1
|
Zrig A, Alsherif EA, Aloufi AS, Korany SM, Selim S, Almuhayawi MS, Tarabulsi MK, Nhs M, Albasri HM, Bouqellah NA. The biomass and health-enhancing qualities of lettuce are amplified through the inoculation of arbuscular mycorrhizal fungi. BMC PLANT BIOLOGY 2025; 25:521. [PMID: 40275120 PMCID: PMC12020208 DOI: 10.1186/s12870-025-06317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/28/2025] [Indexed: 04/26/2025]
Abstract
With lettuce being one of the most important green crops in the world, it is important to improve its growth and nutritive value. To this end, arbuscular mycorrhizal fungus (AMF) application to improve nutrient-dense foods and the production of bioactive compounds in plants is a promising approach. AMF is applied to increase plant growth, primary metabolism, mineral profile and accumulation of secondary (phenols, flavonoids) metabolites. AMF treated plants showed increased biomass accumulation by 38.8%. This increase was in line with increased levels of photosynthesis rate and the total chlorophyll content by approximately 28.8%, respectively. In nutritive value, AMF increased mineral profile, vitamin contents and carbohydrate as indicated by D-mannose, L-galactose, and vitamin E (p < 0.05) by approximately 32.7%, 25%, and 46.6%, respectively. The AMF-treated lettuce's proximate composition revealed considerably greater levels of total protein (7.8%), as well as crude fiber, ash, and carbohydrates (about 7%) compared to control samples (p < 0.05). Furthermore, AMF inoculation increased levels of antioxidants, essential amino acids, and unsaturated fatty acids. It increased the levels of antioxidants such as alpha and beta carotene, polyphenols, which was correlated with increased phenylalanine ammonia-lyase (PAL) enzyme activity. Treatment with AMF resulted in an increase of more than 76% of the detected amino acids, with the highest increment observed for isoleucine, methionine and biosynthetic enzyme (cystathionine γ-synthase (CGS)), and which were 200%, 270.2%, and 153.5%, respectively. Increased bioactive accumulation also resulted in improved antioxidant and antidiabetic and antibacterial activities against a variety of pathogenic microorganisms. The findings indicate that the AMF treatment is a feasible method for enhancing lettuce's biological characteristics and health-promoting attributes.
Collapse
Affiliation(s)
- Ahlem Zrig
- Chemical Engineering Department, Laboratory of Engineering Processes and Industrial Systems, National School of Engineers of Gabes, University of Gabes, Gabes, 6029, Tunisia.
- Faculty of Sciences of Gabes, University of Gabes, Cité Erriadh, Gabès, 6072, Tunisia.
| | - Emad A Alsherif
- Botany and Microbiology Department, Faculty of Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Muyassar K Tarabulsi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mousa Nhs
- Botany & Microbiology Department, Faculty of science, Assiut University, Assiut, 7151, Egypt
| | - Hibah M Albasri
- Department of Biology, College of Science, Taibah University, Madinah, 42352, Saudi Arabia
| | - Nahla Alsayd Bouqellah
- Department of Biology, College of Science, Taibah University, Madinah, 42352, Saudi Arabia
| |
Collapse
|
2
|
Martina A, Ferroni L, Marrocchino E. The Soil-Plant Continuity of Rare Earth Elements: Insights into an Enigmatic Class of Xenobiotics and Their Interactions with Plant Structures and Processes. J Xenobiot 2025; 15:46. [PMID: 40126264 PMCID: PMC11932217 DOI: 10.3390/jox15020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Rare earth elements (REEs) are increasingly present in the environment owing to their extensive use in modern industries, yet their interactions with plants remain poorly understood. This review explores the soil-plant continuum of REEs, focusing on their geochemical behavior in soil, the mechanisms of plant uptake, and fractionation processes. While REEs are not essential for plant metabolism, they interact with plant structures and interfere with the normal functioning of biological macromolecules. Accordingly, the influence of REEs on the fundamental physiological functions of plants is reviewed, including calcium-mediated signalling and plant morphogenesis. Special attention is paid to the interaction of REEs with photosynthetic machinery and, particularly, the thylakoid membrane. By examining both the beneficial effects at low concentrations and toxicity at higher levels, this review provides some mechanistic insights into the hormetic action of REEs. It is recommended that future research should address knowledge gaps related to the bioavailability of REEs to plants, as well as the short- and long-range transport mechanisms responsible for REE fractionation. A better understanding of REE-plant interactions will be critical in regard to assessing their ecological impact and the potential risks in terms of agricultural and natural ecosystems, to ensure that the benefits of using REEs are not at the expense of environmental integrity or human health.
Collapse
Affiliation(s)
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (E.M.)
| | | |
Collapse
|
3
|
Aloufi FA, Halawani RF. Differential AMF-mediated biochemical responses in sorghum and oat plants under environmental impacts of neodymium nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109348. [PMID: 39616802 DOI: 10.1016/j.plaphy.2024.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025]
Abstract
This study investigates the impact of neodymium (Nd) nanoparticle (NdNP) toxicity on the physiological and biochemical responses of sorghum (Sorghum bicolor) and oat (Avena sativa) plants and evaluates the potential mitigating effects of arbuscular mycorrhizal fungi (AMF). Sorghum and oat plants were grown under controlled conditions with and without AMF inoculation, and subjected to NdNPs (500 mg Nd kg-1 soil). Results revealed that Nd nanoparticles significantly reduced biomass in both species, with a 50% decrease in sorghum and a 59% decrease in oats. However, AMF treatment ameliorated these effects, increasing biomass by 69% in oats under Nd nanoparticles toxicity compared to untreated contaminated plants. Soluble sugar metabolism was notably affected; AMF treatment led to significant increases in fructose and sucrose contents in both sorghum (+31% and +23%, respectively) and oat (+25% and +37%, respectively) plants under NdNPs toxicity. Improved sugar metabolism via enhanced activities of sucrose phosphate synthase (+29-54%) and invertase (+39-54%) enzymes resulted in higher proline (+21-81%) and polyamines (+49-52%) levels in AMF-treated plants under NdNPs toxicity, along with alterations in the biosynthesis pathways of amino acids and fatty acids, resulting in better osmoprotection and stress tolerance. Moreover, citrate (+29-55%) and oxalate (+177-312%) levels increased in both plants in response to NdNPs toxicity, which was accompanied by a positive response of isobutyric acid to AMF treatment in stressed plants, which potentially might serve as mechanisms for plants to mitigate NdNPs toxicity. These findings suggest that AMF can significantly mitigate Nd-induced damage and improve plant resilience through enhanced metabolic adjustments, highlighting a potential strategy for managing rare earth element (REE) nanoparticle toxicity in agricultural soils.
Collapse
Affiliation(s)
- Fahed A Aloufi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Riyadh F Halawani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Xie Y, Cao C, Huang D, Gong Y, Wang B. Effects of microbial biocontrol agents on tea plantation microecology and tea plant metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1492424. [PMID: 39902199 PMCID: PMC11788416 DOI: 10.3389/fpls.2024.1492424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
The quality of fresh tea leaves is crucial to the final product, and maintaining microbial stability in tea plantations is essential for optimal plant growth. Unique microbial communities play a critical role in shaping tea flavor and enhancing plant resilience against biotic stressors. Tea production is frequently challenged by pests and diseases, which can compromise both yield and quality. While biotic stress generally has detrimental effects on plants, it also activates defense metabolic pathways, leading to shifts in microbial communities. Microbial biocontrol agents (MBCAs), including entomopathogenic and antagonistic microorganisms, present a promising alternative to synthetic pesticides for mitigating these stresses. In addition to controlling pests and diseases, MBCAs can influence the composition of tea plant microbial communities, potentially enhancing plant health and resilience. However, despite significant advances in laboratory research, the field-level impacts of MBCAs on tea plant microecology remain insufficiently explored. This review provides insights into the interactions among tea plants, insects, and microorganisms, offering strategies to improve pest and disease management in tea plantations.
Collapse
Affiliation(s)
- Yixin Xie
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Beibei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Vasistha P, Singh PP, Srivastava D, Johny L, Shukla S. Effector proteins of Funneliformis mosseae BR221: unravelling plant-fungal interactions through reference-based transcriptome analysis, in vitro validation, and protein‒protein docking studies. BMC Genomics 2025; 26:42. [PMID: 39819563 PMCID: PMC11736945 DOI: 10.1186/s12864-024-10918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/17/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi form a highly adaptable and versatile group of fungi found in natural and man-managed ecosystems. Effector secreted by AM fungi influence symbiotic relationship by modifying host cells, suppressing host defense and promoting infection to derive nutrients from the host. Here, we conducted a reference-based transcriptome sequencing of Funneliformis mosseae BR221 to enhance understanding on the molecular machinery involved in the establishment of interaction between host and AM fungi. RESULTS A total of 163 effector proteins were identified in F. mosseae isolate BR221, of these, 79.14% are extracellular effectors and 5.5% are predicted cytoplasmic effectors. In silico prediction using a pathogen-host interaction database suggested four of the 163 effectors could be crucial in establishing AM fungi-host interactions. Protein-protein docking analysis revealed interactions between these potential effectors and plant proteins known to be differentially expressed during mycorrhizal association, such as defensins, aquaporins, and PTO proteins. These interactions are multifaceted in modulating host physiological and defense mechanisms, including immune suppression, hydration, nutrient uptake, and oxidative stress modulation. CONCLUSIONS These findings of the current study provide a foundational understanding of fungal-host molecular interactions and open avenues for exploring pathways influenced by these effectors. By deepening our knowledge of these mechanisms, the use of AM fungi in biofertilizer formulations can be refined by selecting strains with specific effectors that enhance nutrient uptake, improve drought and disease resistance, and tailor the fungi's symbiotic efficiency to different crops or environmental conditions, thus contributing to more targeted and sustainable agricultural practices.
Collapse
Affiliation(s)
- Pratima Vasistha
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Pushplata Prasad Singh
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India.
| | - Divya Srivastava
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Leena Johny
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Sadhana Shukla
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| |
Collapse
|
6
|
Dewi FS, Dewi RR, Abadi AL, Setiawan A, Aini LQ, Syib’li MA. Biocontrol of Fusarium oxysporum f. sp. cepae on Indonesian Local Garlic Plants (Lumbu Hijau) Using a Consortium of Bacillus amyloliquefaciens B1 and Arbuscular Mycorrhizal Fungi. MYCOBIOLOGY 2025; 53:18-26. [PMID: 39895927 PMCID: PMC11780700 DOI: 10.1080/12298093.2024.2433826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025]
Abstract
Garlic (Allium sativum) is an indispensable ingredient for enriching and diversifying Indonesian cuisine taste. Indonesian people always use garlic for their daily dishes and any traditional foods. Due to its widespread culinary use, its availability in the market become critical. The main challenge to consistently growing this garlic is Fusarium oxysporum f. sp. cepae, which wilts Allium plants. The application of arbuscular mycorrhiza fungi (AMF) + Bacillus amyloliquefaciens B1 on local garlic varieties named Lumbu Hijau could effectively control F. oxysporum through in vitro and in vivo experiments. In the in vitro test, B. amyloliquefaciens B1 successfully suppressed the growth of F. oxysporum up to 53.41%. The consortium application in the greenhouse reduced disease incidence by up to 39.17%, and the efficacy of this biocontrol reached 84%. In addition, this approach also positively influenced plant growth, such as plant height, total wet shoot and root weight, and also tuber weight. As such, it is essential to use this consortium of microorganisms in field research and carry out a comprehensive investigation to identify any possible phenomena that may arise in the rhizosphere after application.
Collapse
Affiliation(s)
| | - Rifani Rusiana Dewi
- Graduate Plant Pathology Study Program, Universitas Brawijaya, Malang, Indonesia
| | - Abdul Latief Abadi
- Department of Plant Pest and Diseases, Universitas Brawijaya, Malang, Indonesia
| | - Adi Setiawan
- Department of Agronomi, Universitas Brawijaya, Malang, Indonesia
| | - Luqman Qurata Aini
- Department of Plant Pest and Diseases, Universitas Brawijaya, Malang, Indonesia
| | | |
Collapse
|
7
|
Zhao S, Yan L, Kamran M, Liu S, Riaz M. Arbuscular Mycorrhizal Fungi-Assisted Phytoremediation: A Promising Strategy for Cadmium-Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:3289. [PMID: 39683082 DOI: 10.3390/plants13233289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to play a major role in regulating the accumulation, transport, and toxicity of cadmium (Cd) in plant tissues. This review aims to highlight the current understanding of the mechanisms by which AMF alleviate Cd toxicity in plants. Cd accumulation in agricultural soils has become an increasing global concern due to industrial activities and the use of phosphatic fertilizers. Cd toxicity disrupts various physiological processes in plants, adversely affecting growth, photosynthesis, oxidative stress responses, and secondary metabolism. AMF alleviate Cd stress in plants through multiple mechanisms, including reduced Cd transport into plant roots, improved plant nutritional status, modulation of organic acid and protein exudation, enhanced antioxidant capacity, and maintenance of ion homeostasis. AMF colonization also influences Cd speciation, bioavailability, and compartmentalization within plant tissues. The expression of metal transporter genes, as well as the synthesis of phytochelatins and metallothioneins, are modulated by AMF during Cd stress. However, the efficacy of AMF in mitigating Cd toxicity depends on several factors, such as soil properties, plant species, AMF taxa, and experimental duration. Further knowledge of the intricate plant-AMF-Cd interactions is crucial for optimizing AMF-assisted phytoremediation strategies and developing Cd-tolerant and high-yielding crop varieties for cultivation in contaminated soils.
Collapse
Affiliation(s)
- Shaopeng Zhao
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shanshan Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
8
|
Yuan XQ, Liu YY, Wang SC, Lu YQ, Li YJ, Chen JQ, Duan CQ. Trifolium repens L. recruits root-associated Microbacterium species to adapt to heavy metal stress in an abandoned Pb-Zn mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174057. [PMID: 38914340 DOI: 10.1016/j.scitotenv.2024.174057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Root-associated microbiota provide great fitness to hosts under environmental stress. However, the underlying microecological mechanisms controlling the interaction between heavy metal-stressed plants and the microbiota are poorly understood. In this study, we screened and isolated representative amplicon sequence variants (strain M4) from rhizosphere soil samples of Trifolium repens L. growing in areas with high concentrations of heavy metals. To investigate the microecological mechanisms by which T. repens adapts to heavy metal stress in abandoned mining areas, we conducted potting experiments, bacterial growth promotion experiments, biofilm formation experiments, and chemotaxis experiments. The results showed that high concentrations of heavy metals significantly altered the rhizosphere bacterial community structure of T. repens and significantly enriched Microbacterium sp. Strain M4 was demonstrated to significantly increased the biomass and root length of T. repens under heavy metal stress. Additionally, L-proline and stigmasterol could promote bacterial growth and biofilm formation and induce chemotaxis for strain M4, suggesting that they are key rhizosphere secretions of T. repens for Microbacterium sp. recruitment. Our results suggested that T. repens adapted the heavy metal stress by reshaping rhizosphere secretions to modify the rhizosphere microbiota.
Collapse
Affiliation(s)
- Xin-Qi Yuan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Yi-Yi Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Si-Chen Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Ya-Qi Lu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Yin-Jie Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Jin-Quan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China.
| | - Chang-Qun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China.
| |
Collapse
|
9
|
Ma J, Li Y, Zhou H, Qi L, Zhang Z, Zheng Y, Yu Z, Muhammad Z, Yang X, Xie Y, Chen Q, Zou P, Ma S, Li Y, Jing C. Chitooligosaccharides and Arbuscular Mycorrhizal fungi alleviate the damage by Phytophthora nicotianae to tobacco seedlings by inducing changes in rhizosphere microecology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108986. [PMID: 39106769 DOI: 10.1016/j.plaphy.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and Chitooligosaccharide (COS) can increase the resistance of plants to disease. COS can also promote the symbiosis between AMF and plants. However, the effects of AMF & COS combined application on the rhizosphere soil microbial community of tobacco and the improvement of tobacco's resistance to black shank disease are poorly understood.·We treated tobacco with AMF, COS, and combined application of AMF & COS (AC), respectively. Then studied the incidence, physio-biochemical changes, root exudates, and soil microbial diversity of tobacco seedling that was inoculated with Phytophthora nicotianae. The antioxidant enzyme activity and root vigor of tobacco showed a regular of AC > AMF > COS > CK, while the severity of tobacco disease showed the opposite regular. AMF and COS enhance the resistance to black shank disease by enhancing root vigor, and antioxidant capacity, and inducing changes in the rhizosphere microecology of tobacco. We have identified key root exudates and critical soil microorganisms that can inhibit the growth of P. nicotianae. The presence of caprylic acid in root exudates and Bacillus (WdhR-2) in rhizosphere soil microorganisms is the key factor that inhibits P. nicotianae growth. AC can significantly increase the content of caprylic acid in tobacco root exudates compared to AMF and COS. Both AMF and COS can significantly increase the abundance of Bacillus in tobacco rhizosphere soil, but the abundance of Bacillus in AC is significantly higher than that in AMF and COS. This indicates that the combined application of AMF and COS is more effective than their individual use. These findings suggest that exogenous stimuli can induce changes in plant root exudates, regulate plant rhizosphere microbial community, and then inhibit the growth of pathogens, thereby improving plant resistance to diseases.
Collapse
Affiliation(s)
- Junqing Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Heng Zhou
- Yunnan Kunming Tobacco Co., Ltd, Kunming, 650400, China
| | - Lixin Qi
- Weifang Inspection and Testing Center, Weifang, 261399, China
| | - Zhifan Zhang
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, 563000, China
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zheyan Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zeeshan Muhammad
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yi Xie
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qianru Chen
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
10
|
Chen Y, Hajslova J, Schusterova D, Uttl L, Vymazal J, Chen Z. Transformation and degradation of tebuconazole and its metabolites in constructed wetlands with arbuscular mycorrhizal fungi colonization. WATER RESEARCH 2024; 263:122129. [PMID: 39094199 DOI: 10.1016/j.watres.2024.122129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization has been used in constructed wetlands (CWs) to enhance treatment performance. However, its role in azole (fungicide) degradation and microbial community changes is not well understood. This study aims to explore the impact of AMF on the degradation of tebuconazole and its metabolites in CWs. Total organic carbon levels were consistently higher with the colonization of AMF (AMF+; 9.63- 16.37 mg/L) compared to without the colonization of AMF (AMF-; 8.79-14.48 mg/L) in CWs. Notably, tebuconazole removal was swift, occurring within one day in both treatments (p = 0.885), with removal efficiencies ranging from 94.10 % to 97.83 %. That's primarily due to rapid substrate absorption at the beginning, while degradation follows with a longer time. Four metabolites were reported in CWs first time: tebuconazole hydroxy, tebuconazole lactone, tebuconazole carboxy acid, and tebuconazole dechloro. AMF decreased the abundance of tebuconazole dechloro in the liquid phase, suggesting an inhibitory effect of AMF on dechlorination processes. Furthermore, tebuconazole carboxy acid and hydroxy were predominantly found in plant roots, with a higher abundance observed in AMF+ treatments. Metagenomic analysis highlighted an increasing abundance in bacterial community structure in favor of beneficial microorganisms (xanthomonadales, xanthomonadaceae, and lysobacter), along with a notable presence of functional genes like codA, NAD, and deaD in AMF+ treatments. These findings highlight the positive influence of AMF on tebuconazole stress resilience, microbial community modification, and the enhancement of bioremediation capabilities in CWs.
Collapse
Affiliation(s)
- Yingrun Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Dana Schusterova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Leos Uttl
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jan Vymazal
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic.
| |
Collapse
|
11
|
He C, Feng Y, Deng Y, Lin L, Cheng S. A systematic review and meta-analysis on the root effects and toxic mechanisms of rare earth elements. CHEMOSPHERE 2024; 363:142951. [PMID: 39067824 DOI: 10.1016/j.chemosphere.2024.142951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Rare earth elements (REEs) have attracted much attention because of their unique physical and chemical properties. The root system is the plant organ most directly in contact with REEs, and it is critical to understand the mechanisms of interaction between the two. This paper investigates the effects of REEs on plant enrichment and fractionation, as well as on various developmental and toxicity indices of the root system. REEs are more likely to be deposited on the root surface under the influence of root secretion. The complexation between the two affects the uptake and fractionation of REEs and the altered pattern of root secretion. The toxicity mechanisms of REEs on plant root cells were lied in: (1) REEs generate reactive oxygen species after entering the plant, leading to oxidative stress and damage to plant cells; (2) REEs with higher charge-to-volume ratios compete for organic ligands with or displace Ca2+, further disrupting the normal function of plant root cells. It was shown that the sensitivity of inter-root microorganisms to REEs varied depending on the content and physicochemical properties of REEs. The paper also concluded with a meta-analysis of phytotoxicity induced by REEs, which showed that REEs affect plant physiological parameters. REEs, as a source of oxidative stress, triggered lipid peroxidation damage in plants and enhanced the activity of antioxidant enzymes, thus revealing the significant toxicity of REEs to plants. The phytotoxic effects of REEs increased with time and concentration. These results help to elucidate the ecotoxicology of rare earth-induced phytotoxicity.
Collapse
Affiliation(s)
- Chenyi He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yirong Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong-Hong Kong- Macau, Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
| | - Longyong Lin
- Guangdong-Hong Kong- Macau, Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Sheng Cheng
- Guangdong-Hong Kong- Macau, Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| |
Collapse
|
12
|
Wen Y, Wu R, Qi D, Xu T, Chang W, Li K, Fang X, Song F. The effect of AMF combined with biochar on plant growth and soil quality under saline-alkali stress: Insights from microbial community analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116592. [PMID: 38901167 DOI: 10.1016/j.ecoenv.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.
Collapse
Affiliation(s)
- Yuqiang Wen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China
| | - Ruotong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dandan Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Tianle Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| | - Kun Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xiaoxu Fang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| |
Collapse
|
13
|
Diao F, Jia B, Luo J, Ding S, Liu T, Guo W. Arbuscular mycorrhizal fungi drive bacterial community assembly in halophyte Suaeda salsa. Microbiol Res 2024; 282:127657. [PMID: 38422862 DOI: 10.1016/j.micres.2024.127657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Halophytes inhabit saline soils, wherein most plants cannot grow, therefore, their ecological value is outstanding. Arbuscular mycorrhizal (AM) fungi can reconstruct microbial communities to assist plants with stress tolerance. However, little information is available on the microbial community assembly of AM fungi in halophytes. A pot experiment was conducted to investigate the effects of AM fungi on rhizosphere bacterial community structure and soil physiochemical characteristics in the halophyte Suaeda salsa at 0, 100, and 400 mM NaCl. The results demonstrated that AM fungi increased soil alkaline phosphatase (ALP) activity at the three NaCl concentrations, and decreased available P, available K, and the activity of soil catalase (CAT) at 100 mM NaCl. AM fungi decreased the Shannon index of the community at 0 and 100 mM NaCl and increased Sobs index at 400 mM NaCl. Regarding the bacterial community structure, AM fungi substantially decreased the abundance of Acidobacteria phylum at 0 and 100 mM NaCl. AM fungi significantly increased the abundance of genus Ramlibacter, an oxyanion-reducing bacteria that can clean out reactive oxygen species (ROS). AM fungi recruited the genera Massilia and Arthrobacter at 0 and 100 mM NaCl, respectively. Some strains in the two genera have been ascribed to plant growth promoting bacteria (PGPB). AM fungi increased the dry weight and promoted halophyte growth at all three NaCl levels. This study supplements the understanding that AM fungi assemble rhizosphere bacterial communities in halophytes.
Collapse
Affiliation(s)
- Fengwei Diao
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030031, China; Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shengli Ding
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
14
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Metagenomic analysis revealed N-metabolizing microbial response of Iris tectorum to Cr stress after colonization by arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116157. [PMID: 38430578 DOI: 10.1016/j.ecoenv.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 02/25/2024] [Indexed: 03/04/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Suchdol, Praha 16500, Czech Republic
| |
Collapse
|
15
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
16
|
Zhang F, Zou D, Wang J, Xiong B, Gao L, Guo P, Du H, Ma M, Rennenberg H. Co-inoculation of rhizobia and AMF improves growth, nutrient uptake, and cadmium resistance of black locust grown in sand culture. PHYSIOLOGIA PLANTARUM 2024; 176:e14205. [PMID: 38439620 DOI: 10.1111/ppl.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Rhizobia and arbuscular mycorrhizal fungi (AMF) are symbiotic microorganisms important for plants grown in nutrient-deficient and heavy metal-contaminated soils. However, it remains unclear how plants respond to the coupled stress by heavy metal and nitrogen (N) deficiency under co-inoculation. Here, we investigated the synergistic effect of Mesorhizobium huakuii QD9 and Funneliformis mosseae on the response of black locust (Robinia pseudoacacia L.) grown in sand culture to cadmium (Cd) under N deficiency conditions. The results showed that single inoculation of AMF improved the growth and Cd resistance of black locust, co-inoculation improved the most. Compared to non-inoculated controls, co-inoculation mediated higher biomass and antioxidant enzyme activity, reduced oxidative stress, and promoted nodulation, mycorrhizal colonization, photosynthetic capacity, and N, P, Fe and Mg acquisition when exposed to Cd. This increase was significantly higher under N deficiency compared to N sufficiency. In addition, the uptake of Cd by co-inoculated black locust roots increased, but Cd translocation to the above-ground decreased under both N deficiency and sufficiency. Thus, in the tripartite symbiotic system, not merely metabolic processes but also Cd uptake increased under N deficiency. However, enhanced Cd detoxification in the roots and reduced allocation to the shoot likely prevent Cd toxicity and rather stimulated growth under these conditions.
Collapse
Affiliation(s)
- Fusen Zhang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, P. R. China
| | - Dongchen Zou
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, P. R. China
| | - Jueying Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, P. R. China
| | - Bingcai Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, P. R. China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, P. R. China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, P. R. China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, P. R. China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, P. R. China
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, P. R. China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, P. R. China
| |
Collapse
|
17
|
Chen L, Chen S, Xing T, Long Y, Wang Z, Kong X, Xu A, Wu Q, Sun Y. Phytoremediation with application of anaerobic fermentation residues regulate the assembly of ecological clusters within co-occurrence network in ionic rare earth tailings soil: A pot experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122790. [PMID: 37890691 DOI: 10.1016/j.envpol.2023.122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/03/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The cultivation of energy plants (Pennisetum hybrid) with anaerobic fermentation residues has become an important phytoremediation approach in ionic rare earth elements (REEs) tailings because of its advantages in low cost and sustainability recently. In this study, a comparative pot experiment was carried out to determine the interaction pattern and key ecological clusters in microbial community respond to phytoremediation. Results showed that the application of biogas residues or slurry could effectively mitigate soil acidification, increase soil nutrients, alter REEs bioavailability and promote plant growth. Without fertilization, plant growth was restricted and soil acidification and nutrient-deficiency would be further aggravated. This difference in phytoremediation effect was associated with the assembly of seven key ecological clusters in co-occurrence network of rhizosphere soil. And such assembly pattern of cluster, determined by the environmental preference (e.g. pH, REEs), nutrient demand and interaction among clusters, could alter the microbial communities in response to the changes in soil context rapidly and exert corresponding ecological function during phytoremediation, such as participating in soil nutrient cycling, affecting plant biomass and altering REEs bioavailability. These findings provided new insights for anaerobic fermentation residues application, and can be beneficial to support for studying microbe-plant combined remediation in the future.
Collapse
Affiliation(s)
- Liumeng Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shasha Chen
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Tao Xing
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yun Long
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zhi Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Science and Technology of China, Hefei, 230026, China.
| | - An Xu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qiangjian Wu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yongmin Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
18
|
Wang M, Chen S, Li S, Zhang J, Sun Y, Wang C, Ni D. Enhancement of nitrogen cycling and functional microbial flora by artificial inoculation of biological soil crusts in sandy soils of highway slopes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4400-4411. [PMID: 38102430 DOI: 10.1007/s11356-023-31461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Biological soil crusts (BSCs) are common in arid and semi-arid ecosystems and enhance soil stability and fertility. Highway slopes severely deplete the soil ecological structure and soil nutrients, hindering plant survival. The construction of highway slope BSCs under human intervention is critical to ensure the long-term stable operation of the slope ecosystem. This study investigated the variation rules and interaction mechanisms between soil nutrients and microbial communities in the subsoil BSCs on highway slopes. Bacterial 16S rRNA high-throughput sequencing was employed to investigate the dynamic compositional changes in the microbial community and perform critical metabolic predictive analyses of functional bacteria. This study revealed that the total soil nitrogen increased significantly from 0.557 to 0.864 g/kg after artificial inoculation with desert Phormidium tenue and Scytonema javanicum. Actinobacteria (44-48%) and Proteobacteria (28-31%) were the dominant phyla in all samples. The abundance of Cyanobacteria, Cytophagaceae, and Chitinophagaceae increased significantly after inoculation. PICRUST analysis showed that the main metabolic pathways of soil microorganisms on highway slopes included cofactor and vitamin, nucleotide, and amino acid metabolisms. These findings suggest that the artificial inoculation with Phormidium tenue and Scytonema javanicum could alter soil microbial distribution to promote soil development on highway slopes toward nutrient accumulation.
Collapse
Affiliation(s)
- Mengyan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Sibao Chen
- Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources, Changjiang Institude of Survey Planning Design and Research, Wuhan, 430010, China
| | - Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Jianhong Zhang
- China International Engineering Consulting Corporation, Ltd., Beijing, 100048, China
| | - Yingxue Sun
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Chun Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Road Traffic Environmental Protection Technology, Ministry of Transport, Beijing, 100088, China.
| | - Dong Ni
- Key Laboratory of Road Traffic Environmental Protection Technology, Ministry of Transport, Beijing, 100088, China
| |
Collapse
|
19
|
Chee-Sanford JC, Connor LM. Comparison of microbial community assemblages in the rhizosphere of three Amaranthus spp. PLoS One 2023; 18:e0294966. [PMID: 38019804 PMCID: PMC10686429 DOI: 10.1371/journal.pone.0294966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Weed management remains a major challenge in cropping systems worldwide, with rising interest in ecological based approaches that can be integrated with herbicide use. Soil microbial communities may play important, yet undiscovered, roles in weed success. Little is known about the rhizosphere communities associated with weeds like Amaranthus, commonly known as pigweeds, and considered some of the most problematic weeds in agricultural systems. In a greenhouse experiment that allowed controlled plant growth conditions and a high number of individual plant specimens to analyze for statistical robustness (n = 8 per species), we show that specific bacterial assemblages form in the rhizospheres of A. retroflexus L. (redroot pigweed), A. palmeri S. Watson (Palmer amaranth), and A. tuberculatus (Moq.) J. D. Sauer (waterhemp). Using a relatively rapid and easy approach of T-RFLP community profiling of the 16S rRNA genes, distinct assemblages corresponded to plant species (PERMANOVA F = 14.776, p = 0.001), and further within each species, similar communities (F = 11.449, p = 0.001) were associated with three rhizosphere soil fractions taken in increasing distances away from the root tissue. These results provide the first solid basis for distinct plant-microbe relationships within three closely related Amaranthus species, warranting closer examination of the identities and function of the microorganisms that appear to be selectively recruited from the extant soil community. More intensive efforts to obtain the microbial taxonomic identities via sequencing are underway that can lead to further detailed studies to elucidate important functional plant-microbe interactions that may associate with weed success. Such data provides underlying key information that may ultimately exploit weed-microbe interactions in development of new integrated weed control tactics.
Collapse
|
20
|
Jensen H, Lehto N, Almond P, Gaw S, Robinson B. The Uptake of Rare Trace Elements by Perennial Ryegrass ( Lolium perenne L.). TOXICS 2023; 11:929. [PMID: 37999581 PMCID: PMC10674648 DOI: 10.3390/toxics11110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil-plant system. We aimed to determine the capacity of Lolium perenne (a common pasture species) to tolerate and accumulate the RTEs Be, Ga, In, La, Ce, Nd, and Gd in a fluvial recent soil. Cadmium was used as a reference as a well-studied contaminant that is relatively mobile in the soil-plant system. Soil was spiked with 2.5-283 mg kg-1 of RTE or Cd salts, representing five, 10, 20, and 40 times their background concentrations in soil. For Be, Ce, In, and La, there was no growth reduction, even at the highest soil concentrations (76, 1132, 10.2, and 874 mg kg-1, respectively), which resulted in foliar concentrations of 7.1, 12, 0.11, and 50 mg kg-1, respectively. The maximum no-biomass reduction foliar concentrations for Cd, Gd, Nd, and Ga were 0.061, 0.1, 7.1, and 11 mg kg-1, respectively. Bioaccumulation coefficients ranged from 0.0030-0.95, and increased Ce < In < Nd ≅ Gd < La ≅ Be ≅ Ga < Cd. Beryllium and La were the RTEs most at risk of entering the food chain via L. perenne, as their toxicity thresholds were not reached in the ranges tested, and the bioaccumulation coefficient (plant/soil concentration quotient) trends indicated that uptake would continue to increase at higher soil concentrations. In contrast, In and Ce were the elements least likely to enter the food chain. Further research should repeat the experiments in different soil types or with different plant species to test the robustness of the findings.
Collapse
Affiliation(s)
- Hayley Jensen
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand (S.G.)
| | - Niklas Lehto
- Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, New Zealand; (N.L.); (P.A.)
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, New Zealand; (N.L.); (P.A.)
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand (S.G.)
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand (S.G.)
| |
Collapse
|
21
|
Zhao W, Chen Z, Yang X, Sheng L, Mao H, Zhu S. Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance Iris tectorum's resistance to Cr stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164970. [PMID: 37343864 DOI: 10.1016/j.scitotenv.2023.164970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Chromium (Cr) can disrupt a plant's normal physiological and metabolic functions and severely impact the microenvironment. However, limited studies have investigated the impact of arbuscular mycorrhizal fungi (AMF) inoculation on the rhizosphere microorganisms of Iris tectorum under Cr stress, and the mechanisms of how rhizosphere microorganisms interact with hosts and contaminants. In this study, we investigated the effects of AMF inoculation on the growth, absorption of nutrients and heavy metals, and functional genes of the rhizosphere microbial community of I. tectorum under Cr stress in a greenhouse pot experiment. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum, while decreasing the content of Cr in soil. Furthermore, metagenome analysis demonstrated significant changes in the structure and composition of the rhizosphere microbial community after AMF formed a mycorrhizal symbiosis system with the I. tectorum. Specifically, the abundance of functional genes related to nutrient cycling (N, P) and heavy metal resistance (chrA and arsB), as well as the abundance of heavy metal transporter family (P-atPase, MIT, CDF, and ABC) in the rhizosphere microbial community were up-regulated and their expression. Additionally, the synergies between rhizosphere microbial communities were regulated, and the complexity and stability of the rhizosphere microbial ecological network were enhanced. This study provides evidence that AMF can regulate rhizosphere microbial communities to improve plant growth and heavy metal stress tolerance, and helps us to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil under AMF symbiosis.
Collapse
Affiliation(s)
- Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-, Suchdol 16500, Czech Republic
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
22
|
Zhang J, Diao F, Hao B, Xu L, Jia B, Hou Y, Ding S, Guo W. Multiomics reveals Claroideoglomus etunicatum regulates plant hormone signal transduction, photosynthesis and La compartmentalization in maize to promote growth under La stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115128. [PMID: 37315361 DOI: 10.1016/j.ecoenv.2023.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Rare earth elements (REEs) have been widely used in traditional and high-tech fields, and high doses of REEs are considered a risk to the ecosystem. Although the influence of arbuscular mycorrhizal fungi (AMF) in promoting host resistance to heavy metal (HM) stress has been well documented, the molecular mechanism by which AMF symbiosis enhances plant tolerance to REEs is still unclear. A pot experiment was conducted to investigate the molecular mechanism by which the AMF Claroideoglomus etunicatum promotes maize (Zea mays) seedling tolerance to lanthanum (La) stress (100 mg·kg-1 La). C. etunicatum symbiosis significantly improved maize seedling growth, P and La uptake and photosynthesis. Transcriptome, proteome, and metabolome analyses performed alone and together revealed that differentially expressed genes (DEGs) related to auxin /indole-3-acetic acid (AUX/IAA) and the DEGs and differentially expressed proteins (DEPs) related to ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (Nramp6), vacuoles and vesicles were upregulated. In contrast, photosynthesis-related DEGs and DEPs were downregulated, and 1-phosphatidyl-1D-myo-inositol 3-phosphate (PI(3)P) was more abundant under C. etunicatum symbiosis. C. etunicatum symbiosis can promote plant growth by increasing P uptake, regulating plant hormone signal transduction, photosynthesis and glycerophospholipid metabolism pathways and enhancing La transport and compartmentalization in vacuoles and vesicles. The results provide new insights into the promotion of plant REE tolerance by AMF symbiosis and the possibility of utilizing AMF-maize interactions in REE phytoremediation and recycling.
Collapse
Affiliation(s)
- Jingxia Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Chemistry, School of Chemistry and Environment, Inner Mongolia Normal University, Hohhot 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lei Xu
- Service Support Center, Ecology and Environmental Department of Inner Mongolia Autonomous Region, Hohhot 010010, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shengli Ding
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
23
|
Zhang M, Shi Z, Lu S, Wang F. AMF Inoculation Alleviates Molybdenum Toxicity to Maize by Protecting Leaf Performance. J Fungi (Basel) 2023; 9:jof9040479. [PMID: 37108933 PMCID: PMC10146436 DOI: 10.3390/jof9040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The use of arbuscular mycorrhizal fungi (AMF) is a vital strategy for enhancing the phytoremediation of heavy metals. However, the role of AMF under molybdenum (Mo) stress is elusive. A pot culture experiment was conducted to explore the effects of AMF (Claroideoglomus etunicatum and Rhizophagus intraradices) inoculation on the uptake and transport of Mo and the physiological growth of maize plants under different levels of Mo addition (0, 100, 1000, and 2000 mg/kg). AMF inoculation significantly increased the biomass of maize plants, and the mycorrhizal dependency reached 222% at the Mo addition level of 1000 mg/kg. Additionally, AMF inoculation could induce different growth allocation strategies in response to Mo stress. Inoculation significantly reduced Mo transport, and the active accumulation of Mo in the roots reached 80% after inoculation at the high Mo concentration of 2000 mg/kg. In addition to enhancing the net photosynthetic and pigment content, inoculation also increased the biomass by enhancing the uptake of nutrients, including P, K, Zn, and Cu, to resist Mo stress. In conclusion, C. etunicatum and R. intraradices were tolerant to the Mo stress and could alleviate the Mo-induced phytotoxicity by regulating the allocation of Mo in plants and improving photosynthetic leaf pigment contents and the uptake of nutrition. Compared with C. etunicatum, R. intraradices showed a stronger tolerance to Mo, which was manifested by a stronger inhibition of Mo transport and a higher uptake of nutrient elements. Accordingly, AMF show potential for the bioremediation of Mo-polluted soil.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Shichuan Lu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
24
|
Wei Z, Sixi Z, Xiuqing Y, Guodong X, Baichun W, Baojing G. Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114652. [PMID: 36822059 DOI: 10.1016/j.ecoenv.2023.114652] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can improve plant tolerance to heavy metal stress in terrestrial ecosystems. However, in wetland ecosystems, AMF can improve the tolerance of wetland plants to heavy metals by changing the structure and composition of rhizosphere bacterial communities, which is still rarely studied. In this study, we investigated the effects of AMF on the structure and composition of bacterial communities in the rhizosphere of plants under different chromium concentrations. The results showed that Cr(Ⅵ) concentration in Acorus calamus. rhizosphere soil decreased by 12.6 % (5.6-21.7 %) on average after AMF inoculation, At the same time, it promoted the uptake of nutrients by A. calamus and increased soil carbon input. In addition, Cr stress decreased the bacterial community diversity and abundance index by 9.8 % (1.6-18.1 %) and 24.5 % (17.3-27.6 %) on average. On the contrary, the rhizosphere soil bacterial diversity and abundance index increased by 7.3 % (2.2-19.1 %) and 13.9 % (6.0-20.9 %) on average after AMF inoculation. Moreover, compared with the non-inoculated AMF group, the bacterial community structure of A. calamus rhizosphere changed by 24.6 % under Cr stress, The common number of species increased by 6.4 %. In addition, after inoculation of AMF significantly promote the growth of a large number of bacteria related to organic degradation, plant growth, and oxidative stress, increased soil carbon input improved the soil microenvironment. Meanwhile, After AMF inoculation, the Number of edges, Number of Nodes, Average degree, and Average Path length in the symbiotic network of rhizosphere soil bacterial community increased by 34.6 %, 10 %, 44.3 %, and 26.4 %, respectively. Therefore, it offers a possibility that AMF can enhance the tolerance of wetland plants to soil Cr pollution by improving the structure and composition of bacterial communities in the rhizosphere soils of wetland plants, which provide a basis for wetland plants to repair soil Cr pollution.
Collapse
Affiliation(s)
- Zhao Wei
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhu Sixi
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Yang Xiuqing
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xia Guodong
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wang Baichun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Gu Baojing
- College of Environment and Resources Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Ou T, Zhang M, Gao H, Wang F, Xu W, Liu X, Wang L, Wang R, Xie J. Study on the Potential for Stimulating Mulberry Growth and Drought Tolerance of Plant Growth-Promoting Fungi. Int J Mol Sci 2023; 24:ijms24044090. [PMID: 36835498 PMCID: PMC9966926 DOI: 10.3390/ijms24044090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Drought stress often leads to heavy losses in mulberry planting, especially for fruits and leaves. Application of plant growth-promoting fungi (PGPF) endows various plant beneficial traits to overcome adverse environmental conditions, but little is known about the effects on mulberry under drought stress. In the present study, we isolated 64 fungi from well-growing mulberry trees surviving periodical drought stress, and Talaromyces sp. GS1, Pseudeurotium sp. GRs12, Penicillium sp. GR19, and Trichoderma sp. GR21 were screened out due to their strong potential in plant growth promotion. Co-cultivation assay revealed that PGPF stimulated mulberry growth, exhibiting increased biomass and length of stems and roots. Exogenous application of PGPF could alter fungal community structures in the rhizosphere soils, wherein Talaromyces was obviously enhanced after inoculation of Talaromyces sp. GS1, and Peziza was increased in the other treatments. Moreover, PGPF could promote iron and phosphorus absorption of mulberry as well. Additionally, the mixed suspensions of PGPF induced the production of catalase, soluble sugar, and chlorophyll, which in turn enhanced the drought tolerance of mulberry and accelerated their growth recovery after drought. Collectively, these findings might provide new insights into improving mulberry drought tolerance and further boosting mulberry fruit yields by exploiting interactions between hosts and PGPF.
Collapse
|
26
|
The trade-in-trade: multifunctionalities, current market and challenges for arbuscular mycorrhizal fungal inoculants. Symbiosis 2023. [DOI: 10.1007/s13199-023-00905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
27
|
Xu Y, Chen Z, Li X, Tan J, Liu F, Wu J. The mechanism of promoting rhizosphere nutrient turnover for arbuscular mycorrhizal fungi attributes to recruited functional bacterial assembly. Mol Ecol 2023; 32:2335-2350. [PMID: 36762879 DOI: 10.1111/mec.16880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Symbiosis with arbuscular mycorrhizal (AM) fungi improves plant nutrient capture from the soil, yet there is limited knowledge about the diversity, structure, functioning, and assembly processes of AM fungi-related microbial communities. Here, 16S rRNA gene sequencing and metagenomic sequencing were used to detect bacteria in the rhizosphere of Lotus japonicus inoculated with and without AM fungi, and the L. japonicus mutant ljcbx (defective in symbiosis) inoculated with AM fungi in southern grassland soil. Our results show that AM symbiosis significantly increased bacterial diversity and promoted deterministic processes of bacterial community construction, suggesting that mycorrhizal symbiosis resulted in the directional enrichment of bacterial communities. AM fungi promoted the enrichment of nine bacteria, including Ohtaekwangia, Niastella, Gemmatimonas, Devosia, Sphingomonas, Novosphingobium, Opitutus, Lysobacter, Brevundimonas, which are positively correlated with NPK-related parameters. Through a functional identification experiment, we found that six of these genera, including Brevundimonas, Lysobacter, Ohtaekwangia, Sphingomonas, Devosia, and Gemmatimonas, demonstrated the ability to mineralize organophosphate and dissolve inorganic phosphorus, nitrogen, and potassium. Our study revealed that AM fungi can regulate rhizosphere bacterial community assembly and attract specific rhizosphere bacteria to promote soil nutrient turnover in southern grasslands.
Collapse
Affiliation(s)
- Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology/Institute of Biodiversity, Yunnan University, Kunming, China.,Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhe Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology/Institute of Biodiversity, Yunnan University, Kunming, China.,Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, Hefei, China
| | - Jing Tan
- School of Agriculture, Yunnan University, Kunming, China
| | - Fang Liu
- School of Agriculture, Yunnan University, Kunming, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology/Institute of Biodiversity, Yunnan University, Kunming, China.,Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
28
|
Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms 2022; 11:microorganisms11010069. [PMID: 36677361 PMCID: PMC9865731 DOI: 10.3390/microorganisms11010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future.
Collapse
|
29
|
Sun C, Guo Q, Zeeshan M, Milham P, Qin S, Ma J, Yang Y, Lai H, Huang J. Dual RNA and 16S ribosomal DNA sequencing reveal arbuscular mycorrhizal fungi-mediated mitigation of selenate stress in Zea mays L. and reshaping of soil microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114217. [PMID: 36306613 DOI: 10.1016/j.ecoenv.2022.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Excessively high concentrations of selenium (Se) in soil are toxic to crop plants, and inoculation with arbuscular mycorrhizal fungi (AMF) can reverse Se stress in maize (Zea mays L.). To investigate the underlying mechanisms, maize seedlings were treated with sodium selenate (5 mg Se[VI] kg-1) and/or AMF (Funneliformis mosseae and Claroideoglomus etunicatum). Dual RNA sequencing in mycorrhiza and 16 S ribosomal DNA sequencing in soil were performed. The results showed that Se(VI) application alone decreased plant dry weight, but increased plant Se concentration, total Se content (mainly selenocysteine), and root superoxide content. Inoculation with either F. mosseae or C. etunicatum increased plant dry weight, decreased Se accumulation and selenocysteine proportion, enhanced root peroxidase activity, and alleviated oxidative stress in Se(VI)-treated plants. Inoculation also downregulated the expression of genes encoding Se transporters, assimilation enzymes, and cysteine-rich receptor-like kinases in Se(VI)-stressed plants, similar to plant-pathogen interaction and glutathione metabolism related genes. Conversely, genes encoding selenium-binding proteins and those related to phenylpropanoid biosynthesis were upregulated in inoculated plants under Se(VI) stress. Compared with Se(VI)-free plants, Se tolerance index, symbiotic feedback percentage on plant dry weight, and root colonization rate were all increased in inoculated plants under Se(VI) stress, corresponding to upregulated expression of 'key genes' in symbiosis. AMF inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption (e.g., Proteobacteria and Firmicutes), and improved bacterial network complexity in Se(VI)-stressed soils. We suggest that stress-mediated enhancement of mycorrhizal symbiosis contributed to plant Se(VI) tolerance, whereas AMF-mediated reshaping of soil bacterial community structure prevented excessive Se accumulation in maize.
Collapse
Affiliation(s)
- Chenyu Sun
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Zeeshan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Paul Milham
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia
| | - Shengfeng Qin
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Junqing Ma
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yisen Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jinghua Huang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
30
|
Li J, Liu YX, Lü PP, Wang YL, Li ZF, Zhang Y, Gan HY, Li XC, Mandal D, Cai J, Guo ZX, Yao H, Guo LD. Community Assembly of Fungi and Bacteria along Soil-Plant Continuum Differs in a Zoige Wetland. Microbiol Spectr 2022; 10:e0226022. [PMID: 36135597 PMCID: PMC9604091 DOI: 10.1128/spectrum.02260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/28/2022] [Indexed: 01/04/2023] Open
Abstract
Distinct plant associated microbiomes live in rhizosphere soil, roots, and leaves. However, the differences in community assembly of fungi and bacteria along soil-plant continuum are less documented in ecosystems. We examined fungal and bacterial communities associated with leaves, roots, and rhizosphere soil of the dominant arbuscular mycorrhizal (AM) plants Taraxacum mongolicum and Elymus nutans and non-AM plant Carex enervis in the Zoige Wetland by using high throughput sequencing techniques. The operational taxonomic unit (OTU) richness of fungi and bacteria was significantly higher in rhizosphere soil than in roots and leaves, and their community compositions were significantly different in the rhizosphere soil, roots, and leaves in each plant species. The co-occurrence network analysis revealed that the sensitive fungal and bacterial OTUs with various taxonomic positions were mainly clustered into different modules according to rhizosphere soil, roots, and leaves in each plant species. Along the soil-plant continuum, the rhizosphere soil pool contributed more source on bacterial than on fungal communities in roots and leaves of the three plant species, and more source on bacterial and fungal communities in leaves of T. mongolicum and E. nutans compared with C. enervis. Furthermore, the root pool contributed more source on bacterial than on fungal communities in leaves of T. mongolicum and E. nutans but not that of C. enervis. This study highlights that the host plant selection intensity is higher in fungal than in bacterial communities in roots and leaves from rhizosphere soil in each plant species, and differs in fungal and bacterial communities along the soil-plant continuum in AM plants T. mongolicum and E. nutans and non-AM plant C. enervis in the Zoige Wetland. IMPORTANCE Elucidating the community microbiome assemblage alone the soil-plant continuum will help to better understand the biodiversity maintenance and ecosystem functioning. Here, we examined the fungal and bacterial communities in rhizosphere soil, roots, and leaves of two dominant AM plants and a non-AM plant in Zoige Wetland. We found that along the soil - plant continuum, host plant selection intensity is higher in fungal than in bacterial communities in roots and leaves from rhizosphere soil in each plant species, and differs in fungal and bacterial communities in the AM- and non-AM plants. This is the first report provides evidence of different assembly patterns of fungal and bacterial communities along the soil-plant continuum in the AM- and non-AM plants in the Zoige Wetland.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Xuan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Zhong-Feng Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Yun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dipa Mandal
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Xuan Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Ran Z, Ding W, Cao S, Fang L, Zhou J, Zhang Y. Arbuscular mycorrhizal fungi: Effects on secondary metabolite accumulation of traditional Chinese medicines. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:932-938. [PMID: 35733285 DOI: 10.1111/plb.13449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2021] [Indexed: 06/15/2023]
Abstract
Traditional Chinese medicine (TCM) has played a pivotal role in maintaining the health of people, and the intrinsic quality of TCM is directly related to the clinical efficacy. The medicinal ingredients of TCM are derived from the secondary metabolites of plant metabolism and are also the result of the coordination of various physiological activities in plants. Arbuscular mycorrhizal fungi (AMF) are among the most ubiquitous plant mutualists that enhance the growth and yield of plants by facilitating the uptake of nutrients and water. Symbiosis of AMF with higher plants promotes growth and helps in the accumulation of secondary metabolites. However, there is still no systematic analysis and summation of their roles in the application of TCM, biosynthesis and accumulation of active substances of herbs, as well as the mechanisms. AMF directly or indirectly affect the accumulation of secondary metabolites of TCM, which is the focus of this review. First, in this review, the effects of AMF symbiosis on the content of different secondary metabolites in TCM, such as phenolic acids, flavonoids, alkaloids and terpenoids, are summarized. Moreover, the mechanism of AMF regulating the synthesis of secondary metabolites was also considered, in combination with the establishment of mycorrhizal symbionts, response mechanisms of plant hormones, nutritional elements and expression of key enzyme their activities. Finally, combined with the current application prospects for AMF in TCM, future in-depth research is planned, thus providing a reference for improving the quality of TCM. In this manuscript, we review the research status of AMF in promoting the accumulation of secondary metabolites in TCM to provide new ideas and methods for improving the quality of TCM.
Collapse
Affiliation(s)
- Z Ran
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - W Ding
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - S Cao
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - L Fang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - J Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Y Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
32
|
Branco S, Schauster A, Liao HL, Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. THE NEW PHYTOLOGIST 2022; 235:2158-2175. [PMID: 35713988 DOI: 10.1111/nph.18308] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Stress is ubiquitous and disrupts homeostasis, leading to damage, decreased fitness, and even death. Like other organisms, mycorrhizal fungi evolved mechanisms for stress tolerance that allow them to persist or even thrive under environmental stress. Such mechanisms can also protect their obligate plant partners, contributing to their health and survival under hostile conditions. Here we review the effects of stress and mechanisms of stress response in mycorrhizal fungi. We cover molecular and cellular aspects of stress and how stress impacts individual fitness, physiology, growth, reproduction, and interactions with plant partners, along with how some fungi evolved to tolerate hostile environmental conditions. We also address how stress and stress tolerance can lead to adaptation and have cascading effects on population- and community-level diversity. We argue that mycorrhizal fungal stress tolerance can strongly shape not only fungal and plant physiology, but also their ecology and evolution. We conclude by pointing out knowledge gaps and important future research directions required for both fully understanding stress tolerance in the mycorrhizal context and addressing ongoing environmental change.
Collapse
Affiliation(s)
- Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Annie Schauster
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
33
|
Hao B, Zhang Z, Bao Z, Hao L, Diao F, Li FY, Guo W. Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist Cd and La stresses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119559. [PMID: 35654253 DOI: 10.1016/j.envpol.2022.119559] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Lijun Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Frank Yonghong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
34
|
Research Progress and Potential Functions of AMF and GRSP in the Ecological Remediation of Metal Tailings. SUSTAINABILITY 2022. [DOI: 10.3390/su14159611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal mining generates a considerable amount of tailings. Arbuscular mycorrhizal fungi (AMF) have potential value for the ecological remediation of tailings from metal mining, despite problems with these tailings, such as loose structure, high heavy-metal concentration and low organic matter and microbial diversity. This review summarizes both the application and physiological functions of AMF, and plant symbiotic systems, in the ecological remediation of tailings from metal mining. The review also includes an in-depth analysis of the characteristics, structural composition, and potential functions of glomalin-related soil protein (GRSP), a release product of mycorrhizal fungi, in the ecological remediation of tailings from metal mining. This review is expected to provide a basis for the application of arbuscular mycorrhizal fungi remediation technology in the ecological remediation of tailings from metal mining.
Collapse
|
35
|
Huang H, Fan L, Zhao Y, Jin Q, Yang G, Zhao D, Xu Z. Integrating Broussonetia papyrifera and Two Bacillus Species to Repair Soil Antimony Pollutions. Front Microbiol 2022; 13:871581. [PMID: 35592006 PMCID: PMC9111523 DOI: 10.3389/fmicb.2022.871581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Heavy metal resistant bacteria play an important role in the metal biogeochemical cycle in soil, but the benefits of microbial oxidation for plants and soil have not been well-documented. The purpose of this study was to explore the contribution of two Bacillus spp. to alleviate the antimony (Sb) toxicity in plants, and, then, to propose a bioremediation method for Sb contaminated soil, which is characterized by environmental protection, high efficiency, and low cost. This study explored the effects of Bacillus cereus HM5 and Bacillus thuringiensis HM7 inoculation on Broussonetia papyrifera and soil were evaluated under controlled Sb stressed conditions (0 and 100 mmol/L, antimony slag) through a pot experiment. The results show that the total root length, root volume, tips, forks, crossings, and root activities of B. papyrifera with inoculation are higher than those of the control group, and the strains promote the plant absorption of Sb from the soil environment. Especially in the antimony slag treatment group, B. cereus HM5 had the most significant effect on root promotion and promoting the absorption of Sb by B. papyrifera. Compared with the control group, the total root length, root volume, tips, forks, crossings, and root activities increased by 64.54, 70.06, 70.04, 78.15, 97.73, and 12.95%, respectively. The absorption of Sb by root, stem, and leaf increased by 265.12, 250.00, and 211.54%, compared with the control group, respectively. Besides, both B. cereus HM5 and B. thuringiensis HM7 reduce the content of malondialdehyde, proline, and soluble sugars in plant leaves, keeping the antioxidant enzyme activity of B. papyrifera at a low level, and alleviating lipid peroxidation. Principal component analysis (PCA) shows that both B. cereus HM5 and B. thuringiensis HM7 are beneficial to the maintenance of plant root functions and the improvement of the soil environment, thereby alleviating the toxicity of Sb. Therefore, B. cereus HM5 and B. thuringiensis HM7 in phytoremediation with B. papyrifera is a promising inoculant used for bacteria-assisted phytoremediation on Sb contaminated sites.
Collapse
Affiliation(s)
- Huimin Huang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Changsha Environmental Protection College, Changsha, China
| | - Li Fan
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Qi Jin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Guiyan Yang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| | - Di Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
36
|
Mei X, Wang Y, Li Z, Larousse M, Pere A, da Rocha M, Zhan F, He Y, Pu L, Panabières F, Zu Y. Root-associated microbiota drive phytoremediation strategies to lead of Sonchus Asper (L.) Hill as revealed by intercropping-induced modifications of the rhizosphere microbiome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23026-23040. [PMID: 34799796 PMCID: PMC8979924 DOI: 10.1007/s11356-021-17353-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/30/2021] [Indexed: 05/06/2023]
Abstract
Intercropping or assistant endophytes promote phytoremediation capacities of hyperaccumulators and enhance their tolerance to heavy metal (HM) stress. Findings from a previous study showed that intercropping the hyperaccumulator Sonchus asper (L.) Hill grown in HM-contaminated soils with maize improved the remediating properties and indicated an excluder-to-hyperaccumulator switched mode of action towards lead. In the current study, RNA-Seq analysis was conducted on Sonchus roots grown under intercropping or monoculture systems to explore the molecular events underlying this shift in lead sequestering strategy. The findings showed that intercropping only slightly affects S. asper transcriptome but significantly affects expression of root-associated microbial genomes. Further, intercropping triggers significant reshaping of endophytic communities associated with a 'root-to-shoot' transition of lead sequestration and improved phytoremediation capacities of S. asper. These findings indicate that accumulator activities of a weed are partially attributed to the root-associated microbiota, and a complex network of plant-microbe-plant interactions shapes the phytoremediation potential of S. asper. Analysis showed that intercropping may significantly change the structure of root-associated communities resulting in novel remediation properties, thus providing a basis for improving phytoremediation practices to restore contaminated soils.
Collapse
Affiliation(s)
- Xinyue Mei
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Marie Larousse
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Arthur Pere
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Martine da Rocha
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Linlong Pu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Franck Panabières
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France.
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
37
|
Ayiti OE, Babalola OO. Sustainable Intensification of Maize in the Industrial Revolution: Potential of Nitrifying Bacteria and Archaea. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.827477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sustainable intensification is a means that proffer a solution to the increasing demand for food without degrading agricultural land. Maize is one of the most important crops in the industrial revolution era, there is a need for its sustainable intensification. This review discusses the role of maize in the industrial revolution, progress toward sustainable production, and the potential of nitrifying bacteria and archaea to achieve sustainable intensification. The era of the industrial revolution (IR) uses biotechnology which has proven to be the most environmentally friendly choice to improve crop yield and nutrients. Scientific research and the global economy have benefited from maize and maize products which are vast. Research on plant growth-promoting microorganisms is on the increase. One of the ways they carry out their function is by assisting in the cycling of geochemical, thus making nutrients available for plant growth. Nitrifying bacteria and archaea are the engineers of the nitrification process that produce nitrogen in forms accessible to plants. They have been identified in the rhizosphere of many crops, including maize, and have been used as biofertilizers. This study's findings could help in the development of microbial inoculum, which could be used to replace synthetic fertilizer and achieve sustainable intensification of maize production during the industrial revolution.
Collapse
|
38
|
Griffiths M, Delory BM, Jawahir V, Wong KM, Bagnall GC, Dowd TG, Nusinow DA, Miller AJ, Topp CN. Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. PLANT, CELL & ENVIRONMENT 2022; 45:751-770. [PMID: 34914117 PMCID: PMC9306666 DOI: 10.1111/pce.14247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 05/26/2023]
Abstract
Roots are the interface between the plant and the soil and play a central role in multiple ecosystem processes. With intensification of agricultural practices, rhizosphere processes are being disrupted and are causing degradation of the physical, chemical and biotic properties of soil. However, cover crops, a group of plants that provide ecosystem services, can be utilised during fallow periods or used as an intercrop to restore soil health. The effectiveness of ecosystem services provided by cover crops varies widely as very little breeding has occurred in these species. Improvement of ecosystem service performance is rarely considered as a breeding trait due to the complexities and challenges of belowground evaluation. Advancements in root phenotyping and genetic tools are critical in accelerating ecosystem service improvement in cover crops. In this study, we provide an overview of the range of belowground ecosystem services provided by cover crop roots: (1) soil structural remediation, (2) capture of soil resources and (3) maintenance of the rhizosphere and building of organic matter content. Based on the ecosystem services described, we outline current and promising phenotyping technologies and breeding strategies in cover crops that can enhance agricultural sustainability through improvement of root traits.
Collapse
Affiliation(s)
| | | | | | - Kong M. Wong
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | - Tyler G. Dowd
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | - Allison J. Miller
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
| | | |
Collapse
|
39
|
Husna, Hussain A, Shah M, Hamayun M, Qadir M, Iqbal A. Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15501-15515. [PMID: 34625902 DOI: 10.1007/s11356-021-16640-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
In modern agricultural practice, heavy metal (HM) contamination is one of the main abiotic stress threatening sustainable agriculture, crop productivity, and disturb natural soil microbiota. Different reclamation techniques are used to restore the contaminated site; however, they are either costly or unable to remove contaminant when concentration is very low. In such circumstances, bioremediation is used as a novel technique involving microbes for soil restoration. In the current project, Aspergillus welwitschiae(Bk) efficiently endure metal stress (i.e., Cr-VI and As-V in the form of K2Cr2O7 and Na3AsO4) up to 1200 μg/mL and enhanced the production of phytohormones, i.e., 54.83 μg/mL of indole acetic acid (IAA) compared to control 15.56 μg/mL, solubilized inorganic phosphate, and produced stress-related metabolites. The isolate Bk was able to enhance growth of soybean by showing higher root shoot length and fresh/dry weight under stress (p<0.05). Besides, the strain strengthened the antioxidant system of the host increasing enzymatic antioxidants, i.e., catalases (CAT) by 1.58 and 1.11 fold, ascorbic acid oxidase (AAO) by 6.75 and 7.94 fold, peroxidase activity (POD) by 1.12 and 1.37 fold, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) by 1.42 and 1.25 fold at 50 μg/mL of chromate and arsenate. Thus, actively scavenging the reactive oxygen species (ROS) produced results in lower ROS accumulation and high ROS scavenging. On the other hand, the isolates cut down Cr and As uptake by approximately 50% at 50 μg/mL from the medium while bio-transforming it, thereby stabilizing it and assisting the host to resume normal growth, thus avoiding phytotoxicity. It is evident from the current study that A. welwitschiae may potentially be used as a bioremediating agent for reclamation of Cr- and As-contaminated soil.
Collapse
Affiliation(s)
- Husna
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Qadir
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
40
|
Liu C, Lin H, He P, Li X, Geng Y, Tuerhong A, Dong Y. Peat and bentonite amendments assisted soilless revegetation of oligotrophic and heavy metal contaminated nonferrous metallic tailing. CHEMOSPHERE 2022; 287:132101. [PMID: 34523446 DOI: 10.1016/j.chemosphere.2021.132101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Soilless revegetation is a promising method for ecological restoration of nonferrous metallic tailings because of its low-cost and eco-friendliness. However, revegetation is difficult to construct in the tailings due to the high heavy metal concentration, poor water retention capacity and low fertility. In this study, soilless revegetation was successfully carried out by using peat and bentonite amendments. The results showed that amendment addition significantly increased the F.elata seed germination percentage, plant length and fresh biomass by 14.9%-24.3%, 48.9%-90.4% and 51.9%-88.1%, respectively. Such improvements probably referred to the variation of rhizosphere tailing microecological characteristics. Amendment addition dramatically improved tailing available NPK by 39.76-102.13%, 2.69-40.81% and 2.42-20.02%, respectively, and reduced pH from alkaline to relative neutral. Besides, heavy metal bioavailability was significantly decreased that the acid soluble fraction decreased by 1.7%-11.5%, resulting in the reduction of heavy metal concentration in F.elata plant. Amendments also increased the rhizosphere tailing microbial species richness and the relative abundance of ecologically beneficial genera including Arthrobacter, Altererythrobacter and Bacillus. This study not only provided a green and efficient method for remediation of oligotrophic and high heavy metal contaminated nonferrous metallic tailing, but also demonstrated relevant mechanisms of amendment on promoting soilless revegetation.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Peidong He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoyin Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuan Geng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aminaimu Tuerhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
41
|
Wang G, Wang L, Ma F. Effects of earthworms and arbuscular mycorrhizal fungi on improvement of fertility and microbial communities of soils heavily polluted by cadmium. CHEMOSPHERE 2022; 286:131567. [PMID: 34343920 DOI: 10.1016/j.chemosphere.2021.131567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Soil bacterial community (SBC) and fertility are pivotal for the evaluation of phytoremediation performance. Although affected by earthworms (E) and arbuscular mycorrhizal fungi (AMF), little is known about the impacts of the E-AMF interaction on the variation of SBC and fertility in cadmium (Cd)-spiked soil. We elucidated these impacts in rhizosphere soil of Solanum nigrum L. Loss of nutrient availability, and SBC diversity was observed in Cd-polluted soil. AMF increased available phosphorous (AP), whereas E increased available potassium (AK). In soils with 60 and 120 mg/kg Cd, the contents of AK, AP, and soil organic matter (SOM) increased by 7.0-19.7%, 23.7-25.5%, and 11.5-17.4%, respectively; and the residual Cd after remediation decreased by 7.9-8.5% in soils treated with EAM compared to untreated soil. EAM-treated soil had higher alpha diversity estimators compared to uninoculated soil. The predominant bacterial phyla were Proteobacteria and Bacteroidetes, accounting for 72.5-84.0%. Redundancy analysis showed that total carbon (TC), SOM, pH, and C/N ratio were key factors determining SBC at the phylum level, explaining 26.9, 24.1, 15.1, and 14.8% of the total variance, respectively. These results suggested that EAM affected SBC composition by altering SOM, TC, and C/N ratio. The E-AMF cooperation ameliorates soil nutrients, SBC diversity, and composition, facilitating phytoextraction processes.
Collapse
Affiliation(s)
- Gen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
42
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
43
|
Luo Y, Yuan H, Zhao J, Qi Y, Cao WW, Liu JM, Guo W, Bao ZH. Multiple factors influence bacterial community diversity and composition in soils with rare earth element and heavy metal co-contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112749. [PMID: 34488142 DOI: 10.1016/j.ecoenv.2021.112749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The effects of long-term rare earth element (REE) and heavy metal (HM) contamination on soil bacterial communities remains poorly understood. In this study, soil samples co-contaminated with REEs and HMs were collected from a rare-earth tailing dam. The bacterial community composition and diversity were analyzed through Illumina high-throughput sequencing with 16S rRNA gene amplicons. Bacterial community richness and diversity were lower in the co-contaminated soils than in the uncontaminated soils, with clearly different bacterial community compositions. The results showed that total organic carbon and available potassium were the most important factors affecting bacterial community richness and diversity, followed by the REE and HM contents. Although the canonical correspondence analysis results showed that an REE alone had no obvious effects on bacterial community structures, we found that the combined effects of soil physicochemical properties and REE and HM contents regulated bacterial community structure and composition. The effects of REEs and HMs on bacterial communities were similar, whereas their combined contributions were greater than the individual effects of REEs or HMs. Some bacterial taxa were worth noting. These specifically included the plant growth-promoting bacteria Exiguobacterium (sensitive to REEs and HMs) and oligotrophic microorganisms with metal tolerance (prevalent in contaminated soil); moreover, relative abundance of JTB255-Marine Benthic Group, Rhodobacteraceae, Erythrobacter, and Truepera may be correlated with REEs. This study was the first to investigate the responses of bacterial communities to REE and HM co-contamination. The current results have major implications for the ecological risk assessment of environments co-contaminated with REEs and HMs.
Collapse
Affiliation(s)
- Ying Luo
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Hao Yuan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Energy Investment Group CO., LID. Electric Power Engineering Technology Research Institute, Hohhot 010060, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Yu Qi
- Inner Mongolia Academy of Environmental Science, Hohhot 010011, China
| | - Wei-Wei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ju-Mei Liu
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
44
|
Cecchi G, Di Piazza S, Rosatto S, Mariotti MG, Roccotiello E, Zotti M. A Mini-Review on the Co-growth and Interactions Among Microorganisms (Fungi and Bacteria) From Rhizosphere of Metal-Hyperaccumulators. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:787381. [PMID: 37744132 PMCID: PMC10512210 DOI: 10.3389/ffunb.2021.787381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 09/26/2023]
Abstract
The co-growth and synergistic interactions among fungi and bacteria from the rhizosphere of plants able to hyper accumulate potentially toxic metals (PTMs) are largely unexplored. Fungi and bacteria contribute in an essential way to soil biogeochemical cycles mediating the nutrition, growth development, and health of associated plants at the rhizosphere level. Microbial consortia improve the formation of soil aggregates and soil fertility, producing organic acids and siderophores that increase solubility, mobilization, and consequently the accumulation of nutrients and metals from the rhizosphere. These microorganism consortia can both mitigate the soil conditions promoting plant colonization and increase the performance of hyperaccumulator plants. Indeed, microfungi and bacteria from metalliferous soils or contaminated matrices are commonly metal-tolerant and can play a key role for plants in the phytoextraction or phytostabilization of metals. However, few works deepen the effects of the inoculation of microfungal and bacterial consortia in the rhizosphere of metallophytes and their synergistic activity. This mini-review aimed to collect and report the data regarding the role of microbial consortia and their potentialities known to date. Moreover, our new data had shown an active fungal-bacteria consortium in the rhizosphere of the hyperaccumulator plant Alyssoides utriculata.
Collapse
Affiliation(s)
- Grazia Cecchi
- Laboratory of Mycology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Simone Di Piazza
- Laboratory of Mycology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Stefano Rosatto
- Laboratory of Plant Biology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Mauro Giorgio Mariotti
- Laboratory of Plant Biology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Enrica Roccotiello
- Laboratory of Plant Biology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Mirca Zotti
- Laboratory of Mycology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
45
|
Pokluda R, Ragasová L, Jurica M, Kalisz A, Komorowska M, Niemiec M, Sekara A. Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PLoS One 2021; 16:e0259380. [PMID: 34731216 PMCID: PMC8565787 DOI: 10.1371/journal.pone.0259380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Plant growth-promoting microbes (PGPM) play vital roles in maintaining crop fitness and soil health in stressed environments. Research have included analysis-based cultivation of soil-microbial-plant relationships to clarify microbiota potential. The goal of the research was to (i) evaluate the symbiotic microorganism effects on tomato seedling fitness under stressed conditions simulating a fragile soil susceptible to degradation; (ii) compare the plant-microbial interactions after inoculation with microbial isolates and fungi-bacteria consortia; (iii) develop an effective crop-microbial network, which improves soil and plant status. The experimental design included non-inoculated treatments with peat and sand at ratios of 50:50, 70:30, 100:0 (v:v), inoculated treatments with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ) using the aforementioned peat:sand ratios; and treatment with peat co-inoculated with AMF and Saccharothrix tamanrassetensis (S). AMF + AZ increased root fresh weight in peat substrate compared to the control (4.4 to 3.3 g plant–1). An increase in shoot fresh weight was detected in the AMF + AZ treatment with a 50:50 peat:sand ratio (10.1 to 8.5 g plant-1). AMF + AZ reduced antioxidant activity (DPPH) (18–34%) in leaves, whereas AMF + S had the highest DPPH in leaves and roots (45%). Total leaf phenolic content was higher in control with a decreased proportion of peat. Peroxidase activity was enhanced in AMF + AZ and AMF + S treatments, except for AMF + AZ in peat. Microscopic root assays revealed the ability of AMF to establish strong fungal-tomato symbiosis; the colonization rate was 78–89%. AMF + AZ accelerated K and Mg accumulation in tomato leaves in treatments reflecting soil stress. To date, there has been no relevant information regarding the successful AMF and Saccharothrix co-inoculation relationship. This study confirmed that AMF + S could increase the P, S, and Fe status of seedlings under high organic C content conditions. The improved tomato growth and nutrient acquisition demonstrated the potential of PGPM colonization under degraded soil conditions.
Collapse
Affiliation(s)
- Robert Pokluda
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
- * E-mail:
| | - Lucia Ragasová
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
| | - Miloš Jurica
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
| | - Andrzej Kalisz
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Komorowska
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Marcin Niemiec
- Faculty of Agriculture and Economics, Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Krakow, Poland
| | - Agnieszka Sekara
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
46
|
Malicka M, Magurno F, Posta K, Chmura D, Piotrowska-Seget Z. Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Lolium perenne exposed to hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112252. [PMID: 33930772 DOI: 10.1016/j.ecoenv.2021.112252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualistic plant symbionts that promote plant growth and protect them from abiotic stresses. Studies on AMF-assisted phytoremediation have shown that AMF can increase plant tolerance to the presence of hydrocarbon contaminants by improving plant nutrition status and mitigating oxidative stress. This work aimed to evaluate the impact of single and mixed-species AMF inocula (Funneliformis caledonium, Diversispora varaderana, Claroideoglomus walkeri), obtained from a contaminated environment, on the growth, oxidative stress (DNA oxidation and lipid peroxidation), and activity of antioxidative enzymes (superoxide dismutase, catalase, peroxidase) in Lolium perenne growing on a substrate contaminated with 0/0-30/120 mg phenol/polynuclear aromatic hydrocarbons (PAHs) kg-1. The assessment of AMF tolerance to the presence of contaminants was based on mycorrhizal root colonization, spore production, the level of oxidative stress, and antioxidative activity in AMF spores. In contrast to the mixed-species AMF inoculum, single AMF species significantly enhanced the growth of host plants cultured on the contaminated substrate. The effect of inoculation on the level of oxidative stress and the activity of antioxidative enzymes in plant tissues differed between the AMF species. Changes in the level of oxidative stress and the activity of antioxidative enzymes in AMF spores in response to contamination also depended on AMF species. Although the concentration of phenol and PAHs had a negative effect on the production of AMF spores, low (5/20 mg phenol/PAHs kg-1) and medium (15/60 mg phenol/PAHs kg-1) substrate contamination stimulated the mycorrhizal colonization of roots. Among the studied AMF species, F. caledonium was the most tolerant to phenol and PAHs and showed the highest potential in plant growth promotion. The results presented in this study might contribute to the development of functionally customized AMF-assisted phytoremediation strategies with indigenous AMF, more effective than commercial AMF inocula, as a result of their selection by the presence of contaminants.
Collapse
Affiliation(s)
- Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland.
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| | - Katalin Posta
- Institute of Genetics, Microbiology and Biotechnology, Szent István University, Páter Károly 1 Street, Gödöllő H-2100, Hungary
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2 Street, 43-309 Bielsko-Biała, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| |
Collapse
|
47
|
Zhang Z, Feng S, Luo J, Hao B, Diao F, Li X, Jia B, Wang L, Bao Z, Guo W. Evaluation of Microbial Assemblages in Various Saline-Alkaline Soils Driven by Soluble Salt Ion Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3390-3400. [PMID: 33703896 DOI: 10.1021/acs.jafc.1c00210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Land degraded by salinization and alkalization is widely distributed globally and involves a wide range of ecosystem types. However, the knowledge of the indigenous microbial assemblages and their roles in various saline-alkaline soils is limited. This study demonstrated microbial assemblages in various saline-alkaline soils from different regions of Inner Mongolia and revealed the key driving factors to influence microbiome. The correlation network analysis indicates the difference in adaptability of bacterial and fungal communities under stimulation by saline-alkaline stress: fungal community shows higher tolerance, stability, and resilience to various saline-alkaline soils than a bacterial community. The keystone bacteria and fungi that have potential adaptability to various saline-alkaline environments are further identified, and they may confer benefits in restoring saline-alkaline soils by their own effects or assisting plants. For salt-rich soils in different regions, the soluble salt ion components are the major determinant to drive microbial assemblages of different saline-alkaline soils, rather than salinity. Thus, these saline-alkaline soils are clustered into sulfated, chlorinated, and soda-type saline-alkaline soils. Multivariate analysis reveals unique, dominant, and common microbial taxa in three saline-alkaline soils. This result of the conceptual mode indicates that potential roles of unique and dominant microbial taxa on regulating saline-alkaline functions are more vital.
Collapse
Affiliation(s)
- Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shicheng Feng
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xue Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|