1
|
Bedaiwi S, Usmani A, Carty MP. Canonical and Non-Canonical Roles of Human DNA Polymerase η. Genes (Basel) 2024; 15:1271. [PMID: 39457395 PMCID: PMC11507097 DOI: 10.3390/genes15101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
DNA damage tolerance pathways that allow for the completion of replication following fork arrest are critical in maintaining genome stability during cell division. The main DNA damage tolerance pathways include strand switching, replication fork reversal and translesion synthesis (TLS). The TLS pathway is mediated by specialised DNA polymerases that can accommodate altered DNA structures during DNA synthesis, and are important in allowing replication to proceed after fork arrest, preventing fork collapse that can generate more deleterious double-strand breaks in the genome. TLS may occur directly at the fork, or at gaps remaining behind the fork, in the process of post-replication repair. Inactivating mutations in the human POLH gene encoding the Y-family DNA polymerase Pol η causes the skin cancer-prone genetic disease xeroderma pigmentosum variant (XPV). Pol η also contributes to chemoresistance during cancer treatment by bypassing DNA lesions induced by anti-cancer drugs including cisplatin. We review the current understanding of the canonical role of Pol η in translesion synthesis following replication arrest, as well as a number of emerging non-canonical roles of the protein in other aspects of DNA metabolism.
Collapse
Affiliation(s)
| | | | - Michael P. Carty
- DNA Damage Response Laboratory, Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland; (S.B.); (A.U.)
| |
Collapse
|
2
|
Ricciardiello R, Forleo G, Cipolla L, van Winckel G, Marconi C, Nouspikel T, Halazonetis TD, Zgheib O, Sabbioneda S. Homozygous substitution of threonine 191 by proline in polymerase η causes Xeroderma pigmentosum variant. Sci Rep 2024; 14:1117. [PMID: 38212351 PMCID: PMC10784498 DOI: 10.1038/s41598-023-51120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
DNA polymerase eta (Polη) is the only translesion synthesis polymerase capable of error-free bypass of UV-induced cyclobutane pyrimidine dimers. A deficiency in Polη function is associated with the human disease Xeroderma pigmentosum variant (XPV). We hereby report the case of a 60-year-old woman known for XPV and carrying a Polη Thr191Pro variant in homozygosity. We further characterize the variant in vitro and in vivo, providing molecular evidence that the substitution abrogates polymerase activity and results in UV sensitivity through deficient damage bypass. This is the first functional molecular characterization of a missense variant of Polη, whose reported pathogenic variants have thus far been loss of function truncation or frameshift mutations. Our work allows the upgrading of Polη Thr191Pro from 'variant of uncertain significance' to 'likely pathogenic mutant', bearing direct impact on molecular diagnosis and genetic counseling. Furthermore, we have established a robust experimental approach that will allow a precise molecular analysis of further missense mutations possibly linked to XPV. Finally, it provides insight into critical Polη residues that may be targeted to develop small molecule inhibitors for cancer therapeutics.
Collapse
Affiliation(s)
- Roberto Ricciardiello
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, Italy
- Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Pavia, Italy
| | - Giulia Forleo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, Italy
| | - Lina Cipolla
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, Italy
| | - Geraldine van Winckel
- Division of Medical Genetics, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
| | - Caterina Marconi
- Division of Medical Genetics, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
| | - Thierry Nouspikel
- Division of Medical Genetics, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Omar Zgheib
- Division of Medical Genetics, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland.
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, Italy.
| |
Collapse
|
3
|
Yeom M, Hong JK, Shin JH, Lee Y, Guengerich FP, Choi JY. Identification of Three Human POLH Germline Variants Defective in Complementing the UV- and Cisplatin-Sensitivity of POLH-Deficient Cells. Int J Mol Sci 2023; 24:5198. [PMID: 36982269 PMCID: PMC10048814 DOI: 10.3390/ijms24065198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
DNA polymerase (pol) η is responsible for error-free translesion DNA synthesis (TLS) opposite ultraviolet light (UV)-induced cis-syn cyclobutane thymine dimers (CTDs) and cisplatin-induced intrastrand guanine crosslinks. POLH deficiency causes one form of the skin cancer-prone disease xeroderma pigmentosum variant (XPV) and cisplatin sensitivity, but the functional impacts of its germline variants remain unclear. We evaluated the functional properties of eight human POLH germline in silico-predicted deleterious missense variants, using biochemical and cell-based assays. In enzymatic assays, utilizing recombinant pol η (residues 1-432) proteins, the C34W, I147N, and R167Q variants showed 4- to 14-fold and 3- to 5-fold decreases in specificity constants (kcat/Km) for dATP insertion opposite the 3'-T and 5'-T of a CTD, respectively, compared to the wild-type, while the other variants displayed 2- to 4-fold increases. A CRISPR/Cas9-mediated POLH knockout increased the sensitivity of human embryonic kidney 293 cells to UV and cisplatin, which was fully reversed by ectopic expression of wild-type pol η, but not by that of an inactive (D115A/E116A) or either of two XPV-pathogenic (R93P and G263V) mutants. Ectopic expression of the C34W, I147N, and R167Q variants, unlike the other variants, did not rescue the UV- and cisplatin-sensitivity in POLH-knockout cells. Our results indicate that the C34W, I147N, and R167Q variants-substantially reduced in TLS activity-failed to rescue the UV- and cisplatin-sensitive phenotype of POLH-deficient cells, which also raises the possibility that such hypoactive germline POLH variants may increase the individual susceptibility to UV irradiation and cisplatin chemotherapy.
Collapse
Affiliation(s)
- Mina Yeom
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jin-Kyung Hong
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | | | - Jeong-Yun Choi
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Anand J, Chiou L, Sciandra C, Zhang X, Hong J, Wu D, Zhou P, Vaziri C. Roles of trans-lesion synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer 2023; 5:zcad005. [PMID: 36755961 PMCID: PMC9900426 DOI: 10.1093/narcan/zcad005] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
DNA damage tolerance and mutagenesis are hallmarks and enabling characteristics of neoplastic cells that drive tumorigenesis and allow cancer cells to resist therapy. The 'Y-family' trans-lesion synthesis (TLS) DNA polymerases enable cells to replicate damaged genomes, thereby conferring DNA damage tolerance. Moreover, Y-family DNA polymerases are inherently error-prone and cause mutations. Therefore, TLS DNA polymerases are potential mediators of important tumorigenic phenotypes. The skin cancer-propensity syndrome xeroderma pigmentosum-variant (XPV) results from defects in the Y-family DNA Polymerase Pol eta (Polη) and compensatory deployment of alternative inappropriate DNA polymerases. However, the extent to which dysregulated TLS contributes to the underlying etiology of other human cancers is unclear. Here we consider the broad impact of TLS polymerases on tumorigenesis and cancer therapy. We survey the ways in which TLS DNA polymerases are pathologically altered in cancer. We summarize evidence that TLS polymerases shape cancer genomes, and review studies implicating dysregulated TLS as a driver of carcinogenesis. Because many cancer treatment regimens comprise DNA-damaging agents, pharmacological inhibition of TLS is an attractive strategy for sensitizing tumors to genotoxic therapies. Therefore, we discuss the pharmacological tractability of the TLS pathway and summarize recent progress on development of TLS inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Jay Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lilly Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carly Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Feltes BC, Menck CFM. Current state of knowledge of human DNA polymerase eta protein structure and disease-causing mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108436. [PMID: 35952573 DOI: 10.1016/j.mrrev.2022.108436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/29/2022] [Accepted: 07/31/2022] [Indexed: 01/01/2023]
Abstract
POLη, encoded by the POLH gene, is a crucial protein for replicating damaged DNA and the most studied specialized translesion synthesis polymerases. Mutations in POLη are associated with cancer and the human syndrome xeroderma pigmentosum variant, which is characterized by extreme photosensitivity and an increased likelihood of developing skin cancers. The myriad of structural information about POLη is vast, covering dozens of different mutants, numerous crucial residues, domains, and posttranslational modifications that are essential for protein function within cells. Since POLη is key vital enzyme for cell survival, and mutations in this protein are related to aggressive diseases, understanding its structure is crucial for biomedical sciences, primarily due to its similarities with other Y-family polymerases and its potential as a targeted therapy-drug for tumors. This work provides an up-to-date review on structural aspects of the human POLη: from basic knowledge about critical residues and protein domains to its mutant variants, posttranslational modifications, and our current understanding of therapeutic molecules that target POLη. Thus, this review provides lessons about POLη's structure and gathers critical discussions and hypotheses that may contribute to understanding this protein's vital roles within the cells.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil; Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
6
|
Metabolic modeling-based drug repurposing in Glioblastoma. Sci Rep 2022; 12:11189. [PMID: 35778411 PMCID: PMC9249780 DOI: 10.1038/s41598-022-14721-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The manifestation of intra- and inter-tumor heterogeneity hinders the development of ubiquitous cancer treatments, thus requiring a tailored therapy for each cancer type. Specifically, the reprogramming of cellular metabolism has been identified as a source of potential drug targets. Drug discovery is a long and resource-demanding process aiming at identifying and testing compounds early in the drug development pipeline. While drug repurposing efforts (i.e., inspecting readily available approved drugs) can be supported by a mechanistic rationale, strategies to further reduce and prioritize the list of potential candidates are still needed to facilitate feasible studies. Although a variety of ‘omics’ data are widely gathered, a standard integration method with modeling approaches is lacking. For instance, flux balance analysis is a metabolic modeling technique that mainly relies on the stoichiometry of the metabolic network. However, exploring the network’s topology typically neglects biologically relevant information. Here we introduce Transcriptomics-Informed Stoichiometric Modelling And Network analysis (TISMAN) in a recombinant innovation manner, allowing identification and validation of genes as targets for drug repurposing using glioblastoma as an exemplar.
Collapse
|
7
|
Latancia MT, Moreno NC, Leandro GS, Ribeiro VC, de Souza I, Vieira WKM, Bastos AU, Hoch NC, Rocha CRR, Menck CFM. DNA polymerase eta protects human cells against DNA damage induced by the tumor chemotherapeutic temozolomide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503498. [PMID: 35649682 DOI: 10.1016/j.mrgentox.2022.503498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Human DNA polymerases can bypass DNA lesions performing translesion synthesis (TLS), a mechanism of DNA damage tolerance. Tumor cells use this mechanism to survive lesions caused by specific chemotherapeutic agents, resulting in treatment relapse. Moreover, TLS polymerases are error-prone and, thus, can lead to mutagenesis, increasing the resistance potential of tumor cells. DNA polymerase eta (pol eta) - a key protein from this group - is responsible for protecting against sunlight-induced tumors. Xeroderma Pigmentosum Variant (XP-V) patients are deficient in pol eta activity, which leads to symptoms related to higher sensitivity and increased incidence of skin cancer. Temozolomide (TMZ) is a chemotherapeutic agent used in glioblastoma and melanoma treatment. TMZ damages cells' genomes, but little is known about the role of TLS in TMZ-induced DNA lesions. This work investigates the effects of TMZ treatment in human XP-V cells, which lack pol eta, and in its complemented counterpart (XP-V comp). Interestingly, TMZ reduces the viability of XP-V cells compared to TLS proficient control cells. Furthermore, XP-V cells treated with TMZ presented increased phosphorylation of H2AX, forming γH2AX, compared to control cells. However, cell cycle assays indicate that XP-V cells treated with TMZ replicate damaged DNA and pass-through S-phase, arresting in the G2/M-phase. DNA fiber assay also fails to show any specific effect of TMZ-induced DNA damage blocking DNA elongation in pol eta deficient cells. These results show that pol eta plays a role in protecting human cells from TMZ-induced DNA damage, but this can be different from its canonical TLS mechanism. The new role opens novel therapeutic possibilities of using pol eta as a target to improve the efficacy of TMZ-based therapies against cancer.
Collapse
Affiliation(s)
- Marcela T Latancia
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Natália C Moreno
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Giovana S Leandro
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Izadora de Souza
- Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - André Uchimura Bastos
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Nicolas Carlos Hoch
- Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Carlos F M Menck
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Ler AAL, Carty MP. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target. Front Oncol 2022; 11:822500. [PMID: 35198436 PMCID: PMC8859465 DOI: 10.3389/fonc.2021.822500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
DNA lesions arising from both exogenous and endogenous sources occur frequently in DNA. During DNA replication, the presence of unrepaired DNA damage in the template can arrest replication fork progression, leading to fork collapse, double-strand break formation, and to genome instability. To facilitate completion of replication and prevent the generation of strand breaks, DNA damage tolerance (DDT) pathways play a key role in allowing replication to proceed in the presence of lesions in the template. The two main DDT pathways are translesion synthesis (TLS), which involves the recruitment of specialized TLS polymerases to the site of replication arrest to bypass lesions, and homology-directed damage tolerance, which includes the template switching and fork reversal pathways. With some exceptions, lesion bypass by TLS polymerases is a source of mutagenesis, potentially contributing to the development of cancer. The capacity of TLS polymerases to bypass replication-blocking lesions induced by anti-cancer drugs such as cisplatin can also contribute to tumor chemoresistance. On the other hand, during homology-directed DDT the nascent sister strand is transiently utilised as a template for replication, allowing for error-free lesion bypass. Given the role of DNA damage tolerance pathways in replication, mutagenesis and chemoresistance, a more complete understanding of these pathways can provide avenues for therapeutic exploitation. A number of small molecule inhibitors of TLS polymerase activity have been identified that show synergy with conventional chemotherapeutic agents in killing cancer cells. In this review, we will summarize the major DDT pathways, explore the relationship between damage tolerance and carcinogenesis, and discuss the potential of targeting TLS polymerases as a therapeutic approach.
Collapse
Affiliation(s)
- Ashlynn Ai Li Ler
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
| | - Michael P. Carty
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
- DNA Damage Response Laboratory, Centre for Chromosome Biology, NUI Galway, Galway, Ireland
- *Correspondence: Michael P. Carty,
| |
Collapse
|
9
|
Genome-wide signatures of mammalian skin covering evolution. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1765-1780. [PMID: 33481165 DOI: 10.1007/s11427-020-1841-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/15/2020] [Indexed: 10/22/2022]
Abstract
Animal body coverings provide protection and allow for adaptation to environmental pressures such as heat, ultraviolet radiation, water loss, and mechanical forces. Here, using a comparative genomics analysis of 39 mammal species spanning three skin covering types (hairless, scaly and spiny), we found some genes (e.g., UVRAG, POLH, and XPC) involved in skin inflammation, skin innate immunity, and ultraviolet radiation damage repair were under selection in hairless ocean mammals (e.g., whales and manatees). These signatures might be associated with a high risk of skin diseases from pathogens and ultraviolet radiation. Moreover, the genomes from three spiny mammal species shared convergent genomic regions (EPHB2, EPHA4, and NIN) and unique positively selected genes (FZD6, INVS, and CDC42) involved in skin cell polarity, which might be related to the development of spines. In scaly mammals, the shared convergent genomic regions (e.g., FREM2) were associated with the integrity of the skin epithelium and epidermal adhesion. This study identifies potential convergent genomic features among distantly related mammals with the same skin covering type.
Collapse
|
10
|
Saha P, Mandal T, Talukdar AD, Kumar D, Kumar S, Tripathi PP, Wang QE, Srivastava AK. DNA polymerase eta: A potential pharmacological target for cancer therapy. J Cell Physiol 2020; 236:4106-4120. [PMID: 33184862 DOI: 10.1002/jcp.30155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
In the last two decades, intensive research has been carried out to improve the survival rates of cancer patients. However, the development of chemoresistance that ultimately leads to tumor relapse poses a critical challenge for the successful treatment of cancer patients. Many cancer patients experience tumor relapse and ultimately die because of treatment failure associated with acquired drug resistance. Cancer cells utilize multiple lines of self-defense mechanisms to bypass chemotherapy and radiotherapy. One such mechanism employed by cancer cells is translesion DNA synthesis (TLS), in which specialized TLS polymerases bypass the DNA lesion with the help of monoubiquitinated proliferating cell nuclear antigen. Among all TLS polymerases (Pol η, Pol ι, Pol κ, REV1, Pol ζ, Pol μ, Pol λ, Pol ν, and Pol θ), DNA polymerase eta (Pol η) is well studied and majorly responsible for the bypass of cisplatin and UV-induced DNA damage. TLS polymerases contribute to chemotherapeutic drug-induced mutations as well as therapy resistance. Therefore, targeting these polymerases presents a novel therapeutic strategy to combat chemoresistance. Mounting evidence suggests that inhibition of Pol η may have multiple impacts on cancer therapy such as sensitizing cancer cells to chemotherapeutics, suppressing drug-induced mutagenesis, and inhibiting the development of secondary tumors. Herein, we provide a general introduction of Pol η and its clinical implications in blocking acquired drug resistance. In addition; this review addresses the existing gaps and challenges of Pol η mediated TLS mechanisms in human cells. A better understanding of the Pol η mediated TLS mechanism will not merely establish it as a potential pharmacological target but also open possibilities to identify novel drug targets for future therapy.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanima Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupam D Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepak Kumar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | - Prem P Tripathi
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Wang H, Qiu M, Li Y, Cheng D, Yang D, Yuan W. Combination of cyclophosphamide and shengbai decoction has synergistic effect against melanoma. Biomed Pharmacother 2020; 126:109866. [PMID: 32114356 DOI: 10.1016/j.biopha.2020.109866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
Shengbai decoction (SBD), a famous Chinese herbal prescription, has been used for treatment of leukopenia for decades in China. In this study, its synergistic antitumor effect in combination with cyclophosphamide (CTX) on melanoma-bearing mice was investigated. A total of forty C57BL/6 male mice successfully modeled (6-8 weeks old, 18-22 g) were randomly divided into 4 groups (n = 10): 1) the model group, 2) the CTX group, 3) the low dose of SBD (10.66 g/kg/d, raw medicine) and CTX group, and 4) the high dose of SBD (31.98 g/kg/d, raw medicine) and CTX group. Melanoma mice models were established by injection of 0.1 mL of melanoma cell suspension under the midline of the back of each C57BL/6 mouse. Treatment started five days after modeling. The results showed that SBD significantly alleviated histopathological damage, and reduced tumor growth and the concentrations of IL-6, IFN-γ and TNF-α in serum. Furthermore, the combined therapy increased the positive expression of NF-κB and promoted apoptosis compared with CTX alone. These results indicated that SBD could improve the antitumor effect of CTX on melanoma in vivo. And this combination treatment may be an ideal therapy against melanoma.
Collapse
Affiliation(s)
- Huimin Wang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province China
| | - Min Qiu
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province China
| | - Yinghui Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province China
| | - Dandan Cheng
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province China
| | - Donghua Yang
- Department of Pharmacology College of Pharmacy and Health Sciences St. John's University United States
| | - Wenpeng Yuan
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province China.
| |
Collapse
|
12
|
Wu Y, Zhou L, Deng Y, Li N, Yang P, Dong S, Yang S, Zheng Y, Yao L, Zhang M, Zhai Z, Dai Z, Wu Y. The polymorphisms (rs3213801 and rs5744533) of DNA polymerase kappa gene are not related with glioma risk and prognosis: A case-control study. Cancer Med 2019; 8:7446-7453. [PMID: 31595696 PMCID: PMC6885875 DOI: 10.1002/cam4.2566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
DNA polymerase kappa (POLK), one of the specialized Y family DNA polymerases, functions in translesion synthesis and is suggested to be related with cancers. Single nucleotide polymorphisms (SNPs) in specialized DNA polymerases have been demonstrated to be associated with cancer risk. To evaluate the association of two common POLK variants (rs3213801 C>T and rs5744533 C>T) with glioma, we conducted a case-control study and genotyped these two POLK variants in 605 patients and 1300 healthy controls. The association analysis revealed no significant correlations were observed between these two POLK SNPs and glioma risk. However, the POLK rs3213801 CT genotype was found to be higher in older glioma patients (≥40) than in younger patients (P = .026). Compared with patients harboring the CC genotype, the frequencies of POLK rs5744533 CT and CT+TT genotypes were increased in patients with lower World Health Organization (WHO) grade glioma (P = .028, 0.044, respectively). According to Kaplan-Meier analysis and log-rank tests, POLK SNPs were not correlated with either the overall survival or progression-free survival. Nevertheless, multivariate analysis revealed that the age (≥40) could increase the risk of death in glioma patients (P < .05), while gross-total resection and temozolomide treatment were found to play protective roles in glioma prognosis (P < .001, respectively). Overall, our results indicated that POLK variants rs3213801 and rs5744533 are not associated with glioma risk and prognosis. However, these polymorphisms are likely to be associated with certain glioma characteristics, such as age and WHO grade. The age, surgery types, and chemotherapy could be independent prognostic factors in glioma. More studies are required to confirm our findings.
Collapse
Affiliation(s)
- Ying Wu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Linghui Zhou
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yujiao Deng
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Na Li
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Pengtao Yang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Shanshan Dong
- School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Si Yang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yi Zheng
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Li Yao
- Department of NeurologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ming Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityShannxiChina
| | - Zhen Zhai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhijun Dai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yuan Wu
- Department of Critical Care MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityShannxiChina
| |
Collapse
|
13
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
14
|
Cseh AM, Fabian Z, Quintana-Cabrera R, Szabo A, Eros K, Soriano ME, Gallyas F, Scorrano L, Sumegi B. PARP Inhibitor PJ34 Protects Mitochondria and Induces DNA-Damage Mediated Apoptosis in Combination With Cisplatin or Temozolomide in B16F10 Melanoma Cells. Front Physiol 2019; 10:538. [PMID: 31133874 PMCID: PMC6514236 DOI: 10.3389/fphys.2019.00538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
PARP-1 inhibition has recently been employed in both mono- and combination therapies in various malignancies including melanoma with both promising and contradicting results reported. Although deeper understanding of the underlying molecular mechanisms may help improving clinical modalities, the complex cellular effects of PARP inhibitors make disentangling of the mechanisms involved in combination therapies difficult. Here, we used two cytostatic agents used in melanoma therapies in combination with PARP inhibition to have an insight into cellular events using the B16F10 melanoma model. We found that, when used in combination with cisplatin or temozolomide, pharmacologic blockade of PARP-1 by PJ34 augmented the DNA-damaging and cytotoxic effects of both alkylating compounds. Interestingly, however, this synergism unfolds relatively slowly and is preceded by molecular events that are traditionally believed to support cell survival including the stabilization of mitochondrial membrane potential and morphology. Our data indicate that the PARP inhibitor PJ34 has, apparently, opposing effects on the mitochondrial structure and cell survival. While, initially, it stimulates mitochondrial fusion and hyperpolarization, hallmarks of mitochondrial protection, it enhances the cytotoxic effects of alkylating agents at later stages. These findings may contribute to the optimization of PARP inhibitor-based antineoplastic modalities.
Collapse
Affiliation(s)
- Anna Maria Cseh
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Department of Biology, University of Padova, Padua, Italy
| | - Zsolt Fabian
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ruben Quintana-Cabrera
- Institute of Functional Biology and Genomics, University of Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,CIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Krisztian Eros
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Maria Eugenia Soriano
- Department of Biology, University of Padova, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Luca Scorrano
- Department of Biology, University of Padova, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
15
|
Potjer TP, Bollen S, Grimbergen AJEM, van Doorn R, Gruis NA, van Asperen CJ, Hes FJ, van der Stoep N. Multigene panel sequencing of established and candidate melanoma susceptibility genes in a large cohort of Dutch non-CDKN2A/CDK4 melanoma families. Int J Cancer 2019; 144:2453-2464. [PMID: 30414346 PMCID: PMC6590189 DOI: 10.1002/ijc.31984] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 02/01/2023]
Abstract
Germline mutations in the major melanoma susceptibility gene CDKN2A explain genetic predisposition in only 10–40% of melanoma‐prone families. In our study we comprehensively characterized 488 melanoma cases from 451 non‐CDKN2A/CDK4 families for mutations in 30 established and candidate melanoma susceptibility genes using a custom‐designed targeted gene panel approach. We identified (likely) pathogenic variants in established melanoma susceptibility genes in 18 families (n = 3 BAP1, n = 15 MITF p.E318K; diagnostic yield 4.0%). Among the three identified BAP1‐families, there were no reported diagnoses of uveal melanoma or malignant mesothelioma. We additionally identified two potentially deleterious missense variants in the telomere maintenance genes ACD and TERF2IP, but none in the POT1 gene. MC1R risk variants were strongly enriched in our familial melanoma cohort compared to healthy controls (R variants: OR 3.67, 95% CI 2.88–4.68, p <0.001). Several variants of interest were also identified in candidate melanoma susceptibility genes, in particular rare (pathogenic) variants in the albinism gene OCA2 were repeatedly found. We conclude that multigene panel testing for familial melanoma is appropriate considering the additional 4% diagnostic yield in non‐CDKN2A/CDK4 families. Our study shows that BAP1 and MITF are important genes to be included in such a diagnostic test. What's new? Germline mutations in CDKN2A are major contributors to familial melanoma. These mutations, however, are responsible for only 10 to 40 percent of genetic susceptibility in melanoma‐prone families. In this study, 30 established and candidate melanoma susceptibility genes were investigated for associations with the disease in patients from 451 non‐CDKN2A/CDK4 melanoma families. From the candidate gene panel, (likely) pathogenic variants in BAP1 and MITF were identified in several families, and potentially deleterious variants were identified in the shelterin complex genes ACD and TERF2IP. These genes appear to play a significant role in familial melanoma predisposition and are therefore promising candidates for incorporation into comprehensive genetic tests.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Sander Bollen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | |
Collapse
|
16
|
|
17
|
|
18
|
Zhang X, Chen Q, Chen J, He C, Mao J, Dai Y, Yang X, Hu W, Zhu C, Chen B. Association of polymorphisms in translesion synthesis genes with prognosis of advanced non-small-cell lung cancer patients treated with platinum-based chemotherapy. J Surg Oncol 2015; 113:17-23. [PMID: 26611653 DOI: 10.1002/jso.24103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Translesion synthesis (TLS) polymerases enable cells to bypass or overcome DNA damage during DNA replication and contributes to genomic instability and cancer. Inhibition of the expression of TLS genes enhances the sensitivity of cancer cells to cisplatin. This study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) in the TLS genes and clinical outcome of advanced non-small-cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. METHODS A total of 16 SNPs were genotyped and analyzed in 302 advanced NSCLC patients (discovery set), and the results were further validated in additional 428 NSCLC patients (validation set). RESULTS Analyses revealed significant associations of two SNPs, rs3213801 and rs3792136, with overall survival, with the lowest combined P values of 0.003 and 0.016, respectively. These effects also remained in stratification analyses by clinical variables. Furthermore, the number of risk genotypes of the two SNPs showed a cumulative effect on overall survival (P = 0.03). CONCLUSIONS Genetic polymorphisms in the TLS genes might serve as potential predictive biomarkers of prognosis of advanced NSCLC patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Xuelin Zhang
- Department of Thoracic Surgery, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Qun Chen
- Department of Oncology, Fuzhou Pulmonary Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jia Chen
- School of Medical Laboratory Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunya He
- Department of Surgical Oncology, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Jianlin Mao
- Department of Thoracic Surgery, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Yuechu Dai
- Department of Surgical Oncology, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Xi Yang
- Department of Respiratory Medicine, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Wei Hu
- Department of Respiratory Medicine, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Chengchu Zhu
- Department of Radiotherapy, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Baofu Chen
- Department of Radiotherapy, Taizhou Central Hospital, Taizhou, Zhejiang, China.,Department of Thoracic Surgery, Taizhou Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
19
|
Abstract
POLH (DNA polymerase η), a target of p53 tumour suppressor, plays a key role in TLS (translesion DNA synthesis). Loss of POLH is responsible for the human cancer-prone syndrome XPV (xeroderma pigmentosum variant). Owing to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In the present study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding PCBP1 [poly(rC)-binding protein 1]. We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to the POLH 3'-UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3'-UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Taken together, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability.
Collapse
|
20
|
Plachta M, Halas A, McIntyre J, Sledziewska-Gojska E. The steady-state level and stability of TLS polymerase eta are cell cycle dependent in the yeast S. cerevisiae. DNA Repair (Amst) 2015; 29:147-53. [PMID: 25766643 DOI: 10.1016/j.dnarep.2015.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 11/29/2022]
Abstract
Polymerase eta (Pol eta) is a ubiquitous translesion DNA polymerase that is capable of bypassing UV-induced pyrimidine dimers in an error-free manner. However, this specialized polymerase is error prone when synthesizing through an undamaged DNA template. In Saccharomyces cerevisiae, both depletion and overproduction of Pol eta result in mutator phenotypes. Therefore, regulation of the cellular abundance of this enzyme is of particular interest. However, based on the investigation of variously tagged forms of Pol eta, mutually contradictory conclusions have been reached regarding the stability of this polymerase in yeast. Here, we optimized a protocol for the detection of untagged yeast Pol eta and established that the half-life of the native enzyme is 80 ± 14 min in asynchronously growing cultures. Experiments with synchronized cells indicated that the cellular abundance of this translesion polymerase changes throughout the cell cycle. Accordingly, we show that the stability of Pol eta, but not its mRNA level, is cell cycle stage dependent. The half-life of the polymerase is more than fourfold shorter in G1-arrested cells than in those at G2/M. Our results, in concert with previous data for Rev1, indicate that cell cycle regulation is a general property of Y family TLS polymerases in S. cerevisiae.
Collapse
Affiliation(s)
- Michal Plachta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
21
|
Silverberg JI, Ratner D. Associations of non-melanoma skin cancer and melanoma, extra-cutaneous cancers and smoking in adults: a US population-based study. J Eur Acad Dermatol Venereol 2014; 29:1389-97. [PMID: 25491569 DOI: 10.1111/jdv.12883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Non-melanoma skin cancer (NMSC) and melanoma are common malignancies in the US and may be associated with other types of cancer. OBJECTIVES We sought to determine whether NMSC and melanoma are associated with extra-cutaneous cancers and identify modifiable risk factors for such an association. METHODS We analysed data from 447,801 adult participants in the 1997-2011 National Health Interview Surveys. Survey logistic regression models were constructed that accounted for the complex sample weights. History of NMSC, melanoma and 27 primary extra-cutaneous cancers was assessed. RESULTS NMSC was associated with increased odds of one (multinomial survey logistic regression, unadjusted odds ratio [95% CI]: 2.43 [2.20-2.68]) or multiple (2.94 [2.21-3.92]) extra-cutaneous malignancies. Melanoma was also associated with increased odds of one (3.25 [2.70-3.90]) or multiple (6.11 [4.34-8.61]) extra-cutaneous malignancies. Extra-cutaneous cancers were more common in younger patients (ages 18-39 and 40-49 years) and Caucasians with NMSC or melanoma (P < 0.0001). Smokers with a history of NMSC or melanoma had even higher odds of extra-cutaneous malignancy at ages 18-39 and 40-49 years compared to smokers without NMSC or melanoma (P < 0.0001). History of NMSC was associated with higher odds of malignancies of the bladder, brain, breast, colon, oesophagus, kidney, lung, lymphoma, melanoma, prostate, soft tissue, throat/pharynx, thyroid and uterus. Melanoma was associated with malignancies of the bladder, breast, colon, kidney, lung, pancreas, prostate, soft tissue, throat/pharynx, thyroid and uterus. The prevalence of extra-cutaneous cancers increased between 1997 and 2011 in all subjects (4.51% and 5.73%, P < 0.0001), with even higher rates of increase in those with history of NMSC or melanoma. CONCLUSIONS Patients with history of NMSC and melanoma have increased odds of developing extra-cutaneous cancers, especially those with younger age and smoking history.
Collapse
Affiliation(s)
- J I Silverberg
- Departments of Dermatology, Preventive Medicine and Medical Social Sciences, Northwestern University, Chicago, IL, USA
| | - D Ratner
- Department of Dermatology, Mount Sinai Beth Israel Medical Center, New York, NY, USA
| |
Collapse
|
22
|
Ibarrola-Villava M, Kumar R, Nagore E, Benfodda M, Guedj M, Gazal S, Hu HH, Guan J, Rachkonda PS, Descamps V, Basset-Seguin N, Bensussan A, Bagot M, Saiag P, Schadendorf D, Martin-Gonzalez M, Mayor M, Grandchamp B, Ribas G, Nadem S. Genes involved in the WNT and vesicular trafficking pathways are associated with melanoma predisposition. Int J Cancer 2014; 136:2109-19. [DOI: 10.1002/ijc.29257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Maider Ibarrola-Villava
- Department of Haematology and Medical Oncology; Biomedical Research Institute INCLIVA; Valencia 46010 Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology; German Cancer Research Center; Heidelberg 69120 Germany
| | - Eduardo Nagore
- Department of Dermatology; Instituto Valenciano de Oncologia; Valencia 46009 Spain
| | - Meriem Benfodda
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| | - Mickael Guedj
- Laboratoire Statistiques et Genomes; Evry 91000 France
| | - Steven Gazal
- UMR S738; Faculté de Médecine Xavier Bichat; Paris 75018 France
| | - Hui-Han Hu
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| | - Jian Guan
- Division of Molecular Genetic Epidemiology; German Cancer Research Center; Heidelberg 69120 Germany
| | | | - Vincent Descamps
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Bichat, APHP; Paris 75018 France
| | - Nicole Basset-Seguin
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Bichat, APHP; Paris 75018 France
| | - Armand Bensussan
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
| | - Martine Bagot
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Saint Louis, APHP; Paris 75010 France
| | - Philippe Saiag
- Department of Dermatology; Hopital Ambroise Paré, APHP; Paris 92100 France
| | - Dirk Schadendorf
- Department of Dermatology; University Hospital Essen; Esse 45147 Germany
| | | | - Matias Mayor
- Department of Dermatology; Hospital La Paz; Madrid 28046 Spain
| | | | - Gloria Ribas
- Department of Haematology and Medical Oncology; Biomedical Research Institute INCLIVA; Valencia 46010 Spain
| | - Soufir Nadem
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| |
Collapse
|
23
|
Pavey S, Spoerri L, Haass NK, Gabrielli B. DNA repair and cell cycle checkpoint defects as drivers and therapeutic targets in melanoma. Pigment Cell Melanoma Res 2013; 26:805-16. [PMID: 23837768 DOI: 10.1111/pcmr.12136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/05/2013] [Indexed: 01/07/2023]
Abstract
The ultraviolet radiation (UVR) component of sunlight is the major environmental risk factor for melanoma, producing DNA lesions that can be mutagenic if not repaired. The high level of mutations in melanomas that have the signature of UVR-induced damage indicates that the normal mechanisms that detect and repair this damage must be defective in this system. With the exception of melanoma-prone heritable syndromes which have mutations of repair genes, there is little evidence for somatic mutation of known repair genes. Cell cycle checkpoint controls are tightly associated with repair mechanisms, arresting cells to allow for repair before continuing through the cell cycle. Checkpoint signaling components also regulate the repair mechanisms. Defects in checkpoint mechanisms have been identified in melanomas and are likely to be responsible for increased mutation load in melanoma. Loss of the checkpoint responses may also provide an opportunity to target melanomas using a synthetic lethal approach to identify and inhibit mechanisms that compensate for the defective checkpoints.
Collapse
Affiliation(s)
- Sandra Pavey
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
24
|
Martinez-Cadenas C, Peña-Chilet M, Ibarrola-Villava M, Ribas G. Gender is a major factor explaining discrepancies in eye colour prediction based on HERC2/OCA2 genotype and the IrisPlex model. Forensic Sci Int Genet 2013; 7:453-60. [PMID: 23601698 DOI: 10.1016/j.fsigen.2013.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/13/2013] [Accepted: 03/17/2013] [Indexed: 01/09/2023]
Abstract
In recent years, several studies have greatly increased our understanding of the genetic basis underlying human eye colour variation. A large percentage of the eye colour diversity present in humans can already be genetically explained, so much so that different DNA-based eye colour prediction models, such as IrisPlex, have been recently developed for forensic purposes. Though these models are already highly accurate, they are by no means perfect, with many genotype-phenotype discrepancies still remaining unresolved. In this work we have genotyped six SNPs associated with eye colour (IrisPlex) in 535 individuals from Spain, a Mediterranean population. Aside from different SNP frequencies in Spain compared to Northern Europe, the results for eye colour prediction are quite similar to other studies. However, we have found an association between gender and eye colour prediction. When comparing similar eye colour genetic profiles, females tend, as a whole, to have darker eyes than males (and, conversely, males lighter than females). These results are also corroborated by the revision and meta-analysis of data from previously published eye colour genetic studies in several Caucasian populations, which significantly support the fact that males are more likely to have blue eyes than females, while females tend to show higher frequencies of green and brown eyes than males. This significant gender difference would suggest that there is an as yet unidentified gender-related factor contributing to human eye colour variation.
Collapse
|
25
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
26
|
Makridakis NM, Reichardt JKV. Translesion DNA polymerases and cancer. Front Genet 2012; 3:174. [PMID: 22973298 PMCID: PMC3434439 DOI: 10.3389/fgene.2012.00174] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022] Open
Abstract
DNA repair has been regarded as an important barrier to carcinogenesis. The newly discovered field of translesion synthesis (TLS) has made it apparent that mammalian cells need distinct polymerases to efficiently and accurately bypass DNA lesions. Perturbation of TLS polymerase activity by mutation, loss of expression, etc. is expected to result in the accumulation of mutations in cells exposed to specific carcinogens. Furthermore, several TLS polymerases can modulate cellular sensitivity to chemotherapeutic agents. TLS genes and TLS gene variations may thus be attractive pharmacologic and/or pharmacogenetic targets. We review herein current data with regards to the potential contribution of the primary TLS polymerase genes to cancer, their interaction with pharmacologic agents, and identify areas of interest for further research.
Collapse
Affiliation(s)
- Nick M Makridakis
- Tulane Cancer Center and Department of Epidemiology, Tulane University New Orleans, LA, USA
| | | |
Collapse
|
27
|
Melanoma Genetics: Recent Findings Take Us Beyond Well-Traveled Pathways. J Invest Dermatol 2012; 132:1763-74. [DOI: 10.1038/jid.2012.75] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Volkovova K, Bilanicova D, Bartonova A, Letašiová S, Dusinska M. Associations between environmental factors and incidence of cutaneous melanoma. Review. Environ Health 2012; 11 Suppl 1:S12. [PMID: 22759494 PMCID: PMC3388446 DOI: 10.1186/1476-069x-11-s1-s12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cutaneous melanoma is one of the most serious skin cancers. It is caused by neural crest-derived melanocytes - pigmented cells normally present in the epidermis and, sometimes, in the dermis. METHODS We performed a review of current knowledge on the risk factors of cutaneous melanoma. Relevant studies were identified using the PubMed, Science Direct, Medline, Scopus, Scholar Google and ISI Web of Knowledge databases. RESULTS Melanoma incurs a considerable public health burden owing to the worldwide dramatic rise in incidence since the mid-1960s. Ultraviolet radiation exposure is the predominant environmental risk factor. The role of geographical (latitude) and individual factors such as skin type, life style, vitamin D levels and antioxidant protection, sunburn, and exposure to other environmental factors possibly contributing to melanoma risk (such as cosmetics including sunscreen, photosensitising drugs, and exogenous hormones) are reviewed in this article. Recently, both rare high risk susceptibility genes and common polymorphic genes contributing to melanoma risk have been identified. CONCLUSIONS Cutaneous melanoma is a complex cancer with heterogeneous aetiology that continues to increase in incidence. Introduction of new biomarkers may help to elucidate the mechanism of pathogenesis and individual susceptibility to the disease, and make both prevention and treatment more effective.
Collapse
Affiliation(s)
| | - Dagmar Bilanicova
- Slovak Medical University, Bratislava, Slovakia
- University of Venice, Venice, Italy
| | | | | | - Maria Dusinska
- Slovak Medical University, Bratislava, Slovakia
- NILU - Norwegian Institute for Air Research, Oslo, Norway
| |
Collapse
|
29
|
Ibarrola-Villava M, Hu HH, Guedj M, Fernandez LP, Descamps V, Basset-Seguin N, Bagot M, Benssussan A, Saiag P, Fargnoli MC, Peris K, Aviles JA, Lluch A, Ribas G, Soufir N. MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in southern European populations: results from a meta-analysis. Eur J Cancer 2012; 48:2183-91. [PMID: 22464347 DOI: 10.1016/j.ejca.2012.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/27/2012] [Accepted: 03/03/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND METHODS Seven genetic biomarkers previously associated with melanoma were analysed in a meta-analysis conducted in three South European populations: five red hair colour (RHC) MC1R alleles, one SLC45A2 variant (p.Phe374Leu) and one thermosensitive TYR variant (p.Arg402Gln). The study included 1639 melanoma patients and 1342 control subjects. RESULTS The estimated odds ratio (OR) associated with carrying at least one MC1R RHC variant was 2.18 (95% confidence interval (CI): 1.86-2.55; p-value=1.02×10(-21)), with an additive effect for carrying two RHC variants (OR: 5.02, 95% CI: 2.88-8.94, p-value=3.91×10(-8)). The SLC45A2 variant, p.Phe374Leu, was significantly and strongly protective for melanoma in the three South European populations studied, with an overall OR value of 0.41 (95% CI: 0.33-0.50; p-value=3.50×10(-17)). The association with melanoma of the TYR variant p.Arg402Gln was also statistically significant (OR: 1.50; 95% CI: 1.11-2.04; p-value=0.0089). Adjustment for all clinical potential confounders showed that melanoma risks attributable to MC1R and SLC45A2 variants strongly persisted (OR: 2.01 95% CI: 1.49-2.72 and OR: 0.50, 95% CI: 0.31-0.80, respectively), while the association of TYR p.Arg402Gln was no longer significant. In addition, stratification of clinical melanoma risk factors showed that the risk of melanoma was strong in those individuals who did not have clinical risk factors. CONCLUSION In conclusion, our results show without ambiguity that in South European populations, MC1R RHC and SCL45A2 p.Phe374Leu variants are strong melanoma risk predictors, notably in those individuals who would not be identified as high risk based on their phenotypes or exposures alone. The use of these biomarkers in clinical practice could be promising and warrants further discussion.
Collapse
Affiliation(s)
- Maider Ibarrola-Villava
- Department of Haematology and Medical Oncology, Fundacion Investigacion Hospital Clinico-INCLIVA, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hu HH, Guedj M, Descamps V, Jouary T, Bourillon A, Ezzedine K, Taieb A, Bagot M, Bensussan A, Saiag P, Grandchamp B, Basset-Seguin N, Soufir N. Assessment of tyrosinase variants and skin cancer risk in a large cohort of French subjects. J Dermatol Sci 2011; 64:127-33. [DOI: 10.1016/j.jdermsci.2011.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 07/06/2011] [Accepted: 07/15/2011] [Indexed: 11/26/2022]
|
31
|
Hentosh P, Benjamin T, Hall L, Leap S, Loescher J, Poyner E, Sundin T, Whittle M, Wilkinson S, Peffley DM. Xeroderma pigmentosum variant: complementary molecular approaches to detect a 13 base pair deletion in the DNA polymerase eta gene. Exp Mol Pathol 2011; 91:528-33. [PMID: 21640722 DOI: 10.1016/j.yexmp.2011.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 01/06/2023]
Abstract
Deficiencies of DNA polymerase eta-an enzyme mediating replication past UV-induced DNA damage-predispose individuals to xeroderma pigmentosum variant (XPV) and result in a high incidence of skin cancers. We designed, developed and assessed several complementary molecular approaches to detect a genetically inherited deletion within DNA polymerase eta. RNA was reverse transcribed from XPV fibroblasts and from normal human cells, and standard polymerase chain reaction (PCR) was conducted on the cDNA targeting a region with a 13 base pair deletion within the polymerase eta gene. PCR products were subjected to restriction fragment length polymorphism (RFLP) analysis and cycle DNA sequencing. The deletion was found to eliminate a BsrGI restriction site and affected the number of resultant fragments visualized after gel electrophoresis. Cycle sequencing of polymerase eta-specific amplicons from XPV and normal cells provided a second approach for detecting the mutation. Additionally, the use of a fluorescent nucleic acid dye-EvaGreen-in real-time PCR and melt curve analysis distinguished normal and XPV patient-derived amplicons as well as heteroduplexes that represent heterozygotic carriers without the need for high resolution melt analysis-compatible software. Our approaches are easily adaptable by diagnostic laboratories that screen for or verify genetically inherited disorders and identify carriers of a defective gene.
Collapse
Affiliation(s)
- Patricia Hentosh
- Department of Medical Laboratory and Radiation Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Woodruff RV, Bomar MG, D’Souza S, Zhou P, Walker GC. The unusual UBZ domain of Saccharomyces cerevisiae polymerase η. DNA Repair (Amst) 2010; 9:1130-41. [PMID: 20837403 PMCID: PMC2970701 DOI: 10.1016/j.dnarep.2010.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/19/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
Abstract
Recent research has revealed the presence of ubiquitin-binding domains in the Y family polymerases. The ubiquitin-binding zinc finger (UBZ) domain of human polymerase η is vital for its regulation, localization, and function. Here, we elucidate structural and functional features of the non-canonical UBZ motif of Saccharomyces cerevisiae pol η. Characterization of pol η mutants confirms the importance of the UBZ motif and implies that its function is independent of zinc binding. Intriguingly, we demonstrate that zinc does bind to and affect the structure of the purified UBZ domain, but is not required for its ubiquitin-binding activity. Our finding that this unusual zinc finger is able to interact with ubiquitin even in its apo form adds support to the model that ubiquitin binding is the primary and functionally important activity of the UBZ domain in S. cerevisiae polymerase η. Putative ubiquitin-binding domains, primarily UBZs, are identified in the majority of known pol η homologs. We discuss the implications of our observations for zinc finger structure and pol η regulation.
Collapse
Affiliation(s)
- Rachel V. Woodruff
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martha G. Bomar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Sanjay D’Souza
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Biertümpfel C, Zhao Y, Kondo Y, Ramón-Maiques S, Gregory M, Lee JY, Masutani C, Lehmann AR, Hanaoka F, Yang W. Structure and mechanism of human DNA polymerase eta. Nature 2010; 465:1044-8. [PMID: 20577208 PMCID: PMC2899710 DOI: 10.1038/nature09196] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/21/2010] [Indexed: 12/25/2022]
Abstract
The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Poleta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Poleta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Poleta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Poleta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Poleta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Poleta in replicating through D loop and DNA fragile sites.
Collapse
Affiliation(s)
| | - Ye Zhao
- Laboratory of Molecular Biology, NIDDK, NIH
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Yuji Kondo
- Graduate School of Frontier Biosciences, Osaka University, Japan
| | | | | | | | | | - Alan R. Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Fumio Hanaoka
- Graduate School of Frontier Biosciences, Osaka University, Japan
- Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, NIH
| |
Collapse
|