1
|
Ranjan G, Ranjan S, Sunita P, Pattanayak SP. Thiazolidinedione derivatives in cancer therapy: exploring novel mechanisms, therapeutic potentials, and future horizons in oncology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4705-4725. [PMID: 39621087 DOI: 10.1007/s00210-024-03661-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 04/11/2025]
Abstract
Thiazolidinedione derivatives have shown significant potential as targeted cancer therapies by leveraging their various mechanisms of action. These include suppressing cell proliferation, triggering apoptosis, and influencing signaling pathways associated with tumor development. Their multifaceted effects make them promising candidates for advancing cancer treatment strategies. They have shown significant promise as anti-cancer agents, particularly through their ability to inhibit lipogenesis pathways and apoptosis essential for cancer cell survival and proliferation. This review comprehensively examines the anti-cancer potential of thiazolidinedione derivatives by targeting key aspects of lipid metabolism, apoptosis, and various mechanistic pathways. This review provides an in-depth examination of the anti-cancer potential of TZD derivatives, focusing on their mechanisms of action, therapeutic applications, and future directions in oncology. The anti-tumor effects of TZDs primarily involve the stimulation of peroxisome proliferator-activated receptor gamma (PPAR-γ), suppressing cell proliferation, induction of apoptosis, and inhibition of angiogenesis. Moreover, recent evidence highlights their ability to modulate non-PPAR-γ pathways, such as PI3K/Akt, NF-κB, and MAPK, further expanding their role in overcoming drug resistance and enhancing therapeutic outcomes. This review explores the preclinical (in vitro and in vivo) and clinical research investigating TZD derivatives efficacy in various cancer types. The insights underscore the significance of targeting lipogenesis as a novel anti-cancer strategy, positioning thiazolidinedione derivatives as potent candidates for future cancer therapeutics. As the oncology landscape evolves, TZD derivatives (rosiglitazone, pioglitazone, inolitazone, troglitazone, and 2,4-thiazolidinedione derivatives) represent a promising class of agents with the potential to contribute meaningfully to cancer treatment. By integrating existing knowledge with recent advancements, this study provides valuable insights into the role of thiazolidinedione derivatives in cancer treatment, paving the way for further research and clinical applications.
Collapse
Affiliation(s)
- Gaurav Ranjan
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Shashi Ranjan
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Priyashree Sunita
- Department of Surgery, Case Comprehensive Cancer Centre, Case Western Reserve University, Wolstein Research Building 2103 Cornell Rd, Cleveland, OH, 44106, USA
| | - Shakti Prasad Pattanayak
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824236, India.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Woods Building, W437, 2109 Adelbert Road, Cleaveland, OH, 44106, USA.
| |
Collapse
|
2
|
Yang L, Ding R, Tong X, Shen T, Jia S, Yan X, Zhang C, Wu L. Discovery of cloxiquine derivatives as potent HDAC inhibitors for the treatment of melanoma via activating PPARγ. Eur J Med Chem 2025; 281:117029. [PMID: 39522492 DOI: 10.1016/j.ejmech.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The combined treatment with histone deacetylase (HDAC) inhibitors with peroxisome proliferator-activated receptor γ (PPARγ) agonists has displayed significant anticancer efficacy. Based on these results, a series of cloxiquine derivatives were prepared as potent HDAC inhibitors for the treatment of melanoma. Among these compounds, CS4 exhibited excellent inhibitory effects on HDAC1 (IC50 = 38 nM) and HDAC6 (IC50 = 12 nM), and had good antiproliferative effects against A375 and SK-MEL-5 melanoma cells (IC50 values, 1.20 and 0.93 μM, respectively). Mechanism research indicated that CS4 inhibited SK-MEL-5 cell growth by promoting α-tubulin and histone 3 (H3) acetylation. At the metabolic level, treatment with BG11 activated PPARγ and blocked glycolysis in SK-MEL-5 cells, which mediated partial antimelanoma effects of CS4. In addition, CS4 also induced cell cycle arrest at G2, suppressed migration and facilitated apoptosis of SK-MEL-5 cells. More importantly, compound CS4 demonstrated significant in vivo anticancer effect compared with SAHA, and exhibited neglectable toxicity. Consequently, CS4 is the potent HDAC inhibitor, which may be developed as the candidate antimelanoma drug.
Collapse
Affiliation(s)
- Limin Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ran Ding
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaojie Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tong Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuting Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Jincheng People's Hospital, Jincheng, 048026, China
| | - Xiqing Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Paneth A, Kaproń B, Plech T, Paduch R, Trotsko N, Paneth P. Combined In Silico and In Vitro Analyses to Assess the Anticancer Potential of Thiazolidinedione-Thiosemicarbazone Hybrid Molecules. Int J Mol Sci 2023; 24:17521. [PMID: 38139350 PMCID: PMC10743653 DOI: 10.3390/ijms242417521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The number of people affected by cancer and antibiotic-resistant bacterial infections has increased, such that both diseases are already seen as current and future leading causes of death globally. To address this issue, based on a combined in silico and in vitro approach, we explored the anticancer potential of known antibacterials with a thiazolidinedione-thiosemicarbazone (TZD-TSC) core structure. A cytotoxicity assessment showed encouraging results for compounds 2-4, with IC50 values against T98G and HepG2 cells in the low micromolar range. TZD-TSC 3 proved to be most toxic to cancer cell lines, with IC50 values of 2.97 ± 0.39 µM against human hepatoma HepG2 cells and IC50 values of 28.34 ± 2.21 µM against human glioblastoma T98G cells. Additionally, compound 3 induced apoptosis and showed no specific hemolytic activity. Furthermore, treatment using 3 on cancer cell lines alters these cells' morphology and further suppresses migratory activity. Molecular docking, in turn, suggests that 3 would have the capacity to simultaneously target HDACs and PPARγ, by the activation of PPARγ and the inhibition of both HDAC4 and HDAC8. Thus, the promising preliminary results obtained with TZD-TSC 3 represent an encouraging starting point for the rational design of novel chemotherapeutics with dual antibacterial and anticancer activities.
Collapse
Affiliation(s)
- Agata Paneth
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Barbara Kaproń
- Department of Clinical Genetics, Faculty of Medicine, Medical University of Lublin, 20-080 Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| | - Nazar Trotsko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
4
|
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front Oncol 2021; 11:681377. [PMID: 34195082 PMCID: PMC8236851 DOI: 10.3389/fonc.2021.681377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ameena Mohamed Ali
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohamed Eldaw
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
5
|
Tilekar K, Hess JD, Upadhyay N, Bianco AL, Schweipert M, Laghezza A, Loiodice F, Meyer-Almes FJ, Aguilera RJ, Lavecchia A, C S R. Thiazolidinedione "Magic Bullets" Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects. J Med Chem 2021; 64:6949-6971. [PMID: 34006099 PMCID: PMC10926851 DOI: 10.1021/acs.jmedchem.1c00491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monotargeting anticancer agents suffer from resistance and target nonspecificity concerns, which can be tackled with a multitargeting approach. The combined treatment with HDAC inhibitors and PPARγ agonists has displayed potential antitumor effects. Based on these observations, this work involves design and synthesis of molecules that can simultaneously target PPARγ and HDAC. Several out of 25 compounds inhibited HDAC4, and six compounds acted as dual-targeting agents. Compound 7i was the most potent, with activity toward PPARγ EC50 = 0.245 μM and HDAC4 IC50 = 1.1 μM. Additionally, compounds 7c and 7i were cytotoxic to CCRF-CEM cells (CC50 = 2.8 and 9.6 μM, respectively), induced apoptosis, and caused DNA fragmentation. Furthermore, compound 7c modulated the expression of c-Myc, cleaved caspase-3, and caused in vivo tumor regression in CCRF-CEM tumor xenografts. Thus, this study provides a basis for the rational design of dual/multitargeting agents that could be developed further as anticancer therapeutics.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| | - Jessica D Hess
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| | - Alessandra Lo Bianco
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Haardtring 100, 64295 Darmstadt, Germany
| | - Antonio Laghezza
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Haardtring 100, 64295 Darmstadt, Germany
| | - Renato J Aguilera
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Ramaa C S
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| |
Collapse
|
6
|
Nazreen S. Design, synthesis, and molecular docking studies of thiazolidinediones as PPAR-γ agonists and thymidylate synthase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100021. [PMID: 33988883 DOI: 10.1002/ardp.202100021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
New thiazolidine-2,4-dione hybrids were designed and synthesized as potential peroxisome proliferator-activated receptor (PPAR)-γ agonists and thymidylate synthase inhibitors. All the synthesized compounds follow Lipinski's and Veber's rules and possess the desired pharmacokinetics properties. The PPAR-γ transactivation results displayed that compounds 12 (78.9%) and 11 (73.4%) were the most active compounds and they increased PPAR-γ gene expression by 2.2- and 2.4-fold, respectively. Compounds 12, 11, and 8 showed promising cytotoxicity, with IC50 values ranging from 1.4 to 4.5 μM against MCF-7 cells and from 1.8 to 8.4 μM against HCT-116 cells. Compounds 11 and 12 also inhibited thymidylate synthase with IC50 values of 5.1 and 3.2 μM, respectively, confirming their mode of action as thymidylate synthase inhibitors. Finally, molecular docking studies supported the in vitro biological activity results.
Collapse
Affiliation(s)
- Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Alzhrani ZMM, Alam MM, Neamatallah T, Nazreen S. Design, synthesis and in vitro antiproliferative activity of new thiazolidinedione-1,3,4-oxadiazole hybrids as thymidylate synthase inhibitors. J Enzyme Inhib Med Chem 2020; 35:1116-1123. [PMID: 32354237 PMCID: PMC7241536 DOI: 10.1080/14756366.2020.1759581] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 11/10/2022] Open
Abstract
Thymidylate synthase (TS) has been an attention-grabbing area of research for the treatment of cancers due to their role in DNA biosynthesis. In the present study, we have synthesised a library of thiazolidinedione-1,3,4-oxadiazole hybrids as TS inhibitors. All the synthesised hybrids followed Lipinski and Veber rules which indicated good drug likeness properties upon oral administration. Among the synthesised hybrids, compound 9 and 10 displayed 4.5 and 4.4 folds activity of 5-Fluorouracil, respectively against MCF-7 cell line whereas 3.1 and 2.5 folds cytotoxicity against HCT-116 cell line. Furthermore, compound 9 and 10 also inhibited TS enzyme with IC50 = 1.67 and 2.21 µM, respectively. Finally, the docking studies of 9 and 10 were found to be consistent with in vitro TS results. From these studies, compound 9 and 10 has the potential to be developed as TS inhibitors.
Collapse
Affiliation(s)
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
9
|
Kotha S, Sreevani G, Dzhemileva LU, Yunusbaeva MM, Dzhemilev UM, D'yakonov VA. Diversity-oriented synthesis of spirothiazolidinediones and their biological evaluation. Beilstein J Org Chem 2019; 15:2774-2781. [PMID: 31807211 PMCID: PMC6880819 DOI: 10.3762/bjoc.15.269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/04/2019] [Indexed: 01/18/2023] Open
Abstract
We report a new synthetic approach to assemble spirothiazolidinediones via a [2 + 2 + 2] cyclotrimerization reaction and the derivatives were further functionalized through DA chemistry and click reaction. Using flow cytometry, it was shown for the first time that the new benzyl alcohol derivatives of thiazolidine-2,4-dione generated here are efficient apoptosis inducers in the HeLa, Hek293, U937, Jurkat, and K562 cell lines.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Gaddamedi Sreevani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Lilya U Dzhemileva
- Laboratory of Catalytic Synthesis, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospect Octyabrya, 141, 450075, Ufa, Russian Federation.,Department of Immunology and Human Reproductive Health Bashkir State Medical University, Lenin Street, 3, 450003, Ufa, Russian Federation
| | - Milyausha M Yunusbaeva
- Laboratory of Catalytic Synthesis, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospect Octyabrya, 141, 450075, Ufa, Russian Federation
| | - Usein M Dzhemilev
- Laboratory of Catalytic Synthesis, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospect Octyabrya, 141, 450075, Ufa, Russian Federation
| | - Vladimir A D'yakonov
- Laboratory of Catalytic Synthesis, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospect Octyabrya, 141, 450075, Ufa, Russian Federation
| |
Collapse
|
10
|
Yamamoto K, Tamura T, Nakamura R, Hosoe S, Matsubara M, Nagata K, Kodaira H, Uemori T, Takahashi Y, Suzuki M, Saito JI, Ueno K, Shuto S. Development of a novel class of peroxisome proliferator-activated receptor (PPAR) gamma ligands as an anticancer agent with a unique binding mode based on a non-thiazolidinedione scaffold. Bioorg Med Chem 2019; 27:115122. [PMID: 31623970 DOI: 10.1016/j.bmc.2019.115122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 01/12/2023]
Abstract
We previously identified dibenzooxepine derivative 1 as a potent PPARγ ligand with a unique binding mode owing to its non-thiazolidinedione scaffold. However, while 1 showed remarkably potent MKN-45 gastric cancer cell aggregation activity, an indicator of cancer differentiation-inducing activity induced by PPARγ activation, we recognized that 1 was metabolically unstable. In the present study, we identified a metabolically soft spot, and successfully discovered 3-fluoro dibenzooxepine derivative 9 with better metabolic stability. Further optimization provided imidazo[1,2-a]pyridine derivative 17, which showed potent MKN-45 gastric cancer cell aggregation activity and excellent PK profiles compared with 9. Compound 17 exerted a growth inhibitory effect on AsPC-1/AG1 pancreatic tumor in mice. Furthermore, the decrease in the hematocrit (an indicator of localized edema, a serious adverse effect of PPARγ ligands) was tolerable even with oral administration at 200 mg/kg in healthy mice.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Tomohiro Tamura
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Rina Nakamura
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Shintaro Hosoe
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Masahiro Matsubara
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Keiko Nagata
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Hiroshi Kodaira
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Takeshi Uemori
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Yuichi Takahashi
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Michihiko Suzuki
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Jun-Ichi Saito
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Kimihisa Ueno
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
11
|
Liao KF, Lin CL, Lai SW. Association between colorectal cancer and thiazolidinediones administration in a case-control study. Biomedicine (Taipei) 2019; 9:4. [PMID: 30794151 PMCID: PMC6385609 DOI: 10.1051/bmdcn/2019090104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES This study was designed to assess whether there was an association between colorectal cancer and thiazolidinediones use. METHODS A population-based case-control study was performed using the database of the Taiwan National Health Insurance Program. The case group consisted of 20218 type 2 diabetic subjects aged 20 to 84 years with newly diagnosed colorectal cancer between 2000 and 2011. The date of a subject being diagnosed with colorectal cancer was defined as the index date. The control group consisted of 20218 randomly selected type 2 diabetic subjects aged 20 to 84 years without colorectal cancer between 2000 and 2011. A subject who had at least a prescription of thiazolidinediones before the index date was defined as "ever used". A subject who did not have a prescription of thiazolidinediones before the index date was defined as "never used". The odds ratio (OR) and 95% confidence interval (CI) was used to estimate the association between colorectal cancer and thiazolidinediones use by the multivariable logistic regression model. RESULTS After adjustment for potential confounders, the odds of thiazolidinediones use in cases with colorectal cancer were lower than the odds of thiazolidinediones use in subjects without colorectal cancer (adjusted OR 0.94, 95% CI 0.89-0.99). CONCLUSIONS The odds of thiazolidinediones use in cases with colorectal cancer were lower than subjects without colorectal cancer. A prospective study is required to test whether thiazolidinediones use has a protective effect against colorectal cancer.
Collapse
Affiliation(s)
- Kuan-Fu Liao
-
College of Medicine, Tzu Chi University Hualien 970 Taiwan
-
Division of Hepatogastroenterology, Department of Internal Medicine, Taichung Tzu Chi Hospital Taichung 427 Taiwan
| | - Cheng-Li Lin
-
College of Medicine, China Medical University Taichung 404 Taiwan
- Management Office for Health Data
| | - Shih-Wei Lai
-
College of Medicine, China Medical University Taichung 404 Taiwan
-
Department of Family Medicine, China Medical University Hospital Taichung 404 Taiwan
| |
Collapse
|
12
|
Leung DTH, Rainczuk A, Nguyen T, Stephens A, Silke J, Fuller PJ, Chu S. Targeting XIAP and PPARγ in Granulosa Cell Tumors Alters Metabolic Signaling. J Proteome Res 2019; 18:1691-1702. [DOI: 10.1021/acs.jproteome.8b00917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dilys T. H. Leung
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Adam Rainczuk
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Trang Nguyen
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Stephens
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Peter J. Fuller
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Simon Chu
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
13
|
Salehian B, Liem SY, Mojazi Amiri H, Maghami E. Clinical Trials in Management of Anaplastic Thyroid Carcinoma; Progressions and Set Backs: A Systematic Review. Int J Endocrinol Metab 2019; 17:e67759. [PMID: 30881466 PMCID: PMC6408732 DOI: 10.5812/ijem.67759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 12/02/2018] [Accepted: 12/24/2018] [Indexed: 02/01/2023] Open
Abstract
CONTEXT Anaplastic thyroid carcinoma (ATC) is associated with rapid tumor growth and extremely poor prognosis. Although ATC is found in only 2% of all thyroid carcinomas, it accounts for up to 50% of thyroid cancer mortality. OBJECTIVE To understand the effect of different treatment modalities upon anaplastic thyroid cancer outcomes. METHODS A systematic review of studies from 1995 to 2017 was performed employing the search terms "anaplastic thyroid" and "treatment" in PubMed. Studies comparing patients receiving any type of therapy for ATC and measuring either survival as primary outcome or the percentage of patient surviving more than 1 year as secondary outcome were included for review. We did not limit sample size or subject condition. A total of 40 articles were returned from our database search, of which 25 met the inclusion criteria. RESULTS A review of the 25 published studies indicated that early multidisciplinary approaches using extensive radical surgery, in combination with adjuvant chemo-radiation using either docetaxel/pacitaxel or cisplatin, provided the best chance of disease control. Targeted multi-tyrosine kinases inhibitors helped to limit disease progression. Also, the finding of foci of differentiated thyroid cancer within the anaplastic tumor was associated with increased long-term survival. CONCLUSIONS ATC remains a fatal disease. Despite aggressive therapy the median survival has not significantly changed over the last 20 years. However, the percentage of patients surviving longer than 1 year continues to increase. Novel approaches incorporating multiple targeted therapy and immune therapies are critically needed.
Collapse
Affiliation(s)
- Behrouz Salehian
- Department of Diabetes, Endocrinology and Metabolism, Duarte, United States
- Corresponding Author: MD, Department of Diabetes, Endocrinology and Metabolism, City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States.
| | - Simon Y Liem
- Department of Diabetes, Endocrinology and Metabolism, Duarte, United States
| | - Hoda Mojazi Amiri
- Department of Diabetes, Endocrinology and Metabolism, Duarte, United States
| | - Ellie Maghami
- Department of Surgical Oncology, Division of Head and Neck Surgery, Duarte, United States
| |
Collapse
|
14
|
Leung DTH, Nguyen T, Oliver EM, Matti J, Alexiadis M, Silke J, Jobling TW, Fuller PJ, Chu S. Combined PPARγ Activation and XIAP Inhibition as a Potential Therapeutic Strategy for Ovarian Granulosa Cell Tumors. Mol Cancer Ther 2018; 18:364-375. [PMID: 30530769 DOI: 10.1158/1535-7163.mct-18-0078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/25/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
Ovarian granulosa cell tumors (GCT) are characterized by indolent growth and late relapse. No therapeutic modalities aside from surgery have proven effective. We previously reported overexpression of the nuclear receptor, peroxisome proliferator-activated receptor-gamma (PPARγ), and constitutive activity of the NFκB and AP1 signaling pathways in GCT. PPARγ presents as a potential therapeutic target as it impedes proliferation and promotes terminal differentiation of granulosa cells. However, resistance to the actions of PPARγ is caused by NFκB transrepression in GCT-derived cell lines, KGN and COV434. We showed that abrogation of NFκB signaling in GCT cells enables PPARγ agonists to initiate apoptosis. In addition, we observed overexpression of an NFκB-induced gene, X-linked inhibitor of apoptosis protein (XIAP), in GCT and GCT-derived cells. XIAP is an attractive therapeutic target due to its role in inhibiting the apoptotic pathway. We investigated the antitumor effects of combined XIAP inhibition using Smac-mimetics and PPARγ activation using thiazolidinediones (TZD) in the GCT-derived cells. Transactivation assays revealed that NFκB transrepression of PPARγ can be relieved by NFκB or XIAP inhibition. Combined Smac-mimetic and TZD significantly induced apoptosis, reduced cell viability and proliferation in KGN cells in monolayer and 3D spheroid culture, and in GCT explant models. The Smac-mimetic and TZD cotreatment also delayed cell invasion, upregulated proapoptotic genes, and compromised cell metabolism in KGN cells. This study provides evidence that PPARγ and XIAP cotreatment has antineoplastic effects in GCT. As therapeutics that target these proteins are already in clinical or preclinical use, expedient translation to the clinic is possible.
Collapse
Affiliation(s)
- Dilys T H Leung
- Hudson Institute of Medical Research and the Monash University Department of Molecular and Translational Science, Clayton, Victoria, Australia
| | - Trang Nguyen
- Hudson Institute of Medical Research and the Monash University Department of Molecular and Translational Science, Clayton, Victoria, Australia
| | - Edwina May Oliver
- Hudson Institute of Medical Research and the Monash University Department of Molecular and Translational Science, Clayton, Victoria, Australia
| | - Juliana Matti
- Hudson Institute of Medical Research and the Monash University Department of Molecular and Translational Science, Clayton, Victoria, Australia
| | - Maria Alexiadis
- Hudson Institute of Medical Research and the Monash University Department of Molecular and Translational Science, Clayton, Victoria, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Thomas W Jobling
- Department of Gynecology Oncology, Monash Health, Clayton, Victoria, Australia
| | - Peter J Fuller
- Hudson Institute of Medical Research and the Monash University Department of Molecular and Translational Science, Clayton, Victoria, Australia
| | - Simon Chu
- Hudson Institute of Medical Research and the Monash University Department of Molecular and Translational Science, Clayton, Victoria, Australia.
| |
Collapse
|
15
|
Yamamoto K, Tamura T, Henmi K, Kuboyama T, Yanagisawa A, Matsubara M, Takahashi Y, Suzuki M, Saito JI, Ueno K, Shuto S. Development of Dihydrodibenzooxepine Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands of a Novel Binding Mode as Anticancer Agents: Effective Mimicry of Chiral Structures by Olefinic E/ Z-Isomers. J Med Chem 2018; 61:10067-10083. [PMID: 30351933 DOI: 10.1021/acs.jmedchem.8b01200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel class of PPARγ ligand 1 (EC50 = 197 nM) with a dibenzoazepin scaffold was identified through high-throughput screening campaign. To avoid the synthetically troublesome chiral center of 1, its conformational analysis using the MacroModel was conducted, focusing on conformational flip of the tricyclic ring and the conformational restriction by the methyl group at the chiral center. On the basis of this analysis, scaffold hopping of dibenzoazepine into dibenzo[ b, e]oxepine by replacing the chiral structures with the corresponding olefinic E/ Z isomers was performed. Consequently, dibenzo[ b, e]oxepine scaffold 9 was developed showing extremely potent PPARγ reporter activity (EC50 = 2.4 nM, efficacy = 9.5%) as well as differentiation-inducing activity against a gastric cancer cell line MKN-45 that was more potent than any other well-known PPARγ agonists in vitro (94% at 30 nM). The X-ray crystal structure analysis of 9 complexed with PPARγ showed that it had a unique binding mode to PPARγ ligand-binding domain that differed from that of any other PPARγ agonists identified thus far.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Tomohiro Tamura
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Kazuki Henmi
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Takeshi Kuboyama
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Arata Yanagisawa
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Masahiro Matsubara
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Yuichi Takahashi
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Michihiko Suzuki
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Jun-Ichi Saito
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Kimihisa Ueno
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | | |
Collapse
|
16
|
Gim HJ, Choi YS, Li H, Kim YJ, Ryu JH, Jeon R. Identification of a Novel PPAR-γ Agonist through a Scaffold Tuning Approach. Int J Mol Sci 2018; 19:ijms19103032. [PMID: 30287791 PMCID: PMC6213020 DOI: 10.3390/ijms19103032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are important targets in metabolic diseases including obesity, metabolic syndrome, diabetes, and non-alcoholic fatty liver disease. Recently, they have been highlighted as attractive targets for the treatment of cardiovascular diseases and chronic myeloid leukemia. The PPAR agonist structure is consists of a polar head, a hydrophobic tail, and a linker. Each part interacts with PPARs through hydrogen bonds or hydrophobic interactions to stabilize target protein conformation, thus increasing its activity. Acidic head is essential for PPAR agonist activity. The aromatic linker plays an important role in making hydrophobic interactions with PPAR as well as adjusting the head-to-tail distance and conformation of the whole molecule. By tuning the scaffold of compound, the whole molecule could fit into the ligand-binding domain to achieve proper binding mode. We modified indol-3-ylacetic acid scaffold to (indol-1-ylmethyl)benzoic acid, whereas 2,4-dichloroanilide was fixed as the hydrophobic tail. We designed, synthesized, and assayed the in vitro activity of novel indole compounds with (indol-1-ylmethyl)benzoic acid scaffold. Compound 12 was a more potent PPAR-γ agonist than pioglitazone and our previous hit compound. Molecular docking studies may suggest the binding between compound 12 and PPAR-γ, rationalizing its high activity.
Collapse
Affiliation(s)
- Hyo Jin Gim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Yong-Sung Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Hua Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Yoon-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Raok Jeon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| |
Collapse
|
17
|
Shinozuka T, Tsukada T, Fujii K, Tokumaru E, Shimada K, Onishi Y, Matsui Y, Wakimoto S, Kuroha M, Ogata T, Araki K, Ohsumi J, Sawamura R, Watanabe N, Yamamoto H, Fujimoto K, Tani Y, Mori M, Tanaka J. Discovery of DS-6930, a potent selective PPARγ modulator. Part I: Lead identification. Bioorg Med Chem 2018; 26:5079-5098. [PMID: 30241907 DOI: 10.1016/j.bmc.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/05/2023]
Abstract
The lead identification of a novel potent selective PPARγ agonist, DS-6930 is reported. To avoid PPARγ-related adverse effects, a partial agonist was designed to prevent the direct interaction with helix 12 of PPARγ-LBD. Because the TZD group is known to interact with helix 12, the TZD in efatutazone (CS-7017) was replaced to discover novel PPARγ intermediate partial agonist 8i. The optimization of 8i yielded 13ac with high potency in vitro. Compound 13ac exhibited robust plasma glucose lowering effects comparable to those of rosiglitazone (3 mg/kg) in Zucker diabetic fatty rats. Upon toxicological evaluation, compound 13ac (300 mg/kg) induced hemodilution to a lower extent than rosiglitazone; however, 13ac elevated liver enzyme activities. X-ray crystallography revealed no direct interaction of 13ac with helix 12, and the additional lipophilic interactions are also suggested to be related to the maximum transcriptional activity of 13ac.
Collapse
Affiliation(s)
- Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Tomoharu Tsukada
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kunihiko Fujii
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eri Tokumaru
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kousei Shimada
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshiyuki Onishi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yumi Matsui
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Satoko Wakimoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masanori Kuroha
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tsuneaki Ogata
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazushi Araki
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Jun Ohsumi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ryoko Sawamura
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Nobuaki Watanabe
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hideki Yamamoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazunori Fujimoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshiro Tani
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Makoto Mori
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Jun Tanaka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
18
|
Beg MS, Gupta A, Sher D, Ali S, Khan S, Gao A, Stewart T, Ahn C, Berry J, Mortensen EM. Impact of Concurrent Medication Use on Pancreatic Cancer Survival-SEER-Medicare Analysis. Am J Clin Oncol 2018; 41:766-771. [PMID: 28079594 PMCID: PMC5503814 DOI: 10.1097/coc.0000000000000359] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Preclinical studies have suggested that non-antineoplastic medication use may impact pancreatic cancer biology. We examined the association of several medication classes on pancreatic cancer survival in a large medical claims database. MATERIALS AND METHODS Histologically confirmed pancreatic adenocarcinoma diagnosed between 2006 and 2009 were analyzed from the Surveillance, Epidemiology, and End Results-Medicare database with available part D data. Drug use was defined as having 2 prescriptions filled within 12 months of pancreatic cancer diagnosis. The following medication classes/combinations were analyzed: β-blocker, statin, insulin, metformin, thiazolidinedione, warfarin, heparin, β-blocker/statin, metformin/statin, and β-blocker/metformin. Multivariable Cox proportional hazard models adjusting for age, sex, race, stage at diagnosis, site of cancer, and Charlson comorbidity index were constructed to test the association between medication classes and overall survival. RESULTS A total of 13,702 patients were included in the study; median age 76 years, 42.5% males, 77.1% white. The most common anatomic site and stage at diagnosis were head of the pancreas (49.9%) and stage 4 (49.6%), respectively. Ninety-four percent of patients died in the follow-up period (median overall survival 5.3 mo). Multivariable Cox regression analysis showed that use of β-blockers, heparin, insulin, and warfarin were significantly associated with improved survival (P<0.05 for each one), whereas metformin, thiazolidinedione, statin, and combination therapies were not. CONCLUSIONS In this study, use of β-blockers, heparin, insulin, and warfarin were associated with improved survival in patients with pancreatic cancer. Additional studies are needed to validate these findings in the clinical setting.
Collapse
Affiliation(s)
- Muhammad Shaalan Beg
- Division of Hematology/Oncology, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390-8852
- Harold C. Simmons Cancer Center, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Arjun Gupta
- Department of Internal Medicine, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - David Sher
- Harold C. Simmons Cancer Center, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Sadia Ali
- Division of Endocrinology and Metabolism, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Saad Khan
- Division of Hematology/Oncology, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390-8852
- Harold C. Simmons Cancer Center, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Ang Gao
- Department of Clinical Sciences, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Tyler Stewart
- Department of Internal Medicine, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Chul Ahn
- Harold C. Simmons Cancer Center, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
- Department of Clinical Sciences, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Jarett Berry
- Division of Cardiology, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Eric M. Mortensen
- Department of Internal Medicine, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
- Department of Clinical Sciences, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
- VA North Texas Health Care System, 4500 South Lancaster, Dallas, TX 75216
| |
Collapse
|
19
|
Hong F, Xu P, Zhai Y. The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. Int J Mol Sci 2018; 19:ijms19082189. [PMID: 30060458 PMCID: PMC6121873 DOI: 10.3390/ijms19082189] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer's disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development.
Collapse
Affiliation(s)
- Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
20
|
Colin C, Meyer M, Cerella C, Kleinclauss A, Monard G, Boisbrun M, Diederich M, Flament S, Grillier-Vuissoz I, Kuntz S. Biotinylation enhances the anticancer effects of 15d‑PGJ2 against breast cancer cells. Int J Oncol 2018; 52:1991-2000. [PMID: 29620161 DOI: 10.3892/ijo.2018.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/08/2018] [Indexed: 11/05/2022] Open
Abstract
15-Deoxy-∆12,14-prostaglandin J2 (15d‑PGJ2) is a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that displays anticancer activity. Various studies have indicated that the effects of 15d‑PGJ2 are due to both PPARγ-dependent and -independent mechanisms. In the present study, we examined the effects of a biotinylated form of 15d‑PGJ2 (b‑15d‑PGJ2) on hormone-dependent MCF‑7 and triple‑negative MDA‑MB‑231 breast cancer cell lines. b‑15d‑PGJ2 inhibited cell proliferation more efficiently than 15d‑PGJ2 or the synthetic PPARγ agonist, efatutazone. b‑15d‑PGJ2 was also more potent than its non-biotinylated counterpart in inducing apoptosis. We then analyzed the mechanisms underlying this improved efficiency. It was found not to be the result of biotin receptor-mediated increased incorporation, since free biotin in the culture medium did not decrease the anti-proliferative activity of b‑15d‑PGJ2 in competition assays. Of note, b‑15d‑PGJ2 displayed an improved PPARγ agonist activity, as measured by transactivation experiments. Molecular docking analyses revealed a similar insertion of b‑15d‑PGJ2 and 15d‑PGJ2 into the ligand binding domain of PPARγ via a covalent bond with Cys285. Finally, PPARγ silencing markedly decreased the cleavage of the apoptotic markers, poly(ADP-ribose) polymerase 1 (PARP‑1) and caspase‑7, that usually occurs following b‑15d‑PGJ2 treatment. Taken together, our data indicate that biotinylation enhances the anti-proliferative and pro-apoptotic activity of 15d‑PGJ2, and that this effect is partly mediated via a PPARγ-dependent pathway. These results may aid in the development of novel therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
| | - Maxime Meyer
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Claudia Cerella
- Laboratory for Molecular and Cellular Biology of Cancer, Kirchberg Hospital, L‑2540 Luxembourg, Luxembourg
| | | | - Gérald Monard
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | | | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | | | | | - Sandra Kuntz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| |
Collapse
|
21
|
The angiotensin II type 1 receptor antagonist telmisartan inhibits cell proliferation and tumor growth of esophageal adenocarcinoma via the AMPKα/mTOR pathway in vitro and in vivo. Oncotarget 2018; 8:8536-8549. [PMID: 28052030 PMCID: PMC5352420 DOI: 10.18632/oncotarget.14345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023] Open
Abstract
Telmisartan, a widely used antihypertensive drug, is an angiotensin II type 1 (AT1) receptor blocker (ARB). This drug inhibits cancer cell proliferation, but the underlying mechanisms in various cancers, including esophageal cancer, remain unknown. The aim of the present study was to evaluate the effects of telmisartan on human esophageal cancer cell proliferation in vitro and in vivo. We assessed the effects of telmisartan on human esophageal adenocarcinoma (EAC) cells using the cell lines OE19, OE33, and SKGT-4. Telmisartan inhibited the proliferation of these three cell lines via blockade of the G0 to G1 cell cycle transition. This blockade was accompanied by a strong decrease in cyclin D1, cyclin E, and other cell cycle-related proteins. Notably, the AMP-activated protein kinase (AMPK) pathway, a fuel sensor signaling pathway, was enhanced by telmisartan. Compound C, which inhibits the two catalytic subunits of AMPK, enhanced the expression of cyclin E, leading to G0/G1 arrest in human EAC cells. In addition, telmisartan reduced the phosphorylation of epidermal growth factor receptor (p-EGFR) and ERBB2 in vitro. In our in vivo study, intraperitoneal injection of telmisartan led to a 73.2% reduction in tumor growth in mice bearing xenografts derived from OE19 cells. Furthermore, miRNA expression was significantly altered by telmisartan in vitro and in vivo. In conclusion, telmisartan suppressed human EAC cell proliferation and tumor growth by inducing cell cycle arrest via the AMPK/mTOR pathway.
Collapse
|
22
|
Ory V, Kietzman WB, Boeckelman J, Kallakury BV, Wellstein A, Furth PA, Riegel AT. The PPARγ agonist efatutazone delays invasive progression and induces differentiation of ductal carcinoma in situ. Breast Cancer Res Treat 2018; 169:47-57. [PMID: 29350308 DOI: 10.1007/s10549-017-4649-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) is a pre-invasive lesion of the breast considered a precursor of invasive ductal carcinoma. This study aimed to determine whether activated PPARγ acts as a tumor suppressor in human DCIS progression. METHODS We utilized the high-affinity PPARγ agonist, efatutazone, to activate endogenous PPARγ in a well-defined model for the progression of basal (triple negative) DCIS, MCFDCIS cells, cultured under 2D and 3D conditions. We studied the effects of activated PPARγ on DCIS progression in MCFDCIS xenograft and C3(1)/Tag transgenic mice treated with 30 mg/kg of efatutazone. RESULTS In vitro, efatutazone did not alter the MCFDCIS cell proliferation but induced phenotypic and gene expression changes, indicating that activated PPARγ is able to differentiate MCFDCIS cells into more luminal and lactational-like cells. In addition, MCFDCIS tumorsphere formation in 3D was reduced by PPARγ activation. In vivo, efatutazone-treated MCFDCIS tumors exhibited fat deposition along with upregulation of PPARγ responsive genes in both epithelial and stromal compartments, suggesting features of milk-producing mammary epithelial cell differentiation. The efatutazone-treated lesions were less invasive with fewer CD44+/p63+ basal progenitor cells. PPARγ activation downregulated Akt phosphorylation in these tumors, although the ERK pathway remained unchanged. Similar trends in gene expression changes consistent with lactational and luminal cell differentiation were observed in the C3(1)/Tag mouse model after efatutazone treatment. CONCLUSIONS Our data suggest that activation of the PPARγ pathway differentiates DCIS lesions and may be a useful approach to delay DCIS progression.
Collapse
Affiliation(s)
- Virginie Ory
- Department of Oncology, Georgetown University, Washington, DC, USA.
| | | | - Jacob Boeckelman
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Bhaskar V Kallakury
- Department of Pathology, Georgetown University, Washington, DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anton Wellstein
- Department of Oncology, Georgetown University, Washington, DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Priscilla A Furth
- Department of Oncology, Georgetown University, Washington, DC, USA.,Department of Medicine, Georgetown University, Washington, DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anna T Riegel
- Department of Oncology, Georgetown University, Washington, DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
23
|
Djakovic Sekulic T, Smolinski A. RP-HPTLC Data in Correlation Studies of a 5-Arylidene-2,4-Thiazolidinedione Derivatives. J Chromatogr Sci 2017; 55:564-570. [PMID: 28158569 DOI: 10.1093/chromsci/bmx001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/06/2017] [Indexed: 11/12/2022]
Abstract
Thiazolidinediones show a large scale of biological activities as a result of ability to perform interactions with a variety of biological targets. Modeling properties of newly synthesized thiazolidinediones is important for both understanding their activity and predicting their interactions. In the paper the chromatographic retention data determined in various RP chromatographic systems (stationary phases RP-CN and RP-18; six aqueous binary mobile phases modified with acetonitrile, methanol, ethanol, propanol, acetone and dioxane) were considered for 13 new 5-arylidene-2,4-thiazolidinediones. In this article, three attempts to find suitable quantitative structure-retention relationship (QSRR) models that quantify retention as a function ofmolecular descriptors had been presented. Models built for RP-18 show generally better multiple R but are also mostly monoparametric with logP as the dominant descriptor. More informative from the standpoint of molecular interactions are QSRR models for RP-CN. The quality of those models depends of the mobile phase modifier (the best was obtained for acetone and the worst for propanol as modifier). Since all QSRR models use extrapolated retention as a property which is indirectly connected with plasma protein binding further assessment of plasma protein binding should be based on extrapolated retention on a RP-CN stationary phase instead of standard RP-18.
Collapse
Affiliation(s)
- Tatjana Djakovic Sekulic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Republic of Serbia
| | - Adam Smolinski
- Department of Energy Saving and Air Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
24
|
Kawakita T, Masato N, Takiguchi E, Abe A, Irahara M. Cytotoxic effects of 15-deoxy-Δ12,14-prostaglandin J2 alone and in combination with dasatinib against uterine sarcoma in vitro. Exp Ther Med 2017; 13:2939-2945. [PMID: 28587364 PMCID: PMC5450749 DOI: 10.3892/etm.2017.4346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/15/2017] [Indexed: 01/21/2023] Open
Abstract
Effective chemotherapeutic strategies for uterine sarcoma are lacking; existing therapies achieve poor response rates. Previous studies have identified the prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) as a potential anticancer treatment; however, its effectiveness in uterine sarcoma has not been examined. Furthermore, the molecular mechanisms underlying the cytotoxic mechanism of 15d-PGJ2 remain unclear. Here, we evaluated the effects of 15d-PGJ2 alone and in combination with the tyrosine kinas inhibitor (TKI) dasatinib in uterine sarcoma cell lines (MES-SA, MES-SA/DX5 and SKN). 15d-PGJ2 inhibited cell growth and increased apoptosis. Western blotting demonstrated that 15d-PGJ2 treatment increased MEK and ERK phosphorylation, and decreased levels of phosphorylated AKT. Dasatinib in combination with 15d-PGJ2 significantly reduced cell proliferation compared with 15d-PGJ2 alone, and repressed both the AKT and MAPK pathways. The cell growth inhibition rate in the PGJ2 was 21.5±12.0, 35.3±5.4 and 28.3±4.2%, respectively (MES-SA, MES-SA/DX5 and SKN cell lines) and the cell growth inhibition rate in the combination therapy was significantly higher compared with 15d-PGJ2 alone (MES-SA; 64.2±0.8, MES-SA/DX5;23.9±8.2 and SKN; 41.4±17.6%). The PGJ2 IC50 determined by MTT assay was 27.41,10.46 and 17.38 µmol/l, respectively (MES-SA, MES-SA/DX5 and SKN cell lines) and the dasatinib IC50 was 6.68,17.30 and 6.25 µmol/l, respectively. Our findings demonstrate that 15d-PGJ2 suppresses proliferation by inactivating the AKT pathway in uterine sarcoma. Furthermore, combining 15d-PGJ2 with dasatinib produced a synergistic effect on cancer cell inhibition by repressing 15d-PGJ2-mediated activation of MAPK signaling, and further repressing AKT signaling. These results suggest that 15d-PGJ2 could be used in combination with dasatinib as a potential therapeutic approach for uterine sarcoma.
Collapse
Affiliation(s)
- Takako Kawakita
- Department of Obsterics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Nisimura Masato
- Department of Obsterics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Eri Takiguchi
- Department of Obsterics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Akiko Abe
- Department of Obsterics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obsterics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
25
|
Elmaci İ, Altinoz MA. A Metabolic Inhibitory Cocktail for Grave Cancers: Metformin, Pioglitazone and Lithium Combination in Treatment of Pancreatic Cancer and Glioblastoma Multiforme. Biochem Genet 2016; 54:573-618. [PMID: 27377891 DOI: 10.1007/s10528-016-9754-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) and glioblastoma multiforme (GBM) are among the human cancers with worst prognosis which require an urgent need for efficient therapies. Here, we propose to apply to treat both malignancies with a triple combination of drugs, which are already in use for different indications. Recent studies demonstrated a considerable link between risk of PC and diabetes. In experimental models, anti-diabetogenic agents suppress growth of PC, including metformin (M), pioglitazone (P) and lithium (L). L is used in psychiatric practice, yet also bears anti-diabetic potential and selectively inhibits glycogen synthase kinase-3 beta (GSK-3β). M, a biguanide class anti-diabetic agent shows anticancer activity via activating AMP-activated protein kinase (AMPK). Glitazones bind to PPAR-γ and inhibit NF-κB, triggering cell proliferation, apoptosis resistance and synthesis of inflammatory cytokines in cancer cells. Inhibition of inflammatory cytokines could simultaneously decrease tumor growth and alleviate cancer cachexia, having a major role in PC mortality. Furthermore, mutual synergistic interactions exist between PPAR-γ and GSK-3β, between AMPK and GSK-3β and between AMPK and PPAR-γ. In GBM, M blocks angiogenesis and migration in experimental models. Very noteworthy, among GBM patients with type 2 diabetes, usage of M significantly correlates with better survival while reverse is true for sulfonylureas. In experimental models, P synergies with ligands of RAR, RXR and statins in reducing growth of GBM. Further, usage of P was found to be lesser in anaplastic astrocytoma and GBM patients, indicating a protective effect of P against high-grade gliomas. L is accumulated in GBM cells faster and higher than in neuroblastoma cells, and its levels further increase with chronic exposure. Recent studies revealed anti-invasive potential of L in GBM cell lines. Here, we propose that a triple-agent regime including drugs already in clinical usage may provide a metabolic adjuvant therapy for PC and GBM.
Collapse
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
- Neuroacademy Group, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Immunology, Experimental Medicine Research Center, Istanbul, Turkey.
| |
Collapse
|
26
|
Safi ZS. A theoretical study on the structure of thiazolidine-2,4-dione and its 5-substituted derivatives in the gas phase. Implications for the thiazolidine-2,4-dione -water complex. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2015.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Effects of Thiazolidinediones on metabolism and cancer: Relative influence of PPARγ and IGF-1 signaling. Eur J Pharmacol 2015; 768:217-25. [DOI: 10.1016/j.ejphar.2015.10.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/13/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022]
|
28
|
Abstract
PURPOSE OF REVIEW Anaplastic thyroid cancer (ATC) is a rare malignancy of the thyroid with a high mortality rate. Conventional therapy has not been effective. Several biological agents are being investigated. The purpose of the review is to highlight the current standards for treatment and review new targets for treating ATC. RECENT FINDINGS Retrospective studies have led to formulation of guidelines for management, including those by the American Thyroid Association. An expansion in the understanding of the genetic mutations has led to several newer biological agents being tested to treat ATC. Aurora kinase inhibitors, PPAR γ agonists, and vascular targeting agents are some of the latest therapeutic agents that have shown promise and could become standard of therapy with further supporting research. SUMMARY Further well coordinated preclinical and clinical research is needed to support the emerging treatments for ATC.
Collapse
Affiliation(s)
- Rohit Ranganath
- aMemorial Sloan Kettering Cancer Center, New York bMercy Catholic Medical Center, Philadelphia, USA
| | | | | |
Collapse
|
29
|
Chemotherapy and chemoprevention by thiazolidinediones. BIOMED RESEARCH INTERNATIONAL 2015; 2015:845340. [PMID: 25866814 PMCID: PMC4383438 DOI: 10.1155/2015/845340] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
Abstract
Thiazolidinediones (TZDs) are synthetic ligands of Peroxisome-Proliferator-Activated Receptor gamma (PPARγ). Troglitazone, rosiglitazone, and pioglitazone have been approved for treatment of diabetes mellitus type II. All three compounds, together with the first TZD ciglitazone, also showed an antitumor effect in preclinical studies and a beneficial effect in some clinical trials. This review summarizes hypotheses on the role of PPARγ in tumors, on cellular targets of TZDs, antitumor effects of monotherapy and of TZDs in combination with other compounds, with a focus on their role in the treatment of differentiated thyroid carcinoma. The results of chemopreventive effects of TZDs are also considered. Existing data suggest that the action of TZDs is highly complex and that actions do not correlate with cellular PPARγ expression status. Effects are cell-, species-, and compound-specific and concentration-dependent. Data from human trials suggest the efficacy of TZDs as monotherapy in prostate cancer and glioma and as chemopreventive agent in colon, lung, and breast cancer. TZDs in combination with other therapies might increase antitumor effects in thyroid cancer, soft tissue sarcoma, and melanoma.
Collapse
|
30
|
Abstract
AIMS This review is aimed at highlighting the potential mitogenic/tumour growth-promoting or antimitogenic/tumour growth-inhibiting effects of the main antihyperglycaemic drug classes. METHODS We review and discuss the most current studies evaluating the association between antidiabetic medications used in clinical practice and malignancies as described so far. RESULTS Metformin seems to be the only antidiabetic drug to exert protective effects both on monotherapy and also when combined with other oral antidiabetic drugs or insulins in several site-specific cancers. In contrast, several other drug classes may increase cancer risk. Some reason for concern remains regarding sulphonylureas and also the incretin-based therapies regarding pancreas and thyroid cancers and the sodium glucose cotransporter-2 inhibitors as well as pioglitazone regarding bladder cancer. The majority of meta-analyses suggest that there is no evidence for a causal relationship between insulin glargine and elevated cancer risk, although the studies have been controversially discussed. For α-glucosidase inhibitors and glinides, neutral or only few data upon cancer risk exist. CONCLUSION Although the molecular mechanisms are not fully understood, a potential risk of mitogenicity and tumour growth promotion cannot be excluded in case of several antidiabetic drug classes. However, more large-scale, randomized, well-designed clinical studies with especially long follow-up time periods are needed to get reliable answers to these safety issues.
Collapse
Affiliation(s)
- Stefan Z Lutz
- Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Harald Staiger
- Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany German Centre for Diabetes Research (DZD), Tübingen, Germany Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany German Centre for Diabetes Research (DZD), Tübingen, Germany Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany Division of Nutritional and Preventive Medicine, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany German Centre for Diabetes Research (DZD), Tübingen, Germany Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Serizawa M, Murakami H, Watanabe M, Takahashi T, Yamamoto N, Koh Y. Peroxisome proliferator-activated receptor γ agonist efatutazone impairs transforming growth factor β2-induced motility of epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancer cells. Cancer Sci 2014; 105:683-9. [PMID: 24698130 PMCID: PMC4317891 DOI: 10.1111/cas.12411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) are effective for non-small cell lung cancers (NSCLC) with EGFR-activating mutations. However, most responders develop resistance. Efatutazone, a novel peroxisome proliferator-activated receptor gamma (PPARγ) agonist, is currently under clinical evaluation; it has antiproliferative effects and induces cellular morphological changes and differentiation. The present study investigated the effects of efatutazone in EGFR-TKI-resistant NSCLC cells, while focusing on cell motility. The PC-9-derived NSCLC cell lines PC-9ER and PC-9ZD, resistant to EGFR-TKI due to v-crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) amplification-induced phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (AKT) activation and an EGFR T790M mutation, respectively, were used. These cells exhibit enhanced cell motility due to transforming growth factor β (TGF-β)/Smad2 family member 2 (Smad2) pathway activation. Efatutazone had no growth-inhibitory effect on the tested cells but inhibited the motility of EGFR-TKI-resistant cells in wound closure and transwell assays. Efatutazone plus erlotinib treatment provided greater inhibition of PC-9ER cell migration than efatutazone or erlotinib alone. Efatutazone suppressed increased TGF-β2 secretion from both cell lines (shown by ELISA) and downregulation of TGF-β2 transcription (observed by quantitative RT-PCR). Immunoblot analysis and luciferase assays revealed that efatutazone suppressed Smad2 phosphorylation and its transcriptional activity. These results suggest that efatutazone inhibits cell motility by antagonizing the TGF-β/Smad2 pathway and effectively prevents metastasis in NSCLC patients with acquired resistance to EGFR-TKI regardless of the resistance mechanism.
Collapse
Affiliation(s)
- Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Joshi H, Pal T, Ramaa CS. A new dawn for the use of thiazolidinediones in cancer therapy. Expert Opin Investig Drugs 2014; 23:501-10. [DOI: 10.1517/13543784.2014.884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Komatsu Y, Yoshino T, Yamazaki K, Yuki S, Machida N, Sasaki T, Hyodo I, Yachi Y, Onuma H, Ohtsu A. Phase 1 study of efatutazone, a novel oral peroxisome proliferator-activated receptor gamma agonist, in combination with FOLFIRI as second-line therapy in patients with metastatic colorectal cancer. Invest New Drugs 2013; 32:473-80. [PMID: 24337768 PMCID: PMC4045340 DOI: 10.1007/s10637-013-0056-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/01/2013] [Indexed: 11/26/2022]
Abstract
Background Efatutazone, a novel oral highly-selective peroxisome proliferator-activated receptor gamma (PPARγ) agonist, has demonstrated some inhibitory effects on disease stabilization in patients with metastatic colorectal cancer (mCRC) enrolled in previous phase I studies. Here, we evaluate the safety and pharmacokinetics of efatutazone combined with FOLFIRI (5-fluorouracil, levo-leucovorin, and irinotecan) as second-line chemotherapy in Japanese patients with mCRC. Methods Dose-limiting toxicities (DLTs) were evaluated at 2 efatutazone dose levels of 0.25 and 0.50 mg (the recommended dose [RD] of efatutazone monotherapy) twice daily in combination with FOLFIRI in a 3–9 patient cohort. Furthermore, tolerability at the RD level was assessed in additional patients, up to 12 in total. Blood samples for pharmacokinetics and biomarkers and tumor samples for archival tissues were collected from all patients. Results Fifteen patients (0.25 mg, 3; 0.5 mg, 12) were enrolled. No DLTs were observed. Most patients experienced weight increase (100 %) and edema (80.0 %), which were manageable with diuretics. Common grade 3/4 toxicities were neutropenia (93.3 %), leukopenia (46.7 %), and anemia (33.3 %). Stable disease was observed in 8 of the 14 patients evaluable for tumor response. The plasma adiponectin levels increased over time and increased dose. No clear relationship was detected between treatment efficacies and plasma levels of adiponectin as well as the expression levels of PPARγ and the retinoid X receptor in tumor tissues. Conclusions Efatutazone combined with FOLFIRI demonstrates an acceptable safety profile and evidence of disease stabilization in Japanese patients with mCRC. The RD for efatutazone monotherapy can be used in combination with FOLFIRI.
Collapse
Affiliation(s)
- Yoshito Komatsu
- Hokkaido University Hospital Cancer Center, Kita 14 Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sawayama H, Ishimoto T, Watanabe M, Yoshida N, Sugihara H, Kurashige J, Hirashima K, Iwatsuki M, Baba Y, Oki E, Morita M, Shiose Y, Baba H. Small molecule agonists of PPAR-γ exert therapeutic effects in esophageal cancer. Cancer Res 2013; 74:575-85. [PMID: 24272485 DOI: 10.1158/0008-5472.can-13-1836] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor PPAR-γ plays various roles in lipid metabolism, inflammation, cellular differentiation, and apoptosis. PPAR-γ agonists used to treat diabetes may have utility in cancer treatment. Efatutazone is a novel later generation PPAR-γ agonist that selectively activates PPAR-γ target genes and has antiproliferative effects in a range of malignancies. In this study, we investigated PPAR-γ status in esophageal squamous cell carcinoma (ESCC) and investigated the antiproliferative effects of efatutazone. PPAR-γ was expressed heterogeneously in ESCC, in which it exhibited an inverse relationship with Ki-67 expression. PPAR-γ expression was associated independently with good prognosis in ESCC. Efatutazone, but not the conventional PPAR-γ agonist troglitazone, inhibited ESCC cell proliferation in vitro and in vivo. Mechanistic investigations suggested that efatutazone acted by upregulating p21Cip1 protein in the nucleus through inactivation of the Akt pathway and dephosphorylation of p21Cip1 at Thr145 without affecting the transcriptional activity of p21Cip1. We also found that treatment with efatutazone led to phosphorylation of the EGF receptor and activation of the mitogen-activated protein kinase (MAPK) pathway. Accordingly, the combination of efatutazone with the antiepithelial growth factor receptor antibody cetuximab synergized to negatively regulate the phosphoinositide 3-kinase-Akt and MAPK pathways. Together, our results suggest that efatutazone, alone or in combination with cetuximab, may offer therapeutic effects in ESCC.
Collapse
Affiliation(s)
- Hiroshi Sawayama
- Authors' Affiliations: Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka; and Research and Development Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Smallridge RC, Copland JA, Brose MS, Wadsworth JT, Houvras Y, Menefee ME, Bible KC, Shah MH, Gramza AW, Klopper JP, Marlow LA, Heckman MG, Von Roemeling R. Efatutazone, an oral PPAR-γ agonist, in combination with paclitaxel in anaplastic thyroid cancer: results of a multicenter phase 1 trial. J Clin Endocrinol Metab 2013; 98:2392-400. [PMID: 23589525 PMCID: PMC3667260 DOI: 10.1210/jc.2013-1106] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE A phase 1 study was initiated to determine the safety, potential effectiveness, and maximal tolerated dose and recommended phase 2 dose of efatutazone and paclitaxel in anaplastic thyroid cancer. EXPERIMENTAL DESIGN Patients received efatutazone (0.15, 0.3, or 0.5 mg) orally twice daily and then paclitaxel every 3 weeks. Patient tolerance and outcomes were assessed, as were serum efatutazone pharmacokinetics. RESULTS Ten of 15 patients were women. Median age was 59 years. Seven patients received 0.15 mg of efatutazone, 6 patients received 0.3 mg, and 2 patients received 0.5 mg. One patient receiving 0.3 mg of efatutazone had a partial response from day 69 to day 175; 7 patients attained stable disease. Median times to progression were 48 and 68 days in patients receiving 0.15 mg of efatutazone and 0.3 mg of efatutazone, respectively; corresponding median survival was 98 vs 138 days. The median peak efatutazone blood level was 8.6 ng/mL for 0.15-mg dosing vs 22.0 ng/mL for 0.3-mg twice daily dosing. Ten patients had grade 3 or greater adverse events (Common Terminology Criteria for Adverse Events), with 2 of these (anemia and edema) related to efatutazone. Thirteen events of edema were reported in 8 patients, with 2 of grade 3 or greater. Eight patients had ≥1 serious adverse event, with 1 of these (anemia) attributed to efatutazone and 1 (anaphylactic reaction) related to paclitaxel. The maximal tolerated dose was not achieved. Angiopoietin-like 4 was induced by efatutazone in tissue biopsy samples of 2 patients. CONCLUSIONS Efatutazone and paclitaxel in combination were safe and tolerated and had biologic activity.
Collapse
Affiliation(s)
- R C Smallridge
- Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nakles RE, Kallakury BVS, Furth PA. The PPARγ agonist efatutazone increases the spectrum of well-differentiated mammary cancer subtypes initiated by loss of full-length BRCA1 in association with TP53 haploinsufficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1976-85. [PMID: 23664366 DOI: 10.1016/j.ajpath.2013.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/21/2013] [Accepted: 02/12/2013] [Indexed: 12/27/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have anticancer activity and influence cell differentiation. We examined the impact of the selective PPARγ agonist efatutazone on mammary cancer pathogenesis in a mouse model of BRCA1 mutation. Mice with conditional loss of full-length BRCA1 targeted to mammary epithelial cells in association with germline TP53 insufficiency were treated with efatutazone through the diet starting at age 4 months and were euthanized at age 12 months or when palpable tumor reached 1 cm(3). Although treatment did not reduce percentage of mice developing invasive cancer, it significantly reduced prevalence of noninvasive cancer and total number of cancers per mouse and increased prevalence of well-differentiated cancer subtypes not usually seen in this mouse model. Invasive cancers from controls were uniformly estrogen receptor α negative and undifferentiated, whereas well-differentiated estrogen receptor α-positive papillary invasive cancers appeared in efatutazone-treated mice. Expression levels of phosphorylated AKT and CDK6 were significantly reduced in the cancers developing in efatutazone-treated mice. Efatutazone treatment reduced rates of mammary epithelial cell proliferation and development of hyperplastic alveolar nodules and increased expression levels of the PPARγ target genes Adfp, Fabp4, and Pdhk4 in preneoplastic mammary tissue. Intervention efatutazone treatment in mice with BRCA1 deficiency altered mammary cancer development by promoting development of differentiated invasive cancer and reducing prevalence of noninvasive cancer and preneoplastic disease.
Collapse
Affiliation(s)
- Rebecca E Nakles
- Department of Oncology, Georgetown University, Washington, District of Columbia 20057, USA
| | | | | |
Collapse
|
37
|
Sotiriou A, Blaauw RH, Meijer C, Gijsbers LH, van der Burg B, Vervoort J, Rietjens IMCM. Correlation between activation of PPARγ and resistin downregulation in a mouse adipocyte cell line by a series of thiazolidinediones. Toxicol In Vitro 2013; 27:1425-32. [PMID: 23563205 DOI: 10.1016/j.tiv.2013.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/18/2022]
Abstract
The present study shows significant correlations between the EC50 for PPARγ activation in a reporter gene cell line and resistin downregulation in mouse adipocytes, and between the IC50 for resistin downregulation and the already published minimum effective dose for antihyperglycemic activity in a mouse model. These correlations indicate that PPARγ mediated downregulation of resistin might promote insulin sensitivity and that downregulation of resistin in mouse adipocytes provides an adequate and possibly more direct bioassay for screening of newly developed antihyperglycemic compounds. Because of the higher throughput of the PPARγ the resistin downregulation assays seems most suitable to be used as a second tier in a tiered screening strategy.
Collapse
Affiliation(s)
- A Sotiriou
- Division of Toxicology, Wageningen University, 6703 HE, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Thiazolidine-2,4-diones: progress towards multifarious applications. Bioorg Med Chem 2013; 21:1599-620. [PMID: 23419324 DOI: 10.1016/j.bmc.2013.01.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/24/2022]
Abstract
The promising activity shown by compounds containing thiazolidine-2,4-dione nucleus in numerous categories such as anti-hyperglycaemics, aldose reductase inhibitors, anti-cancer, anti-inflammatory, anti-arthritics, anti-microbials, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substituents on the thiazolidine-2,4-dione nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, peroxisome proliferator activated receptor γ (PPARγ) agonism and PPARγ-dependent and -independent anti-cancer activities are reviewed separately in literature. Short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing thiazolidine-2,4-dione nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of thiazolidine-2,4-dione nucleus in medicinal chemistry research. In the present review, various derivatives of thiazolidine-2,4-diones with different pharmacological activities are described on the basis of substitution pattern around the nucleus combined with the docking studies performed in the active site of the corresponding receptors with an aim to help medicinal chemists for developing an SAR on thiazolidine-2,4-dione derived compounds for each activity. This discussion will further help in the development of novel thiazolidine-2,4-dione compounds.
Collapse
|
39
|
Pishvaian MJ, Marshall JL, Wagner AJ, Hwang JJ, Malik S, Cotarla I, Deeken JF, He AR, Daniel H, Halim AB, Zahir H, Copigneaux C, Liu K, Beckman RA, Demetri GD. A phase 1 study of efatutazone, an oral peroxisome proliferator-activated receptor gamma agonist, administered to patients with advanced malignancies. Cancer 2012; 118:5403-13. [PMID: 22570147 PMCID: PMC3726261 DOI: 10.1002/cncr.27526] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/13/2011] [Accepted: 02/09/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND Efatutazone (CS-7017), a novel peroxisome proliferator-activated receptor gamma (PPARγ) agonist, exerts anticancer activity in preclinical models. The authors conducted a phase 1 study to determine the recommended phase 2 dose, safety, tolerability, and pharmacokinetics of efatutazone. METHODS Patients with advanced solid malignancies and no curative therapeutic options were enrolled to receive a given dose of efatutazone, administered orally (PO) twice daily for 6 weeks, in a 3 + 3 intercohort dose-escalation trial. After the third patient, patients with diabetes mellitus were excluded. Efatutazone dosing continued until disease progression or unacceptable toxicity, with measurement of efatutazone pharmacokinetics and plasma adiponectin levels. RESULTS Thirty-one patients received efatutazone at doses ranging from 0.10 to 1.15 mg PO twice daily. Dose escalation stopped when maximal impact on PPARγ-related biomarkers had been reached before any protocol-defined maximum-tolerated dose level. On the basis of a population pharmacokinetic/pharmacodynamic analysis, the recommended phase 2 dose was 0.5 mg PO twice daily. A majority of patients experienced peripheral edema (53.3%), often requiring diuretics. Three episodes of dose-limiting toxicities, related to fluid retention, were noted in the 0.10-, 0.25-, and 1.15-mg cohorts. Of 31 treated patients, 27 were evaluable for response. A sustained partial response (PR; 690 days on therapy) was observed in a patient with myxoid liposarcoma. Ten additional patients had stable disease (SD) for ≥60 days. Exposures were approximately dose proportional, and adiponectin levels increased after 4 weeks of treatment at all dose levels. Immunohistochemistry of archived specimens demonstrated that PPARγ and retinoid X receptor expression levels were significantly greater in patients with SD for ≥60 days or PR (P = .0079), suggesting a predictive biomarker. CONCLUSIONS Efatutazone demonstrates acceptable tolerability with evidence of disease control in patients with advanced malignancies.
Collapse
Affiliation(s)
- Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Developmental Therapeutics Program, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lamers C, Schubert-Zsilavecz M, Merk D. Therapeutic modulators of peroxisome proliferator-activated receptors (PPAR): a patent review (2008–present). Expert Opin Ther Pat 2012; 22:803-41. [DOI: 10.1517/13543776.2012.699042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Pirat C, Farce A, Lebègue N, Renault N, Furman C, Millet R, Yous S, Speca S, Berthelot P, Desreumaux P, Chavatte P. Targeting Peroxisome Proliferator-Activated Receptors (PPARs): Development of Modulators. J Med Chem 2012; 55:4027-61. [DOI: 10.1021/jm101360s] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Céline Pirat
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Nicolas Lebègue
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Christophe Furman
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| | - Régis Millet
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| | - Saı̈d Yous
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté de
Médecine, Amphis J et K, Université Lille-Nord de France, INSERM U995, Boulevard du Professeur Jules
Leclerc, 59045 Lille Cedex, France
| | - Pascal Berthelot
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté de
Médecine, Amphis J et K, Université Lille-Nord de France, INSERM U995, Boulevard du Professeur Jules
Leclerc, 59045 Lille Cedex, France
| | - Philippe Chavatte
- Laboratoire de Chimie Thérapeutique,
Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille-Nord de France, EA 4481, 3
Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut de Chimie Pharmaceutique
Albert Lespagnol, Université Lille-Nord de France, EA 4481, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex,
France
| |
Collapse
|
42
|
Abstract
Therapeutic options for advanced, unresectable radioiodine-resistant thyroid cancers have historically been limited. Recent progress in understanding the pathogenesis of the various subtypes of thyroid cancer has led to increased interest in the development of targeted therapies, with potential strategies including angiogenesis inhibition, inhibition of aberrant intracellular signaling in the MAPK and PI3K/AKT/mTOR pathways, radioimmunotherapy, and redifferentiation agents. On the basis of a recent positive phase III clinical trial, the RET, vascular endothelial growth factor receptor (VEGFR), and epidermal growth factor receptor (EGFR) inhibitor vandetanib has received FDA approval as of April 2011 for use in the treatment of advanced medullary thyroid cancer. Several other recent phase II clinical trials in advanced thyroid cancer have demonstrated significant activity, and multiple other promising therapeutic strategies are in earlier phases of clinical development. The recent progress in targeted therapy is already revolutionizing management paradigms for advanced thyroid cancer, and will likely continue to dramatically expand treatment options in the coming years.
Collapse
Affiliation(s)
- David A. Liebner
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, OH, USA
| | - Manisha H. Shah
- A438 Starling-Loving Hall, 320 W 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
43
|
Kojic SL, Strugnell SS, Wiseman SM. Anaplastic thyroid cancer: a comprehensive review of novel therapy. Expert Rev Anticancer Ther 2011; 11:387-402. [DOI: 10.1586/era.10.179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
44
|
Cellai I, Petrangolini G, Tortoreto M, Pratesi G, Luciani P, Deledda C, Benvenuti S, Ricordati C, Gelmini S, Ceni E, Galli A, Balzi M, Faraoni P, Serio M, Peri A. In vivo effects of rosiglitazone in a human neuroblastoma xenograft. Br J Cancer 2010; 102:685-92. [PMID: 20068562 PMCID: PMC2837558 DOI: 10.1038/sj.bjc.6605506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extra-cranial solid tumour in infants. Unfortunately, most children present with advanced disease and have a poor prognosis. There is in vitro evidence that the peroxisome proliferator-activated receptor gamma (PPARgamma) might be a target for pharmacological intervention in NB. We have previously demonstrated that the PPARgamma agonist rosiglitazone (RGZ) exerts strong anti-tumoural effects in the human NB cell line, SK-N-AS. The aim of this study was to evaluate whether RGZ maintains its anti-tumoural effects against SK-N-AS NB cells in vivo. METHODS AND RESULTS For this purpose, tumour cells were subcutaneously implanted in nude mice, and RGZ (150 mg kg(-1)) was administered by gavage daily for 4 weeks. At the end of treatment, a significant tumour weight inhibition (70%) was observed in RGZ-treated mice compared with control mice. The inhibition of tumour growth was supported by a strong anti-angiogenic activity, as assessed by CD-31 immunostaining in tumour samples. The number of apoptotic cells, as determined by cleaved caspase-3 immunostaining, seemed lower in RGZ-treated animals at the end of the treatment period than in control mice, likely because of the large tumour size observed in the latter group. CONCLUSIONS To our knowledge, this is the first demonstration that RGZ effectively inhibits tumour growth in a human NB xenograft and our results suggest that PPARgamma agonists may have a role in anti-tumoural strategies against NB.
Collapse
Affiliation(s)
- I Cellai
- Department of Clinical Physiopathology, Center for Research, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cancer stem cells. J Thorac Oncol 2009; 4:S1079-81. [PMID: 19861925 DOI: 10.1097/01.jto.0000361758.17413.7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|