compared with COV434 cells. The N6-methyladenosine (m6A) methylation modification levels of long noncoding RNA (lncRNA) MT1JP and lncRNA CDKN2B-AS, which regulate miR-92a-2-5p were detected. In the 10 μM Cd group, m6A methylation levels at MT1JP-84, CDKN2B-AS-257, and CDKN2B-AS-329 were reduced. In summary, after Cd exposure, expression of miR-92a-2-5p, which targets the antiapoptotic gene Bcl2, was upregulated, which may be primarily related to upregulation of C-myc. MiR-92a-2-5p promoter DNA methylation may has no obvious effect on miR-92a-2-5p. Otherwise, the role of m6A methylation modified lncRNA MT1JP and lncRNA CDKN2B-AS in the regulation of miR-92a-2-5p needs further study.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chaowei Zong
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingfeng Zeng
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; School Key Discipline of Nutrition and Food Hygiene, Public Health School, Changsha Medical University, Changsha, China
| | - Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingfang Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
24
|
Liu J, Liao J, Zhang C, Zeng L, Zong C, Lv Y, Li J, Zhang W. The role of miRNAs in regulating the effect of prenatal cadmium exposure on ovarian granulosa cells in a transgenerational manner in female rats. Food Chem Toxicol 2021; 150:112062. [PMID: 33652105 DOI: 10.1016/j.fct.2021.112062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) is known to affect ovarian granulosa cells (GCs), but no information on the transgenerational effects of Cd on GCs. In this study, pregnant Sprague-Dawley (SD) rats were orally dosed with Cd from gestation day 1 until birth. F1 or F2 female rats were mated with untreated males to produce the F2 or F3 generation. In the F1 generation, apoptotic cell bodies were observed in the Cd-treated group but not in the F2 generation. Moreover, significant changes in B-cell lymphoma 2 (Bcl2) expression were observed in both generations. Additionally, the expression of microRNAs (miRNAs) was significantly changed based on microarray analysis. Specifically, miR-16-5p and miR-181b-5p were upregulated in F1 and F2 rats, while miR-92a-2-5p demonstrated different expression patterns between the two generations. In F3 generation, miR-16-5p and miR-92a-2-5p were down-regulated. Further, another experiment was used to show that miR-16-5p and miR-92a-2-5p regulated the Bcl2-induced apoptotic effect of Cd on GCs by the Human ovarian GC tumor line (COV434 cell line) miRNA-knockdown model Overall, the results indicate that prenatal Cd exposure has epigenetic transgenerational effect on GCs, Moreover, the underlying mechanism may involve interference with miR-16-5p and miR-92a-2-5p-mediated regulation of Bcl2 genes in offspring.
Collapse
Affiliation(s)
- Jin Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Jinglan Liao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Chenyun Zhang
- School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Lingfeng Zeng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Chaowei Zong
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Yake Lv
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Jingwen Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China
| | - Wenchang Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China.
| |
Collapse
|