1
|
Ma C, Fang X, Wang W, Ji S, Liu H, Lv W, Tang D. In Triple-Negative Breast Cancer: Correlation Among Metabolic Syndrome, S100A7/cPLA2 Expression and the Efficacy of Neoadjuvant Chemotherapy. Clin Breast Cancer 2025:S1526-8209(25)00043-6. [PMID: 40118690 DOI: 10.1016/j.clbc.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) has a poor prognosis. Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) is a prognostic factor. This study aimed to find predictors of efficacy. METHODS A total of 266 TNBC patients treated with NAC were included. The relationship between MetS, S100A7/cPLA2 expression and clinicopathological features was investigated. The effect on pCR, clinical response, and disease-free survival (DFS) was observed. A cell co-culture model was established by the researchers to further assess the function of S100A7. RESULTS Correlation analysis revealed a strong association between the expressions of S100A7 and cPLA2, with both significantly higher in the MetS group compared to the non-MetS group. Logistic regression analysis indicated that MetS and S100A7/cPLA2 expressions were linked to pCR and clinical response. S100A7/cPLA2 served as an independent predictor of pCR, while cPLA2 was an independent predictor of clinical response. Survival analysis demonstrated that MetS and S100A7/cPLA2 were associated with an increased risk of disease progression. MP grading and clinical efficacy were independent predictors of DFS, with MetS and S100A7/cPLA2 expressions correlating with shortened DFS. In the co-culture model, S100A7 inhibited the NF-κB pathway, enhancing TNBC cell proliferation and invasion in the presence of macrophages, and promoting M2 macrophage polarization. CONCLUSION S100A7/cPLA2 expression predicts a low pCR rate in TNBC patients undergoing NAC and may serve as a potential mechanistic biomarker linking MetS with altered NAC efficacy in TNBC, warranting further investigation and intervention.
Collapse
Affiliation(s)
- Chenhong Ma
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xue Fang
- Department of Hematology and Oncology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wenwen Wang
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuyu Ji
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Huili Liu
- Department of Radiation Oncology, Zhebei Mingzhou Hospital, Huzhou, Zhejiang, China
| | - Wenli Lv
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Dabei Tang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Chervet A, Nehme R, Defois-Fraysse C, Decombat C, Blavignac C, Auxenfans C, Evrard B, Michel S, Filaire E, Berthon JY, Dreux-Zigha A, Delort L, Caldefie-Chézet F. Development and characterization of a chicory extract fermented by Akkermansia muciniphila: An in vitro study on its potential to modulate obesity-related inflammation. Curr Res Food Sci 2025; 10:100974. [PMID: 39906505 PMCID: PMC11791162 DOI: 10.1016/j.crfs.2025.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Obesity, the fifth leading cause of death globally and linked to chronic low-grade inflammation and development of numerous severe pathologies, is a major public health problem. Fermented foods, probiotics, and postbiotics emerge as promising avenues for combating obesity and inflammation. The aim of our study was to develop and characterize phyto-postbiotics corresponding to prebiotic compounds fermented by gut bacteria, which could act on obesity and related-inflammation. Chicory extract fermented by Akkermansia muciniphila (C-Akm) was selected as the most antioxidant of 20 fermented extracts. The identification of metabolites derived from C-Akm extract has enabled us to detect mostly amino acids, acids, and some polyphenols (daidzein and genistein). The anti-inflammatory and anti-obesity activities of C-Akm extract were studied by testing the extract (50 μg/mL) on the polarization of THP-1 into macrophages, the secretion of pro-inflammatory cytokines in LPS-stimulated PBMCs, and the secretion of leptin and adiponectin in adipospheroids derived from human adipose stem cells. Finally, the extract was examined in 3D co-culture model mimicking inflamed obese adipose tissue. We found that C-Akm extract decreased ROS generation, TNF-α and Il-6 gene expression in polarized macrophages, INFγ and IL-17A secretion in LPS-stimulated PBMCs stimulated with LPS. It also decreased leptin expression while increasing adiponectin and HSL expression levels in both adipocytes and co-cultures. In addition, C-Akm extract stimulated adiponectin secretion in the co-culture model. Finally, our in vitro investigations demonstrated the potential benefits of C-Akm extract in the prevention and treatment of obesity-related inflammation.
Collapse
Affiliation(s)
- A. Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - R. Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | | | - C. Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - C. Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - C. Auxenfans
- Banque de Tissus et de Cellules, Hôpital Edouard-Herriot, 69000, Lyon, France
| | - B. Evrard
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - S. Michel
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - E. Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - J.-Y. Berthon
- Greentech, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - A. Dreux-Zigha
- Greencell, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - L. Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - F. Caldefie-Chézet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
3
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
4
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Abstract
Cells of the mammalian innate immune system have evolved to protect the host from various environmental or internal insults and injuries which perturb the homeostatic state of the organism. Among the lymphocytes of the innate immune system are natural killer (NK) cells, which circulate and survey host tissues for signs of stress, including infection or transformation. NK cells rapidly eliminate damaged cells in the blood or within tissues through secretion of cytolytic machinery and production of proinflammatory cytokines. To perform these effector functions while traversing between the blood and tissues, patrolling NK cells require sufficient fuel to meet their energetic demands. Here, we highlight the ability of NK cells to metabolically adapt across tissues, during times of nutrient deprivation and within tumor microenvironments. Whether at steady state, or during viral infection and cancer, NK cells readily shift their nutrient uptake and usage in order to maintain metabolism, survival, and function.
Collapse
Affiliation(s)
- Rebecca B. Delconte
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C. Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
6
|
Alanteet A, Attia H, Alfayez M, Mahmood A, Alsaleh K, Alsanea S. Liraglutide attenuates obese-associated breast cancer cell proliferation via inhibiting PI3K/Akt/mTOR signaling pathway. Saudi Pharm J 2024; 32:101923. [PMID: 38223522 PMCID: PMC10784703 DOI: 10.1016/j.jsps.2023.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
This study aims to explore the anti-proliferative, pro-apoptotic, and anti-migration activities of liraglutide (LGT) in MCF-7 breast cancer (BC) cells in subjects with obesity, particularly its effects on the PI3K/Akt/mTOR/AMPK pathway. The role of AMPK/SIRT-1, an essential regulator of adipokine production, in the effect of LGT on the production of adipose-derived adipokine was also assessed. MCF-7 cells were incubated in conditioned medium (CM) generated from adipose-derived stem cells (ADSCs) of obese subjects. MCF-7 cells were then treated with LGT for 72 h. Anti-proliferative, pro-apoptotic, and anti-migration activities were investigated using alamarBlue, annexin V stain, and scratch assay, respectively. Protein levels of phosphorylated PI3K, p-Akt, p-mTOR, and p-AMPK were investigated using immunoblotting. Levels of adipokines in ADSCs were determined using RT-PCR before and after transfection of ADSCs using the specific small interference RNA sequences for AMPK and SIRT-1. LGT evoked anti-proliferative, apoptotic, and potential anti-migratory properties on MCF-7 cells incubated in CM from obese ADSCs and significantly mitigated the activity of the PI3K/Akt/mTOR survival pathway-but not AMPK-in MCF-7 cells. Furthermore, the anti-proliferative effects afforded by LGT were similar to those mediated by LY294002 (PI3K inhibitor) and rapamycin (mTOR inhibitor). Our results reveal that transfection of AMPK/SIRT-1 genes did not affect the beneficial role of LGT in the expression of adipokines in ADSCs. In conclusion, LGT elicits anti-proliferative, apoptotic, and anti-migratory effects on BC cells in obese conditions by suppressing the activity of survival pathways; however, this effect is independent of the AMPK/SIRT1 pathway in ADSCs or AMPK in BC cells.
Collapse
Affiliation(s)
- Alaa Alanteet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaed Alfayez
- Anatomy Department, Stem Cell Unit, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amer Mahmood
- Anatomy Department, Stem Cell Unit, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alsaleh
- College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Capuozzo M, Celotto V, Landi L, Ferrara F, Sabbatino F, Perri F, Cascella M, Granata V, Santorsola M, Ottaiano A. Beyond Body Size: Adiponectin as a Key Player in Obesity-Driven Cancers. Nutr Cancer 2023; 75:1848-1862. [PMID: 37873648 DOI: 10.1080/01635581.2023.2272343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
Obesity, a complex and multifactorial disease influenced by genetic, environmental, and psychological factors, has reached epidemic proportions globally, posing a significant health challenge. In addition to its established association with cardiovascular disease and type II diabetes, obesity has been implicated as a risk factor for various cancers. However, the precise biological mechanisms linking obesity and cancer remain largely understood. Adipose tissue, an active endocrine organ, produces numerous hormones and bioactive molecules known as adipokines, which play a crucial role in metabolism, immune responses, and systemic inflammation. Notably, adiponectin (APN), the principal adipocyte secretory protein, exhibits reduced expression levels in obesity. In this scoping review, we explore and discuss the role of APN in influencing cancer in common malignancies, including lung, breast, colorectal, prostate, gastric, and endometrial cancers. Our review aims to emphasize the critical significance of investigating this field, as it holds great potential for the development of innovative treatment strategies that specifically target obesity-related malignancies. Furthermore, the implementation of more rigorous and comprehensive prevention and treatment policies for obesity is imperative in order to effectively mitigate the risk of associated diseases, such as cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | |
Collapse
|
8
|
Dehesh T, Fadaghi S, Seyedi M, Abolhadi E, Ilaghi M, Shams P, Ajam F, Mosleh-Shirazi MA, Dehesh P. The relation between obesity and breast cancer risk in women by considering menstruation status and geographical variations: a systematic review and meta-analysis. BMC Womens Health 2023; 23:392. [PMID: 37496015 PMCID: PMC10373406 DOI: 10.1186/s12905-023-02543-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Given the increase in the incidence of breast cancer during the past decades, several studies have investigated the effects of variables on breast cancer, especially obesity. This systematic review and meta-analysis aims to evaluate any effects of obesity on breast cancer risk in women, before and after menopause, and in different continents.All forms of relevant literature examining any association between obesity and breast cancer, including cohort, case-control, and cross-sectional studies, were identified in the PubMed, Scopus, EMBASE, and Web of Science databases from January 1, 1990 until January 13, 2023. Body mass index (BMI) > 30 was used to indicate obesity. Every type of breast cancer was examined as outcome factors. The quality of the papers was evaluated using the Newcastle-Ottawa scale checklist. The Egger and Begg test was used to evaluate publication bias. To assess any extra impact of each research on the final measurement, a sensitivity analysis was carried out.One hundred and two studies were included in this meta-analysis. Respectively, 48 and 67 studies reported associations between obesity and breast cancer in pre and post menopausal women. Combining all studies, the pooled OR of the association between obesity and breast cancer in pre-menopausal women was OR = 0.93 CI: (0.85-1.1), (I2 = 65.4%), and for post-menopausal woman, OR = 1.26 CI: (1.19-1.34), (I2 = 90.5%).Obesity has a protective role in breast cancer among pre-menopausal women, but this relationship is statistically significant only in European women. The chance of developing breast cancer increases in post-menopausal women who are obese. This relationship is significant among Asian, North American, African and European women.
Collapse
Affiliation(s)
- Tania Dehesh
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Shohreh Fadaghi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Seyedi
- Department of Health of Management and Medical Information Sciencese, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abolhadi
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Shams
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ajam
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radio-Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Dehesh
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Rashid M, Maqbool A, Shafiq N, Bin Jardan YA, Parveen S, Bourhia M, Nafidi HA, Khan RA. The combination of multi-approach studies to explore the potential therapeutic mechanisms of imidazole derivatives as an MCF-7 inhibitor in therapeutic strategies. Front Chem 2023; 11:1197665. [PMID: 37441272 PMCID: PMC10335751 DOI: 10.3389/fchem.2023.1197665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer covers a large area of research because of its prevalence and high frequency all over the world. This study is based on drug discovery against breast cancer from a series of imidazole derivatives. A 3D-QSAR and activity atlas model was developed by exploring the dataset computationally, using the machine learning process of Flare. The dataset of compounds was divided into active and inactive compounds according to their biological and structural similarity with the reference drug. The obtained PLS regression model provided an acceptable r 2 = 0.81 and q2 = 0.51. Protein-ligand interactions of active molecules were shown by molecular docking against six potential targets, namely, TTK, HER2, GR, NUDT5, MTHFS, and NQO2. Then, toxicity risk parameters were evaluated for hit compounds. Finally, after all these screening processes, compound C10 was recognized as the best-hit compound. This study identified a new inhibitor C10 against cancer and provided evidence-based knowledge to discover more analogs.
Collapse
Affiliation(s)
- Maryam Rashid
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Maqbool
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Nusrat Shafiq
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shagufta Parveen
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Rashid Ahmed Khan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
10
|
Ayed K, Nabi L, Akrout R, Mrizak H, Gorrab A, Bacha D, Boussen H, Gati A. Obesity and cancer: focus on leptin. Mol Biol Rep 2023:10.1007/s11033-023-08525-y. [PMID: 37227675 DOI: 10.1007/s11033-023-08525-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Over the past decades, obesity has grown to epidemic proportions worldwide. It has been associated with an increased risk for different types of cancer. In addition, obesity has been associated with a poor prognosis, an increased risk of metastasis and mortality, and resistance to anti-cancer therapies. The pathophysiological mechanisms underlying the obesity-cancer connection have not yet been fully elucidated. However, this connection could result, at least in part, from the action of adipokines, whose levels are increased in obesity. Among these adipokines, evidence suggests leptin's critical role in linking obesity to cancer. In this review, we first summarize the current state of the literature regarding the implication of leptin in tumorigenic processes. Next, we focus on the effects of leptin on the anti-tumor immune response. Then, we discuss the influence of leptin on the efficiency of antineoplastic treatments and the development of tumor resistance. Finally, we highlight the use of leptin as a potential target for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Khouloud Ayed
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lamis Nabi
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rym Akrout
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hela Mrizak
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amal Gorrab
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dhouha Bacha
- Anatomopathology Department, Mongi Slim Hospital, Tunis, Tunisia
| | - Hamouda Boussen
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Ariana, Tunisia
| | - Asma Gati
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
11
|
Lou MW, Drummond AE, Swain CT, Milne RL, English DR, Brown KA, van Roekel EH, Skinner TL, Moore MM, Gaunt TR, Martin RM, Lewis SJ, Lynch BM. Linking Physical Activity to Breast Cancer via Inflammation, Part 2: The Effect of Inflammation on Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev 2023; 32:597-605. [PMID: 36867866 PMCID: PMC10150245 DOI: 10.1158/1055-9965.epi-22-0929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
This review synthesized and appraised the evidence for an effect of inflammation on breast cancer risk. Systematic searches identified prospective cohort and Mendelian randomization studies relevant to this review. Meta-analysis of 13 biomarkers of inflammation were conducted to appraise the evidence for an effect breast cancer risk; we examined the dose-response of these associations. Risk of bias was evaluated using the ROBINS-E tool and the quality of evidence was appraised with Grading of Recommendations Assessment, Development, and Evaluation. Thirty-four observational studies and three Mendelian randomization studies were included. Meta-analysis suggested that women with the highest levels of C-reactive protein (CRP) had a higher risk of developing breast cancer [risk ratio (RR) = 1.13; 95% confidence interval (CI), 1.01-1.26] compared with women with the lowest levels. Women with highest levels of adipokines, particularly adiponectin (RR = 0.76; 95% CI, 0.61-0.91) had a reduced breast cancer risk, although this finding was not supported by Mendelian randomization analysis. There was little evidence of an effect of cytokines, including TNFα and IL6, on breast cancer risk. The quality of evidence for each biomarker ranged from very low to moderate. Beyond CRP, the published data do not clearly support the role of inflammation in the development of breast cancer.
Collapse
Affiliation(s)
- Makayla W.C. Lou
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Ann E. Drummond
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, Australia
| | | | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Dallas R. English
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Eline H. van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Tina L. Skinner
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia
| | - Melissa M. Moore
- Medical Oncology, St Vincent's Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Tom R. Gaunt
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Sarah J. Lewis
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Brigid M. Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
12
|
Sharma A, Anand SK, Singh N, Dwivedi UN, Kakkar P. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp Cell Res 2023; 428:113614. [PMID: 37127064 DOI: 10.1016/j.yexcr.2023.113614] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Cells are programmed to favorably respond towards the nutrient availability by adapting their metabolism to meet energy demands. AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine energy-sensing kinase. It gets activated upon a decrease in the cellular energy status as reflected by an increased AMP/ATP ratio, ADP, and also during the conditions of glucose starvation without change in the adenine nucelotide ratio. AMPK functions as a centralized regulator of metabolism, acting at cellular and physiological levels to circumvent the metabolic stress by restoring energy balance. This review intricately highlights the integrated signaling pathways by which AMPK gets activated allosterically or by multiple non-canonical upstream kinases. AMPK activates the ATP generating processes (e.g., fatty acid oxidation) and inhibits the ATP consuming processes that are non-critical for survival (e.g., cell proliferation, protein and triglyceride synthesis). An integrated signaling network with AMPK as the central effector regulates all the aspects of enhanced stress resistance, qualified cellular housekeeping, and energy metabolic homeostasis. Importantly, the AMPK mediated amelioration of cellular stress and inflammatory responses are mediated by stimulation of transcription factors such as Nrf2, SIRT1, FoxO and inhibition of NF-κB serving as main downstream effectors. Moreover, many lines of evidence have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling to fine-tune the metabolic pathways in response to different cellular signals. This review also highlights the critical involvement of AMPK in promoting mitochondrial health, and homeostasis, including mitophagy. Loss of AMPK or ULK1 activity leads to aberrant accumulation of autophagy-related proteins and defective mitophagy thus, connecting cellular energy sensing to autophagy and mitophagy.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Department of Biochemistry, University of Lucknow, Lucknow, 226007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| | - Sumit Kr Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Pathology, LSU Health, 1501 Kings Hwy, Shreveport, LA, 71103, USA.
| | - Neha Singh
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | | | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Dincer F, Atmaca H, Akman L, Oktay LM, Karaca B, Terek MC. Effects of leptin on the viability of human ovarian cancer cells and changes in cytokine expression levels. PeerJ 2023; 11:e15246. [PMID: 37155466 PMCID: PMC10122840 DOI: 10.7717/peerj.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
Background Obesity is associated with increased mortality among ovarian cancer and is a poor prognostic factor. There are significant links between the leptin hormone, a product of the obesity gene, and the development of ovarian cancer. Leptin is a vital hormone-like cytokine secreted from adipose tissue and is mainly involved in the maintenance of energy homeostasis. It regulates several intracellular signaling pathways and also interacts with various hormones and energy regulators. It acts as a growth factor by stimulating cell proliferation and differentiation and in this way contributes to cancer cell development. The aim of the study was to investigate the effects of leptin on human ovarian cancer cells. Methods In this study, the effects of increasing the concentration of leptin were investigated on the cell viability of OVCAR-3 and MDAH-2774 ovarian cancer lines by MTT assay. Moreover, to elucidate the molecular mechanisms of leptin in ovarian cancer cells, changes in the expression levels of 80 cytokines were evaluated after leptin treatment via a human cytokine antibody array. Results Leptin increases the proliferation of both ovarian cancer cell lines. IL-1 level was increased in OVCAR-3 cells and TGF-β level was increased in MDAH-2774 cells after leptin treatment. A decrease in IL-2, MCP-2/CCL8 and MCP-3/CCL7 levels was detected in both ovarian cancer cell lines with leptin administration. An increase in IL-3 and IL-10 expressions, insulin-like growth factor binding proteins (IGFBP) IGFBP-1, IGFBP-2 and IGFBP-3 levels were detected in both ovarian cancer cell lines with leptin administration. In conclusion; leptin has a proliferative effect on human ovarian cancer cell lines and affects different cytokines in different types of ovarian cancer cells.
Collapse
Affiliation(s)
- Fatih Dincer
- Divison of Gynecologic Oncology, Health Sciences University İzmir Tepecik Education and Research Hospital, Health Sciences University, Izmir, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Levent Akman
- Department of Obstetrics and Gynecology, Divison of Gynecologic Oncology, Ege University, Bayraklı, İzmir, Turkey
| | - Latife Merve Oktay
- Department of Medical Biology, Medicine Faculty, Ege University, Bayraklı, İzmir, Turkey
| | - Burcak Karaca
- Department of Medical Oncology, Tulay Aktas Oncology Hospital, Ege University, Bayraklı, İzmir, Turkey
| | - Mustafa Cosan Terek
- Department of Obstetrics and Gynecology, Divison of Gynecologic Oncology, Ege University, Bayraklı, İzmir, Turkey
| |
Collapse
|
14
|
Pal S, Sharma A, Mathew SP, Jaganathan BG. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Front Immunol 2022; 13:955476. [PMID: 36618350 PMCID: PMC9815821 DOI: 10.3389/fimmu.2022.955476] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a heterogeneous disease characterized by various genetic and phenotypic aberrations. Cancer cells undergo genetic modifications that promote their proliferation, survival, and dissemination as the disease progresses. The unabated proliferation of cancer cells incurs an enormous energy demand that is supplied by metabolic reprogramming. Cancer cells undergo metabolic alterations to provide for increased energy and metabolite requirement; these alterations also help drive the tumor progression. Dysregulation in glucose uptake and increased lactate production via "aerobic glycolysis" were described more than 100 years ago, and since then, the metabolic signature of various cancers has been extensively studied. However, the extensive research in this field has failed to translate into significant therapeutic intervention, except for treating childhood-ALL with amino acid metabolism inhibitor L-asparaginase. Despite the growing understanding of novel metabolic alterations in tumors, the therapeutic targeting of these tumor-specific dysregulations has largely been ineffective in clinical trials. This chapter discusses the major pathways involved in the metabolism of glucose, amino acids, and lipids and highlights the inter-twined nature of metabolic aberrations that promote tumorigenesis in different types of cancer. Finally, we summarise the therapeutic interventions which can be used as a combinational therapy to target metabolic dysregulations that are unique or common in blood, breast, colorectal, lung, and prostate cancer.
Collapse
Affiliation(s)
- Soumik Pal
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sam Padalumavunkal Mathew
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India,Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India,*Correspondence: Bithiah Grace Jaganathan,
| |
Collapse
|
15
|
High Post-Treatment Leptin Concentration as a Prognostic Biomarker of the High Risk of Luminal Breast Cancer Relapse: A Six-Year Comprehensive Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122063. [PMID: 36556428 PMCID: PMC9783731 DOI: 10.3390/life12122063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
(1) Background: Nowadays, obesity is well-recognised as a significant risk factor for many chronic diseases, for example, hypertension, diabetes, atherosclerosis and cancer. This study is designed to investigate the prognostic value of the pre- and post-treatment serum levels of adiponectin and leptin in luminal A and B invasive breast cancer (IBrC) patients based on six-years follow-up. (2) Methods: Among 70 patients who underwent breast surgery, 35 were Stage I and 35 were Stage II. The concentrations of pre- and post-treatment adiponectin and leptin were evaluated with a specific ELISA kit. The median follow-up was 68.5 months (inter-quartile range (IQR) = 59-72 months) with a recurrence rate of 15.71%. (3) Results: Generally, concentrations of leptin and adiponectin increased after adjuvant therapy. Follow-up showed a significantly higher incidence of disease relapse in IBrC patients with a high post-treatment concentration of leptin (25.71% vs. 5.71% of cases with a low post-treatment concentration of leptin). A post-treatment leptin concentration of 26.88 ng/mL with a specificity of 64.9% and a sensitivity of 88.9% was determined as the best cut-off value to distinguish patients with disease recurrence from those without disease relapse. (4) Conclusions: Our results demonstrated that only the post-treatment serum leptin concentration may be of value as a prognostic indicator and could contribute to predicting a future outcome for patients with early-stage IBrC.
Collapse
|
16
|
Dai J, Shi H, Zhang C, Li B, Li Y, Wei Y. Multimeric adiponectin nanoparticles regulate glucose metabolism by activating phosphatidylinositol-3-kinase, protein kinase B and T-cadherin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Larsson SC, Spyrou N, Mantzoros CS. Body fatness associations with cancer: evidence from recent epidemiological studies and future directions. Metabolism 2022; 137:155326. [PMID: 36191637 DOI: 10.1016/j.metabol.2022.155326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
This narrative review highlights current evidence linking greater body fatness to risk of various cancers, with focus on evidence from recent large cohort studies and pooled analyses of cohort studies as well as Mendelian randomization studies (which utilized genetic variants associated with body mass index to debrief the causal effect of higher body fatness on cancer risk). This review also provides insights into the biological mechanisms underpinning the associations. Data from both observational and Mendelian randomization studies support the associations of higher body mass index with increased risk of many cancers with the strongest evidence for digestive system cancers, including esophageal, stomach, colorectal, liver, gallbladder, and pancreatic cancer, as well as kidney, endometrial, and ovarian (weak association) cancer. Evidence from observational studies suggests that greater body fatness has contrasting effects on breast cancer risk depending on menopausal status and on prostate cancer risk depending on disease stage. Experimental and Mendelian randomization studies indicate that adiponectin, insulin, and sex hormone pathways play an important role in mediating the link between body fatness and cancer risk. The possible role of specific factors and pathways, such as other adipocytokines and hormones and the gut microbiome in mediating the associations between greater body fatness and cancer risk is yet uncertain and needs investigation in future studies. With rising prevalence of overweight and obesity worldwide, the proportion of cancer caused by excess body fatness is expected to increase. There is thus an urgent need to identify efficient ways at the individual and societal level to improve diet and physical activity patterns to reduce the burden of obesity and accompanying comorbidities, including cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Nikolaos Spyrou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Hayes AR, Luong TV, Banks J, Shah H, Watkins J, Lim E, Patel A, Grossman AB, Navalkissoor S, Krell D, Caplin ME. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH): Prevalence, clinicopathological characteristics and survival outcome in a cohort of 311 patients with well-differentiated lung neuroendocrine tumours. J Neuroendocrinol 2022; 34:e13184. [PMID: 36121922 DOI: 10.1111/jne.13184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) is considered to be a rare condition associated with lung neuroendocrine tumours (NET), and its natural history is poorly described. We aimed to assess the prevalence and clinicopathologic characteristics of DIPNECH in the lung NET population, and to investigate predictors of time-to-progression (TTP) and overall survival (OS). METHODS We retrospectively identified patients diagnosed with DIPNECH between April 2005 and December 2020. Clinical data were collected from medical records. The relationship between baseline characteristics and TTP and OS was analysed using the Kaplan-Meier method. Univariate analysis was performed using the Cox proportional hazards model. RESULTS Of 311 patients with well-differentiated lung NETs, 61 (20%) had DIPNECH and were included in the study. Baseline demographics described 95% female, 59% never smokers and mean body mass index 34.4 kg m-2 ; 77% were typical carcinoids (TC), 13% atypical carcinoids (AC), and 10% both TC and AC (multicentric). At presentation, 54% of patients were asymptomatic. Multicentric NETs were demonstrated in 16 (26%) on histopathology, and a further 32 (52%) had synchronous NETs suggested on imaging (multiple nodules ≥ 5 mm). Seven (11%) patients developed metastases and the median OS from time of first metastasis was 37 months. AC histopathology and NET TNM stage ≥ IIA were associated with poorer TTP and OS. Of the DIPNECH cohort, the 15-year survival rate was 86%. CONCLUSIONS DIPNECH may be more prevalent in the lung NET population than previously appreciated, especially in women. Although our results confirm that DIPNECH is predominantly an indolent disease associated with TC, 23% developed AC and these patients may warrant closer observation.
Collapse
Affiliation(s)
- Aimee R Hayes
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Tu Vinh Luong
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Jamie Banks
- Medical School, University College of London, London, UK
| | - Heer Shah
- Medical School, University College of London, London, UK
| | - Jennifer Watkins
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton Hospital, London, UK
| | - Anant Patel
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Ashley B Grossman
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Shaunak Navalkissoor
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Daniel Krell
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Martyn E Caplin
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
- University College of London, London, UK
| |
Collapse
|
19
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
20
|
Cherukuri SP, Chikatimalla R, Dasaradhan T, Koneti J, Gadde S, Kalluru R. Breast Cancer and the Cardiovascular Disease: A Narrative Review. Cureus 2022; 14:e27917. [PMID: 36110451 PMCID: PMC9464354 DOI: 10.7759/cureus.27917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is the most common malignancy affecting females worldwide and is also among the top causes of all cancer-related deaths. Cardiovascular disease (CVD) is known to have the highest rate of mortality in women. There are several risk factors for both CVD and breast cancer that overlap, such as diet, smoking, and obesity, and also the current breast cancer treatment has a significant detrimental effect on cardiovascular health in general. Patients with exposure to potentially cardiotoxic treatments, including anthracyclines, trastuzumab, and radiation therapy, are more likely to develop CVD than non-cancer controls. Early detection and treatment may reduce the risk of the development of cardiac morbidity and mortality and would increase the number of breast cancer survivors. This article provides a comprehensive overview of breast cancer, identifies shared risk factors among breast cancer and CVD, and the cardiotoxic effects of therapy. It also reviews possible prevention and treatment of CVD in breast cancer patients and reviews literature about chemoprevention of cardiac disease in the setting of breast cancer treatment.
Collapse
|
21
|
Floris M, Pira G, Castiglia P, Idda M, Steri M, De Miglio M, Piana A, Cossu A, Azara A, Arru C, Deiana G, Putzu C, Sanna V, Carru C, Serra A, Bisail M, Muroni M. Impact on breast cancer susceptibility and clinicopathological traits of common genetic polymorphisms in TP53, MDM2 and ATM genes in Sardinian women. Oncol Lett 2022; 24:331. [PMID: 36039053 PMCID: PMC9404703 DOI: 10.3892/ol.2022.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022] Open
Abstract
Common variants of genes involved in DNA damage correction [tumor protein p53 (TP53), murine double 2 homolog oncoprotein (MDM2) and ataxia-telengiectasia mutated (ATM)] may serve a role in cancer predisposition. The purpose of the present study was to investigate the association of five variants in these genes with breast cancer risk and clinicopathological traits in a cohort of 261 women from northern Sardinia. Polymorphic variants in TP53 (rs17878362, rs1042522 and rs1625895), MDM2 (rs2279744) and ATM (rs1799757) were determined by PCR and TaqMan single nucleotide polymorphism assay in patients with breast cancer (n=136) and healthy controls (n=125). Association with clinicopathological (e.g., age at diagnosis, lymph node involvement, clinical stage) and lifestyle factors (e.g., smoking status, alcohol intake, contraceptive use) was also evaluated. TP53 rs17878362 and rs1625895 polymorphisms were associated with decreased risk of BC diagnosis in patients older than 50 years (codominant and recessive models) and post-menopause (recessive model). Furthermore, there was a significant association between lymph node status (positive vs. negative) and ATM rs1799757-delT in dominant and additive models and between MDM2 rs2279744-allele and use of oral contraceptives. This analysis suggested that TP53 rs17878362 and rs1625895 may affect age of onset of breast cancer and ATM rs1799757 and MDM2 rs2279744 may be associated with lymph node status and prolonged use of oral contraceptives, respectively.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Maria Idda
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| | - Maria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Andrea Piana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Andrea Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Antonio Azara
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Giovanna Deiana
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Carlo Putzu
- Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Valeria Sanna
- Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Antonello Serra
- Unit of Occupational Medicine, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Marco Bisail
- Lega Italiana per la Lotta contro i Tumori, Sassari, I-07100 Sardinia, Italy
| | - Maria Muroni
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| |
Collapse
|
22
|
Ibrahim AS, El-Shinawi M, Sabet S, Ibrahim SA, Mohamed MM. Role of adipose tissue-derived cytokines in the progression of inflammatory breast cancer in patients with obesity. Lipids Health Dis 2022; 21:67. [PMID: 35927653 PMCID: PMC9351154 DOI: 10.1186/s12944-022-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) represents a deadly aggressive phenotype of breast cancer (BC) with a unique clinicopathological presentation and low survival rate. In fact, obesity represents an important risk factor for BC. Although several studies have identified different cellular-derived and molecular factors involved in IBC progression, the role of adipocytes remains unclear. Cancer-associated adipose tissue (CAAT) expresses a variety of adipokines, which contribute to tumorigenesis and the regulation of cancer stem cell (CSC). This research investigated the potential effect of the secretome of CAAT explants from patients with BC on the progression and metastasis of the disease. METHODS This study established an ex-vivo culture of CAAT excised from IBC (n = 13) vs. non-IBC (n = 31) patients with obesity and profiled their secretome using a cytokine antibody array. Furthermore, the quantitative PCR (qPCR) methodology was used to validate the levels of predominant cytokines at the transcript level after culture in a medium conditioned by CAAT. Moreover, the impact of the CAAT secretome on the expression of epithelial-mesenchymal transition (EMT) and cells with stem cell (CSC) markers was studied in the non-IBC MDA-MB-231 and the IBC SUM-149 cell lines. The statistical differences between variables were evaluated using the chi-squared test and unpaired a Student's t-test. RESULTS The results of cytokine array profiling revealed an overall significantly higher level of a panel of 28 cytokines secreted by the CAAT ex-vivo culture from IBC patients with obesity compared to those with non-IBC. Of note, interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemo-attractant protein 1 (MCP-1) were the major adipokines secreted by the CAAT IBC patients with obesity. Moreover, the qPCR results indicated a significant upregulation of the IL-6, IL-8, and MCP-1 mRNAs in CAAT ex-vivo culture of patients with IBC vs. those with non-IBC. Intriguingly, a qPCR data analysis showed that the CAAT secretome secretions from patients with non-IBC downregulated the mRNA levels of the CD24 CSC marker and of the epithelial marker E-cadherin in the non-IBC cell line. By contrast, E-cadherin was upregulated in the SUM-149 cell. CONCLUSIONS This study identified the overexpression of IL-6, IL-8, and MCP-1 as prognostic markers of CAAT from patients with IBC but not from those with non-IBC ; moreover, their upregulation might be associated with IBC aggressiveness via the regulation of CSC and EMT markers. This study proposed that targeting IL-6, IL-8, and MCP-1 may represent a therapeutic option that should be considered in the treatment of patients with IBC.
Collapse
Affiliation(s)
- Aya Saber Ibrahim
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
- International Affairs, Galala University, Suez, Egypt
| | - Salwa Sabet
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
23
|
Naaman SC, Shen S, Zeytinoglu M, Iyengar NM. Obesity and Breast Cancer Risk: The Oncogenic Implications of Metabolic Dysregulation. J Clin Endocrinol Metab 2022; 107:2154-2166. [PMID: 35453151 PMCID: PMC9282365 DOI: 10.1210/clinem/dgac241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/18/2022]
Abstract
CONTEXT Breast cancer is increasing in prevalence in parallel with rising rates of obesity worldwide. Obesity is recognized as a leading modifiable risk factor for the development of breast cancer; however, this association varies considerably by clinicopathologic features, and the underlying mechanisms are complex. EVIDENCE ACQUISITION Pubmed literature search using combinations of "obesity," "breast cancer risk," "diet," "exercise," "weight gain," "weight loss," "adipose tissue inflammation," "crown-like structure," "immune markers," "metformin," "gliflozins," "SGLT-2i," "GLP1-RA," and related terms. EVIDENCE SYNTHESIS Elevated body mass index and weight gain are associated with increased risk of postmenopausal, hormone receptor-positive breast cancer. Emerging evidence suggests that adverse measures of body composition in individuals of any weight can also confer increased breast cancer risk. Mechanistically, various factors including altered adipokine balance, dysfunctional adipose tissue, dysregulated insulin signaling, and chronic inflammation contribute to tumorigenesis. Weight loss and more specifically fat mass loss through lifestyle and pharmacologic interventions improve serum metabolic and inflammatory markers, sex hormone levels, and measures of breast density, suggesting a link to decreased breast cancer risk. CONCLUSION Incorporating markers of metabolic health and body composition measures with body mass index can capture breast cancer risk more comprehensively. Further studies of interventions targeting body fat levels are needed to curb the growing prevalence of obesity-related cancer.
Collapse
Affiliation(s)
| | - Sherry Shen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Neil M Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Chen K, Zhang J, Beeraka NM, Tang C, Babayeva YV, Sinelnikov MY, Zhang X, Zhang J, Liu J, Reshetov IV, Sukocheva OA, Lu P, Fan R. Advances in the Prevention and Treatment of Obesity-Driven Effects in Breast Cancers. Front Oncol 2022; 12:820968. [PMID: 35814391 PMCID: PMC9258420 DOI: 10.3389/fonc.2022.820968] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity and associated chronic inflammation were shown to facilitate breast cancer (BC) growth and metastasis. Leptin, adiponectin, estrogen, and several pro-inflammatory cytokines are involved in the development of obesity-driven BC through the activation of multiple oncogenic and pro-inflammatory pathways. The aim of this study was to assess the reported mechanisms of obesity-induced breast carcinogenesis and effectiveness of conventional and complementary BC therapies. We screened published original articles, reviews, and meta-analyses that addressed the involvement of obesity-related signaling mechanisms in BC development, BC treatment/prevention approaches, and posttreatment complications. PubMed, Medline, eMedicine, National Library of Medicine (NLM), and ReleMed databases were used to retrieve relevant studies using a set of keywords, including "obesity," "oncogenic signaling pathways," "inflammation," "surgery," "radiotherapy," "conventional therapies," and "diet." Multiple studies indicated that effective BC treatment requires the involvement of diet- and exercise-based approaches in obese postmenopausal women. Furthermore, active lifestyle and diet-related interventions improved the patients' overall quality of life and minimized adverse side effects after traditional BC treatment, including postsurgical lymphedema, post-chemo nausea, vomiting, and fatigue. Further investigation of beneficial effects of diet and physical activity may help improve obesity-linked cancer therapies.
Collapse
Affiliation(s)
- Kuo Chen
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Zhang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Narasimha M. Beeraka
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, India
| | - Chengyun Tang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Yulia V. Babayeva
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Mikhail Y. Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Xinliang Zhang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Jiacheng Zhang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Igor V. Reshetov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Pengwei Lu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
26
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
27
|
Assumpção JAF, Pasquarelli-do-Nascimento G, Duarte MSV, Bonamino MH, Magalhães KG. The ambiguous role of obesity in oncology by promoting cancer but boosting antitumor immunotherapy. J Biomed Sci 2022; 29:12. [PMID: 35164764 PMCID: PMC8842976 DOI: 10.1186/s12929-022-00796-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is nowadays considered a pandemic which prevalence's has been steadily increasingly in western countries. It is a dynamic, complex, and multifactorial disease which propitiates the development of several metabolic and cardiovascular diseases, as well as cancer. Excessive adipose tissue has been causally related to cancer progression and is a preventable risk factor for overall and cancer-specific survival, associated with poor prognosis in cancer patients. The onset of obesity features a state of chronic low-grade inflammation and secretion of a diversity of adipocyte-derived molecules (adipokines, cytokines, hormones), responsible for altering the metabolic, inflammatory, and immune landscape. The crosstalk between adipocytes and tumor cells fuels the tumor microenvironment with pro-inflammatory factors, promoting tissue injury, mutagenesis, invasion, and metastasis. Although classically established as a risk factor for cancer and treatment toxicity, recent evidence suggests mild obesity is related to better outcomes, with obese cancer patients showing better responses to treatment when compared to lean cancer patients. This phenomenon is termed obesity paradox and has been reported in different types and stages of cancer. The mechanisms underlying this paradoxical relationship between obesity and cancer are still not fully described but point to systemic alterations in metabolic fitness and modulation of the tumor microenvironment by obesity-associated molecules. Obesity impacts the response to cancer treatments, such as chemotherapy and immunotherapy, and has been reported as having a positive association with immune checkpoint therapy. In this review, we discuss obesity's association to inflammation and cancer, also highlighting potential physiological and biological mechanisms underlying this association, hoping to clarify the existence and impact of obesity paradox in cancer development and treatment.
Collapse
Affiliation(s)
| | | | - Mariana Saldanha Viegas Duarte
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín Hernan Bonamino
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
28
|
Zhang S, Jiang H, Gao B, Yang W, Wang G. Identification of Diagnostic Markers for Breast Cancer Based on Differential Gene Expression and Pathway Network. Front Cell Dev Biol 2022; 9:811585. [PMID: 35096840 PMCID: PMC8790293 DOI: 10.3389/fcell.2021.811585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Breast cancer is the second largest cancer in the world, the incidence of breast cancer continues to rise worldwide, and women's health is seriously threatened. Therefore, it is very important to explore the characteristic changes of breast cancer from the gene level, including the screening of differentially expressed genes and the identification of diagnostic markers. Methods: The gene expression profiles of breast cancer were obtained from the TCGA database. The edgeR R software package was used to screen the differentially expressed genes between breast cancer patients and normal samples. The function and pathway enrichment analysis of these genes revealed significant enrichment of functions and pathways. Next, download these pathways from KEGG website, extract the gene interaction relations, construct the KEGG pathway gene interaction network. The potential diagnostic markers of breast cancer were obtained by combining the differentially expressed genes with the key genes in the network. Finally, these markers were used to construct the diagnostic prediction model of breast cancer, and the predictive ability of the model and the diagnostic ability of the markers were verified by internal and external data. Results: 1060 differentially expressed genes were identified between breast cancer patients and normal controls. Enrichment analysis revealed 28 significantly enriched pathways (p < 0.05). They were downloaded from KEGG website, and the gene interaction relations were extracted to construct the gene interaction network of KEGG pathway, which contained 1277 nodes and 7345 edges. The key nodes with a degree greater than 30 were extracted from the network, containing 154 genes. These 154 key genes shared 23 genes with differentially expressed genes, which serve as potential diagnostic markers for breast cancer. The 23 genes were used as features to construct the SVM classification model, and the model had good predictive ability in both the training dataset and the validation dataset (AUC = 0.960 and 0.907, respectively). Conclusion: This study showed that the difference of gene expression level is important for the diagnosis of breast cancer, and identified 23 breast cancer diagnostic markers, which provides valuable information for clinical diagnosis and basic treatment experiments.
Collapse
Affiliation(s)
- Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Haoran Jiang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
29
|
Llanos AA, Aremu JB, Cheng TYD, Chen W, Chekmareva MA, Cespedes Feliciano EM, Qin B, Lin Y, Omene C, Khoury T, Hong CC, Yao S, Ambrosone CB, Bandera EV, Demissie K. Greater Body Fatness Is Associated With Higher Protein Expression of LEPR in Breast Tumor Tissues: A Cross-Sectional Analysis in the Women's Circle of Health Study. Front Endocrinol (Lausanne) 2022; 13:879164. [PMID: 35846306 PMCID: PMC9277012 DOI: 10.3389/fendo.2022.879164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The mechanisms underlying the association of overall and central body fatness with poorer breast cancer outcomes remain unclear; altered gene and/or protein expression of the adipokines and their receptors in breast tumors might play a role. METHODS In a sample of Black and White women with primary invasive breast cancer, we investigated associations of body mass index (BMI), waist circumference, hip circumference, waist-to-hip ratio (WHR), fat mass index (FMI), and percent body fat with protein expression (log-transformed, n = 722) and gene expression (log2-transformed, n = 148) of leptin (LEP), leptin receptor (LEPR), adiponectin (ADIPOQ), and adiponectin receptors 1 and 2 (ADIPOR1, ADIPOR2). Multivariable linear models, adjusting for race, menopausal status, and estrogen receptor status, were used to assess these associations, with Bonferroni correction for multiple comparisons. RESULTS In multivariable models, we found that increasing BMI (β = 0.0529, 95% CI: 0.0151, 0.0906) and FMI (β = 0.0832, 95% CI: 0.0268, 0.1397) were associated with higher LEP gene expression, corresponding to 34.5% and 38.3% increases in LEP gene expression for a standard deviation (SD) increase in BMI and FMI, respectively. Increasing BMI (β = 0.0028, 95% CI: 0.0011, 0.0045), waist circumference (β = 0.0013, 95% CI: 0.0005, 0.0022), hip circumference (β = 0.0015, 95% CI: 0.0007, 0.0024), and FMI (β = 0.0041, 95% CI: 0.0015, 0.0067) were associated with higher LEPR protein expression. These associations equate to 16.8%, 17.6%, 17.7%, 17.2% increases in LEPR protein expression for a 1-SD increase in BMI, waist circumference, hip circumference, and FMI, respectively. Further, these associations were stronger among White and postmenopausal women and ER+ cases; formal tests of interaction yielded evidence of effect modification by race. No associations of body fatness with LEP protein expression, LEPR gene expression, or protein or gene expression of ADIPOQ, ADIPOR1, and ADIPOR2 were found. CONCLUSIONS These findings support an association of increased body fatness - beyond overall body size measured using BMI - with higher LEP gene expression and higher LEPR protein expression in breast tumor tissues. Clarifying the impact of adiposity-related adipokine and adipokine receptor expression in breast tumors on long-term breast cancer outcomes is a critical next step.
Collapse
Affiliation(s)
- Adana A.M. Llanos
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Adana A.M. Llanos,
| | - John B. Aremu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Ting-Yuan David Cheng
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Wenjin Chen
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Marina A. Chekmareva
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | | | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Coral Omene
- Department of Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Thaer Khoury
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, United States
| |
Collapse
|
30
|
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.
Collapse
Affiliation(s)
- Yanamandala Nitheesh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhant Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-G), Ministry of Chemicals & Fertilizers, Govt. of India NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia 700056, Kolkata, India.
| |
Collapse
|
31
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
32
|
Bahrami N, Jabeen S, Tahiri A, Sauer T, Ødegård HP, Geisler SB, Gravdehaug B, Reitsma LC, Selsås K, Kristensen V, Geisler J. Lack of cross-resistance between non-steroidal and steroidal aromatase inhibitors in breast cancer patients: the potential role of the adipokine leptin. Breast Cancer Res Treat 2021; 190:435-449. [PMID: 34554372 PMCID: PMC8558290 DOI: 10.1007/s10549-021-06399-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/11/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE The aromatase inactivator exemestane may cause clinical disease stabilization following progression on non-steroidal aromatase inhibitors like letrozole in patients with metastatic breast cancer, indicating that additional therapeutic effects, not necessarily related to estrogen-suppression, may be involved in this well-known "lack of cross-resistance". METHODS Postmenopausal women with ER positive, HER-2 negative, locally advanced breast cancer were enrolled in the NEOLETEXE-trial and randomized to sequential treatment starting with either letrozole (2.5 mg o.d.) or exemestane (25 mg o.d.) followed by the alternative aromatase inhibitor. Serum levels of 54 cytokines, including 12 adipokines were assessed using Luminex xMAP technology (multiple ELISA). RESULTS Serum levels of leptin were significantly decreased during treatment with exemestane (p < 0.001), regardless whether exemestane was given as first or second neoadjuvant therapy. In contrast, letrozole caused a non-significant increase in serum leptin levels in vivo. CONCLUSIONS Our findings suggest an additional and direct effect of exemestane on CYP-19 (aromatase) synthesis presumably due to effects on the CYP19 promoter use that is not present during therapy with the non-steroidal aromatase inhibitor letrozole. Our findings provide new insights into the influence of clinically important aromatase inhibitors on cytokine levels in vivo that contribute to the understanding of the clinically observed lack of cross-resistance between non-steroidal and steroidal aromatase inhibitors in breast cancer patients. TRIAL REGISTRATION Registered on March 23rd 2015 in the National trial database of Norway (Registration number: REK-SØ-84-2015).
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shakila Jabeen
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | | | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | | | - Knut Selsås
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
33
|
Zheng Y, Karnoub AE. Endocrine regulation of cancer stem cell compartments in breast tumors. Mol Cell Endocrinol 2021; 535:111374. [PMID: 34242715 DOI: 10.1016/j.mce.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Cancer cells within breast tumors exist within a hierarchy in which only a small and rare subset of cells is able to regenerate growths with the heterogeneity of the original tumor. These highly malignant cancer cells, which behave like stem cells for new cancers and are called "cancer stem cells" or CSCs, have also been shown to possess increased resistance to therapeutics, and represent the root cause underlying therapy failures, persistence of residual disease, and relapse. As >90% of cancer deaths are due to refractory tumors, identification of critical molecular drivers of the CSC-state would reveal vulnerabilities that can be leveraged in designing therapeutics that eradicate advanced disease and improve patient survival outcomes. An expanding and complex body of work has now described the exquisite susceptibility of CSC pools to the regulatory influences of local and systemic hormones. Indeed, breast CSCs express a plethora of hormonal receptors, which funnel hormonal influences over every aspect of breast neoplasia - be it tumor onset, growth, survival, invasion, metastasis, or therapy resistance - via directly impacting CSC behavior. This article is intended to shed light on this active area of investigation by attempting to provide a systematic and comprehensive overview of the available evidence directly linking hormones to breast CSC biology.
Collapse
Affiliation(s)
- Yurong Zheng
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Cambridge, MA, 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
34
|
Jin TY, Saindane M, Park KS, Kim S, Nam S, Yoo Y, Yang JH, Yun I. LEP as a potential biomarker in prognosis of breast cancer: Systemic review and meta analyses (PRISMA). Medicine (Baltimore) 2021; 100:e26896. [PMID: 34414945 PMCID: PMC8376305 DOI: 10.1097/md.0000000000026896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Obesity strongly affects the prognosis of various malignancies, including breast cancer. Leptin (LEP) may be associated with obesity and breast cancer prognosis. The purpose of our study was to determine the prognostic value of LEP in breast cancer. METHOD We conducted a multi-omic analysis to determine the prognostic role of LEP. Different public bioinformatics platforms (Oncomine, Gene Expression Profiling Interactive Analysis, University of California Santa Cruz Xena, bc-GenExMiner, PrognoScan database, R2-Kaplan-Meier Scanner, UALCAN, Search Tool for the Retrieval of Interacting Genes/Proteins database , and The Database for Annotation, Visualization and Integrated Discovery) were used to evaluate the roles of LEP. Clinicopathological variables were evaluated. RESULTS LEP was downregulated in breast cancer tissues compared to levels in normal tissues. By co-expressed gene analysis, a positive correlation between LEP and SLC19A3 was observed. Based on the clinicopathological analysis, low LEP expression was associated with older age, higher stage, lymph node status, human epidermal growth factor receptor 2 (HER2) status, estrogen receptor (ER+) positivity, and progesterone receptor (PR+) positivity. Kaplan-Meier survival analysis showed that low LEP expression indicated a poorer prognosis. LEP is hypermethylated in breast cancer tissues in PrognoScan and R2-Kaplan Meier Scanner, and low LEP expression was correlated with poor prognosis. LEP protein-protein interactions were analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins database. Gene ontology analysis results showed that cellular component is mainly associated with the endosome lumen, cytosol, and secretory granules and is upregulated. For the biological process energy reserve, metabolic processes exhibited the greatest regulation compared to the others. In molecular function, it was mainly enriched in a variety of combinations, but hormone activity showed the highest regulation. CONCLUSION Our study provides evidence for the prognostic role of LEP in breast cancer and as a novel potential therapeutic target in such malignancies. Nevertheless, further validation is required.
Collapse
Affiliation(s)
- Tong Yi Jin
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Madhuri Saindane
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - SeongHoon Kim
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - SangEun Nam
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - YoungBum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - Jung-Hyun Yang
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - IkJin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| |
Collapse
|
35
|
Nam GE, Zhang ZF, Rao J, Zhou H, Jung SY. Interactions Between Adiponectin-Pathway Polymorphisms and Obesity on Postmenopausal Breast Cancer Risk Among African American Women: The WHI SHARe Study. Front Oncol 2021; 11:698198. [PMID: 34367982 PMCID: PMC8335565 DOI: 10.3389/fonc.2021.698198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A decreased level of serum adiponectin is associated with obesity and an increased risk of breast cancer among postmenopausal women. Yet, the interplay between genetic variants associated with adiponectin phenotype, obesity, and breast cancer risk is unclear in African American (AA) women. METHODS We examined 32 single-nucleotide polymorphisms (SNPs) previously identified in genome-wide association and replication studies of serum adiponectin levels using data from 7,991 AA postmenopausal women in the Women's Health Initiative SNP Health Association Resource. RESULTS Stratifying by obesity status, we identified 18 adiponectin-related SNPs that were associated with breast cancer risk. Among women with BMI ≥ 30 kg/m2, the minor TT genotype of FER rs10447248 had an elevated breast cancer risk. Interaction was observed between obesity and the CT genotype of ADIPOQ rs6773957 on the additive scale for breast cancer risk (relative excess risk due to interaction, 0.62; 95% CI, 0.32-0.92). The joint effect of BMI ≥ 30 kg/m2 and the TC genotype of OR8S1 rs11168618 was larger than the sum of the independent effects on breast cancer risk. CONCLUSIONS We demonstrated that obesity plays a significant role as an effect modifier in an increased effect of the SNPs on breast cancer risk using one of the most extensive data on postmenopausal AA women. IMPACT The results suggest the potential use of adiponectin genetic variants as obesity-associated biomarkers for informing AA women who are at greater risk for breast cancer and also for promoting behavioral interventions, such as weight control, to those with risk genotypes.
Collapse
Affiliation(s)
- Gina E. Nam
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
- Center for Human Nutrition, Department of Medicine, UCLA David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jianyu Rao
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Hua Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Su Yon Jung
- Translational Sciences Section, School of Nursing, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
36
|
Coradini D, Gambazza S, Oriana S, Ambrogi F. Adipokines expression and epithelial cell polarity in normal and cancerous breast tissue. Carcinogenesis 2021; 41:1402-1408. [PMID: 32556088 DOI: 10.1093/carcin/bgaa060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/13/2020] [Accepted: 06/12/2020] [Indexed: 11/12/2022] Open
Abstract
Cell polarity is crucial for the correct structural and functional organization of epithelial tissue. Its disruption can lead to loss of the apicobasal polarity, alteration in the intracellular components, misregulation of the pathways involved in cell proliferation and cancer promotion. Very recent in vitro/in vivo findings demonstrated that obesity-associated alterations in tissue adipokines protein level negatively affect epithelial polarity. We performed an in silico study to investigate whether such alterations also occur in surgical samples. We aimed to explore the relationship among the expression of the genes coding for leptin (LEP), adiponectin (ADIPOQ), adipokine receptors (LEPR, ADIPOR1 and ADIPOR2), and a panel of polarity-associated genes in normal tissue from breast reduction mammoplasty, and a series of paired samples of histologically normal (HN) tissue and invasive cancer. Results indicated that, in normal tissue, the expression of adipokines and their receptors negatively correlated with that of the polarity-associated genes and GGT1, which codes for γ-glutamyl transferase (GGT) enzyme, a marker of cell distress and membrane disruption. This negative correlation progressively decreased in HN and cancerous tissue, and loss of correlation between ADIPOR2 and polarity-associated genes appeared the most noticeable alteration. Given the growing role of obesity in breast cancer etiology and the opposite action of leptin and adiponectin in epithelial tissue remodeling, ADIPOR2 loss could be addressed as a key mechanism leading to an unbalanced leptin stimulatory activity, subsequent cell polarity disruption and eventually tumor initiation, a finding that requires to be confirmed also at the protein level and with in vivo models.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, 'Giulio A. Maccacaro', Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti, Milan, Italy
| | - Simone Gambazza
- Laboratory of Medical Statistics and Biometry, 'Giulio A. Maccacaro', Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti, Milan, Italy
| | - Saro Oriana
- Senology Center, Ambrosiana Clinic, Istituto Sacra Famiglia, Cesano Boscone, Piazza Mons. Moneta, Cesano Boscone, Milan, Italy
| | - Federico Ambrogi
- Laboratory of Medical Statistics and Biometry, 'Giulio A. Maccacaro', Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti, Milan, Italy
| |
Collapse
|
37
|
Bruinsma TJ, Dyer AM, Rogers CJ, Schmitz KH, Sturgeon KM. Effects of Diet and Exercise-Induced Weight Loss on Biomarkers of Inflammation in Breast Cancer Survivors: A Systematic Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev 2021; 30:1048-1062. [PMID: 33737299 PMCID: PMC8172485 DOI: 10.1158/1055-9965.epi-20-1029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Adiponectin, leptin, and pro- and anti-inflammatory cytokines are implicated in breast cancer risk and recurrence. Weight loss, via the dynamic interplay of energy balance through exercise and/or caloric restriction, decreases risk of breast cancer recurrence. METHODS We investigated the effects of lifestyle modifications (exercise only, or combined caloric restriction and exercise) on adipokines, IL2, IL6, IL8, IL10, C-reactive protein (CRP), and TNFα biomarkers in breast cancer survivors. Searches were completed in June and July of 2019 to identify randomized controlled trials that met inclusion criteria. Weighted mean difference was calculated using random- or fixed-effects models based on the heterogeneity of the studies. RESULTS 2501 records were identified, with 30 ultimately meeting inclusion criteria of the systematic review; 21 studies provided data suitable for meta-analysis. We observed leptin levels were significantly reduced in the exercise-only group compared with sedentary control [WMD -5.66; 95% confidence interval (CI), -11.0 to -0.33; P = 0.04]. CONCLUSIONS Leptin may be a primary mediator of exercise-induced improvements in breast cancer recurrence. IMPACT This is the first review and meta-analysis to examine combined exercise and caloric restriction programs in breast cancer survivors. Future studies should further examine combined programs and their efficacy for altering leptin.
Collapse
Affiliation(s)
- Tyler J Bruinsma
- College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Anne-Marie Dyer
- College of Medicine, Penn State University, Hershey, Pennsylvania
- Department of Public Health Sciences, Penn State University, Hershey, Pennsylvania
| | - Connie J Rogers
- Department of Nutritional Sciences, College of Health and Human Development, Penn State University, University Park, Pennsylvania
- Cancer Institute, Penn State University, Hershey, Pennsylvania
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania
| | - Kathryn H Schmitz
- College of Medicine, Penn State University, Hershey, Pennsylvania
- Department of Public Health Sciences, Penn State University, Hershey, Pennsylvania
- Cancer Institute, Penn State University, Hershey, Pennsylvania
| | - Kathleen M Sturgeon
- College of Medicine, Penn State University, Hershey, Pennsylvania.
- Department of Public Health Sciences, Penn State University, Hershey, Pennsylvania
- Cancer Institute, Penn State University, Hershey, Pennsylvania
| |
Collapse
|
38
|
Abstract
Obesity is epidemiologically linked to 13 forms of cancer. The local and systemic obese environment is complex and likely affect tumors through multiple avenues. This includes modulation of cancer cell phenotypes and the composition of the tumor microenvironment. A molecular understanding of how obesity links to cancer holds promise for identifying candidate genes for targeted therapy for obese cancer patient. Herein, we review both the cell-autonomous and non-cell-autonomous mechanisms linking obesity and cancer as well as provide an overview of the mouse model systems applied to study this.
Collapse
Affiliation(s)
- Xiao-Zheng Liu
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Line Pedersen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
39
|
Bhardwaj P, Brown KA. Obese Adipose Tissue as a Driver of Breast Cancer Growth and Development: Update and Emerging Evidence. Front Oncol 2021; 11:638918. [PMID: 33859943 PMCID: PMC8042134 DOI: 10.3389/fonc.2021.638918] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is an established risk factor for breast cancer growth and progression. A number of advances have been made in recent years revealing new insights into this link. Early events in breast cancer development involve the neoplastic transformation of breast epithelial cells to cancer cells. In obesity, breast adipose tissue undergoes significant hormonal and inflammatory changes that create a mitogenic microenvironment. Many factors that are produced in obesity have also been shown to promote tumorigenesis. Given that breast epithelial cells are surrounded by adipose tissue, the crosstalk between the adipose compartment and breast epithelial cells is hypothesized to be a significant player in the initiation and progression of breast cancer in individuals with excess adiposity. The present review examines this crosstalk with a focus on obese breast adipose-derived estrogen, inflammatory mediators and adipokines, and how they are mechanistically linked to breast cancer risk and growth through stimulation of oxidative stress, DNA damage, and pro-oncogenic transcriptional programs. Pharmacological and lifestyle strategies targeting these factors and their downstream effects are evaluated for feasibility and efficacy in decreasing the risk of obesity-induced breast epithelial cell transformation and consequently, breast cancer development.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
40
|
Association between Tumor Prognosis Marker Visfatin and Proinflammatory Cytokines in Hypertensive Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8568926. [PMID: 33816632 PMCID: PMC7990525 DOI: 10.1155/2021/8568926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Visfatin has been reported as a risk factor and a potential diagnostic marker in cancer. It is an adipokine, secreted by visceral fat and associated with the pathogenesis of arterial hypertension. We investigated the circulatory levels of visfatin in hypertensive patients with hypertriglyceridemia, which are the risk factors for various cancers and its association with proinflammatory cytokines. A total of 81 (male/female: 33/48) subjects with or without hypertension were enrolled for this study. Group 1 was normotensive, Group 2 hypertensive, and Group 3 with hypertension with hypertriglyceridemia. Data on anthropometric and biochemical data were recorded. Plasma visfatin levels were measured using an ELISA kit. The plasma inflammatory cytokines were estimated using a multiplex bead-based assay. The results revealed that the hypertension with hypertriglyceridemia group has the highest levels of visfatin compared to the hypertension and control groups with a significant difference (p < 0.001). Besides, circulatory visfatin showed the strongest possible correlation with proinflammatory cytokines among hypertensive patients with hypertriglyceridemia. We found a positive correlation between visfatin and diastolic blood pressure as well as high-density lipoproteins. In conclusion, the outcomes of the present study demonstrate that plasma visfatin levels were found to be elevated in hypertensive patients with hypertriglyceridemia and associated with proinflammatory cytokines. Since hypertension has been documented as the most common comorbidity observed in cancer patients, visfatin may be a novel potential therapeutic target for hypertension in cancer patients and survivors.
Collapse
|
41
|
Alanteet AA, Attia HA, Shaheen S, Alfayez M, Alshanawani B. Anti-Proliferative Activity of Glucagon-Like Peptide-1 Receptor Agonist on Obesity-Associated Breast Cancer: The Impact on Modulating Adipokines' Expression in Adipocytes and Cancer Cells. Dose Response 2021; 19:1559325821995651. [PMID: 33746653 PMCID: PMC7903831 DOI: 10.1177/1559325821995651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/04/2023] Open
Abstract
Obesity is associated with high risk and poor prognosis of breast cancer (BC). Obesity promotes BC cells proliferation via modulating the production of adipokines, including adiponectin (anti-neoplastic adipokine), leptin (carcinogenic adipokine) and inflammatory mediators. In the present study we investigated the anti-proliferative effects of liraglutide (LG; anti-diabetic and weight reducing drug) on MCF-7 human BC cells cultured in obese adipose tissue-derived stem cells-conditioned medium (ADSCs-CM) and whether this effect is mediated via modulating the adipokines in ADSCs and cancer cells. Proliferation was investigated using AlamarBlue viability test, colony forming assay and cell cycle analysis. Levels and expression of adipokines and their receptors were assayed using ELISA and RT-PCR. LG caused 48% inhibition of MCF-7 proliferation in obese ADSCs-CM, reduced the colony formation and induced G0/G1 phase arrest. LG also decreased the levels of inflammatory mediators, suppressed the expression of leptin, while increased mRNA levels of adiponectin and their receptors in obese ADSCs and cancer cells cultured in obese ADCSs-CM. In conclusion, LG could mitigate BC cell growth in obese subjects; therefore it could be used for clinical prevention and/or treatment of BC in obese subjects. It may assist to improve treatment outcomes and, reduce the mortality rate in obese patients with BC.
Collapse
Affiliation(s)
- Alaa A Alanteet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sameerah Shaheen
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Musaed Alfayez
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bisher Alshanawani
- Plastic Surgery Unit, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Perego S, Sansoni V, Ziemann E, Lombardi G. Another Weapon against Cancer and Metastasis: Physical-Activity-Dependent Effects on Adiposity and Adipokines. Int J Mol Sci 2021; 22:ijms22042005. [PMID: 33670492 PMCID: PMC7922129 DOI: 10.3390/ijms22042005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Physically active behavior has been associated with a reduced risk of developing certain types of cancer and improved psychological conditions for patients by reducing anxiety and depression, in turn improving the quality of life of cancer patients. On the other hand, the correlations between inactivity, sedentary behavior, and overweight and obesity with the risk of development and progression of various cancers are well studied, mainly in middle-aged and elderly subjects. In this article, we have revised the evidence on the effects of physical activity on the expression and release of the adipose-tissue-derived mediators of low-grade chronic inflammation, i.e., adipokines, as well as the adipokine-mediated impacts of physical activity on tumor development, growth, and metastasis. Importantly, exercise training may be effective in mitigating the side effects related to anti-cancer treatment, thereby underlining the importance of encouraging cancer patients to engage in moderate-intensity activities. However, the strong need to customize and adapt exercises to a patient’s abilities is apparent. Besides the preventive effects of physically active behavior against the adipokine-stimulated cancer risk, it remains poorly understood how physical activity, through its actions as an adipokine, can actually influence the onset and development of metastases.
Collapse
Affiliation(s)
- Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Correspondence: ; Tel.: +39-0266214068
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| |
Collapse
|
43
|
Caffa I, Nencioni A. Enhancing endocrine therapy activity via fasting cycles: biological rationale and clinical feasibility. Mol Cell Oncol 2021; 8:1853492. [PMID: 33553607 DOI: 10.1080/23723556.2020.1853492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We found that periodic fasting increases the anti-cancer activity of endocrine agents used to treat hormone receptor-positive breast cancer and delays acquired resistance to them by reducing blood leptin, insulin and insulin-like growth factor 1 (IGF1). Our work supports further clinical studies of fasting as an adjuvant to endocrine agents in breast cancer patients.
Collapse
Affiliation(s)
- Irene Caffa
- Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| |
Collapse
|
44
|
Tumor Metabolic Reprogramming by Adipokines as a Critical Driver of Obesity-Associated Cancer Progression. Int J Mol Sci 2021; 22:ijms22031444. [PMID: 33535537 PMCID: PMC7867092 DOI: 10.3390/ijms22031444] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Adiposity is associated with an increased risk of various types of carcinoma. One of the plausible mechanisms underlying the tumor-promoting role of obesity is an aberrant secretion of adipokines, a group of hormones secreted from adipose tissue, which have exhibited both oncogenic and tumor-suppressing properties in an adipokine type- and context-dependent manner. Increasing evidence has indicated that these adipose tissue-derived hormones differentially modulate cancer cell-specific metabolism. Some adipokines, such as leptin, resistin, and visfatin, which are overproduced in obesity and widely implicated in different stages of cancer, promote cellular glucose and lipid metabolism. Conversely, adiponectin, an adipokine possessing potent anti-tumor activities, is linked to a more favorable metabolic phenotype. Adipokines may also play a pivotal role under the reciprocal regulation of metabolic rewiring of cancer cells in tumor microenvironment. Given the fact that metabolic reprogramming is one of the major hallmarks of cancer, understanding the modulatory effects of adipokines on alterations in cancer cell metabolism would provide insight into the crosstalk between obesity, adipokines, and tumorigenesis. In this review, we summarize recent insights into putative roles of adipokines as mediators of cellular metabolic rewiring in obesity-associated tumors, which plays a crucial role in determining the fate of tumor cells.
Collapse
|
45
|
Acheva A, Kärki T, Schaible N, Krishnan R, Tojkander S. Adipokine Leptin Co-operates With Mechanosensitive Ca 2 +-Channels and Triggers Actomyosin-Mediated Motility of Breast Epithelial Cells. Front Cell Dev Biol 2021; 8:607038. [PMID: 33490070 PMCID: PMC7815691 DOI: 10.3389/fcell.2020.607038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
In postmenopausal women, a major risk factor for the development of breast cancer is obesity. In particular, the adipose tissue-derived adipokine leptin has been strongly linked to tumor cell proliferation, migration, and metastasis, but the underlying mechanisms remain unclear. Here we show that treatment of normal mammary epithelial cells with leptin induces EMT-like features characterized by higher cellular migration speeds, loss of structural ordering of 3D-mammo spheres, and enhancement of epithelial traction forces. Mechanistically, leptin triggers the phosphorylation of myosin light chain kinase-2 (MLC-2) through the interdependent activity of leptin receptor and Ca2+ channels. These data provide evidence that leptin-activated leptin receptors, in co-operation with mechanosensitive Ca2+ channels, play a role in the development of breast carcinomas through the regulation of actomyosin dynamics.
Collapse
Affiliation(s)
- Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Niccole Schaible
- Beth Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Beth Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Vaziri N, Shariati L, Javanmard SH. Leukemia inhibitory factor: A main controller of breast cancer. J Biosci 2020. [DOI: 10.1007/s12038-020-00115-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Leptin, Leptin Receptor, KHDRBS1 (KH RNA Binding Domain Containing, Signal Transduction Associated 1), and Adiponectin in Bone Metastasis from Breast Carcinoma: An Immunohistochemical Study. Biomedicines 2020; 8:biomedicines8110510. [PMID: 33213024 PMCID: PMC7698510 DOI: 10.3390/biomedicines8110510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer patients are at a high risk of complications from bone metastasis. Molecular characterization of bone metastases is essential for the discovery of new therapeutic targets. Here, we investigated the expression and the intracellular distribution of KH RNA binding domain containing, signal transduction associated 1 (KHDRBS1), leptin, leptin receptor (LEPR), and adiponectin in bone metastasis from breast carcinoma and looked for correlations between the data. The expression of these proteins is known in breast carcinoma, but it has not been investigated in bone metastatic tissue to date. Immunohistochemical analysis was carried out on bone metastasis specimens, then semiquantitative evaluation of the results and the Pearson test were performed to determine eventual correlations. KHDRBS1 expression was significantly higher in the nuclei than in the cytosol of metastatic cells; LEPR was prevalently observed in the cytosol and the nuclei; leptin and adiponectin were found in metastatic cells and stromal cells; the strongest positive correlation was between nuclear KHDRBS1 and nuclear LEPR expression. Taken together, our findings support the importance of the leptin/LEPR/KHDRBS1 axis and of adiponectin in the progression of bone metastasis and suggest their potential application in pharmacological interventions.
Collapse
|
48
|
Llanos AAM, Yao S, Singh A, Aremu JB, Khiabanian H, Lin Y, Omene C, Omilian AR, Khoury T, Hong CC, Ganesan S, Foran DJ, Higgins MJ, Ambrosone CB, Bandera EV, Demissie K. Gene expression of adipokines and adipokine receptors in the tumor microenvironment: associations of lower expression with more aggressive breast tumor features. Breast Cancer Res Treat 2020; 185:785-798. [PMID: 33067778 DOI: 10.1007/s10549-020-05972-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Limited epidemiologic data are available on the expression of adipokines leptin (LEP) and adiponectin (ADIPOQ) and adipokine receptors (LEPR, ADIPOR1, ADIPOR2) in the breast tumor microenvironment (TME). The associations of gene expression of these biomarkers with tumor clinicopathology are not well understood. METHODS NanoString multiplexed assays were used to assess the gene expression levels of LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 within tumor tissues among 162 Black and 55 White women with newly diagnosed breast cancer. Multivariate mixed effects models were used to estimate associations of gene expression with breast tumor clinicopathology (overall and separately among Blacks). RESULTS Black race was associated with lower gene expression of LEPR (P = 0.002) and ADIPOR1 (P = 0.01). Lower LEP, LEPR, and ADIPOQ gene expression were associated with higher tumor grade (P = 0.0007, P < 0.0001, and P < 0.0001, respectively) and larger tumor size (P < 0.0001, P = 0.0005, and P < 0.0001, respectively). Lower ADIPOQ expression was associated with ER- status (P = 0.0005), and HER2-enriched (HER2-E; P = 0.0003) and triple-negative (TN; P = 0.002) subtypes. Lower ADIPOR2 expression was associated with Ki67+ status (P = 0.0002), ER- status (P < 0.0001), PR- status (P < 0.0001), and TN subtype (P = 0.0002). Associations of lower adipokine and adipokine receptor gene expression with ER-, HER2-E, and TN subtypes were confirmed using data from The Cancer Genome Atlas (P-values < 0.005). CONCLUSION These findings suggest that lower expression of ADIPOQ, ADIPOR2, LEP, and LEPR in the breast TME might be indicators of more aggressive breast cancer phenotypes. Validation of these findings are warranted to elucidate the role of the adipokines and adipokine receptors in long-term breast cancer prognosis.
Collapse
Affiliation(s)
- Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Physics and Astronomy, School of Graduate Studies, Rutgers University, New Brunswick, NJ, USA
| | - John B Aremu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David J Foran
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, USA
| |
Collapse
|
49
|
Price TR, Friedenreich CM, Robson PJ, Li H, Brenner DR. High-sensitivity C-reactive protein, hemoglobin A1c and breast cancer risk: a nested case-control study from Alberta's Tomorrow Project cohort. Cancer Causes Control 2020; 31:1057-1068. [PMID: 32959132 DOI: 10.1007/s10552-020-01329-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Our aim is to examine the associations between high-sensitivity C-reactive protein (hsCRP) and hemoglobin A1c (HbA1c), common biomarkers of inflammation and insulin resistance, respectively, with breast cancer risk, while adjusting for measures of excess body size. METHODS We conducted a nested case-control study within the Alberta's Tomorrow Project cohort (Alberta, Canada) including 197 incident breast cancer cases and 394 matched controls. The sample population included both pre- and postmenopausal women. Serum concentrations of hsCRP and HbA1c were measured from blood samples collected at baseline, along with anthropometric measurements, general health and lifestyle data. Conditional logistic regression was used to evaluate associations between hsCRP, HbA1c, and breast cancer risk adjusted for excess body size (body fat percentage) and other risk factors for breast cancer. RESULTS Higher concentrations of hsCRP were associated with elevated breast cancer risk (odds ratio [OR] 1.27; 95% confidence interval [95% CI] 1.03-1.55). The observed associations were unchanged with adjustment for body fat percentage. Higher HbA1c concentrations were not significantly associated with an increased breast cancer risk (OR 1.22; 95% CI 0.17-8.75). CONCLUSION These data suggest that hsCRP may be associated with elevated breast cancer risk, independent of excess body size. However, elevated concentrations of HbA1c did not appear to increase breast cancer risk in apparently healthy women.
Collapse
Affiliation(s)
- Tiffany R Price
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
| | - Paula J Robson
- Cancer Research & Analytics, CancerControl Alberta, Alberta Health Services, Edmonton, AB, Canada
| | - Haocheng Li
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada.
| |
Collapse
|
50
|
Gourgue F, Mignion L, Van Hul M, Dehaen N, Bastien E, Payen V, Leroy B, Joudiou N, Vertommen D, Bouzin C, Delzenne N, Gallez B, Feron O, Jordan BF, Cani PD. Obesity and triple-negative-breast-cancer: Is apelin a new key target? J Cell Mol Med 2020; 24:10233-10244. [PMID: 32681609 PMCID: PMC7520321 DOI: 10.1111/jcmm.15639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have shown that obese subjects have an increased risk of developing triple‐negative breast cancer (TNBC) and an overall reduced survival. However, the relation between obesity and TNBC remains difficult to understand. We hypothesize that apelin, an adipokine whose levels are increased in obesity, could be a major factor contributing to both tumour growth and metastatization in TNBC obese patients. We observed that development of obesity under high‐fat diet in TNBC tumour‐bearing mice significantly increased tumour growth. By showing no effect of high‐fat diet in obesity‐resistant mice, we demonstrated the necessity to develop obesity‐related disorders to increase tumour growth. Apelin mRNA expression was also increased in the subcutaneous adipose tissue and tumours of obese mice. We further highlighted that the reproduction of obesity‐related levels of apelin in lean mice led to an increased TNBC growth and brain metastases formation. Finally, injections of the apelinergic antagonist F13A to obese mice significantly reduced TNBC growth, suggesting that apelinergic system interference could be an interesting therapeutic strategy in the context of obesity and TNBC.
Collapse
Affiliation(s)
- Florian Gourgue
- Metabolism & Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), UCLouvain, Université catholique de Louvain, Brussels, Belgium.,Biomedical Magnetic Resonance Research Group, UCLouvain, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Lionel Mignion
- Biomedical Magnetic Resonance Research Group, UCLouvain, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism & Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Natacha Dehaen
- Biomedical Magnetic Resonance Research Group, UCLouvain, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Valery Payen
- Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, MS-Quanta Platform, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute (DDUV), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- Imaging platform 2IP, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie Delzenne
- Metabolism & Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, UCLouvain, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, UCLouvain, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism & Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|