1
|
Yan Z, Shi Y, Yang R, Xue J, Fu C. ELABELA-derived peptide ELA13 attenuates kidney fibrosis by inhibiting the Smad and ERK signaling pathways. J Zhejiang Univ Sci B 2024; 25:341-353. [PMID: 38584095 PMCID: PMC11009446 DOI: 10.1631/jzus.b2300033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 04/09/2024]
Abstract
Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently, there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however, its biological activity has been very little studied. In the present study, we evaluated the therapeutic effect of ELA13 on transforming growth factor-β1 (TGF-β1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum, and reduce the expression of fibrosis biomarkers confirmed by Masson staining, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore, we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion, ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.
Collapse
Affiliation(s)
- Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ying Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Su JX, Li SJ, Zhou XF, Zhang ZJ, Yan Y, Liu SL, Qi Q. Chemotherapy-induced metastasis: molecular mechanisms and clinical therapies. Acta Pharmacol Sin 2023; 44:1725-1736. [PMID: 37169853 PMCID: PMC10462662 DOI: 10.1038/s41401-023-01093-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Chemotherapy, the most widely accepted treatment for malignant tumors, is dependent on cell death induced by various drugs including antimetabolites, alkylating agents, mitotic spindle inhibitors, antitumor antibiotics, and hormonal anticancer drugs. In addition to causing side effects due to non-selective cytotoxicity, chemotherapeutic drugs can initiate and promote metastasis, which greatly reduces their clinical efficacy. The knowledge of how they induce metastasis is essential for developing strategies that improve the outcomes of chemotherapy. Herein, we summarize the recent findings on chemotherapy-induced metastasis and discuss the underlying mechanisms including tumor-initiating cell expansion, the epithelial-mesenchymal transition, extracellular vesicle involvement, and tumor microenvironment alterations. In addition, the use of combination treatments to overcome chemotherapy-induced metastasis is also elaborated.
Collapse
Affiliation(s)
- Jin-Xuan Su
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Feng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi-Jing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yu Yan
- Functional Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Song-Lin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
4
|
Trelford CB, Di Guglielmo GM. Autophagy regulates transforming growth factor β signaling and receptor trafficking. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119284. [PMID: 35605790 DOI: 10.1016/j.bbamcr.2022.119284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Transforming growth factor beta (TGFβ) stimulates tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and cell migration. TGFβ signaling is regulated by the endocytosis of cell surface receptors and their subcellular trafficking into the endo-lysosomal system. Here we investigated how autophagy, a cellular quality control network that delivers material to lysosomes, regulates TGFβ signaling pathways that induce EMT and cell migration. We impaired autophagy in non-small cell lung cancer cells using chloroquine, spautin-1, ULK-101, or small interfering RNA (siRNA) targeting autophagy-related gene (ATG)5 and ATG7 and observed that inhibiting autophagy results in a decrease in TGFβ1-dependent EMT transcription factor and cell marker expression, as well as attenuated stress fiber formation and cell migration. This correlated with decreased internalization of cell surface TGFβ receptors and their trafficking to early/late endosomal and lysosomal compartments. The effects of autophagy inhibition on TGFβ signaling were investigated by Smad2/Smad3 phosphorylation and cellular localization using western blotting, subcellular fractionation, and immunofluorescence microscopy. We observed that inhibiting autophagy decreased the amount and timeframe of Smad2/Smad3 signaling. Taken together, our results suggest that inhibiting autophagy attenuates pro-tumorigenic TGFβ signaling by regulating receptor trafficking, resulting in impaired Smad2/Smad3 phosphorylation and nuclear accumulation.
Collapse
Affiliation(s)
- Charles B Trelford
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada
| | - Gianni M Di Guglielmo
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
5
|
Hachana S, Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022; 11:2336. [PMID: 35954181 PMCID: PMC9367584 DOI: 10.3390/cells11152336] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β signaling participates in regulating several key developmental processes in the eye, including angiogenesis and neurogenesis. Inadequate TGF-β signaling has been associated with defective angiogenesis, vascular barrier function, unfavorable inflammatory responses, and tissue fibrosis. In addition, experimental models of corneal neovascularization, diabetic retinopathy, proliferative vitreoretinopathy, glaucoma, or corneal injury suggest that aberrant TGF-β signaling may contribute to the pathological features of these conditions, showing the potential of modulating TGF-β signaling to treat eye diseases. This review highlights the key roles of TGF-β family members in ocular physiology and in eye diseases, and reviews approaches targeting the TGF-β signaling as potential treatment options.
Collapse
Affiliation(s)
- Soumaya Hachana
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat Commun 2022; 13:2543. [PMID: 35538070 PMCID: PMC9091212 DOI: 10.1038/s41467-022-30105-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Bone metastases occur in 50-70% of patients with late-stage breast cancers and effective therapies are needed. The expression of enhancer of zeste homolog 2 (EZH2) is correlated with breast cancer metastasis, but its function in bone metastasis hasn't been well-explored. Here we report that EZH2 promotes osteolytic metastasis of breast cancer through regulating transforming growth factor beta (TGFβ) signaling. EZH2 induces cancer cell proliferation and osteoclast maturation, whereas EZH2 knockdown decreases bone metastasis incidence and outgrowth in vivo. Mechanistically, EZH2 transcriptionally increases ITGB1, which encodes for integrin β1. Integrin β1 activates focal adhesion kinase (FAK), which phosphorylates TGFβ receptor type I (TGFβRI) at tyrosine 182 to enhance its binding to TGFβ receptor type II (TGFβRII), thereby activating TGFβ signaling. Clinically applicable FAK inhibitors but not EZH2 methyltransferase inhibitors effectively inhibit breast cancer bone metastasis in vivo. Overall, we find that the EZH2-integrin β1-FAK axis cooperates with the TGFβ signaling pathway to promote bone metastasis of breast cancer.
Collapse
|
7
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
8
|
Rasti A, Madjd Z, Saeednejad Zanjani L, Babashah S, Abolhasani M, Asgari M, Mehrazma M. SMAD4 Expression in Renal Cell Carcinomas Correlates With a Stem-Cell Phenotype and Poor Clinical Outcomes. Front Oncol 2021; 11:581172. [PMID: 34012911 PMCID: PMC8127783 DOI: 10.3389/fonc.2021.581172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most lethal neoplasm of common urologic cancers with poor prognoses. SMAD4 has a principal role in TGF-β (Transformis growth factorβ)-induced epithelial to mesenchymal transition (EMT) as a key factor in gaining cancer stem cell (CSC) features and tumor aggressiveness. This study aimed to evaluate the expression patterns and clinical significance of SMAD4 in RCC and the impact of its targeting on stem cell/mesenchymal cells and EMT characteristics in renal spheroid derived cells (SDCs) compared to parental cells (PCs) in RCC. The expression pattern and clinical significance of SMAD4 was evaluated in RCC. SDCs were enriched using a sphere culture system. Then SDCs and their PCs were compared with respect to their sphere and colony formation, expression of putative CSC markers, invasiveness as well as expression of genes, including stemness/mesenchymal, SMAD4 and TGFβ1genes. Finally, the effect of SMAD4 knockdown on SDCs was analyzed. We demonstrated that SMAD4 is positively correlated with decreased disease specific survival (DSS) in RCC patients and clear cell RCC (ccRCC) subtype and associates with poor DSS in patients with RCC, especially in ccRCC as the most metastatic RCC subtype. SDCs exhibited higher stem cell/mesenchymal properties. Inhibition of SMAD4 in PCs accelerated the dissociation of SDCs and decreased their clonogenicity, invasiveness, expression of mesenchymal markers and expression of SMAD4 and TGFβ1 genes compared to SDCs before transfection. We suggest that targeting SMAD4 may be useful against renal CSCs and may improve RCC prognosis.
Collapse
Affiliation(s)
- Arezoo Rasti
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Basic Sciences/Medical Surgical Nursing, Faculty of Nursing and Midwifery, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
9
|
Pöschel A, Beebe E, Kunz L, Amini P, Guscetti F, Malbon A, Markkanen E. Identification of disease-promoting stromal components by comparative proteomic and transcriptomic profiling of canine mammary tumors using laser-capture microdissected FFPE tissue. Neoplasia 2021; 23:400-412. [PMID: 33794398 PMCID: PMC8042244 DOI: 10.1016/j.neo.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated stroma (CAS) profoundly influences progression of tumors including mammary carcinoma (mCA). Canine simple mCA represent relevant models of human mCA, notably also with respect to CAS. While transcriptomic changes in CAS of mCA are well described, it remains unclear to what extent these translate to the protein level. Therefore, we sought to gain insight into the proteomic changes in CAS and compare them with transcriptomic changes in the same tissue. To this end, we analyzed CAS and matched normal stroma using laser-capture microdissection (LCM) and LC-MS/MS in a cohort of 14 formalin-fixed paraffin embedded (FFPE) canine mCAs that we had previously characterized using LCM-RNAseq. Our results reveal clear differences in protein abundance between CAS and normal stroma, which are characterized by changes in the extracellular matrix, the cytoskeleton, and cytokines such as TNF. The proteomics- and RNAseq-based analyses of LCM-FFPE show a substantial degree of correlation, especially for the most deregulated targets and a comparable activation of pathways. Finally, we validate transcriptomic upregulation of LTBP2, IGFBP2, COL6A5, POSTN, FN1, COL4A1, COL12A1, PLOD2, COL4A2, and IGFBP7 in CAS on the protein level and demonstrate their adverse prognostic value for human breast cancer. Given the relevance of canine mCA as a model for the human disease, our analysis substantiates these targets as disease-promoting stromal components with implications for breast cancer in both species.
Collapse
Affiliation(s)
- Amiskwia Pöschel
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Laura Kunz
- Functional Genomics Center Zürich, ETH Zürich/University of Zurich, Zurich, Switzerland
| | - Parisa Amini
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Alexandra Malbon
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute Easter Bush Campus, Midlothian, Scotland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Lee WK, Kim Y, Jang H, Sim JH, Choi HJ, Shin Y, Choi JJ. Exogenous Transforming Growth Factor-β in Brain-Induced Symptoms of Central Fatigue and Suppressed Dopamine Production in Mice. Int J Mol Sci 2021; 22:ijms22052580. [PMID: 33806649 PMCID: PMC7961432 DOI: 10.3390/ijms22052580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) is one of the most refractory diseases in humans and is characterized by severe central fatigue accompanied with various symptoms that affect daily life, such as impaired memory, depression, and somatic pain. However, the etiology and pathophysiological mechanisms of CFS remain unknown. To investigate the pathophysiological role of transforming growth factor (TGF)-β1, we injected a cytokine into the lateral ventricle of a C57BL/6 mouse. The intracranial injection of TGF-β1 increased the immobility duration in a forced swimming test (FST) and time spent at the closed arm in elevated plus maze (EPM) analysis. The mice injected with TGF-β1 into their brain showed increased sensitivity to pain in a von Frey test, and had a decreased retention time on rotarod and latency time in a bright box in a passive avoidance test. In addition, the serum levels of muscle fatigue biomarkers, lactate dehydrogenase (LDH) and creatine kinase (CK), were significantly increased after administration of TGF-β1. Intracranial injection of TGF-β1 significantly reduced the production of tyrosine hydroxylase (TH) in the ventral tegmental area, accompanied by a decreased level of dopamine in the striatum. The suppression of TH expression by TGF-β1 was confirmed in the human neuroblastoma cell line, SH-SY5Y. These results, which show that TGF-β1 induced fatigue-like behaviors by suppressing dopamine production, suggest that TGF-β1 plays a critical role in the development of central fatigue and is, therefore, a potential therapeutic target of the disease.
Collapse
|
11
|
Quigley NG, Steiger K, Richter F, Weichert W, Hoberück S, Kotzerke J, Notni J. Tracking a TGF-β activator in vivo: sensitive PET imaging of αvβ8-integrin with the Ga-68-labeled cyclic RGD octapeptide trimer Ga-68-Triveoctin. EJNMMI Res 2020; 10:133. [PMID: 33128636 PMCID: PMC7603442 DOI: 10.1186/s13550-020-00706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose As a major activator of transforming growth factor β (TGF-β), the RGD receptor αvβ8-integrin is involved in pathogenic processes related to TGF-β dysregulation, such as tumor growth, invasion, and radiochemoresistance, metastasis and tumor cell stemness, as well as epithelial-mesenchymal transition. The novel positron emission tomography (PET) radiopharmaceutical Ga-68-Triveoctin for in vivo mapping of αvβ8-integrin expression might enhance the prognosis of certain tumor entities, as well as support and augment TGF-β-targeted therapeutic approaches. Methods Monomeric and trimeric conjugates of cyclo(GLRGDLp(NMe)K(pent-4-ynoic amide)) were synthesized by click chemistry (CuAAC), labeled with Ga-68, and evaluated in MeWo (human melanoma) xenografted SCID mice by means of PET and ex-vivo biodistribution. αvβ8-integrin expression in murine tissues was determined by β8-IHC. A human subject received a single injection of 173 MBq of Ga-68-Triveoctin and underwent 3 subsequent PET/CT scans at 25, 45, and 90 min p.i.. Results The trimer Ga-68-Triveoctin exhibits a 6.7-fold higher αvβ8-integrin affinity than the monomer (IC50 of 5.7 vs. 38 nM, respectively). Accordingly, biodistribution showed a higher tumor uptake (1.9 vs. 1.0%IA/g, respectively) but a similar baseline upon blockade (0.25%IA/g for both). IHC showed an intermediate β8-expression in the tumor while most organs and tissues were found β8-negative. Low non-target tissue uptakes (< 0.4%IA/g) confirmed a low degree of unspecific binding. Due to its hydrophilicity (log D = − 3.1), Ga-68-Triveoctin is excreted renally and shows favorable tumor/tissue ratios in mice (t/blood: 6.7; t/liver: 6.8; t/muscle: 29). A high kidney uptake in mice (kidney-to-blood and -to-muscle ratios of 126 and 505, respectively) is not reflected by human PET (corresponding values are 15 and 30, respectively), which furthermore showed notable uptakes in coeliac and choroid plexus (SUVmean 6.1 and 9.7, respectively, 90 min p.i.). Conclusion Ga-68-Triveoctin enables sensitive in-vivo imaging αvβ8-integrin expression in murine tumor xenografts. PET in a human subject confirmed a favorable biodistribution, underscoring the potential of Ga-68-Triveoctin for mapping of αvβ8-integrin expression in a clinical setting.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Katja Steiger
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Frauke Richter
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Wilko Weichert
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Sebastian Hoberück
- Klinik Und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Jörg Kotzerke
- Klinik Und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Johannes Notni
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany.
| |
Collapse
|
12
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
13
|
Augustine TN, Pather K, Mak D, Klonaros D, Xulu K, Dix-Peek T, Duarte R, van der Spuy WJ. Ex vivo interaction between blood components and hormone-dependent breast cancer cells induces alterations associated with epithelial-mesenchymal transition and thrombosis. Ultrastruct Pathol 2020; 44:262-272. [PMID: 32252581 DOI: 10.1080/01913123.2020.1749197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prevalence of breast cancer is steadily increasing with metastasis and thromboembolic complications identified as the most common causes of death. The acquisition of an aggressive phenotype by hormone-dependent breast cancers is mediated by Transforming Growth Factor Beta 1 (TGF-β1) expression and is associated with epithelial-mesenchymal transition (EMT) and, potentially, increased propensity for thrombosis. We investigated this phenomenon by assessing the effect of platelet-rich plasma (PRP) and whole blood (WB) on parameters of EMT and hypercoagulation in vitro. MCF-7 breast cancer cells were cultured under standard conditions, followed by co-culture with PRP or WB. Cells were processed for real-time PCR (TGF-β1 and vimentin), electron microscopy or immunocytochemistry (TGF-β1). Micrographs were qualitatively assessed, and real-time PCR data analyzed with PAST Statistical Software. The addition of blood components heightened TGF-β1 immunolocalization and significantly increased corresponding gene expression. Both PRP and WB significantly increased vimentin expression and induced a shape change from a typical epithelial phenotype to a spindle-shape morphology, indicative of EMT. Fibrin fiber, network and plaque formation indicated a hypercoagulatory environment. The results thus show that in preparation for hematogenous metastasis, hormone-dependent breast cancer cells assume an aggressive phenotype associated with EMT, simultaneously increasing the propensity for the formation of thrombo-emboli.
Collapse
Affiliation(s)
- T N Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - K Pather
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - D Mak
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - D Klonaros
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - K Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - T Dix-Peek
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - R Duarte
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - W J van der Spuy
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
14
|
Gomes AP, Ilter D, Low V, Rosenzweig A, Shen ZJ, Schild T, Rivas MA, Er EE, McNally DR, Mutvei AP, Han J, Ou YH, Cavaliere P, Mullarky E, Nagiec M, Shin S, Yoon SO, Dephoure N, Massagué J, Melnick AM, Cantley LC, Tyler JK, Blenis J. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell 2019; 36:402-417.e13. [PMID: 31564638 PMCID: PMC6801101 DOI: 10.1016/j.ccell.2019.08.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/07/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.
Collapse
Affiliation(s)
- Ana P Gomes
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Didem Ilter
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Adam Rosenzweig
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tanya Schild
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Martin A Rivas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ekrem E Er
- Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Dylan R McNally
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anders P Mutvei
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julie Han
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yi-Hung Ou
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Paola Cavaliere
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Edouard Mullarky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Michal Nagiec
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sejeong Shin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sang-Oh Yoon
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joan Massagué
- Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Ari M Melnick
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
15
|
Betaglycan drives the mesenchymal stromal cell osteogenic program and prostate cancer-induced osteogenesis. Oncogene 2019; 38:6959-6969. [PMID: 31409900 DOI: 10.1038/s41388-019-0913-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Bone metastatic prostate cancer provokes extensive osteogenesis by driving the recruitment and osteoblastic differentiation of mesenchymal stromal cells (MSCs). The resulting lesions greatly contribute to patient morbidity and mortality, underscoring the need for defining how prostate metastases subvert the MSC-osteoblast differentiation program. To gain insights into this process we profiled the effects of co-culture of primary MSCs with validated bone metastatic prostate cancer cell line models. These analyses revealed a cast of shared differentially induced genes in MSC, including betaglycan, a co-receptor for TGFβ. Betaglycan has not been studied in the context of bone metastatic disease previously. Here we report that loss of betaglycan in MSC is sufficient to augment TGFβ signaling, proliferation and migration, and completely blocks the MSC-osteoblast differentiation program. Further, betaglycan was revealed as necessary for prostate cancer-induced osteogenesis in vivo. Mechanistically, gene expression analysis revealed betaglycan controls the expression of a large repertoire of genes in MSCs, and that betaglycan loss provokes >60-fold increase in the expression of Wnt5a that plays important roles in stemness. In accord with the increased Wnt5a levels, there was a marked induction of canonical Wnt signaling in betaglycan ablated MSCs, and the addition of recombinant Wnt5a to MSCs was sufficient to impair osteogenic differentiation. Finally, the addition of Wnt5a neutralizing antibody was sufficient to induce the expression of osteogenic genes in betaglycan-ablated MSCs. Collectively, these findings suggest a betaglycan-Wnt5a circuit represents an attractive vulnerability to ameliorate prostate cancer-induced osteogenesis.
Collapse
|
16
|
Bowlt Blacklock KL, Birand Z, Selmic LE, Nelissen P, Murphy S, Blackwood L, Bass J, McKay J, Fox R, Beaver S, Starkey M. Genome-wide analysis of canine oral malignant melanoma metastasis-associated gene expression. Sci Rep 2019; 9:6511. [PMID: 31019223 PMCID: PMC6482147 DOI: 10.1038/s41598-019-42839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Oral malignant melanoma (OMM) is the most common canine melanocytic neoplasm. Overlap between the somatic mutation profiles of canine OMM and human mucosal melanomas suggest a shared UV-independent molecular aetiology. In common with human mucosal melanomas, most canine OMM metastasise. There is no reliable means of predicting canine OMM metastasis, and systemic therapies for metastatic disease are largely palliative. Herein, we employed exon microarrays for comparative expression profiling of FFPE biopsies of 18 primary canine OMM that metastasised and 10 primary OMM that did not metastasise. Genes displaying metastasis-associated expression may be targets for anti-metastasis treatments, and biomarkers of OMM metastasis. Reduced expression of CXCL12 in the metastasising OMMs implies that the CXCR4/CXCL12 axis may be involved in OMM metastasis. Increased expression of APOBEC3A in the metastasising OMMs may indicate APOBEC3A-induced double-strand DNA breaks and pro-metastatic hypermutation. DNA double strand breakage triggers the DNA damage response network and two Fanconi anaemia DNA repair pathway members showed elevated expression in the metastasising OMMs. Cross-validation was employed to test a Linear Discriminant Analysis classifier based upon the RT-qPCR-measured expression levels of CXCL12, APOBEC3A and RPL29. Classification accuracies of 94% (metastasising OMMs) and 86% (non-metastasising OMMs) were estimated.
Collapse
Affiliation(s)
| | - Z Birand
- Animal Health Trust, Newmarket, Suffolk, UK
| | - L E Selmic
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - P Nelissen
- Dick White Referrals, Newmarket, Suffolk, UK
| | - S Murphy
- Animal Health Trust, Newmarket, Suffolk, UK
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - L Blackwood
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - J Bass
- Animal Health Trust, Newmarket, Suffolk, UK
- Finn Pathologists, Harleston, UK
| | - J McKay
- IDEXX Laboratories, Ltd, Wetherby, UK
| | - R Fox
- Finn Pathologists, Harleston, UK
| | - S Beaver
- Nationwide Laboratory Services, Poulton-le-Fylde, UK
| | - M Starkey
- Animal Health Trust, Newmarket, Suffolk, UK.
| |
Collapse
|
17
|
TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade. Exp Mol Med 2018; 50:1-19. [PMID: 30523245 PMCID: PMC6283885 DOI: 10.1038/s12276-018-0189-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor (TGF)-β signaling is increasingly recognized as a key driver in cancer. In progressive cancer tissues, TGF-β promotes tumor formation, and its increased expression often correlates with cancer malignancy. In this study, we utilized adenoviruses expressing short hairpin RNAs against TGF-β1 and TGF-β2 to investigate the role of TGF-β downregulation in cancer cell death. We found that the downregulation of TGF-β increased the phosphorylation of several SAPKs, such as p38 and JNK. Moreover, reactive oxygen species (ROS) production was also increased by TGF-β downregulation, which triggered Akt inactivation and NOX4 increase-derived ROS in a cancer cell-type-specific manner. We also revealed the possibility of substantial gene fluctuation in response to TGF-β downregulation related to SAPKs. The expression levels of Trx and GSTM1, which encode inhibitory proteins that bind to ASK1, were reduced, likely a result of the altered translocation of Smad complex proteins rather than from ROS production. Instead, both ROS and ROS-mediated ER stress were responsible for the decrease in interactions between ASK1 and Trx or GSTM1. Through these pathways, ASK1 was activated and induced cytotoxic tumor cell death via p38/JNK activation and (or) induction of ER stress. Reducing the levels of the multifunctional protein transforming growth factor (TGF)-β in cancer cells prevents tumor growth in mice. Previous studies have shown that high levels of TGF-β in cancerous tissue are associated with accelerated disease progression. Hye Jin Choi and Jae J Song at Yonsei University in Seoul, South Korea, and colleagues infected cancer cells with genetically modified viruses that reduced the expression of the gene encoding TGF-β. The resulting decrease in TGF-β protein led to cell death by stimulating the production of reactive oxygen species and signaling through the apoptosis signal-regulating kinase 1 (ASK1) pathway. When tumor-bearing mice were infected with these modified viruses, their overall survival was improved. Further understanding the mechanisms through which TGF-β regulates cancer cell survival will contribute to the development of new approaches in cancer treatment.
Collapse
|
18
|
Cao Y, Liu H, Gao L, Lu L, Du L, Bai H, Li J, Said S, Wang XJ, Song J, Serkova N, Wei M, Xiao J, Lu SL. Cooperation Between Pten and Smad4 in Murine Salivary Gland Tumor Formation and Progression. Neoplasia 2018; 20:764-774. [PMID: 29958137 PMCID: PMC6031150 DOI: 10.1016/j.neo.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022] Open
Abstract
Salivary gland tumor (SGT) is a rare tumor type, which exhibits broad-spectrum phenotypic, biological, and clinical heterogeneity. Currently, the molecular mechanisms that cause SGT pathogenesis remain poorly understood. A lack of animal models that faithfully recapitulate the naturally occurring process of human SGTs has hampered research progress on this field. In this report, we developed an inducible keratin 5-driven conditional knockout mouse model to delete gene(s) of interest in murine salivary gland upon local RU486 delivery. We have deleted two major tumor suppressors, Pten, a negative regulator of the PI3K pathway, and Smad4, the central signaling mediator of TGFβ pathway, in the murine salivary gland. Our results have shown that deletion of either Pten or Smad4 in murine salivary gland resulted in pleomorphic adenomas, the most common tumor in human SGT patients. Deletion of both Pten and Smad4 in murine salivary gland developed several malignancies, with salivary adenoid cystic carcinoma (SACC) being the most frequently seen. Molecular characterization showed that SACC exhibited mTOR activation and TGFβ1 overexpression. Examination of human SGT clinical samples revealed that loss of Pten and Smad4 is common in human SACC samples, particularly in the most aggressive solid form, and is correlated with survival of SACC patients, highlighting the human relevance of the murine models. In summary, our results offer significant insight into synergistic role of Pten and Smad4 in SGT, providing a rationale for targeting mTOR and/or TGFβ signaling to control SGT formation and progression.
Collapse
Affiliation(s)
- Yu Cao
- Laboratory of Precision Oncology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University, Dalian, Liaoning, China
| | - Liwei Gao
- Department of Radiation Oncology, China Japan Friendship Hospital, Beijing, China
| | - Ling Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Li Du
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Han Bai
- Department of Oral Pathology, Dalian Medical University, Dalian, Liaoning, China
| | - Jiang Li
- Department of Oral Pathology, 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Sherif Said
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John Song
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Natalie Serkova
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Minjie Wei
- Laboratory of Precision Oncology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jing Xiao
- Department of Oral Pathology, Dental School, China Medial University, Shenyang, Liaoning, China; Department of Oral Pathology, Dalian Medical University, Dalian, Liaoning, China.
| | - Shi-Long Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Laboratory of Precision Oncology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Kiweler N, Krämer OH. PNUTS at the crossroads of tumorigenesis and metastasis formation. J Thorac Dis 2018; 10:560-563. [PMID: 29607112 DOI: 10.21037/jtd.2017.12.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nicole Kiweler
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
20
|
Kuo YC, Lee CH, Rajesh R. Recent advances in the treatment of glioblastoma multiforme by inhibiting angiogenesis and using nanocarrier systems. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Villalba M, Evans SR, Vidal-Vanaclocha F, Calvo A. Role of TGF-β in metastatic colon cancer: it is finally time for targeted therapy. Cell Tissue Res 2017; 370:29-39. [DOI: 10.1007/s00441-017-2633-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|
22
|
The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 2017; 19:518-529. [PMID: 28414315 DOI: 10.1038/ncb3513] [Citation(s) in RCA: 717] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
Metastasis is the major cause of cancer-associated death. Partial activation of the epithelial-to-mesenchymal transition program (partial EMT) was considered a major driver of tumour progression from initiation to metastasis. However, the role of EMT in promoting metastasis has recently been challenged, in particular concerning effects of the Snail and Twist EMT transcription factors (EMT-TFs) in pancreatic cancer. In contrast, we show here that in the same pancreatic cancer model, driven by Pdx1-cre-mediated activation of mutant Kras and p53 (KPC model), the EMT-TF Zeb1 is a key factor for the formation of precursor lesions, invasion and notably metastasis. Depletion of Zeb1 suppresses stemness, colonization capacity and in particular phenotypic/metabolic plasticity of tumour cells, probably causing the observed in vivo effects. Accordingly, we conclude that different EMT-TFs have complementary subfunctions in driving pancreatic tumour metastasis. Therapeutic strategies should consider these potential specificities of EMT-TFs to target these factors simultaneously.
Collapse
|
23
|
Wang P, Du X, Xiong M, Cui J, Yang Q, Wang W, Chen Y, Zhang T. Ginsenoside Rd attenuates breast cancer metastasis implicating derepressing microRNA-18a-regulated Smad2 expression. Sci Rep 2016; 6:33709. [PMID: 27641158 PMCID: PMC5027393 DOI: 10.1038/srep33709] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022] Open
Abstract
Metastasis remains a major cause of mortality and poor prognosis in breast cancer patients. Anti-metastatic therapies are in great need to achieve optimal clinical outcome in breast cancer patients. Panax Notoginseng Saponins (PNS) has previously been shown to inhibit breast cancer metastasis in mouse. Here the potential anti-metastatic effect of one of the chemical compounds of PNS, ginsenoside Rd (Rd), was further evaluated in mouse mammary carcinoma 4T1 cells. The results revealed that Rd treatment dose-dependently suppressed cell migration and invasion in cultured 4T1 cells. In 4T1 cell-inoculated mice, Rd treatment led to decreased number of tumor lesions in lungs in both spontaneous and experimental metastasis models. Rd treatment resulted in increased expression of Smad2 in cultured 4T1 cells and in tumors grown from inoculated 4T1 cells. Rd treatment decreased the expression of microRNA (miR)-18a in cultured 4T1 cells and in tumors derived from inoculated 4T1 cells. Smad2 was further verified to be a direct target of miR-18a in 4T1 cells. The significant impact of Rd on counteracting miR-18a-medidated downregulation of Smad2 expression was also demonstrated. Together, the current work shows for the first time that Rd treatment attenuates breast cancer metastasis in part through derepressing miR-18a-mediated Smad2 expression regulation.
Collapse
Affiliation(s)
- Peiwei Wang
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaoye Du
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minqi Xiong
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jingang Cui
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qinbo Yang
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wenjian Wang
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Chen
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Teng Zhang
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
24
|
Strazic-Geljic I, Guberovic I, Didak B, Schmid-Antomarchi H, Schmid-Alliana A, Boukhechba F, Bouler JM, Scimeca JC, Verron E. Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastases. Biochem Pharmacol 2016; 116:11-21. [DOI: 10.1016/j.bcp.2016.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
|
25
|
Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer. Sci Rep 2016; 6:29384. [PMID: 27411810 PMCID: PMC4944130 DOI: 10.1038/srep29384] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/17/2016] [Indexed: 12/27/2022] Open
Abstract
The ability to rapidly assess the efficacy of therapeutic strategies for incurable bone metastatic prostate cancer is an urgent need. Pre-clinical in vivo models are limited in their ability to define the temporal effects of therapies on simultaneous multicellular interactions in the cancer-bone microenvironment. Integrating biological and computational modeling approaches can overcome this limitation. Here, we generated a biologically driven discrete hybrid cellular automaton (HCA) model of bone metastatic prostate cancer to identify the optimal therapeutic window for putative targeted therapies. As proof of principle, we focused on TGFβ because of its known pleiotropic cellular effects. HCA simulations predict an optimal effect for TGFβ inhibition in a pre-metastatic setting with quantitative outputs indicating a significant impact on prostate cancer cell viability, osteoclast formation and osteoblast differentiation. In silico predictions were validated in vivo with models of bone metastatic prostate cancer (PAIII and C4-2B). Analysis of human bone metastatic prostate cancer specimens reveals heterogeneous cancer cell use of TGFβ. Patient specific information was seeded into the HCA model to predict the effect of TGFβ inhibitor treatment on disease evolution. Collectively, we demonstrate how an integrated computational/biological approach can rapidly optimize the efficacy of potential targeted therapies on bone metastatic prostate cancer.
Collapse
|
26
|
Zipper-interacting protein kinase promotes epithelial-mesenchymal transition, invasion and metastasis through AKT and NF-kB signaling and is associated with metastasis and poor prognosis in gastric cancer patients. Oncotarget 2016; 6:8323-38. [PMID: 25831050 PMCID: PMC4480755 DOI: 10.18632/oncotarget.3200] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/23/2015] [Indexed: 12/21/2022] Open
Abstract
Zipper-interacting Protein Kinase (ZIPK) belongs to the death-associated protein kinase family. ZIPK has been characterized as a tumor suppressor in various tumors, including gastric cancer. On the other hand, ZIPK also promotes cell survival. In this study, both in vitro and in vivo assays indicated that ZIPK promoted cell growth, proliferation, migration, invasion, tumor formation and metastasis in nude mice. ZIPK induced epithelial-mesenchymal transition (EMT) with increasing expression of β-catenin, mesenchymal markers, Snail and Slug, and with decreasing expression of E-cadherin. Furthermore, ZIPK activated the AKT/IκB/NF-κB pathway, which can promote EMT and metastasis. Additionally, ZIPK expression was detected in human primary gastric cancer and their matched metastatic lymph node samples by immunohistochemistry. Increased expression of ZIPK in lymph node metastases was significantly associated with stage VI and abdominal organ invasion. Survival analysis revealed that patients with increased ZIPK expression in metastatic lymph nodes had poor disease-specific survival. Taken together, our study reveals that ZIPK is a pro-oncogenic factor, which promotes cancer metastasis.
Collapse
|
27
|
Abstract
The transforming growth factor-β (TGF-β) is a family of structurally related proteins that comprises of TGF-β, activins/inhibins, and bone morphogenic proteins (BMPs). Members of the TGF-β family control numerous cellular functions including proliferation, apoptosis, differentiation, epithelial-mesenchymal transition (EMT), and migration. The first identified member, TGF-β is implicated in several human diseases, such as vascular diseases, autoimmune disorders, and carcinogenesis. Activation of the TGF-β receptor by its ligands induces the phosphorylation of serine/threonine residues and triggers phosphorylation of the intracellular effectors, SMADs. Upon activation, SMAD proteins translocate to the nucleus and induce transcription of their target genes, regulating several cellular functions. TGF-β dysregulation has been implicated in carcinogenesis. In early stages of cancer, TGF-β exhibits tumor suppressive effects by inhibiting cell cycle progression and promoting apoptosis. However, in late stages TGF-β exerts tumor promoting effects, increasing tumor invasiveness, and metastasis. Furthermore, the TGF-β signaling pathway communicates with other signaling pathways in a synergistic or antagonistic manner and regulates cellular functions. Elevated TGF-β activity has been associated with poor clinical outcome. Given the pivotal role of TGF-β in tumor progression, this pathway is an attractive target for cancer therapy. Several therapeutic tools such as TGF-β antibodies, antisense oligonucleotides, and small molecules inhibitors of TGF-β receptor-1 (TGF-βR1) have shown immense potential to inhibit TGF-β signaling. Finally, in the interest of developing future therapies, further studies are warranted to identify novel points of convergence of TGF-β with other signaling pathways and oncogenic factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Viqar Syed
- Department of Obstetrics and Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, 20814, Maryland.,Department of Molecular Cell Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, 20814, Maryland.,John P. Murtha Cancer Center at Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, 20889, Maryland
| |
Collapse
|
28
|
Laurent MA, Bonnier D, Théret N, Tufféry P, Moroy G. In silico characterization of the interaction between LSKL peptide, a LAP-TGF-beta derived peptide, and ADAMTS1. Comput Biol Chem 2016; 61:155-61. [PMID: 26878129 DOI: 10.1016/j.compbiolchem.2016.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Metalloproteases involved in extracellular matrix remodeling play a pivotal role in cell response by regulating the bioavailability of cytokines and growth factors. Recently, the disintegrin and metalloprotease, ADAMTS1 has been demonstrated to be able to activate the transforming growth factor TGF-β, a major factor in fibrosis and cancer. The KTFR sequence from ADAMTS1 is responsible for the interaction with the LSKL peptide from the latent form of TGF-β, leading to its activation. While the atomic details of the interaction site can be the basis of the rational design of efficient inhibitory molecules, the binding mode of interaction is totally unknown. In this study, we show that recombinant fragments of human ADAMTS1 containing KTFR sequence keep the ability to bind the latent form of TGF-β. The recombinant fragment with the best affinity is modeled to investigate the binding mode of LSKL peptide with ADAMTS1 at the atomic level. Using a combined approach with molecular docking and multiple independent molecular dynamics (MD) simulations, we provide the binding mode of LSKL peptide with ADAMTS1. The MD simulations starting with the two lowest energy model predicted by molecular docking shows stable interactions characterized by 3 salt bridges (K3-NH3(+) with E626-COO(-); L4-COO(-) with K619-NH3(+); L1-NH3(+) with E624-COO(-)) and 2 hydrogen bonds (S2-OH with E623-COO(-); L4-NH with E623-COO(-)). The knowledge of this interaction mechanism paves the way to the design of more potent and more specific inhibitors against the inappropriate activation of TGF-β by ADAMTS1 in liver diseases.
Collapse
Affiliation(s)
- Marie-Amandine Laurent
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, 35 rue Hélène Brion, 75013 Paris, France
| | - Dominique Bonnier
- INSERM U1085, Institut de Recherche en Santé, Environnement et Travail (IRSET), Université de Rennes 1, 2 avenue Pr Léon Bernard, Rennes, France
| | - Nathalie Théret
- INSERM U1085, Institut de Recherche en Santé, Environnement et Travail (IRSET), Université de Rennes 1, 2 avenue Pr Léon Bernard, Rennes, France
| | - Pierre Tufféry
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, 35 rue Hélène Brion, 75013 Paris, France
| | - Gautier Moroy
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, 35 rue Hélène Brion, 75013 Paris, France.
| |
Collapse
|
29
|
Bedinger D, Lao L, Khan S, Lee S, Takeuchi T, Mirza AM. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms. MAbs 2015; 8:389-404. [PMID: 26563652 PMCID: PMC4966579 DOI: 10.1080/19420862.2015.1115166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms. Fully human antibody phage display libraries were used to discover a number of antibodies that bind and neutralize various combinations of TGFβ1, 2 or 3. The primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; therefore, an antibody that displayed potent TGFβ 1, 2 inhibition, but more modest affinity versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further screening. This process yielded a high affinity pan-isoform neutralizing clone. Antibodies were analyzed and compared by binding affinity, as well as receptor and epitope competition by surface plasmon resonance methods. The antibodies were also shown to neutralize TGFβ effects in vitro in 3 assays: 1) interleukin (IL)-4 induced HT-2 cell proliferation; 2) TGFβ-mediated IL-11 release by A549 cells; and 3) decreasing SMAD2 phosphorylation in Detroit 562 cells. The antibodies’ potency in these in vitro assays correlated well with their isoform-specific affinities. Furthermore, the ability of the affinity-matured clone to decrease tumor burden in a Detroit 562 xenograft study was superior to that of the parent clone. This affinity-matured antibody acts as a very potent inhibitor of all 3 main isoforms of TGFβ and may have utility for therapeutic intervention in human disease.
Collapse
Affiliation(s)
| | | | | | - Steve Lee
- a XOMA Corp. , Berkeley , 94710 , CA , USA
| | | | | |
Collapse
|
30
|
Dokanehiifard S, Soltani BM, Parsi S, Hosseini F, Javan M, Mowla SJ. Experimental verification of a conserved intronic microRNA located in the human TrkC gene with a cell type-dependent apoptotic function. Cell Mol Life Sci 2015; 72:2613-25. [PMID: 25772499 PMCID: PMC11113298 DOI: 10.1007/s00018-015-1868-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Tropomyosin receptor kinase C (TrkC) is involved in cell survival, apoptosis induction and tumorigenesis. We hypothesized that, similar to p75(NTR) receptor, some of the diverse functions of TrkC could be mediated by a microRNA (miRNA) embedded within the gene. Here, we experimentally verified the expression and processing of two bioinformatically predicted miRNAs named TrkC-miR1-5p and TrkC-miR1-3p. Transfecting a DNA fragment corresponding to the TrkC-premir1 sequence in HEK293t cells caused ~300-fold elevation in the level of mature TrkC-miR1 and also a significant downregulation of its predicted target genes. Furthermore, endogenous TrkC-miR1 was detected in several cell lines and brain tumors confirming its endogenous generation. Furthermore, its orthologous miRNA was detected in developing rat brain. Accordingly, TrkC-miR1 expression was increased during the course of neural differentiation of NT2 cell, whereas its suppression attenuated NT2 differentiation. Consistent with opposite functions of TrkC, TrkC-miR1 overexpression promoted survival and apoptosis in U87 and HEK293t cell lines, respectively. In conclusion, our data report the discovery of a new miRNA with overlapping function to TrkC.
Collapse
Affiliation(s)
- Sadat Dokanehiifard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M. Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Parsi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015; 17:816-26. [PMID: 25985394 DOI: 10.1038/ncb3169] [Citation(s) in RCA: 2012] [Impact Index Per Article: 201.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/26/2015] [Indexed: 11/09/2022]
Abstract
Pancreatic ductal adenocarcinomas (PDACs) are highly metastatic with poor prognosis, mainly due to delayed detection. We hypothesized that intercellular communication is critical for metastatic progression. Here, we show that PDAC-derived exosomes induce liver pre-metastatic niche formation in naive mice and consequently increase liver metastatic burden. Uptake of PDAC-derived exosomes by Kupffer cells caused transforming growth factor β secretion and upregulation of fibronectin production by hepatic stellate cells. This fibrotic microenvironment enhanced recruitment of bone marrow-derived macrophages. We found that macrophage migration inhibitory factor (MIF) was highly expressed in PDAC-derived exosomes, and its blockade prevented liver pre-metastatic niche formation and metastasis. Compared with patients whose pancreatic tumours did not progress, MIF was markedly higher in exosomes from stage I PDAC patients who later developed liver metastasis. These findings suggest that exosomal MIF primes the liver for metastasis and may be a prognostic marker for the development of PDAC liver metastasis.
Collapse
|
32
|
Calvanese L, Sandomenico A, Caporale A, Focà A, Focà G, D'Auria G, Falcigno L, Ruvo M. Conformational features and binding affinities to Cripto, ALK7 and ALK4 of Nodal synthetic fragments. J Pept Sci 2015; 21:283-93. [PMID: 25588905 DOI: 10.1002/psc.2733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
Nodal, a member of the TGF-β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF-βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co-receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44-67 of the Nodal protein, corresponding to the pre-helix loop and the H3 helix, and reproduce the wild-type sequence or bear some modifications to evaluate the hot-spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen JC, Yang ST, Lin CY, Hsu CJ, Tsai CH, Su JL, Tang CH. BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells. PLoS One 2014; 9:e112636. [PMID: 25390068 PMCID: PMC4229252 DOI: 10.1371/journal.pone.0112636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022] Open
Abstract
Bone morphogenic protein (BMP)-7 is a member of the transforming growth factor (TGF)-beta superfamily, which is originally identified based on its ability to induce cartilage and bone formation. In recent years, BMP-7 is also defined as a potent promoter of cell motility, invasion, and metastasis. However, there is little knowledge of the role of BMP-7 and its cellular function in chondrosarcoma cells. In the present study, we investigated the biological impact of BMP-7 on cell motility using transwell assay. In addition, the intracellular signaling pathways were also investigated by pharmacological and genetic approaches. Our results demonstrated that treatment with exogenous BMP-7 markedly increased cell migration by activating c-Src/PI3K/Akt/IKK/NF-κB signaling pathway, resulting in the transactivation of αvβ3 integrin expression. Indeed, abrogation of signaling activation, by chemical inhibition or expression of a kinase dead form of the protein attenuated BMP-7-induced expression of integrin αvβ3 and cell migration. These findings may provide a useful tool for diagnostic/prognostic purposes and even therapeutically in late-stage chondrosarcoma as an anti-metastatic agent.
Collapse
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Shu-Ting Yang
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Jen-Liang Su
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- * E-mail: (JLS); (C. Tang)
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (JLS); (C. Tang)
| |
Collapse
|
34
|
Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014; 2014:141747. [PMID: 24891760 PMCID: PMC4033515 DOI: 10.1155/2014/141747] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is potentially life-threatening malignancy that still causes high mortality among women. Scientific research in this field is focused on deeper understanding of pathogenesis and progressing of BC, in order to develop relevant diagnosis and improve therapeutic treatment. Multifunctional cytokine TGF- β 1 is one of many factors that have a direct influence on BC pathophysiology. Expression of TGF- β 1, induction of canonical and noncanonical signaling pathways, and mutations in genes encoding TGF- β 1 and its receptors are correlated with oncogenic activity of this cytokine. In early stages of BC this cytokine inhibits epithelial cell cycle progression and promotes apoptosis, showing tumor suppressive effects. However, in late stages, TGF- β 1 is linked with increased tumor progression, higher cell motility, cancer invasiveness, and metastasis. It is also involved in cancer microenvironment modification and promotion of epithelial to mesenchymal transition (EMT). This review summarizes the current knowledge on the phenomenon called "TGF- β 1 paradox", showing that better understanding of TGF- β 1 functions can be a step towards development of new therapeutic approaches. According to current knowledge several drugs against TGF- β 1 have been developed and are either in nonclinical or in early stages of clinical investigation.
Collapse
Affiliation(s)
- Joanna Magdalena Zarzynska
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
35
|
Tulley S, Chen WT. Transcriptional regulation of seprase in invasive melanoma cells by transforming growth factor-β signaling. J Biol Chem 2014; 289:15280-96. [PMID: 24727589 DOI: 10.1074/jbc.m114.568501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor invasive phenotype driven by seprase expression/activity has been widely examined in an array of malignant tumor cell types; however, very little is known about the transcriptional regulation of this critical protease. Seprase (also named fibroblast activation protein-α, antiplasmin-cleaving enzyme, and dipeptidyl prolyl peptidase 5) is expressed at high levels by stromal fibroblast, endothelial, and tumor cells in a variety of invasive tumors but is undetectable in the majority of normal adult tissues. To examine the transcriptional regulation of the gene, we cloned the human seprase promoter and demonstrated that endogenous seprase expression and exogenous seprase promoter activity are high in invasive melanoma cells but not in non-invasive melanoma cells/primary melanocytes. In addition, we identified a crucial TGF-β-responsive cis-regulatory element in the proximal seprase promoter region that enabled robust transcriptional activation of the gene. Treatment of metastatic but not normal/non-invasive cells with TGF-β1 caused a rapid and profound up-regulation of endogenous seprase mRNA, which coincided with an abolishment of the negative regulator c-Ski, and an increase in binding of Smad3/4 to the seprase promoter in vivo. Blocking TGF-β signaling in invasive melanoma cells through overexpression of c-Ski, chemically using SB-431542, or with a neutralizing antibody against TGF-β significantly reduced seprase mRNA levels. Strikingly, RNAi of seprase in invasive cells greatly diminished their invasive potential in vitro as did blocking TGF-β signaling using SB-431542. Altogether, we found that seprase is transcriptionally up-regulated in invasive melanoma cells via the canonical TGF-β signaling pathway, supporting the roles of both TGF-β and seprase in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Shaun Tulley
- From the Metastasis Research Laboratory, Division of Gynecologic Oncology, Stony Brook Medicine, Stony Brook, New York 11794
| | - Wen-Tien Chen
- From the Metastasis Research Laboratory, Division of Gynecologic Oncology, Stony Brook Medicine, Stony Brook, New York 11794
| |
Collapse
|
36
|
N-Hydroxycinnamide derivatives of osthole inhibit cell migration and invasion by suppressing Smad2 and Akt pathways in human colorectal adenocarcinoma cells. Chem Biol Interact 2014; 217:1-8. [PMID: 24727557 DOI: 10.1016/j.cbi.2014.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 12/16/2022]
Abstract
WJ1376-1 and WJ1398-1 are new synthetic compounds developed based on the structure of the Chinese herbal medicine osthole. Previously, we reported that WJ1376-1 and WJ1398-1 can induce cell-cycle arrest by activating ATR kinase (ataxia telangiectasia and rad3 related kinase) and inhibiting the phosphorylation of Aurora A kinase. In this study, we determined that WJ1376-1 and WJ1398-1 strongly inhibited the migration and invasion in human colorectal cancer cells at concentrations as low as 1μM. In the transforming growth factor (TGF)-β-induced epithelial-mesenchymal transition model, WJ1376-1 and WJ1398-1 potently downregulated the transcription factor Snail1, the mesenchymal protein vimentin, and matrix metalloprotease-9, but upregulated the epithelial protein E-cadherin. WJ1376-1 and WJ1398-1 also inhibited the TGF-β-induced phosphorylation of Smad2 and of Akt at Ser 473, and the nuclear translocation of Smad2 was substantially lower in WJ1376-1- and WJ1398-1-treated cells than it was in control cells. In transient transfection experiments, we observed that WJ1376-1 and WJ1398-1 strongly inhibited TGF-β-stimulated activity of a Smad reporter. Finally, WJ1376-1 and WJ1398-1 blocked TGF-β-induced phosphorylation of the TGF-β Type I receptor (TGF-βRI). These results suggest that WJ1376-1 and WJ1398-1 inhibit cell migration and invasion by suppressing TGF-βRI phosphorylation and subsequently hindering both Smad2 and phosphatidylinositol 3-kinase/Akt signaling pathways.
Collapse
|
37
|
Abstract
An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.
Collapse
|
38
|
Allen MD, Thomas GJ, Clark S, Dawoud MM, Vallath S, Payne SJ, Gomm JJ, Dreger SA, Dickinson S, Edwards DR, Pennington CJ, Sestak I, Cuzick J, Marshall JF, Hart IR, Jones JL. Altered microenvironment promotes progression of preinvasive breast cancer: myoepithelial expression of αvβ6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clin Cancer Res 2013; 20:344-57. [PMID: 24150233 DOI: 10.1158/1078-0432.ccr-13-1504] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study investigated the functional and clinical significance of integrin αvβ6 upregulation in myoepithelial cells of ductal carcinoma in situ (DCIS). EXPERIMENTAL DESIGN Archival samples of DCIS and DCIS with associated invasion (n = 532) were analyzed for expression of αvβ6 by immunohistochemistry and ability to predict recurrence and progression assessed in an independent, unique cohort of DCIS cases with long-term follow-up. Primary myoepithelial cells and myoepithelial cell lines, with and without αvβ6 expression, were used to measure the effect of αvβ6 on growth and invasion of tumor cell lines in vitro and in a xenograft mouse model. Involvement of TGFβ signaling was established using mink lung epithelial cell (MLEC) assay and antibody inhibition, and expression and activation of matrix metalloproteinase (MMP)-9 established by Real Time-PCR and zymography. RESULTS Expression of αvβ6 is significantly associated with progression to invasive cancer (P < 0.006) and with recurrence over a median follow-up of 114 months in a series of matched DCIS cases treated with local excision. We show that expression of αvβ6 drives myoepithelial cells to promote tumor cell invasion in vitro and enhances mammary tumor growth in vivo. The tumor-promoting effect of αvβ6-positive myoepithelial cells is dependent on TGFβ-driven upregulation of MMP9 and can be abrogated by inhibiting this pathway. CONCLUSION These findings indicate that altered myoepithelial cells in DCIS predict disease progression and recurrence and show that upregulation of αvβ6 on myoepithelial cells generates a tumor promoter function through TGFβ upregulation of MMP-9. These data suggest that expression of αvβ6 may be used to stratify patients with DCIS.
Collapse
Affiliation(s)
- Michael D Allen
- Authors' Affiliations: Barts Cancer Institute-a CR-UK Centre of Excellence, Centre for Tumour Biology, Queen Mary University of London, John Vane Science Centre; Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, London,Cancer Research UK Clinical Centre, Somers Cancer Research Building, Experimental Pathology Group, Southampton General Hospital, Southampton; and Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Larocca C, Cohen JR, Fernando RI, Huang B, Hamilton DH, Palena C. An autocrine loop between TGF-β1 and the transcription factor brachyury controls the transition of human carcinoma cells into a mesenchymal phenotype. Mol Cancer Ther 2013; 12:1805-15. [PMID: 23783250 PMCID: PMC3815539 DOI: 10.1158/1535-7163.mct-12-1007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a process associated with the metastasis of solid tumors as well as with the acquisition of resistance to standard anticancer modalities. A major initiator of EMT in carcinoma cells is TGF-β, which has been shown to induce the expression of several transcription factors ultimately responsible for initiating and maintaining the EMT program. We have previously identified Brachyury, a T-box transcription factor, as an inducer of mesenchymal features in human carcinoma cells. In this study, a potential link between Brachyury and TGF-β signaling has been investigated. The results show for the first time that Brachyury expression is enhanced during TGF-β1-induced EMT in various human cancer cell lines, and that a positive feedback loop is established between Brachyury and TGF-β1 in mesenchymal-like tumor cells. In this context, Brachyury overexpression is shown to promote upregulation of TGF-β1 at the mRNA and protein levels, an effect mediated by activation of the TGF-β1 promoter in the presence of high levels of Brachyury. Furthermore, inhibition of TGF-β1 signaling by a small-molecule inhibitor of TGF-β receptor type I decreases Brachyury expression, induces a mesenchymal-to-epithelial transition, and renders cancer cells more susceptible to chemotherapy. This study thus has implications for the future development of clinical trials using TGF-β inhibitors in combination with other anticancer agents.
Collapse
Affiliation(s)
- Cecilia Larocca
- Corresponding Author: Claudia Palena, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH; 10 Center Drive, Room 8B14, MSC 1750, Bethesda, MD 20892.
| | | | | | | | | | | |
Collapse
|
40
|
Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta SF, Lampugnani MG, Dejana E. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 2013; 498:492-6. [DOI: 10.1038/nature12207] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 04/19/2013] [Indexed: 01/27/2023]
|
41
|
Imai K, Minamiya Y, Goto A, Nanjo H, Saito H, Motoyama S, Sato Y, Kudo S, Takashima S, Kawaharada Y, Kurihara N, Orino K, Ogawa JI. Bronchioloalveolar invasion in non-small cell lung cancer is associated with expression of transforming growth factor-β1. World J Surg Oncol 2013; 11:113. [PMID: 23705641 PMCID: PMC3664590 DOI: 10.1186/1477-7819-11-113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/13/2013] [Indexed: 01/03/2023] Open
Abstract
Background Adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) with fibrous stromal invasion are newly introduced subtypes of small lung adenocarcinoma. AIS is a small localized adenocarcinoma in which growth is restricted to neoplastic cells along preexisting alveolar structures without fibrous stromal invasion. In MIA, by contrast, tumor cells have infiltrated the myofibroblastic stroma. Transforming growth factor (TGF)-β is known to be produced by progressor tumors, and excessive TGF-β contributes to a pathological excess of tissue fibrosis. TGF-β1 is the most abundant isoform, and its expression is a key event fostering tumor invasion and metastasis. We therefore analyzed the relationship between TGF-β1 expression and clinicopathological microinvasion in patients with small lung adenocarcinoma. Methods The study participants were 45 patients who underwent curative surgery for AIS and MIA 3 cm or less in size. Those tumors were assessed based on immunohistochemical staining using anti-TGF-β1 antibody. The TGF-β1 status was assessed immunohistochemically using the Allred 8-unit system. Results The rates of TGF-β1 positivity in the AIS and MIA groups were 27.3% and 65.2%, respectively (P <0.05). The median of Allred score was 0.5 (range 0–5) in the AIS group and 3.0 (range 0–6) in the MIA group (P = 0.0017). Conclusions We suggest that TGF-β1 expression is likely to be significantly stronger in patients with MIA than in those with AIS, and the increased expression may be associated with minimal invasion and infiltration of the myofibroblastic stroma.
Collapse
Affiliation(s)
- Kazuhiro Imai
- Department of Chest, Breast and Endocrine Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita City 010-8543, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao L, Lu X, Cao Y. MicroRNA and signal transduction pathways in tumor radiation response. Cell Signal 2013; 25:1625-34. [PMID: 23602933 DOI: 10.1016/j.cellsig.2013.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
Tumor radiation response is an essential issue in radiotherapy and a core determining factor of tumor radioresistance or radiosensitivity. Multiple factors can influence tumor radiation response, and among them tumor genetic and epigenetic background, tumor microenvironment and tumor blood flow status may take a leading role. During the whole process of tumor radiation response, tumor radiosensitivity can be regulated in an orderly manner through some classical signal transduction pathways. Although these pathways have already owned multiple biological functions and involved in the process of carcinogenesis, their regulatory roles in tumor radiation response can not be ignored. MicroRNA (miRNA) is a class of non-coding RNA of about 22 nucleotides in length, which binds to the 3'-untranslated region (3'-UTR) of target gene and controls the expression of it at the post-transcriptional level. MiRNA participates in numerous physiology and pathology processes and acts as oncogene or tumor suppressor to affect cancer progression. Through interplaying with the key components in radiation related signal transduction pathways, miRNA could effectively activate the expression of DNA damage response genes and cell cycle related genes in the nucleus, and play a critical role in the modulation of radiation response and radiosensitivity in tumor cells. In this review, we mainly elucidate the regulatory mechanisms and functions of miRNA in these radiation related signal transduction pathways from three different aspects which include the upstream receptors, midstream transducer pathways, and downstream effector genes.
Collapse
Affiliation(s)
- Luqing Zhao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | | | | |
Collapse
|
43
|
Boyer AP, Collier TS, Vidavsky I, Bose R. Quantitative proteomics with siRNA screening identifies novel mechanisms of trastuzumab resistance in HER2 amplified breast cancers. Mol Cell Proteomics 2012; 12:180-93. [PMID: 23105007 DOI: 10.1074/mcp.m112.020115] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HER2 is a receptor tyrosine kinase that is overexpressed in 20% to 30% of human breast cancers and which affects patient prognosis and survival. Treatment of HER2-positive breast cancer with the monoclonal antibody trastuzumab (Herceptin) has improved patient survival, but the development of trastuzumab resistance is a major medical problem. Many of the known mechanisms of trastuzumab resistance cause changes in protein phosphorylation patterns, and therefore quantitative proteomics was used to examine phosphotyrosine signaling networks in trastuzumab-resistant cells. The model system used in this study was two pairs of trastuzumab-sensitive and -resistant breast cancer cell lines. Using stable isotope labeling, phosphotyrosine immunoprecipitations, and online TiO(2) chromatography utilizing a dual trap configuration, ~1700 proteins were quantified. Comparing quantified proteins between the two cell line pairs showed only a small number of common protein ratio changes, demonstrating heterogeneity in phosphotyrosine signaling networks across different trastuzumab-resistant cancers. Proteins showing significant increases in resistant versus sensitive cells were subjected to a focused siRNA screen to evaluate their functional relevance to trastuzumab resistance. The screen revealed proteins related to the Src kinase pathway, such as CDCP1/Trask, embryonal Fyn substrate, and Paxillin. We also identify several novel proteins that increased trastuzumab sensitivity in resistant cells when targeted by siRNAs, including FAM83A and MAPK1. These proteins may present targets for the development of clinical diagnostics or therapeutic strategies to guide the treatment of HER2+ breast cancer patients who develop trastuzumab resistance.
Collapse
Affiliation(s)
- Alaina P Boyer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
44
|
Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-β - an excellent servant but a bad master. J Transl Med 2012; 10:183. [PMID: 22943793 PMCID: PMC3494542 DOI: 10.1186/1479-5876-10-183] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor (TGF-β) family of growth factors controls an immense number of cellular responses and figures prominently in development and homeostasis of most human tissues. Work over the past decades has revealed significant insight into the TGF-β signal transduction network, such as activation of serine/threonine receptors through ligand binding, activation of SMAD proteins through phosphorylation, regulation of target genes expression in association with DNA-binding partners and regulation of SMAD activity and degradation. Disruption of the TGF-β pathway has been implicated in many human diseases, including solid and hematopoietic tumors. As a potent inhibitor of cell proliferation, TGF-β acts as a tumor suppressor; however in tumor cells, TGF-β looses anti-proliferative response and become an oncogenic factor. This article reviews current understanding of TGF-β signaling and different mechanisms that lead to its impairment in various solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Lenka Kubiczkova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, 625 00, Czech Republic
| | | | | | | |
Collapse
|
45
|
Kim JY, Kim YM, Yang CH, Cho SK, Lee JW, Cho M. Functional regulation of Slug/Snail2 is dependent on GSK-3β-mediated phosphorylation. FEBS J 2012; 279:2929-39. [PMID: 22727060 DOI: 10.1111/j.1742-4658.2012.08674.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Snail family proteins regulate transcription of molecules for cell-cell adhesion during epithelial-mesenchymal transition (EMT). Based on putative glycogen synthase kinase 3β (GSK-3β) phosphorylation sites within the Slug/Snail2, we explored the significance of GSK-3β-mediated phosphorylation in Slug/Snail2 expression during EMT. Mutation of the putative GSK-3β phosphorylation sites (S92/96A or S100/104A) enhanced the Slug/Snail2-mediated EMT properties of E-cadherin repression and vimentin induction, compared with wild-type Slug/Snail2. S92/96A mutation inhibited degradation of Slug/Snail2 and S100/104A mutation extended nuclear stabilization. Inhibition of GSK-3β activity caused similar effects, as did the phosphorylation mutations. Thus, our study suggests that GSK-3β-mediated phosphorylation of Slug/Snail2 controls its turnover and localization during EMT.
Collapse
Affiliation(s)
- Jin Young Kim
- Department of Biochemistry, School of Medicine, Jeju National University, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
The 1st International standard for transforming growth factor-β3 (TGF-β3). J Immunol Methods 2012; 380:1-9. [DOI: 10.1016/j.jim.2012.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 11/19/2022]
|
47
|
Butz H, Rácz K, Hunyady L, Patócs A. Crosstalk between TGF-β signaling and the microRNA machinery. Trends Pharmacol Sci 2012; 33:382-93. [PMID: 22613783 DOI: 10.1016/j.tips.2012.04.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/05/2012] [Accepted: 04/12/2012] [Indexed: 02/07/2023]
Abstract
The activin/transforming growth factor-β (TGF-β) pathway plays an important role in tumorigenesis either by its tumor suppressor or tumor promoting effect. Loss of members of the TGF-β signaling by somatic mutations or epigenetic events, such as DNA methylation or regulation by microRNA (miRNA), may affect the signaling process. Most members of the TGF-β pathway are known to be targeted by one or more miRNAs. In addition, the biogenesis of miRNAs is also regulated by TGF-β both directly and through SMADs. Based on these interactions, it appears that autoregulatory feedback loops between TGF-β and miRNAs influence the fate of tumor cells. Our aim is to review the crosstalk between TGF-β signaling and the miRNA machinery to highlight potential novel therapeutic targets.
Collapse
Affiliation(s)
- Henriett Butz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
48
|
Vendrell JA, Thollet A, Nguyen NT, Ghayad SE, Vinot S, Bièche I, Grisard E, Josserand V, Coll JL, Roux P, Corbo L, Treilleux I, Rimokh R, Cohen PA. ZNF217 Is a Marker of Poor Prognosis in Breast Cancer That Drives Epithelial–Mesenchymal Transition and Invasion. Cancer Res 2012; 72:3593-606. [DOI: 10.1158/0008-5472.can-11-3095] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Davies M, Prime SS, Eveson JW, Price N, Ganapathy A, D'Mello A, Paterson IC. Transforming growth factor-β enhances invasion and metastasis in Ras-transfected human malignant epidermal keratinocytes. Int J Exp Pathol 2012; 93:148-56. [PMID: 22414291 DOI: 10.1111/j.1365-2613.2011.00806.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is known to act as a tumour suppressor early in carcinogenesis, but then switches to a pro-metastatic factor in some late stage cancers. However, the actions of TGF-β are context dependent, and it is currently unclear how TGF-β influences the progression of human squamous cell carcinoma (SCC). This study examined the effect of overexpression of TGF-β1 or TGF-β2 in Ras-transfected human malignant epidermal keratinocytes that represent the early stages of human SCC. In vitro, the proliferation of cells overexpressing TGF-β1 or TGF-β2 was inhibited by exogenous TGF-β1; cells overexpressing TGF-β1 also grew more slowly than controls, but the growth rate of TGF-β2 overexpressing cells was unaltered. However, cells that overexpressed either TGF-β1 or TGF-β2 were markedly more invasive than controls in an organotypic model of SCC. The proliferation of the invading TGF-β1 overexpressing cells in the organotypic assays was higher than controls. Similarly, tumours formed by the TGF-β1 overexpressing cells following transplantation to athymic mice were larger than tumours formed by control cells and proliferated at a higher rate. Our results demonstrate that elevated expression of either TGF-β1 or TGF-β2 in cells that represent the early stages in the development of human SCC results in a more aggressive phenotype.
Collapse
Affiliation(s)
- Maria Davies
- School of Oral and Dental Science, University of Bristol, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Discovery of a series of 2-(1H-pyrazol-1-yl)pyridines as ALK5 inhibitors with potential utility in the prevention of dermal scarring. Bioorg Med Chem Lett 2012; 22:3392-7. [PMID: 22542194 DOI: 10.1016/j.bmcl.2012.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 11/20/2022]
Abstract
A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFβ receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFβ induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring.
Collapse
|