1
|
Zhang Y, Simko AC, Okoro U, Sibert DJ, Moon JH, Liu B, Matin A. Commitment Complex Splicing Factors in Cancers of the Gastrointestinal Tract-An In Silico Study. Bioinform Biol Insights 2024; 18:11779322241287115. [PMID: 39421280 PMCID: PMC11483837 DOI: 10.1177/11779322241287115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The initial step in pre-mRNA splicing involves formation of a spliceosome commitment complex (CC) or E-complex by factors that serve to bind and mark the exon-intron boundaries that will undergo splicing. The CC component U1 snRNP assembles at the 5'-splice site (ss), whereas SF1, U2AF2, and U2AF1 define the 3'-ss of the intron. A PRP40 protein bridges U1 snRNP with factors at the 3'-ss. To determine how defects in CC components impact cancers, we analyzed human gastrointestinal (GI) cancer patient tissue and clinical data from cBioPortal. cBioPortal datasets were analyzed for CC factor alterations and patient outcomes in GI cancers (bowel, stomach, esophagus, pancreas, and liver). In addition, co-expression datasets were used to determine the splicing targets of the CC. Our analysis found that frequency of genetic changes was low (1%-13%), but when combined with changes in expression levels, there was an overall surprisingly high incidence of CC component (>30%) alterations in GI cancers. Colon cancer patients carrying BRAF driver gene mutations had high incidences of CC alterations (19%-61%), whereas patients with APC, KRAS, or TP53 gene mutations had low (<5%) incidences of CC alterations. Most significantly, patients with mutations in CC genes exhibited a consistent trend of favorable survival rates, indicating that mutations that impair or lower CC component expression favor patient survival. Conversely, patients with high CC expression had worse survival. Pathway analysis indicates that the CC regulates specific metabolic and tumor suppressor pathways. Metabolic pathways involved in cell survival, nutrition, biosynthesis, autophagy, cellular movement (invasion), or immune surveillance pathways correlated with CC factor upregulation, whereas tumor suppressor pathways, which regulate cell proliferation and apoptosis, were inversely correlated with CC factor upregulation. This study demonstrates the versatility of in silico analysis to determine molecular function of large macromolecular complexes such as the spliceosome CC. Furthermore, our analysis indicates that therapeutic lowering of CC levels in colon cancer patients may enhance patient survival.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA
| | | | - Uzondu Okoro
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA
| | - Deja Jamese Sibert
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jin Hyung Moon
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angabin Matin
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
2
|
Zhu M, Luo F, Xu B, Xu J. Research Progress of Neural Invasion in Pancreatic Cancer. Curr Cancer Drug Targets 2024; 24:397-410. [PMID: 37592782 DOI: 10.2174/1568009623666230817105221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Pancreatic cancer is one of the highly malignant gastrointestinal tumors in humans, and patients suffer from cancer pain in the process of cancer. Most patients suffer from severe pain in the later stages of the disease. The latest studies have shown that the main cause of pain in patients with pancreatic cancer is neuroinflammation caused by tumor cells invading nerves and triggering neuropathic pain on this basis, which is believed to be the result of nerve invasion. Peripheral nerve invasion (PNI), defined as the presence of cancer cells along the nerve or in the epineurial, perineural, and endoneurial spaces of the nerve sheath, is a special way for cancer to spread to distant sites. However, due to limited clinical materials, the research on the mechanism of pancreatic cancer nerve invasion has not been carried out in depth. In addition, perineural invasion is considered to be one of the underlying causes of recurrence and metastasis after pancreatectomy and an independent predictor of prognosis. This article systematically reviewed the neural invasion of pancreatic cancer through bioinformatics analysis, clinical manifestations and literature reviews.
Collapse
Affiliation(s)
- Mengying Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P.R. China
| | - Feng Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, P.R. China
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P.R. China
| |
Collapse
|
3
|
Wang C, Amini H, Xu Z, Peralta AA, Yazdi MD, Qiu X, Wei Y, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Baccarelli AA, Schwartz JD. Long-term exposure to ambient fine particulate components and leukocyte epigenome-wide DNA Methylation in older men: the Normative Aging Study. Environ Health 2023; 22:54. [PMID: 37550674 PMCID: PMC10405403 DOI: 10.1186/s12940-023-01007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Epigenome-wide association studies of ambient fine particulate matter (PM2.5) have been reported. However, few have examined PM2.5 components (PMCs) and sources or included repeated measures. The lack of high-resolution exposure measurements is the key limitation. We hypothesized that significant changes in DNA methylation might vary by PMCs and the sources. METHODS We predicted the annual average of 14 PMCs using novel high-resolution exposure models across the contiguous U.S., between 2000-2018. The resolution was 50 m × 50 m in the Greater Boston Area. We also identified PM2.5 sources using positive matrix factorization. We repeatedly collected blood samples and measured leukocyte DNAm with the Illumina HumanMethylation450K BeadChip in the Normative Aging Study. We then used median regression with subject-specific intercepts to estimate the associations between long-term (one-year) exposure to PMCs / PM2.5 sources and DNA methylation at individual cytosine-phosphate-guanine CpG sites. Significant probes were identified by the number of independent degrees of freedom approach, using the number of principal components explaining > 95% of the variation of the DNA methylation data. We also performed regional and pathway analyses to identify significant regions and pathways. RESULTS We included 669 men with 1,178 visits between 2000-2013. The subjects had a mean age of 75 years. The identified probes, regions, and pathways varied by PMCs and their sources. For example, iron was associated with 6 probes and 6 regions, whereas nitrate was associated with 15 probes and 3 regions. The identified pathways from biomass burning, coal burning, and heavy fuel oil combustion sources were associated with cancer, inflammation, and cardiovascular diseases, whereas there were no pathways associated with all traffic. CONCLUSIONS Our findings showed that the effects of PM2.5 on DNAm varied by its PMCs and sources.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Heresh Amini
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Public Health, Faculty of Health and Medical Sciences, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Zongli Xu
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Correlation between DNA Methylation and Cell Proliferation Identifies New Candidate Predictive Markers in Meningioma. Cancers (Basel) 2022; 14:cancers14246227. [PMID: 36551712 PMCID: PMC9776514 DOI: 10.3390/cancers14246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Meningiomas are the most common primary tumors of the central nervous system. Based on the 2021 WHO classification, they are classified into three grades reflecting recurrence risk and aggressiveness. However, the WHO's histopathological criteria defining these grades are somewhat subjective. Together with reliable immunohistochemical proliferation indices, other molecular markers such as those studied with genome-wide epigenetics promise to revamp the current prognostic classification. In this study, 48 meningiomas of various grades were randomly included and explored for DNA methylation with the Infinium MethylationEPIC microarray over 850k CpG sites. We conducted differential and correlative analyses on grade and several proliferation indices and markers, such as mitotic index and Ki-67 or MCM6 immunohistochemistry. We also set up Cox proportional hazard models for extensive associations between CpG methylation and survival. We identified loci highly correlated with cell growth and a targeted methylation signature of regulatory regions persistently associated with proliferation, grade, and survival. Candidate genes under the control of these regions include SMC4, ESRRG, PAX6, DOK7, VAV2, OTX1, and PCDHA-PCDHB-PCDHG, i.e., the protocadherin gene clusters. This study highlights the crucial role played by epigenetic mechanisms in shaping dysregulated cellular proliferation and provides potential biomarkers bearing prognostic and therapeutic value for the clinical management of meningioma.
Collapse
|
5
|
Kowluru A, Gleason NF. Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet β-cell. Biochem Pharmacol 2022; 197:114886. [PMID: 34968495 PMCID: PMC8858860 DOI: 10.1016/j.bcp.2021.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Rho subfamily of G proteins (e.g., Rac1) have been implicated in glucose-stimulated insulin secretion from the pancreatic β-cell. Interestingly, metabolic stress (e.g., chronic exposure to high glucose) results in sustained activation of Rac1 leading to increased oxidative stress, impaired insulin secretion and β-cell dysfunction. Activation-deactivation of Rho G proteins is mediated by three classes of regulatory proteins, namely the guanine nucleotide exchange factors (GEFs), which facilitate the conversion of inactive G proteins to their active conformations; the GTPase-activating proteins (GAPs), which convert the active G proteins to their inactive forms); and the GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from G proteins. Contrary to a large number of GEFs (82 members) and GAPs (69 members), only three members of RhoGDIs (RhoGDIα, RhoGDIβ and RhoGDIγ) are expressed in mammalian cells.Even though relatively smaller in number, the GDIs appear to play essential roles in G protein function (e.g., subcellular targeting) for effector activation and cell regulation. Emerging evidence also suggests that the GDIs are functionally regulated via post-translational modification (e.g., phosphorylation) and by lipid second messengers, lipid kinases and lipid phosphatases. We highlight the underappreciated regulatory roles of RhoGDI-Rho G protein signalome in islet β-cell function in health and metabolic stress. Potential knowledge gaps in the field, and directions for future research for the identification of novel therapeutic targets to loss of functional β-cell mass under the duress of metabolic stress are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
6
|
Zhang Y, Li Y, Chachad D, Liu B, Godavarthi JD, Williams-Villalobo A, Lasisi L, Xiong S, Matin A. In silico analysis of DND1 and its co-expressed genes in human cancers. Biochem Biophys Rep 2022; 29:101206. [PMID: 35059511 PMCID: PMC8760529 DOI: 10.1016/j.bbrep.2022.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/31/2022] Open
Abstract
Dead-End (DND1) is an RNA-binding protein involved in translational regulation. Defects in DND1 gene causes germ cell tumors and sterility in rodents. Experimental studies with human somatic cancer cells indicate that DND1 has anti-proliferative and pro-apoptotic function in some while oncogenic function in other cells. We examined The Cancer Genome Atlas data for gene alterations and gene expression changes in DND1 in a variety of human cancers. We found that DND1 is amplified, deleted or mutated in multiple human cancers. In different cancers, DND1 alteration correlates with increased diagnosis age of patients, shift in tumor spectrum or change of tumor sites and in some cases is significantly associated with worse survival for cancer patients. For 15 cancers, we retrieved expression data of thousands of genes that co-expressed with DND1. We found that these cancers contain different percentage of genes that are positively or negatively co-expressed with DND1. Ingenuity Pathway Analysis was performed to explore the biological implications of these genes. More than 10 canonical pathways were identified and each cancer type exhibits unique pathway profiles. Comparison analysis across all 15 cancer types showed that some cancers exhibit strikingly similar profiles of DND1-correlated signaling pathway activation or suppression. Our data reinforce the notion that the biological role of DND1 is cell-type specific and suggest that DND1 may play opposing role by exerting anti-proliferative effects in some cancer cells while being pro-proliferative in others. Our study provides valuable insights to direct experimental investigations of DND1 function in somatic cancers. DND1 is altered with different frequencies in multiple human cancers. DND1 changes in cancers correlate with clinical outcomes including worse prognosis. DND1 is co-expressed with a large number of genes across multiple cancer types. DND1 correlates with activation or suppression of canonical biological pathways.
Collapse
|
7
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
8
|
Wang C, Cardenas A, Hutchinson JN, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Koutrakis P, Baccarelli AA, Schwartz JD. Short- and intermediate-term exposure to ambient fine particulate elements and leukocyte epigenome-wide DNA methylation in older men: the Normative Aging Study. ENVIRONMENT INTERNATIONAL 2022; 158:106955. [PMID: 34717175 PMCID: PMC8710082 DOI: 10.1016/j.envint.2021.106955] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Several epigenome-wide association studies (EWAS) of ambient particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have been reported. However, EWAS of PM2.5 elements (PEs), reflecting different emission sources, are very limited. OBJECTIVES We performed EWAS of short- and intermediate-term exposure to PM2.5 and 13 PEs. We hypothesized that significant changes in DNAm may vary by PM2.5 mass and its elements. METHODS We repeatedly collected blood samples in the Normative Aging Study and measured leukocyte DNA methylation (DNAm) with the Illumina HumanMethylation450K BeadChip. We collected daily PM2.5 and 13 PEs at a fixed central site. To estimate the associations between each PE and DNAm at individual cytosine-phosphate-guanine (CpG) sites, we incorporated a distributed-lag (0-27 d) term in the setting of median regression with subject-specific intercept and examined cumulative lag associations. We also accounted for selection bias due to loss to follow-up and mortality prior to enrollment. Significantly differentially methylated probes (DMPs) were identified using Bonferroni correction for multiple testing. We further conducted regional and pathway analyses to identify significantly differentially methylated regions (DMRs) and pathways. RESULTS We included 695 men with 1,266 visits between 1999 and 2013. The subjects had a mean age of 75 years. The significant DMPs, DMRs, and pathways varied by to PM2.5 total mass and PEs. For example, PM2.5 total mass was associated with 2,717 DMPs and 10,470 DMRs whereas Pb was associated with 3,173 DMPs and 637 DMRs. The identified pathways by PM2.5 mass were mostly involved in mood disorders, neuroplasticity, immunity, and inflammation, whereas the pathways associated with motor vehicles (BC, Cu, Pb, and Zn) were related with cardiovascular disease and cancer (e.g., "PPARs signaling"). CONCLUSIONS PM2.5 and PE were associated with methylation changes at multiple probes and along multiple pathways, in ways that varied by particle components.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John N Hutchinson
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
9
|
Electrostatic Forces Mediate the Specificity of RHO GTPase-GDI Interactions. Int J Mol Sci 2021; 22:ijms222212493. [PMID: 34830380 PMCID: PMC8622166 DOI: 10.3390/ijms222212493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.
Collapse
|
10
|
Laxmikeshav K, Kumari P, Shankaraiah N. Expedition of sulfur-containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. Med Res Rev 2021; 42:513-575. [PMID: 34453452 DOI: 10.1002/med.21852] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
This review article proposes a comprehensive report of the design strategies engaged in the development of various sulfur-bearing cytotoxic agents. The outcomes of various studies depict that the sulfur heterocyclic framework is a fundamental structure in diverse synthetic analogs representing a myriad scope of therapeutic activities. A number of five-, six- and seven-membered sulfur-containing heterocyclic scaffolds, such as thiazoles, thiadiazoles, thiazolidinediones, thiophenes, thiopyrans, benzothiazoles, benzothiophenes, thienopyrimidines, simple and modified phenothiazines, and thiazepines have been discussed. The subsequent studies of the derivatives unveiled their cytotoxic effects through multiple mechanisms (viz. inhibition of tyrosine kinases, topoisomerase I and II, tubulin, COX, DNA synthesis, and PI3K/Akt and Raf/MEK/ERK signaling pathways), and several others. Thus, our concise illustration explains the design strategy and anticancer potential of these five- and six-membered sulfur-containing heterocyclic molecules along with a brief outline on seven-membered sulfur heterocycles. The thorough assessment of antiproliferative activities with the reference drug allows a proficient assessment of the structure-activity relationships (SARs) of the diversely synthesized molecules of the series.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
11
|
Binding of the Andes Virus Nucleocapsid Protein to RhoGDI Induces the Release and Activation of the Permeability Factor RhoA. J Virol 2021; 95:e0039621. [PMID: 34133221 DOI: 10.1128/jvi.00396-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Andes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs), causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every PMEC is infected; however, the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase RhoA in primary human PMECs, causing VE-cadherin internalization from adherens junctions and PMEC permeability. We found that ANDV N protein failed to bind RhoA but coprecipitates RhoGDI (Rho GDP dissociation inhibitor), the primary RhoA repressor that normally sequesters RhoA in an inactive state. ANDV N protein selectively binds the RhoGDI C terminus (residues 69 to 204) but fails to form ternary complexes with RhoA or inhibit RhoA binding to the RhoGDI N terminus (residues 1 to 69). However, we found that ANDV N protein uniquely inhibits RhoA binding to an S34D phosphomimetic RhoGDI mutant. Hypoxia and vascular endothelial growth factor (VEGF) increase RhoA-induced PMEC permeability by directing protein kinase Cα (PKCα) phosphorylation of S34 on RhoGDI. Collectively, ANDV N protein alone activates RhoA by sequestering and reducing RhoGDI available to suppress RhoA. In response to hypoxia and VEGF-activated PKCα, ANDV N protein additionally directs the release of RhoA from S34-phosphorylated RhoGDI, synergistically activating RhoA and PMEC permeability. These findings reveal a fundamental edemagenic mechanism that permits ANDV to amplify PMEC permeability in hypoxic HPS patients. Our results rationalize therapeutically targeting PKCα and opposing protein kinase A (PKA) pathways that control RhoGDI phosphorylation as a means of resolving ANDV-induced capillary permeability, edema, and HPS. IMPORTANCE HPS-causing hantaviruses infect pulmonary endothelial cells (ECs), causing vascular leakage, pulmonary edema, and a 35% fatal acute respiratory distress syndrome (ARDS). Hantaviruses do not lyse or disrupt the endothelium but dysregulate normal EC barrier functions and increase hypoxia-directed permeability. Our findings reveal a novel underlying mechanism of EC permeability resulting from ANDV N protein binding to RhoGDI, a regulatory protein that normally maintains edemagenic RhoA in an inactive state and inhibits EC permeability. ANDV N sequesters RhoGDI and enhances the release of RhoA from S34-phosphorylated RhoGDI. These findings indicate that ANDV N induces the release of RhoA from PKC-phosphorylated RhoGDI, synergistically enhancing hypoxia-directed RhoA activation and PMEC permeability. Our data suggest inhibiting PKC and activating PKA phosphorylation of RhoGDI as mechanisms of inhibiting ANDV-directed EC permeability and therapeutically restricting edema in HPS patients. These findings may be broadly applicable to other causes of ARDS.
Collapse
|
12
|
Ruggiero C, Lalli E. Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, 660 route des Lucioles-Sophia Antipolis, 06560, Valbonne, France.
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France.
| | - Enzo Lalli
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
- Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles - Sophia Antipolis, 06560, Valbonne, France
| |
Collapse
|
13
|
Effect of the Rho GTPase inhibitor-1 on the entry of dengue serotype 2 virus into EAhy926 cells. Mol Biol Rep 2020; 47:9739-9747. [PMID: 33200314 DOI: 10.1007/s11033-020-05980-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Dengue virus (DV) is the most rapidly spreading arbovirus in the world. Our previous studies indicated that Rac1, a kind of Rho GTPase, was related with the increased vascular permeability in DV infection. However, the molecular mechanisms that regulate the activity of the Rac1 pathway during DV infection is not fully understood yet. Recently, Rho-specific guanine nucleotide dissociated inhibitors (Rho GDIs), as a pivotal upstream regulator of Rho GTPase, attract our attention. To identify the role of GDI-1 in DV2 infection, the expression of GDI in Eahy926 cells was detected. Moreover, a GDI-1 down-regulated cell line was constructed to explore the correlation between GDI-1 and Rac1 and to further evaluate the function of GDI in DV life cycle. Our results indicated that DV2 infection could up-regulate GDI-1 expression, and down-regulation of GDI enhanced the activity of Rac1. In addition, down-regulated GDI-1 significantly inhibited all steps of DV2 replication cycle. GDI-1 plays an important role in DV2 infection via negatively regulating the activation of the Rac1-actin pathway. These results not only contribute to our further understanding of the pathogenesis of severe dengue but also provide further insight into the development of antiviral drugs.
Collapse
|
14
|
Cho HJ, Ryu KJ, Baek KE, Lim J, Kim T, Song CY, Yoo J, Lee HG. Cullin 3/KCTD5 Promotes the Ubiqutination of Rho Guanine Nucleotide Dissociation Inhibitor 1 and Regulates Its Stability. J Microbiol Biotechnol 2020; 30:1488-1494. [PMID: 32876072 PMCID: PMC9728164 DOI: 10.4014/jmb.2007.07033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays important roles in numerous cellular processes, including cell motility, adhesion, and proliferation, by regulating the activity of Rho GTPases. Its expression is altered in various human cancers and is associated with malignant progression. Here, we show that RhoGDI1 interacts with Cullin 3 (CUL3), a scaffold protein for E3 ubiquitin ligase complexes. Ectopic expression of CUL3 increases the ubiquitination of RhoGDI1. Furthermore, potassium channel tetramerization domain containing 5 (KCTD5) also binds to RhoGDI1 and increases its interaction with CUL3. Ectopic expression of KCTD5 increases the ubiquitination of RhoGDI1, whereas its knockdown by RNA interference has the opposite effect. Depletion of KCTD5 or expression of dominant-negative CUL3 (DN-CUL3) enhances the stability of RhoGDI1. Our findings reveal a previously unknown mechanism for controlling RhoGDI1 degradation that involves a CUL3/KCTD5 ubiquitin ligase complex.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ki-Jun Ryu
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jeewon Lim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Taeyoung Kim
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae Yeong Song
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea,J.Y. Phone: +82-55-772-1327 Fax: +82-55-772-2553 E-mail:
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Corresponding authors H.G.L. Phone: +82-42-860-4182 Fax: +82-42-860-4593 E-mail:
| |
Collapse
|
15
|
Dysregulation of Rho GTPases in Human Cancers. Cancers (Basel) 2020; 12:cancers12051179. [PMID: 32392742 PMCID: PMC7281333 DOI: 10.3390/cancers12051179] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023] Open
Abstract
Rho GTPases play central roles in numerous cellular processes, including cell motility, cell polarity, and cell cycle progression, by regulating actin cytoskeletal dynamics and cell adhesion. Dysregulation of Rho GTPase signaling is observed in a broad range of human cancers, and is associated with cancer development and malignant phenotypes, including metastasis and chemoresistance. Rho GTPase activity is precisely controlled by guanine nucleotide exchange factors, GTPase-activating proteins, and guanine nucleotide dissociation inhibitors. Recent evidence demonstrates that it is also regulated by post-translational modifications, such as phosphorylation, ubiquitination, and sumoylation. Here, we review the current knowledge on the role of Rho GTPases, and the precise mechanisms controlling their activity in the regulation of cancer progression. In addition, we discuss targeting strategies for the development of new drugs to improve cancer therapy.
Collapse
|
16
|
Kang N, Matsui TS, Liu S, Fujiwara S, Deguchi S. Comprehensive analysis on the whole Rho‐GAP family reveals that ARHGAP4 suppresses EMT in epithelial cells under negative regulation by Septin9. FASEB J 2020; 34:8326-8340. [DOI: 10.1096/fj.201902750rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Na Kang
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Tsubasa S. Matsui
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Shiyou Liu
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Sachiko Fujiwara
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Shinji Deguchi
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| |
Collapse
|
17
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
18
|
Gray JL, von Delft F, Brennan PE. Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Angew Chem Int Ed Engl 2020; 59:6342-6366. [PMID: 30869179 PMCID: PMC7204875 DOI: 10.1002/anie.201900585] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
The Ras superfamily of small GTPases are guanine-nucleotide-dependent switches essential for numerous cellular processes. Mutations or dysregulation of these proteins are associated with many diseases, but unsuccessful attempts to target the small GTPases directly have resulted in them being classed as "undruggable". The GTP-dependent signaling of these proteins is controlled by their regulators; guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in the Rho and Rab subfamilies, guanine nucleotide dissociation inhibitors (GDIs). This review covers the recent small molecule and biologics strategies to target the small GTPases through their regulators. It seeks to critically re-evaluate recent chemical biology practice, such as the presence of PAINs motifs and the cell-based readout using compounds that are weakly potent or of unknown specificity. It highlights the vast scope of potential approaches for targeting the small GTPases in the future through their regulatory proteins.
Collapse
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Frank von Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006South Africa
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
| |
Collapse
|
19
|
Gray JL, Delft F, Brennan PE. Targeting der kleinen GTPasen über ihre regulatorischen Proteine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201900585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Old Road Campus Oxford OX3 7FZ Großbritannien
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0QX Großbritannien
| | - Frank Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0QX Großbritannien
- Department of BiochemistryUniversity of Johannesburg Auckland Park 2006 Südafrika
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Old Road Campus Oxford OX3 7FZ Großbritannien
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of Oxford Oxford OX3 7FZ Großbritannien
| |
Collapse
|
20
|
Cho HJ, Kim JT, Baek KE, Kim BY, Lee HG. Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells 2019; 8:cells8091037. [PMID: 31492019 PMCID: PMC6769525 DOI: 10.3390/cells8091037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Bo-Yeon Kim
- Anticancer Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
21
|
RHO Family GTPases in the Biology of Lymphoma. Cells 2019; 8:cells8070646. [PMID: 31248017 PMCID: PMC6678807 DOI: 10.3390/cells8070646] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
RHO GTPases are a class of small molecules involved in the regulation of several cellular processes that belong to the RAS GTPase superfamily. The RHO family of GTPases includes several members that are further divided into two different groups: typical and atypical. Both typical and atypical RHO GTPases are critical transducers of intracellular signaling and have been linked to human cancer. Significantly, both gain-of-function and loss-of-function mutations have been described in human tumors with contradicting roles depending on the cell context. The RAS family of GTPases that also belong to the RAS GTPase superfamily like the RHO GTPases, includes arguably the most frequently mutated genes in human cancers (K-RAS, N-RAS, and H-RAS) but has been extensively described elsewhere. This review focuses on the role of RHO family GTPases in human lymphoma initiation and progression.
Collapse
|
22
|
Xu J, Hua X, Jin H, Zhu J, Li Y, Li J, Huang C. NFκB2 p52 stabilizes rhogdiβ mRNA by inhibiting AUF1 protein degradation via a miR-145/Sp1/USP8-dependent axis. Mol Carcinog 2019; 58:777-793. [PMID: 30604907 DOI: 10.1002/mc.22970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Although overexpression of the non-canonical NFκB subunit p52 has been observed in several tumors, the function and mechanism of p52 in bladder cancer (BC) are less well understood. Here, we aimed at understanding the role and mechanism underlying p52 regulation of BC invasion. Human p52 was stably knockdown with shRNA targeting p52 in two bladder cancer cell lines (T24 and UMUC3). Two constitutively expressing constructs, p52 and p100, were stably transfected in to T24 or UMUC3, respectively. The stable transfectants were used to determine function and mechanisms responsible for p52 regulation of BC invasion. We demonstrate that p52 mediates human BC invasion. Knockdown of p52 impaired bladder cancer invasion by reduction of rhogdiβ mRNA stability and expression. Positively regulation of rhogdiβ mRNA stability was mediated by p52 promoting AUF1 protein degradation, consequently resulting in reduction of AUF1 binding to rhogdiβ mRNA. Further studies indicated that AUF1 protein degradation was mediated by upregulating USP8 transcription, which was modulated by its negative regulatory transcription factor Sp1. Moreover, we found that p52 upregulated miR-145, which directly bound to the 3'-UTR of sp1 mRNA, leading to downregulation of Sp1 protein translation. Our results reveal a comprehensive pathway that p52 acts as a positive regulator of BC invasion by initiating a novel miR-145/Sp1/USP8/AUF1/RhoGDIβ axis. These findings provide insight into the understanding of p52 in the pathology of human BC invasion and progression, which may be useful information in the development of preventive and therapeutic approaches for using p52 as a potential target.
Collapse
Affiliation(s)
- Jiawei Xu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Chuangshu Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| |
Collapse
|
23
|
Zhu J, Tian Z, Li Y, Hua X, Zhang D, Li J, Jin H, Xu J, Chen W, Niu B, Wu X, Comincini S, Huang H, Huang C. ATG7 Promotes Bladder Cancer Invasion via Autophagy-Mediated Increased ARHGDIB mRNA Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801927. [PMID: 31016112 PMCID: PMC6468970 DOI: 10.1002/advs.201801927] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Since invasive bladder cancer (BC) can progress to life threatening metastases, understanding the molecular mechanisms underlying BC invasion is crucial for potentially decreasing the mortality of this disease. Herein, it is discovered that autophagy-related gene 7 (ATG7) is remarkably overexpressed in human invasive BC tissues. The knockdown of ATG7 in human BC cells dramatically inhibits cancer cell invasion, revealing that ATG7 is a key player in regulating BC invasion. Mechanistic studies indicate that MIR190A is responsible for ATG7 mRNA stability and protein overexpression by directly binding to ATG7 mRNA 3'-UTR. Furthermore, ATG7-mediated autophagy promotes HNRNPD (ARE/poly(U)-binding/degradation factor 1) protein degradation, and in turn reduces HNRNPD interaction with ARHGDIB mRNA, resulting in the elevation of ARHGDIB mRNA stability, and subsequently leading to BC cell invasion. The identification of the MIR190A/ATG7 autophagic mechanism regulation of HNRNPD/ARHGDIB expression provides an important insight into understanding the nature of BC invasion and suggests that autophagy may represent a potential therapeutic strategy for the treatment of human BC patients.
Collapse
Affiliation(s)
- Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model OrganismsKey Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model OrganismsKey Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Yang Li
- Department of Environmental MedicineNew York University School of MedicineNew YorkNY10010USA
| | - Xiaohui Hua
- Department of Environmental MedicineNew York University School of MedicineNew YorkNY10010USA
| | - Dongyun Zhang
- Department of Environmental MedicineNew York University School of MedicineNew YorkNY10010USA
| | - Jingxia Li
- Department of Environmental MedicineNew York University School of MedicineNew YorkNY10010USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model OrganismsKey Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiheng Xu
- Department of Environmental MedicineNew York University School of MedicineNew YorkNY10010USA
| | - Wei Chen
- Department of High‐Performance Computing Technology and Application DevelopmentComputer Network Information CenterChinese Academy of SciencesBeijing100190China
| | - Beifang Niu
- Department of High‐Performance Computing Technology and Application DevelopmentComputer Network Information CenterChinese Academy of SciencesBeijing100190China
| | - Xue‐Ru Wu
- Departments of Urology and PathologyNew York University School of MedicineNew YorkNY10016USA
- VA Medical Center in ManhattanNew YorkNY10010USA
| | - Sergio Comincini
- Department of Biology and BiotechnologyUniversity of Pavia27100PaviaItaly
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model OrganismsKey Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Chuanshu Huang
- Department of Environmental MedicineNew York University School of MedicineNew YorkNY10010USA
| |
Collapse
|
24
|
Zhu GF, Xu YW, Li J, Niu HL, Ma WX, Xu J, Zhou PR, Liu X, Ye DL, Liu XR, Yan T, Zhai WK, Xu ZJ, Liu C, Wang L, Wang H, Luo JM, Liu L, Li XQ, Guo S, Jiang HP, Shen P, Lin HK, Yu DH, Ding YQ, Zhang QL. Mir20a/106a-WTX axis regulates RhoGDIa/CDC42 signaling and colon cancer progression. Nat Commun 2019; 10:112. [PMID: 30631060 PMCID: PMC6328557 DOI: 10.1038/s41467-018-07998-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Wilms tumor gene on the X chromosome (WTX) is a putative tumor suppressor gene in Wilms tumor, but its expression and functions in other tumors are unclear. Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in women and the second leading cause in men in the United States. We demonstrated that WTX frequently lost in CRC which was highly correlated with cell proliferation, tumor invasion and metastasis. Mechanistically, WTX loss disrupts the interaction between RhoGDIα and CDC42 by losing of the binding with RhoGDIα and triggers the activation of CDC42 and its downstream cascades, which promotes CRC development and liver metastasis. The aberrant upregulation of miR-20a/miR-106a were identified as the reason of WTX loss in CRC both in vivo and in vitro. These study defined the mechanism how miR-20a/miR-106a-mediated WTX loss regulates CRC progression and metastasis, and provided a potential therapeutic target for preventing CRC progression.
Collapse
Affiliation(s)
- Gui-Fang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Yang-Wei Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Jian Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Hui-Lin Niu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Wen-Xia Ma
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Pei-Rong Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Xia Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Dan-Li Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Xiao-Rong Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Tao Yan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Wei-Ke Zhai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Zhi-Jun Xu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Chun Liu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Lei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Hao Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Jia-Mao Luo
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Xuan-Qi Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, GuangDong, 510630, China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, GuangDong, 510630, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Hui-Kuan Lin
- Cancer Biology Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Di-Hua Yu
- Department of Molecular & Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China.
| | - Qing-Ling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China.
| |
Collapse
|
25
|
Activated Rho GTPases in Cancer-The Beginning of a New Paradigm. Int J Mol Sci 2018; 19:ijms19123949. [PMID: 30544828 PMCID: PMC6321241 DOI: 10.3390/ijms19123949] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
Involvement of Rho GTPases in cancer has been a matter of debate since the identification of the first members of this branch of the Ras superfamily of small GTPases. The Rho GTPases were ascribed important roles in the cell, although these were restricted to regulation of cytoskeletal dynamics, cell morphogenesis, and cell locomotion, with initially no clear indications of direct involvement in cancer progression. This paradigm has been challenged by numerous observations that Rho-regulated pathways are often dysregulated in cancers. More recently, identification of point mutants in the Rho GTPases Rac1, RhoA, and Cdc42 in human tumors has finally given rise to a new paradigm, and we can now state with confidence that Rho GTPases serve as oncogenes in several human cancers. This article provides an exposé of current knowledge of the roles of activated Rho GTPases in cancers.
Collapse
|
26
|
He J, Cai L, Chen Y, He Y, Wang M, Tang J, Guan H, Wang J, Peng X. Antitumor and radiosensitizing effects of SKLB-163, a novel benzothiazole-2-thiol derivative, on nasopharyngeal carcinoma by affecting the RhoGDI/JNK-1 signaling pathway. Radiother Oncol 2018; 129:30-37. [PMID: 29519627 DOI: 10.1016/j.radonc.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/27/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE SKLB-163 is a novel benzothiazole-2-thiol derivative with antitumor activities. This study investigated the effects of SKLB-163 on nasopharyngeal carcinoma (NPC) and its mechanisms. MATERIALS AND METHODS Rho GDP-dissociation inhibitor (RhoGDI) expression was examined in NPC cell lines by western blot. Effects of SKLB-163 on proliferation, migration and radiosensitivity were assessed by MTT, wound healing and colony formation assays in vitro. Anti-tumor and anti-metastatic effects, and radiosensitizing effects of SKLB-163 were evaluated in a NPC lung metastatic nude mouse model and a subcutaneous xenograft mouse model. Effects of SKLB-163 on proliferation and apoptosis were assessed by PCNA immunohistochemistry and TUNEL assay in vivo. Key molecules in RhoGDI/c-Jun N-terminal kinases-1 (JNK-1) pathway were examined by western blot. RESULTS RhoGDI was up-regulated in NPC cell lines. SKLB-163 inhibited proliferation and migration, and increased radiosensitivity of NPC cells. SKLB-163 inhibited tumor growth and metastases, and sensitized tumor to irradiation. The radiosensitizing effects were correlated with induction of apoptosis and suppression of proliferation. The molecular mechanism was the down-regulation of RhoGDI and activation of JNK-1 signaling, and the subsequent activation of caspase-3 and the decrease in phosphorylated AKT. CONCLUSIONS SKLB-163 shows strong anti-tumor activities against NPC and sensitizes NPC to irradiation by affecting the RhoGDI/JNK-1 pathway.
Collapse
Affiliation(s)
- Jinlan He
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Lei Cai
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ye Chen
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan He
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Tang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Hui Guan
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jingjing Wang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xingchen Peng
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
27
|
Xu DD, Xu CB, Lam HM, Wong FL, Leung AWN, Leong MML, Cho WCS, Hoeven R, Lv Q, Rong R. Proteomic analysis reveals that pheophorbide a-mediated photodynamic treatment inhibits prostate cancer growth by hampering GDP-GTP exchange of ras-family proteins. Photodiagnosis Photodyn Ther 2018; 23:35-39. [PMID: 29800714 DOI: 10.1016/j.pdpdt.2018.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND We previously reported that pheophorbide a (PhA), excited by 630 nm light, significantly inhibited the growth of prostate cancer cells. In this study, we employed whole-cell proteomics to investigate photodynamic treatment (PDT)-related proteins. METHODS Two-dimensional gel electrophoresis (2-DE) coupled with tandem mass spectrometry was employed to reveal the proteins involved in PhA-mediated PDT in LNCaP and PC-3 prostate cancer cells. RESULTS After PhA-PDT treatment, decreased expression of translationally-controlled tumor protein (TCTP) was found in both PC-3 and LNCaP whole-cell proteomes. In contrast, human rab GDP dissociation inhibitor (GDI) in LNCaP cells and ras-related homologs GDI in PC-3 cells were up-regulated. CONCLUSIONS GDP-GTP exchange is an underlying target of photodynamic treatment in prostate cancer cells.
Collapse
Affiliation(s)
- Dan Dan Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Chong Bing Xu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Hon Ming Lam
- School of Life Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Fuk-Ling Wong
- School of Life Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | | | - Merrin Man Long Leong
- Department of Clinical Oncology, University of Hong Kong, Hong Kong Special Administrative Region
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Robin Hoeven
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Qingtao Lv
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
28
|
Ćetković H, Harcet M, Roller M, Bosnar MH. A survey of metastasis suppressors in Metazoa. J Transl Med 2018; 98:554-570. [PMID: 29453400 DOI: 10.1038/s41374-018-0024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 01/29/2023] Open
Abstract
Metastasis suppressors are genes/proteins involved in regulation of one or more steps of the metastatic cascade while having little or no effect on tumor growth. The list of putative metastasis suppressors is constantly increasing although thorough understanding of their biochemical mechanism(s) and evolutionary history is still lacking. Little is known about tumor-related genes in invertebrates, especially non-bilaterians and unicellular relatives of animals. However, in the last few years we have been witnessing a growing interest in this subject since it has been shown that many disease-related genes are already present in simple non-bilateral animals and even in their unicellular relatives. Studying human diseases using simpler organisms that may better represent the ancestral conditions in which the specific disease-related genes appeared could provide better understanding of how those genes function. This review represents a compilation of published literature and our bioinformatics analysis to gain a general insight into the evolutionary history of metastasis-suppressor genes in animals (Metazoa). Our survey suggests that metastasis-suppressor genes emerged in three different periods in the evolution of Metazoa: before the origin of metazoans, with the emergence of first animals and at the origin of vertebrates.
Collapse
Affiliation(s)
- Helena Ćetković
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Matija Harcet
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Maša Roller
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb, Croatia
| | - Maja Herak Bosnar
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| |
Collapse
|
29
|
Cheliensisin A (Chel A) induces apoptosis in human bladder cancer cells by promoting PHLPP2 protein degradation. Oncotarget 2018; 7:66689-66699. [PMID: 27556506 PMCID: PMC5341830 DOI: 10.18632/oncotarget.11440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022] Open
Abstract
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer.
Collapse
|
30
|
Khalyfa A, Almendros I, Gileles-Hillel A, Akbarpour M, Trzepizur W, Mokhlesi B, Huang L, Andrade J, Farré R, Gozal D. Circulating exosomes potentiate tumor malignant properties in a mouse model of chronic sleep fragmentation. Oncotarget 2018; 7:54676-54690. [PMID: 27419627 PMCID: PMC5342372 DOI: 10.18632/oncotarget.10578] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
Background Chronic sleep fragmentation (SF) increases cancer aggressiveness in mice. Exosomes exhibit pleiotropic biological functions, including immune regulatory functions, antigen presentation, intracellular communication and inter-cellular transfer of RNA and proteins. We hypothesized that SF-induced alterations in biosynthesis and cargo of plasma exosomes may affect tumor cell properties. Results SF-derived exosomes increased tumor cell proliferation (~13%), migration (~2.3-fold) and extravasation (~10%) when compared to exosomes from SC-exposed mice. Similarly, Pre exosomes from OSA patients significantly enhanced proliferation and migration of human adenocarcinoma cells compared to Post. SF-exosomal cargo revealed 3 discrete differentially expressed miRNAs, and exploration of potential mRNA targets in TC1 tumor cells uncovered 132 differentially expressed genes that encode for multiple cancer-related pathways. Methods Plasma-derived exosomes from C57/B6 mice exposed to 6 wks of SF or sleep control (SC), and from adult human patients with obstructive sleep apnea (OSA) before (Pre) and after adherent treatment for 6 wks (Post) were co-cultured with mouse lung TC1 or human adenocarcinoma tumor cell lines, respectively. Proliferation, migration, invasion, endothelial barrier integrity and extravasation assays of tumor cells were performed. Plasma mouse exosomal miRNAs were profiled with arrays, and transcriptomic assessments of TC1 cells exposed to SF or SC exosomes were conducted to identify gene targets. Conclusions Chronic SF induces alterations in exosomal miRNA cargo that alter the biological properties of TC1 lung tumor cells to enhance their proliferative, migratory and extravasation properties, and similar findings occur in OSA patients, in whom SF is a constitutive component of their sleep disorder. Thus, exosomes could participate, at least in part, in the adverse cancer outcomes observed in OSA.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Isaac Almendros
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.,Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-Institut Investigacions Biomediques August Pi Sunyer-CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Alex Gileles-Hillel
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Mahzad Akbarpour
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Wojciech Trzepizur
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Babak Mokhlesi
- Department of Medicine, Section of Pulmonary and Critical Care, Sleep Disorders Center, The University of Chicago, Chicago, IL, USA
| | - Lei Huang
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-Institut Investigacions Biomediques August Pi Sunyer-CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Zhu Y, Gong Y, Li A, Chen M, Kang D, Liu J, Yuan Y. Differential Proteomic Analysis Reveals Protein Networks and Pathways that May Contribute to Helicobacter pylori FKBP-Type PPIase-Associated Gastric Diseases. Proteomics Clin Appl 2017; 12:e1700127. [PMID: 29148176 DOI: 10.1002/prca.201700127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/21/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Though Helicobacter pylori (H. pylori) has been classified as class I carcinogen, key virulence factor generated by H. pylori that causes gastric cancer remains to be fully determined. Recently, we identified a gastric cancer-associated H. pylori gene, peptidylprolyl isomerase-FK506 binding protein (PPIase-FKBP), and showed that PPIase-FKBP was capable of inducing oncogenic transformation of gastric epithelial cells. But its mechanism was unclear. EXPERIMENTAL DESIGN We carried out a comparative proteomic analysis of human gastric epithelial cells that either express PPIase-FKBP or green fluorescent protein using 2-DE and then MALDI-TOF-MS/MS. RESULTS Our results identified 28 differentially expressed proteins induced by PPIase-FKBP. These proteins participate in some cellular biological processes, such as cell proliferation, cell apoptosis and DNA replication, mRNA splicing, and protein biosynthesis. Ingenuity Pathway Analysis categorized the 28 proteins into two molecular interaction networks, involved primarily in cancer and gastrointestinal diseases. CONCLUSIONS AND CLINICAL RELEVANCE Our results provided insight on the protein interaction networks and signaling pathways that may contribute to PPIase-FKBP-associated gastric diseases and may lead to a better understanding of the mechanisms indicating the oncogenic effects of H. pylori PPIase-FKBP.
Collapse
Affiliation(s)
- Yanmei Zhu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.,Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China.,West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| | - Aodi Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| | - Moye Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| | - Dan Kang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| | - Jun Liu
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| |
Collapse
|
32
|
Role of Rho-specific guanine nucleotide dissociation inhibitor α regulation in cell migration. Acta Histochem 2017; 119:183-189. [PMID: 28187905 DOI: 10.1016/j.acthis.2017.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 01/30/2023]
Abstract
Cell migration is a vital process for many physiological and pathological events, and Rho GTPases have been confirmed as key factors in its regulation. The most studied negative regulator of Rho GTPases, Rho-specific guanine nucleotide dissociation inhibitor α (RhoGDIα), mediates cell migration through altering the overall expression and spatiotemporal activation of Rho GTPases. The RhoGDIα-Rho GTPases dissociation can be mediated by signal pathways targeting RhoGDIα directly. This review summarizes the research about the regulation of RhoGDIα during cell migration, which can be in a Rho GTPases association independent manner. Non-kinase proteins regulation, phosphorylation, SUMOylation and extracellular environmental factors are classified to discuss their direct signal regulations on RhoGDIα, which provide varied signal pathways for selective activation of Rho GTPases in cell migration.
Collapse
|
33
|
Valdés A, García-Cañas V, Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, Artemenko KA, Micol V, Bergquist J, Cifuentes A. Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment. J Chromatogr A 2017; 1499:90-100. [PMID: 28389096 DOI: 10.1016/j.chroma.2017.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022]
Abstract
The antiproliferative activity of Rosemary (Rosmarinus officinalis) has been widely studied in different in vitro and in vivo models, which demonstrate that rosemary extracts inhibit the cellular proliferation due to its ability to interact with a wide spectrum of molecular targets. However, a comprehensive proteomics study in vivo has not been carried out yet. In the present work, the effects of rosemary extract on xenograft tumor growth has been studied and, for the first time, a shotgun proteomic analysis based on nano-LC-MS/MS together with stable isotope dimethyl labeling (DML) has been applied to investigate the global protein changes in vivo. Our results show that the daily administration of a polyphenol-enriched rosemary extract reduces the progression of colorectal cancer in vivo with the subsequent deregulation of 74 proteins. The bioinformatic analysis of these proteins indicates that the rosemary extract mainly alters the RNA Post-Transcriptional Modification, the Protein Synthesis and the Amino Acid Metabolism functions and suggests the inactivation of the oncogene MYC. These results demonstrate the high utility of the proposed analytical methodology to determine, simultaneously, the expression levels of a large number of protein biomarkers and to generate new hypothesis about the molecular mechanisms of this extract in vivo.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Virginia García-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Verónica Ruiz-Torres
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Konstantin A Artemenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Vicente Micol
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain; CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
34
|
Ota T, Jiang YS, Fujiwara M, Tatsuka M. Apoptosis‑independent cleavage of RhoGDIβ at Asp19 during PMA‑stimulated differentiation of THP‑1 cells to macrophages. Mol Med Rep 2017; 15:1722-1726. [PMID: 28260067 PMCID: PMC5365007 DOI: 10.3892/mmr.2017.6199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
Rho GDP-dissociation inhibitor β (RhoGDIβ), a regulator of the Rho family of proteins, is expressed abundantly in the hematopoietic cell lineage. During apoptosis of hematopoietic cells, RhoGDIβ is cleaved by caspase-3 at Asp19 and this cleaved form (Δ19-RhoGDIβ) has been implicated in the apoptotic pathway. To clarify the role of RhoGDIβ in hematopoietic cells, the present study performed immunoblotting and immunofluorescence staining to examine the expression of RhoGDIβ and ∆19-RhoGDIβ during phorbol 12-myristate 13-acetate (PMA)-stimulated differentiation of human THP-1 monocytic cells to macrophages. During differentiation of the THP-1 cells to macrophages, the expression of RhoGDIβ remained stable; however, the expression of Δ19-RhoGDIβ increased, particularly in well-spreading, non-apoptotic cells, which differentiated into macrophages. These results suggested that Δ19-RhoGDIβ has an apoptosis-independent role in the PMA-induced differentiation of THP-1 cells to macrophages.
Collapse
Affiliation(s)
- Takahide Ota
- Division of Tumor Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920‑02, Japan
| | - Yong-Sheng Jiang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mamoru Fujiwara
- Department of Life Sciences, Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima 727‑0023, Japan
| | - Masaaki Tatsuka
- Department of Life Sciences, Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima 727‑0023, Japan
| |
Collapse
|
35
|
Jiang G, Huang C, Li J, Huang H, Jin H, Zhu J, Wu XR, Huang C. Role of STAT3 and FOXO1 in the Divergent Therapeutic Responses of Non-metastatic and Metastatic Bladder Cancer Cells to miR-145. Mol Cancer Ther 2017; 16:924-935. [PMID: 28223425 DOI: 10.1158/1535-7163.mct-16-0631] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Although miR-145 is the most frequently downregulated miRNA in bladder cancer, its exact stage association and downstream effector have not been defined. Here, we found that miR-145 was upregulated in human patients with bladder cancer with lymph node metastasis and in metastatic T24T cell line. Forced expression of miR-145 promoted anchorage-independent growth of T24T cells accompanied by the downregulation of forkhead box class O1 (FOXO1). In contrast, in non-metastatic T24 cells, miR-145 overexpression inhibited cell growth with upregulation of FOXO1, and the knockdown of FOXO1 abolished the miR-145-mediated inhibition of cell growth. Mechanistic studies revealed that miR-145 directly bound to and attenuated 3'-untranslated region (UTR) activity of foxo1 mRNA in both T24 and T24T cells. Interestingly, miR-145 suppressed STAT3 phosphorylation at Tyr705 and increased foxo1 promoter transcriptional activity in T24 cells, but not in T24T cells, suggesting a role of STAT3 in the divergent responses to miR-145. Supporting this was our finding that STAT3 knockdown mimicked miR-145-mediated upregulation of FOXO1 in T24T cells and inhibition of anchorage-independent growth. Consistently, ectopic expression of miR-145 promoted tumor formation of xenograft T24T cells, whereas such promoting effect became inhibitory due to specific knockdown of STAT3. Together, our findings demonstrate the stage-specific association and function of miR-145 in bladder cancers and provide novel insights into the therapeutic targeting of miR-145. Mol Cancer Ther; 16(5); 924-35. ©2017 AACR.
Collapse
Affiliation(s)
- Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.,Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.,Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York; Veterans Affairs Medical Center in Manhattan, New York, New York
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
36
|
Liu J, Gao J, Li F, Ma R, Wei Q, Wang A, Wu J, Ruan K. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits. Biochim Biophys Acta Gen Subj 2017; 1861:3061-3070. [DOI: 10.1016/j.bbagen.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022]
|
37
|
Zandvakili I, Lin Y, Morris JC, Zheng Y. Rho GTPases: Anti- or pro-neoplastic targets? Oncogene 2016; 36:3213-3222. [PMID: 27991930 PMCID: PMC5464989 DOI: 10.1038/onc.2016.473] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Rho GTPases are critical signal transducers of multiple pathways. They have been proposed to be useful anti-neoplastic targets for over two decades, especially in Ras-driven cancers. Until recently, however, few in vivo studies had been carried out to test this premise. Several recent mouse model studies have verified that Rac1, RhoA, and some of their effector proteins such as PAK and ROCK, are likely anti-cancer targets for treating K-Ras-driven tumors. Other seemingly contradictory studies have suggested that at least in certain instances inhibition of individual Rho GTPases may paradoxically result in pro-neoplastic effects. Significantly, both RhoA GTPase gain- and loss-of-function mutations have been discovered in primary leukemia/lymphoma and gastric cancer by human cancer genome sequencing efforts, suggesting both pro- and anti-neoplastic roles. In this review we summarize and integrate these unexpected findings and discuss the mechanistic implications in the design and application of Rho GTPase targeting strategies in future cancer therapies.
Collapse
Affiliation(s)
- I Zandvakili
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Y Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - J C Morris
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Y Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
38
|
Lu W, Wang X, Liu J, He Y, Liang Z, Xia Z, Cai Y, Zhou L, Zhu H, Liang S. Downregulation of ARHGDIA contributes to human glioma progression through activation of Rho GTPase signaling pathway. Tumour Biol 2016; 37:15783–15793. [PMID: 27726098 PMCID: PMC5250662 DOI: 10.1007/s13277-016-5374-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/09/2016] [Indexed: 02/05/2023] Open
Abstract
The protein ARHGDIA has been found to play distinct roles in cancer progression for several tumors. However, it remains elusive whether and how ARHGDIA plays functions in human glioma. In this study, we discovered that ARHGDIA is much downregulated in human glioma; meanwhile, its expression negatively correlates with glioma malignancy and positively relates to prognosis of glioma patients. It has independent predictive value of ARHGDIA expression level for overall survival of human glioma patients. Glioma patients with ARHGDIA-positive expression have a longer overall survival time than ARHGDIA-negative patients. Knockdown of ARHGDIA promotes cell proliferation, cell cycle progression, and cell migration due to the activation of Rho GTPases (Rac1, Cdc42, and RhoA) and Akt phosphorylation, whereas overexpression of ARHGDIA suppresses cell growth, cell cycle progression, and cell migration. ARHGDIA is a potential prognostic marker and therapeutic target for human glioma.
Collapse
Affiliation(s)
- Weiliang Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People’s South Road, Chengdu, 610041 China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People’s South Road, Chengdu, 610041 China
| | - Jingjing Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People’s South Road, Chengdu, 610041 China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People’s South Road, Chengdu, 610041 China
| | - Ziwei Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People’s South Road, Chengdu, 610041 China
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People’s South Road, Chengdu, 610041 China
| | - Ying Cai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People’s South Road, Chengdu, 610041 China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100034 China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People’s South Road, Chengdu, 610041 China
| |
Collapse
|
39
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
40
|
Bozza WP, Zhang Y, Hallett K, Rivera Rosado LA, Zhang B. RhoGDI deficiency induces constitutive activation of Rho GTPases and COX-2 pathways in association with breast cancer progression. Oncotarget 2016; 6:32723-36. [PMID: 26416248 PMCID: PMC4741725 DOI: 10.18632/oncotarget.5416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Rho GDP Dissociation Inhibitor (RhoGDI) is a key regulator of Rho GTPases. Here we report that loss of RhoGDI significantly accelerated xenograft tumor growth of MDA-MB-231 cells in animal models. At the molecular level, RhoGDI depletion resulted in constitutive activation of Rho GTPases, including RhoA, Cdc42, and Rac1. This was accompanied by Rho GTPase translocation from the cytosol to membrane compartments. Notably, COX-2 protein levels, mRNA expression, and biological activity were markedly increased in RhoGDI-deficient cells. The upregulated expression of COX-2 was directly associated with increased Rho GTPase activity. Further, we assessed the expression level of RhoGDI protein in breast tumor specimens (n = 165) by immunohistochemistry. We found that RhoGDI expression is higher in the early stages of breast cancer followed by a significant decrease in malignant tumors and metastatic lesions (p < 0.01). These data suggest that downregulation of RhoGDI could be a critical mechanism of breast tumor development, which may involve the hyperactivation of Rho GTPases and upregulation of COX-2 activity. Additional studies are warranted to evaluate the therapeutic potential of inhibiting Rho GTPases and COX-2 for treating breast cancers.
Collapse
Affiliation(s)
- William P Bozza
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yaqin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kory Hallett
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Leslie A Rivera Rosado
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.,United States Public Health Service Commissioned Corps, Rockville, MD 20852, USA
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
41
|
Song W, Li W, Li L, Zhang S, Yan X, Wen X, Zhang X, Tian H, Li A, Hu JF, Cui J. Friend leukemia virus integration 1 activates the Rho GTPase pathway and is associated with metastasis in breast cancer. Oncotarget 2016; 6:23764-75. [PMID: 26156017 PMCID: PMC4695150 DOI: 10.18632/oncotarget.4350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/11/2015] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most prevalent malignant disease in women worldwide. In patients with breast cancer, metastasis to distant sites directly determines the survival outcome. However, the molecular mechanism underlying metastasis in breast cancer remains to be defined. In this report, we found that Friend leukemia virus integration 1 (FLI1) proto-oncogene was differentially expressed between the aggressive MDA-MB231 and the non-aggressive MCF-7 breast cancer cells. Congruently, immunohistochemical staining of clinical samples revealed that FLI1 was overexpressed in breast cancers as compared with the adjacent tissues. The abundance of FLI1 protein was strongly correlated with the advanced stage, poor differentiation, and lymph node metastasis in breast cancer patients. Knockdown of FLI1 with small interfering RNAs significantly attenuated the potential of migration and invasion in highly metastatic human breast cancer cells. FLI1 oncoprotein activated the Rho GTPase pathway that is known to play a role in tumor metastasis. This study for the first time identifies FLI1 as a clinically and functionally important target gene of metastasis, providing a rationale for developing FLI1 inhibitors in the treatment of breast cancer.
Collapse
Affiliation(s)
- Wei Song
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Lingyu Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Shilin Zhang
- Cancer Center, the First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Xu Yan
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Xue Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Xiaoying Zhang
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Huimin Tian
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Ailing Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ji-Fan Hu
- Cancer Center, the First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Alterations of proteins in MDCK cells during acute potassium deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:683-696. [DOI: 10.1016/j.bbapap.2016.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 11/18/2022]
|
43
|
Jin H, Yu Y, Hu Y, Lu C, Li J, Gu J, Zhang L, Huang H, Zhang D, Wu XR, Gao J, Huang C. Divergent behaviors and underlying mechanisms of cell migration and invasion in non-metastatic T24 and its metastatic derivative T24T bladder cancer cell lines. Oncotarget 2016; 6:522-36. [PMID: 25402510 PMCID: PMC4381612 DOI: 10.18632/oncotarget.2680] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/04/2014] [Indexed: 01/24/2023] Open
Abstract
Previous studies on cancer cell invasion were primarily focused on its migration because these two events were often considered biologically equivalent. Here we found that T24T cells exhibited higher invasion but lower migration abilities than T24 cells. Expression of Rho-GDPases was much lower and expression of SOD2 was much higher in T24T cells than those in T24 cells. Indeed, knockdown of SOD2 in T24T cells can reverse the cell migration but without affecting cell invasion. We also found that SOD2 inhibited the JNK/c-Jun cascade, and the inhibition of c-Jun activation by ectopic expression of TAM67 impaired Rho-GDPases expression and cell migration in T24T shSOD2 cells. Further, we found that Sp1 can upregulate SOD2 transcription in T24T cells. Importantly, matrix metalloproteinase-2 (MMP-2) was overexpressed in T24T and participated in increasing its invasion, and MMP-2 overexpression was mediated by increasing nuclear transport of nucleolin, which enhanced mmp-2 mRNA stability. Taken together, our study unravels an inverse relationship between cell migration and invasion in human bladder cancer T24T cells and suggests a novel mechanism underlying the divergent roles of SOD2 and MMP-2 in regulating metastatic behaviors of human bladder T24T in cell migration and invasion.
Collapse
Affiliation(s)
- Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Young Hu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Chris Lu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liping Zhang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, USA. Veterans Affairs New York Harbor Healthcare System Manhattan Campus, New York, NY, USA
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
44
|
Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623121. [PMID: 26613085 PMCID: PMC4647023 DOI: 10.1155/2015/623121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions.
Collapse
|
45
|
Abstract
INTRODUCTION Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression, and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed "undruggable" because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. AREAS COVERED This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, that is, RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases, and posttranslational modifications at a molecular level. EXPERT OPINION To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small-molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| |
Collapse
|
46
|
Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis. J Proteomics 2015; 126:54-67. [PMID: 26054784 DOI: 10.1016/j.jprot.2015.05.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/18/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023]
Abstract
Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P<0.05, fold change>1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers.
Collapse
|
47
|
Laukkanen MO, Cammarota F, Esposito T, Salvatore M, Castellone MD. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI. PLoS One 2015; 10:e0121441. [PMID: 25751262 PMCID: PMC4353720 DOI: 10.1371/journal.pone.0121441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
Abstract
Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme.
Collapse
Affiliation(s)
| | | | | | - Marco Salvatore
- Department of Biomorphological and Functional Sciences, University of Naples Federico II, Naples, Italy
| | - Maria D. Castellone
- Institute of Experimental Endocrinology and Oncology (IEOS/CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
48
|
Muñiz Lino MA, Palacios-Rodríguez Y, Rodríguez-Cuevas S, Bautista-Piña V, Marchat LA, Ruíz-García E, Astudillo-de la Vega H, González-Santiago AE, Flores-Pérez A, Díaz-Chávez J, Carlos-Reyes Á, Álvarez-Sánchez E, López-Camarillo C. Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. J Proteomics 2014; 111:198-211. [PMID: 24768906 DOI: 10.1016/j.jprot.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/20/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED There are no targeted therapeutic modalities for triple-negative breast cancer (TNBC), thus it is associated with poor prognosis and worst clinical outcome. Here, our aim was to identify deregulated proteins in TNBC with potential therapeutic applications. Proteomics profiling of TNBC and normal breast tissues through two-dimensional electrophoresis and ESI-MS/MS mass spectrometry revealed the existence of 16 proteins (RhoGDI-2, HSP27, SOD1, DJ1, UBE2N, PSME1, FTL, SH3BGRL, and eIF5A-1) with increased abundance in carcinomas. We also evidenced for the first time the deregulation of COX5, MTPN and DB1 proteins in TNBC that may represent novel tumor markers. Particularly, we confirmed the overexpression of the Rho-GDP dissociation inhibitor 2 (RhoGDI-2) in distinct breast cancer subtypes, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Remarkably, targeted disruption of RhoGDI-2 by RNA interference induced mitochondrial dysfunction, and facilitated caspase-3 and -9 activation in two breast cancer cell lines. Moreover, suppression of RhoGDI-2 resulted in a robust sensitization of breast cancer cells to cisplatin therapy. In conclusion, we identified novel proteins deregulated in TNBC, and confirmed the overexpression of RhoGDI-2. We propose that RhoGDI-2 inhibition may be exploited as a potential therapeutic strategy along cisplatin-based chemotherapy in breast cancer. BIOLOGICAL SIGNIFICANCE There are no useful biomarkers neither targeted therapeutic modalities for triple-negative breast cancer, which highly contributes to the poor prognosis of this breast cancer subtype. In this work, we used two-dimensional electrophoresis and ESI-MS/MS spectrometry to identify novel deregulated proteins in breast cancer tissues. Particularly, our results showed that RhoGDI-2, a protein that has been associated to metastasis and poor survival in human cancers, is overexpressed in different subtypes of breast tumors, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Our data also provided novel insights about the role of RhoGDI-2 in apoptosis through intrinsic pathway inhibition. Importantly, they suggested that targeted modulation of RhoGDI-2 levels might be a useful strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Marcos A Muñiz Lino
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | | | | | | | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | | | - Ali Flores-Pérez
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Ángeles Carlos-Reyes
- Lung Cancer Laboratory, National Institute of Respiratory Diseases, Mexico City, Mexico
| | | | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico.
| |
Collapse
|
49
|
Matsuoka T, Yashiro M. Rho/ROCK signaling in motility and metastasis of gastric cancer. World J Gastroenterol 2014; 20:13756-13766. [PMID: 25320513 PMCID: PMC4194559 DOI: 10.3748/wjg.v20.i38.13756] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 04/21/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have revealed that the Rho/Rho-associated protein kinases (ROCK) pathway plays a critical role in the regulation of cancer cell motility and invasion. In addition, the Rho/ROCK pathway plays important roles in invasion and metastasis on the basis of its predominant function of cell cytoskeletal regulation in gastric cancer. According to the current understanding of tumor motility, there are two modes of tumor cell movement: mesenchymal and amoeboid. In addition, cancer cell movement can be interchangeable between the mesenchymal and amoeboid movements under certain conditions. Control of cell motility through the actin cytoskeleton creates the potential for regulating tumor cell metastasis. In this review we discuss Rho GTPases and ROCK signaling and describe the mechanisms of Rho/ROCK activity with regard to motility and metastasis in gastric cancer. In addition, we provide an insight of the therapeutic potential of targeting the Rho/ROCK pathway.
Collapse
|
50
|
Yi B, Hu Y, Qin G, Gu W, Zhu X, He S, Zhou J, Li D. Depletion of RhoGDI2 expression inhibits the ability of invasion and migration in pancreatic carcinoma. Int J Mol Med 2014; 34:205-12. [PMID: 24788627 DOI: 10.3892/ijmm.2014.1765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/24/2014] [Indexed: 11/05/2022] Open
Abstract
Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a regulator of tumor metastasis, although its role in tumor progression remains controversial. In this study, we examined the expression of RhoGDI2 in PC tissues and cell lines. To investigate the function of RhoGDI2 in PC cells, RhoGDI2 expression was depleted in PANC-1 and Patu8988 cells by small interfering RNA (siRNA). RhoGDI2 was found to be overexpressed in pancreatic carcinoma (PC) tissues and PC cell lines. Additionally, the results showed that depletion of RhoGDI2 significantly inhibited cell motility and invasion in vitro, but did not affect cell proliferation. The clinical study together with the experimental data confirmed that RhoGDI2 modulated the expression of matrix metalloproteinase 2 (MMP2). Taken together, findings of the present study indicated that RhoGDI2 is involved in pancreatic tumor malignancy and metastasis. Thus, RhoGDI2 is a potential target for the gene therapy of PC.
Collapse
Affiliation(s)
- Bin Yi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - You Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gongzhao Qin
- Department of Gynaecology and Obstetrics, Suzhou Municipal Hospital, Suzhou, Jiangsu 215003, P.R. China
| | - Wen Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|